glsl: Implement ARB_texture_query_lod
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 /**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45 /**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor. While using type tags is not very C++, it is extremely
51 * convenient. For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types. For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59 enum ir_node_type {
60 /**
61 * Zero is unused so that the IR validator can detect cases where
62 * \c ir_instruction::ir_type has not been initialized.
63 */
64 ir_type_unset,
65 ir_type_variable,
66 ir_type_assignment,
67 ir_type_call,
68 ir_type_constant,
69 ir_type_dereference_array,
70 ir_type_dereference_record,
71 ir_type_dereference_variable,
72 ir_type_discard,
73 ir_type_expression,
74 ir_type_function,
75 ir_type_function_signature,
76 ir_type_if,
77 ir_type_loop,
78 ir_type_loop_jump,
79 ir_type_return,
80 ir_type_swizzle,
81 ir_type_texture,
82 ir_type_max /**< maximum ir_type enum number, for validation */
83 };
84
85 /**
86 * Base class of all IR instructions
87 */
88 class ir_instruction : public exec_node {
89 public:
90 enum ir_node_type ir_type;
91
92 /**
93 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
94 * there's a virtual destructor present. Because we almost
95 * universally use ralloc for our memory management of
96 * ir_instructions, the destructor doesn't need to do any work.
97 */
98 virtual ~ir_instruction()
99 {
100 }
101
102 /** ir_print_visitor helper for debugging. */
103 void print(void) const;
104
105 virtual void accept(ir_visitor *) = 0;
106 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
107 virtual ir_instruction *clone(void *mem_ctx,
108 struct hash_table *ht) const = 0;
109
110 /**
111 * \name IR instruction downcast functions
112 *
113 * These functions either cast the object to a derived class or return
114 * \c NULL if the object's type does not match the specified derived class.
115 * Additional downcast functions will be added as needed.
116 */
117 /*@{*/
118 virtual class ir_variable * as_variable() { return NULL; }
119 virtual class ir_function * as_function() { return NULL; }
120 virtual class ir_dereference * as_dereference() { return NULL; }
121 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
122 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
123 virtual class ir_dereference_record *as_dereference_record() { return NULL; }
124 virtual class ir_expression * as_expression() { return NULL; }
125 virtual class ir_rvalue * as_rvalue() { return NULL; }
126 virtual class ir_loop * as_loop() { return NULL; }
127 virtual class ir_assignment * as_assignment() { return NULL; }
128 virtual class ir_call * as_call() { return NULL; }
129 virtual class ir_return * as_return() { return NULL; }
130 virtual class ir_if * as_if() { return NULL; }
131 virtual class ir_swizzle * as_swizzle() { return NULL; }
132 virtual class ir_constant * as_constant() { return NULL; }
133 virtual class ir_discard * as_discard() { return NULL; }
134 /*@}*/
135
136 protected:
137 ir_instruction()
138 {
139 ir_type = ir_type_unset;
140 }
141 };
142
143
144 /**
145 * The base class for all "values"/expression trees.
146 */
147 class ir_rvalue : public ir_instruction {
148 public:
149 const struct glsl_type *type;
150
151 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
152
153 virtual void accept(ir_visitor *v)
154 {
155 v->visit(this);
156 }
157
158 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
159
160 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
161
162 virtual ir_rvalue * as_rvalue()
163 {
164 return this;
165 }
166
167 ir_rvalue *as_rvalue_to_saturate();
168
169 virtual bool is_lvalue() const
170 {
171 return false;
172 }
173
174 /**
175 * Get the variable that is ultimately referenced by an r-value
176 */
177 virtual ir_variable *variable_referenced() const
178 {
179 return NULL;
180 }
181
182
183 /**
184 * If an r-value is a reference to a whole variable, get that variable
185 *
186 * \return
187 * Pointer to a variable that is completely dereferenced by the r-value. If
188 * the r-value is not a dereference or the dereference does not access the
189 * entire variable (i.e., it's just one array element, struct field), \c NULL
190 * is returned.
191 */
192 virtual ir_variable *whole_variable_referenced()
193 {
194 return NULL;
195 }
196
197 /**
198 * Determine if an r-value has the value zero
199 *
200 * The base implementation of this function always returns \c false. The
201 * \c ir_constant class over-rides this function to return \c true \b only
202 * for vector and scalar types that have all elements set to the value
203 * zero (or \c false for booleans).
204 *
205 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one,
206 * ir_constant::is_basis
207 */
208 virtual bool is_zero() const;
209
210 /**
211 * Determine if an r-value has the value one
212 *
213 * The base implementation of this function always returns \c false. The
214 * \c ir_constant class over-rides this function to return \c true \b only
215 * for vector and scalar types that have all elements set to the value
216 * one (or \c true for booleans).
217 *
218 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one,
219 * ir_constant::is_basis
220 */
221 virtual bool is_one() const;
222
223 /**
224 * Determine if an r-value has the value negative one
225 *
226 * The base implementation of this function always returns \c false. The
227 * \c ir_constant class over-rides this function to return \c true \b only
228 * for vector and scalar types that have all elements set to the value
229 * negative one. For boolean types, the result is always \c false.
230 *
231 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
232 * ir_constant::is_basis
233 */
234 virtual bool is_negative_one() const;
235
236 /**
237 * Determine if an r-value is a basis vector
238 *
239 * The base implementation of this function always returns \c false. The
240 * \c ir_constant class over-rides this function to return \c true \b only
241 * for vector and scalar types that have one element set to the value one,
242 * and the other elements set to the value zero. For boolean types, the
243 * result is always \c false.
244 *
245 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one,
246 * is_constant::is_negative_one
247 */
248 virtual bool is_basis() const;
249
250
251 /**
252 * Return a generic value of error_type.
253 *
254 * Allocation will be performed with 'mem_ctx' as ralloc owner.
255 */
256 static ir_rvalue *error_value(void *mem_ctx);
257
258 protected:
259 ir_rvalue();
260 };
261
262
263 /**
264 * Variable storage classes
265 */
266 enum ir_variable_mode {
267 ir_var_auto = 0, /**< Function local variables and globals. */
268 ir_var_uniform, /**< Variable declared as a uniform. */
269 ir_var_shader_in,
270 ir_var_shader_out,
271 ir_var_function_in,
272 ir_var_function_out,
273 ir_var_function_inout,
274 ir_var_const_in, /**< "in" param that must be a constant expression */
275 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
276 ir_var_temporary /**< Temporary variable generated during compilation. */
277 };
278
279 /**
280 * \brief Layout qualifiers for gl_FragDepth.
281 *
282 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
283 * with a layout qualifier.
284 */
285 enum ir_depth_layout {
286 ir_depth_layout_none, /**< No depth layout is specified. */
287 ir_depth_layout_any,
288 ir_depth_layout_greater,
289 ir_depth_layout_less,
290 ir_depth_layout_unchanged
291 };
292
293 /**
294 * \brief Convert depth layout qualifier to string.
295 */
296 const char*
297 depth_layout_string(ir_depth_layout layout);
298
299 /**
300 * Description of built-in state associated with a uniform
301 *
302 * \sa ir_variable::state_slots
303 */
304 struct ir_state_slot {
305 int tokens[5];
306 int swizzle;
307 };
308
309 class ir_variable : public ir_instruction {
310 public:
311 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
312
313 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
314
315 virtual ir_variable *as_variable()
316 {
317 return this;
318 }
319
320 virtual void accept(ir_visitor *v)
321 {
322 v->visit(this);
323 }
324
325 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
326
327
328 /**
329 * Get the string value for the interpolation qualifier
330 *
331 * \return The string that would be used in a shader to specify \c
332 * mode will be returned.
333 *
334 * This function is used to generate error messages of the form "shader
335 * uses %s interpolation qualifier", so in the case where there is no
336 * interpolation qualifier, it returns "no".
337 *
338 * This function should only be used on a shader input or output variable.
339 */
340 const char *interpolation_string() const;
341
342 /**
343 * Determine how this variable should be interpolated based on its
344 * interpolation qualifier (if present), whether it is gl_Color or
345 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
346 * state.
347 *
348 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
349 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
350 */
351 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
352
353 /**
354 * Determine whether or not a variable is part of a uniform block.
355 */
356 inline bool is_in_uniform_block() const
357 {
358 return this->mode == ir_var_uniform && this->interface_type != NULL;
359 }
360
361 /**
362 * Determine whether or not a variable is the declaration of an interface
363 * block
364 *
365 * For the first declaration below, there will be an \c ir_variable named
366 * "instance" whose type and whose instance_type will be the same
367 * \cglsl_type. For the second declaration, there will be an \c ir_variable
368 * named "f" whose type is float and whose instance_type is B2.
369 *
370 * "instance" is an interface instance variable, but "f" is not.
371 *
372 * uniform B1 {
373 * float f;
374 * } instance;
375 *
376 * uniform B2 {
377 * float f;
378 * };
379 */
380 inline bool is_interface_instance() const
381 {
382 const glsl_type *const t = this->type;
383
384 return (t == this->interface_type)
385 || (t->is_array() && t->fields.array == this->interface_type);
386 }
387
388 /**
389 * Declared type of the variable
390 */
391 const struct glsl_type *type;
392
393 /**
394 * Declared name of the variable
395 */
396 const char *name;
397
398 /**
399 * Highest element accessed with a constant expression array index
400 *
401 * Not used for non-array variables.
402 */
403 unsigned max_array_access;
404
405 /**
406 * Is the variable read-only?
407 *
408 * This is set for variables declared as \c const, shader inputs,
409 * and uniforms.
410 */
411 unsigned read_only:1;
412 unsigned centroid:1;
413 unsigned invariant:1;
414
415 /**
416 * Has this variable been used for reading or writing?
417 *
418 * Several GLSL semantic checks require knowledge of whether or not a
419 * variable has been used. For example, it is an error to redeclare a
420 * variable as invariant after it has been used.
421 *
422 * This is only maintained in the ast_to_hir.cpp path, not in
423 * Mesa's fixed function or ARB program paths.
424 */
425 unsigned used:1;
426
427 /**
428 * Has this variable been statically assigned?
429 *
430 * This answers whether the variable was assigned in any path of
431 * the shader during ast_to_hir. This doesn't answer whether it is
432 * still written after dead code removal, nor is it maintained in
433 * non-ast_to_hir.cpp (GLSL parsing) paths.
434 */
435 unsigned assigned:1;
436
437 /**
438 * Storage class of the variable.
439 *
440 * \sa ir_variable_mode
441 */
442 unsigned mode:4;
443
444 /**
445 * Interpolation mode for shader inputs / outputs
446 *
447 * \sa ir_variable_interpolation
448 */
449 unsigned interpolation:2;
450
451 /**
452 * \name ARB_fragment_coord_conventions
453 * @{
454 */
455 unsigned origin_upper_left:1;
456 unsigned pixel_center_integer:1;
457 /*@}*/
458
459 /**
460 * Was the location explicitly set in the shader?
461 *
462 * If the location is explicitly set in the shader, it \b cannot be changed
463 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
464 * no effect).
465 */
466 unsigned explicit_location:1;
467 unsigned explicit_index:1;
468
469 /**
470 * Does this variable have an initializer?
471 *
472 * This is used by the linker to cross-validiate initializers of global
473 * variables.
474 */
475 unsigned has_initializer:1;
476
477 /**
478 * Is this variable a generic output or input that has not yet been matched
479 * up to a variable in another stage of the pipeline?
480 *
481 * This is used by the linker as scratch storage while assigning locations
482 * to generic inputs and outputs.
483 */
484 unsigned is_unmatched_generic_inout:1;
485
486 /**
487 * If non-zero, then this variable may be packed along with other variables
488 * into a single varying slot, so this offset should be applied when
489 * accessing components. For example, an offset of 1 means that the x
490 * component of this variable is actually stored in component y of the
491 * location specified by \c location.
492 */
493 unsigned location_frac:2;
494
495 /**
496 * \brief Layout qualifier for gl_FragDepth.
497 *
498 * This is not equal to \c ir_depth_layout_none if and only if this
499 * variable is \c gl_FragDepth and a layout qualifier is specified.
500 */
501 ir_depth_layout depth_layout;
502
503 /**
504 * Storage location of the base of this variable
505 *
506 * The precise meaning of this field depends on the nature of the variable.
507 *
508 * - Vertex shader input: one of the values from \c gl_vert_attrib.
509 * - Vertex shader output: one of the values from \c gl_varying_slot.
510 * - Fragment shader input: one of the values from \c gl_varying_slot.
511 * - Fragment shader output: one of the values from \c gl_frag_result.
512 * - Uniforms: Per-stage uniform slot number for default uniform block.
513 * - Uniforms: Index within the uniform block definition for UBO members.
514 * - Other: This field is not currently used.
515 *
516 * If the variable is a uniform, shader input, or shader output, and the
517 * slot has not been assigned, the value will be -1.
518 */
519 int location;
520
521 /**
522 * output index for dual source blending.
523 */
524 int index;
525
526 /**
527 * Built-in state that backs this uniform
528 *
529 * Once set at variable creation, \c state_slots must remain invariant.
530 * This is because, ideally, this array would be shared by all clones of
531 * this variable in the IR tree. In other words, we'd really like for it
532 * to be a fly-weight.
533 *
534 * If the variable is not a uniform, \c num_state_slots will be zero and
535 * \c state_slots will be \c NULL.
536 */
537 /*@{*/
538 unsigned num_state_slots; /**< Number of state slots used */
539 ir_state_slot *state_slots; /**< State descriptors. */
540 /*@}*/
541
542 /**
543 * Emit a warning if this variable is accessed.
544 */
545 const char *warn_extension;
546
547 /**
548 * Value assigned in the initializer of a variable declared "const"
549 */
550 ir_constant *constant_value;
551
552 /**
553 * Constant expression assigned in the initializer of the variable
554 *
555 * \warning
556 * This field and \c ::constant_value are distinct. Even if the two fields
557 * refer to constants with the same value, they must point to separate
558 * objects.
559 */
560 ir_constant *constant_initializer;
561
562 /**
563 * For variables that are in an interface block or are an instance of an
564 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
565 *
566 * \sa ir_variable::location
567 */
568 const glsl_type *interface_type;
569 };
570
571
572 /*@{*/
573 /**
574 * The representation of a function instance; may be the full definition or
575 * simply a prototype.
576 */
577 class ir_function_signature : public ir_instruction {
578 /* An ir_function_signature will be part of the list of signatures in
579 * an ir_function.
580 */
581 public:
582 ir_function_signature(const glsl_type *return_type);
583
584 virtual ir_function_signature *clone(void *mem_ctx,
585 struct hash_table *ht) const;
586 ir_function_signature *clone_prototype(void *mem_ctx,
587 struct hash_table *ht) const;
588
589 virtual void accept(ir_visitor *v)
590 {
591 v->visit(this);
592 }
593
594 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
595
596 /**
597 * Attempt to evaluate this function as a constant expression,
598 * given a list of the actual parameters and the variable context.
599 * Returns NULL for non-built-ins.
600 */
601 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
602
603 /**
604 * Get the name of the function for which this is a signature
605 */
606 const char *function_name() const;
607
608 /**
609 * Get a handle to the function for which this is a signature
610 *
611 * There is no setter function, this function returns a \c const pointer,
612 * and \c ir_function_signature::_function is private for a reason. The
613 * only way to make a connection between a function and function signature
614 * is via \c ir_function::add_signature. This helps ensure that certain
615 * invariants (i.e., a function signature is in the list of signatures for
616 * its \c _function) are met.
617 *
618 * \sa ir_function::add_signature
619 */
620 inline const class ir_function *function() const
621 {
622 return this->_function;
623 }
624
625 /**
626 * Check whether the qualifiers match between this signature's parameters
627 * and the supplied parameter list. If not, returns the name of the first
628 * parameter with mismatched qualifiers (for use in error messages).
629 */
630 const char *qualifiers_match(exec_list *params);
631
632 /**
633 * Replace the current parameter list with the given one. This is useful
634 * if the current information came from a prototype, and either has invalid
635 * or missing parameter names.
636 */
637 void replace_parameters(exec_list *new_params);
638
639 /**
640 * Function return type.
641 *
642 * \note This discards the optional precision qualifier.
643 */
644 const struct glsl_type *return_type;
645
646 /**
647 * List of ir_variable of function parameters.
648 *
649 * This represents the storage. The paramaters passed in a particular
650 * call will be in ir_call::actual_paramaters.
651 */
652 struct exec_list parameters;
653
654 /** Whether or not this function has a body (which may be empty). */
655 unsigned is_defined:1;
656
657 /** Whether or not this function signature is a built-in. */
658 unsigned is_builtin:1;
659
660 /** Body of instructions in the function. */
661 struct exec_list body;
662
663 private:
664 /** Function of which this signature is one overload. */
665 class ir_function *_function;
666
667 /** Function signature of which this one is a prototype clone */
668 const ir_function_signature *origin;
669
670 friend class ir_function;
671
672 /**
673 * Helper function to run a list of instructions for constant
674 * expression evaluation.
675 *
676 * The hash table represents the values of the visible variables.
677 * There are no scoping issues because the table is indexed on
678 * ir_variable pointers, not variable names.
679 *
680 * Returns false if the expression is not constant, true otherwise,
681 * and the value in *result if result is non-NULL.
682 */
683 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
684 struct hash_table *variable_context,
685 ir_constant **result);
686 };
687
688
689 /**
690 * Header for tracking multiple overloaded functions with the same name.
691 * Contains a list of ir_function_signatures representing each of the
692 * actual functions.
693 */
694 class ir_function : public ir_instruction {
695 public:
696 ir_function(const char *name);
697
698 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
699
700 virtual ir_function *as_function()
701 {
702 return this;
703 }
704
705 virtual void accept(ir_visitor *v)
706 {
707 v->visit(this);
708 }
709
710 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
711
712 void add_signature(ir_function_signature *sig)
713 {
714 sig->_function = this;
715 this->signatures.push_tail(sig);
716 }
717
718 /**
719 * Get an iterator for the set of function signatures
720 */
721 exec_list_iterator iterator()
722 {
723 return signatures.iterator();
724 }
725
726 /**
727 * Find a signature that matches a set of actual parameters, taking implicit
728 * conversions into account. Also flags whether the match was exact.
729 */
730 ir_function_signature *matching_signature(const exec_list *actual_param,
731 bool *match_is_exact);
732
733 /**
734 * Find a signature that matches a set of actual parameters, taking implicit
735 * conversions into account.
736 */
737 ir_function_signature *matching_signature(const exec_list *actual_param);
738
739 /**
740 * Find a signature that exactly matches a set of actual parameters without
741 * any implicit type conversions.
742 */
743 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
744
745 /**
746 * Name of the function.
747 */
748 const char *name;
749
750 /** Whether or not this function has a signature that isn't a built-in. */
751 bool has_user_signature();
752
753 /**
754 * List of ir_function_signature for each overloaded function with this name.
755 */
756 struct exec_list signatures;
757 };
758
759 inline const char *ir_function_signature::function_name() const
760 {
761 return this->_function->name;
762 }
763 /*@}*/
764
765
766 /**
767 * IR instruction representing high-level if-statements
768 */
769 class ir_if : public ir_instruction {
770 public:
771 ir_if(ir_rvalue *condition)
772 : condition(condition)
773 {
774 ir_type = ir_type_if;
775 }
776
777 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
778
779 virtual ir_if *as_if()
780 {
781 return this;
782 }
783
784 virtual void accept(ir_visitor *v)
785 {
786 v->visit(this);
787 }
788
789 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
790
791 ir_rvalue *condition;
792 /** List of ir_instruction for the body of the then branch */
793 exec_list then_instructions;
794 /** List of ir_instruction for the body of the else branch */
795 exec_list else_instructions;
796 };
797
798
799 /**
800 * IR instruction representing a high-level loop structure.
801 */
802 class ir_loop : public ir_instruction {
803 public:
804 ir_loop();
805
806 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
807
808 virtual void accept(ir_visitor *v)
809 {
810 v->visit(this);
811 }
812
813 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
814
815 virtual ir_loop *as_loop()
816 {
817 return this;
818 }
819
820 /**
821 * Get an iterator for the instructions of the loop body
822 */
823 exec_list_iterator iterator()
824 {
825 return body_instructions.iterator();
826 }
827
828 /** List of ir_instruction that make up the body of the loop. */
829 exec_list body_instructions;
830
831 /**
832 * \name Loop counter and controls
833 *
834 * Represents a loop like a FORTRAN \c do-loop.
835 *
836 * \note
837 * If \c from and \c to are the same value, the loop will execute once.
838 */
839 /*@{*/
840 ir_rvalue *from; /** Value of the loop counter on the first
841 * iteration of the loop.
842 */
843 ir_rvalue *to; /** Value of the loop counter on the last
844 * iteration of the loop.
845 */
846 ir_rvalue *increment;
847 ir_variable *counter;
848
849 /**
850 * Comparison operation in the loop terminator.
851 *
852 * If any of the loop control fields are non-\c NULL, this field must be
853 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
854 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
855 */
856 int cmp;
857 /*@}*/
858 };
859
860
861 class ir_assignment : public ir_instruction {
862 public:
863 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
864
865 /**
866 * Construct an assignment with an explicit write mask
867 *
868 * \note
869 * Since a write mask is supplied, the LHS must already be a bare
870 * \c ir_dereference. The cannot be any swizzles in the LHS.
871 */
872 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
873 unsigned write_mask);
874
875 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
876
877 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
878
879 virtual void accept(ir_visitor *v)
880 {
881 v->visit(this);
882 }
883
884 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
885
886 virtual ir_assignment * as_assignment()
887 {
888 return this;
889 }
890
891 /**
892 * Get a whole variable written by an assignment
893 *
894 * If the LHS of the assignment writes a whole variable, the variable is
895 * returned. Otherwise \c NULL is returned. Examples of whole-variable
896 * assignment are:
897 *
898 * - Assigning to a scalar
899 * - Assigning to all components of a vector
900 * - Whole array (or matrix) assignment
901 * - Whole structure assignment
902 */
903 ir_variable *whole_variable_written();
904
905 /**
906 * Set the LHS of an assignment
907 */
908 void set_lhs(ir_rvalue *lhs);
909
910 /**
911 * Left-hand side of the assignment.
912 *
913 * This should be treated as read only. If you need to set the LHS of an
914 * assignment, use \c ir_assignment::set_lhs.
915 */
916 ir_dereference *lhs;
917
918 /**
919 * Value being assigned
920 */
921 ir_rvalue *rhs;
922
923 /**
924 * Optional condition for the assignment.
925 */
926 ir_rvalue *condition;
927
928
929 /**
930 * Component mask written
931 *
932 * For non-vector types in the LHS, this field will be zero. For vector
933 * types, a bit will be set for each component that is written. Note that
934 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
935 *
936 * A partially-set write mask means that each enabled channel gets
937 * the value from a consecutive channel of the rhs. For example,
938 * to write just .xyw of gl_FrontColor with color:
939 *
940 * (assign (constant bool (1)) (xyw)
941 * (var_ref gl_FragColor)
942 * (swiz xyw (var_ref color)))
943 */
944 unsigned write_mask:4;
945 };
946
947 /* Update ir_expression::get_num_operands() and operator_strs when
948 * updating this list.
949 */
950 enum ir_expression_operation {
951 ir_unop_bit_not,
952 ir_unop_logic_not,
953 ir_unop_neg,
954 ir_unop_abs,
955 ir_unop_sign,
956 ir_unop_rcp,
957 ir_unop_rsq,
958 ir_unop_sqrt,
959 ir_unop_exp, /**< Log base e on gentype */
960 ir_unop_log, /**< Natural log on gentype */
961 ir_unop_exp2,
962 ir_unop_log2,
963 ir_unop_f2i, /**< Float-to-integer conversion. */
964 ir_unop_f2u, /**< Float-to-unsigned conversion. */
965 ir_unop_i2f, /**< Integer-to-float conversion. */
966 ir_unop_f2b, /**< Float-to-boolean conversion */
967 ir_unop_b2f, /**< Boolean-to-float conversion */
968 ir_unop_i2b, /**< int-to-boolean conversion */
969 ir_unop_b2i, /**< Boolean-to-int conversion */
970 ir_unop_u2f, /**< Unsigned-to-float conversion. */
971 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
972 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
973 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
974 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
975 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
976 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
977 ir_unop_any,
978
979 /**
980 * \name Unary floating-point rounding operations.
981 */
982 /*@{*/
983 ir_unop_trunc,
984 ir_unop_ceil,
985 ir_unop_floor,
986 ir_unop_fract,
987 ir_unop_round_even,
988 /*@}*/
989
990 /**
991 * \name Trigonometric operations.
992 */
993 /*@{*/
994 ir_unop_sin,
995 ir_unop_cos,
996 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
997 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
998 /*@}*/
999
1000 /**
1001 * \name Partial derivatives.
1002 */
1003 /*@{*/
1004 ir_unop_dFdx,
1005 ir_unop_dFdy,
1006 /*@}*/
1007
1008 /**
1009 * \name Floating point pack and unpack operations.
1010 */
1011 /*@{*/
1012 ir_unop_pack_snorm_2x16,
1013 ir_unop_pack_snorm_4x8,
1014 ir_unop_pack_unorm_2x16,
1015 ir_unop_pack_unorm_4x8,
1016 ir_unop_pack_half_2x16,
1017 ir_unop_unpack_snorm_2x16,
1018 ir_unop_unpack_snorm_4x8,
1019 ir_unop_unpack_unorm_2x16,
1020 ir_unop_unpack_unorm_4x8,
1021 ir_unop_unpack_half_2x16,
1022 /*@}*/
1023
1024 /**
1025 * \name Lowered floating point unpacking operations.
1026 *
1027 * \see lower_packing_builtins_visitor::split_unpack_half_2x16
1028 */
1029 /*@{*/
1030 ir_unop_unpack_half_2x16_split_x,
1031 ir_unop_unpack_half_2x16_split_y,
1032 /*@}*/
1033
1034 ir_unop_noise,
1035
1036 /**
1037 * A sentinel marking the last of the unary operations.
1038 */
1039 ir_last_unop = ir_unop_noise,
1040
1041 ir_binop_add,
1042 ir_binop_sub,
1043 ir_binop_mul,
1044 ir_binop_div,
1045
1046 /**
1047 * Takes one of two combinations of arguments:
1048 *
1049 * - mod(vecN, vecN)
1050 * - mod(vecN, float)
1051 *
1052 * Does not take integer types.
1053 */
1054 ir_binop_mod,
1055
1056 /**
1057 * \name Binary comparison operators which return a boolean vector.
1058 * The type of both operands must be equal.
1059 */
1060 /*@{*/
1061 ir_binop_less,
1062 ir_binop_greater,
1063 ir_binop_lequal,
1064 ir_binop_gequal,
1065 ir_binop_equal,
1066 ir_binop_nequal,
1067 /**
1068 * Returns single boolean for whether all components of operands[0]
1069 * equal the components of operands[1].
1070 */
1071 ir_binop_all_equal,
1072 /**
1073 * Returns single boolean for whether any component of operands[0]
1074 * is not equal to the corresponding component of operands[1].
1075 */
1076 ir_binop_any_nequal,
1077 /*@}*/
1078
1079 /**
1080 * \name Bit-wise binary operations.
1081 */
1082 /*@{*/
1083 ir_binop_lshift,
1084 ir_binop_rshift,
1085 ir_binop_bit_and,
1086 ir_binop_bit_xor,
1087 ir_binop_bit_or,
1088 /*@}*/
1089
1090 ir_binop_logic_and,
1091 ir_binop_logic_xor,
1092 ir_binop_logic_or,
1093
1094 ir_binop_dot,
1095 ir_binop_min,
1096 ir_binop_max,
1097
1098 ir_binop_pow,
1099
1100 /**
1101 * \name Lowered floating point packing operations.
1102 *
1103 * \see lower_packing_builtins_visitor::split_pack_half_2x16
1104 */
1105 /*@{*/
1106 ir_binop_pack_half_2x16_split,
1107 /*@}*/
1108
1109 /**
1110 * Load a value the size of a given GLSL type from a uniform block.
1111 *
1112 * operand0 is the ir_constant uniform block index in the linked shader.
1113 * operand1 is a byte offset within the uniform block.
1114 */
1115 ir_binop_ubo_load,
1116
1117 /**
1118 * A sentinel marking the last of the binary operations.
1119 */
1120 ir_last_binop = ir_binop_ubo_load,
1121
1122 ir_triop_lrp,
1123
1124 /**
1125 * A sentinel marking the last of the ternary operations.
1126 */
1127 ir_last_triop = ir_triop_lrp,
1128
1129 ir_quadop_vector,
1130
1131 /**
1132 * A sentinel marking the last of all operations.
1133 */
1134 ir_last_opcode = ir_quadop_vector
1135 };
1136
1137 class ir_expression : public ir_rvalue {
1138 public:
1139 ir_expression(int op, const struct glsl_type *type,
1140 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1141 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1142
1143 /**
1144 * Constructor for unary operation expressions
1145 */
1146 ir_expression(int op, ir_rvalue *);
1147
1148 /**
1149 * Constructor for binary operation expressions
1150 */
1151 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1152
1153 virtual ir_expression *as_expression()
1154 {
1155 return this;
1156 }
1157
1158 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1159
1160 /**
1161 * Attempt to constant-fold the expression
1162 *
1163 * The "variable_context" hash table links ir_variable * to ir_constant *
1164 * that represent the variables' values. \c NULL represents an empty
1165 * context.
1166 *
1167 * If the expression cannot be constant folded, this method will return
1168 * \c NULL.
1169 */
1170 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1171
1172 /**
1173 * Determine the number of operands used by an expression
1174 */
1175 static unsigned int get_num_operands(ir_expression_operation);
1176
1177 /**
1178 * Determine the number of operands used by an expression
1179 */
1180 unsigned int get_num_operands() const
1181 {
1182 return (this->operation == ir_quadop_vector)
1183 ? this->type->vector_elements : get_num_operands(operation);
1184 }
1185
1186 /**
1187 * Return a string representing this expression's operator.
1188 */
1189 const char *operator_string();
1190
1191 /**
1192 * Return a string representing this expression's operator.
1193 */
1194 static const char *operator_string(ir_expression_operation);
1195
1196
1197 /**
1198 * Do a reverse-lookup to translate the given string into an operator.
1199 */
1200 static ir_expression_operation get_operator(const char *);
1201
1202 virtual void accept(ir_visitor *v)
1203 {
1204 v->visit(this);
1205 }
1206
1207 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1208
1209 ir_expression_operation operation;
1210 ir_rvalue *operands[4];
1211 };
1212
1213
1214 /**
1215 * HIR instruction representing a high-level function call, containing a list
1216 * of parameters and returning a value in the supplied temporary.
1217 */
1218 class ir_call : public ir_instruction {
1219 public:
1220 ir_call(ir_function_signature *callee,
1221 ir_dereference_variable *return_deref,
1222 exec_list *actual_parameters)
1223 : return_deref(return_deref), callee(callee)
1224 {
1225 ir_type = ir_type_call;
1226 assert(callee->return_type != NULL);
1227 actual_parameters->move_nodes_to(& this->actual_parameters);
1228 this->use_builtin = callee->is_builtin;
1229 }
1230
1231 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1232
1233 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1234
1235 virtual ir_call *as_call()
1236 {
1237 return this;
1238 }
1239
1240 virtual void accept(ir_visitor *v)
1241 {
1242 v->visit(this);
1243 }
1244
1245 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1246
1247 /**
1248 * Get an iterator for the set of acutal parameters
1249 */
1250 exec_list_iterator iterator()
1251 {
1252 return actual_parameters.iterator();
1253 }
1254
1255 /**
1256 * Get the name of the function being called.
1257 */
1258 const char *callee_name() const
1259 {
1260 return callee->function_name();
1261 }
1262
1263 /**
1264 * Generates an inline version of the function before @ir,
1265 * storing the return value in return_deref.
1266 */
1267 void generate_inline(ir_instruction *ir);
1268
1269 /**
1270 * Storage for the function's return value.
1271 * This must be NULL if the return type is void.
1272 */
1273 ir_dereference_variable *return_deref;
1274
1275 /**
1276 * The specific function signature being called.
1277 */
1278 ir_function_signature *callee;
1279
1280 /* List of ir_rvalue of paramaters passed in this call. */
1281 exec_list actual_parameters;
1282
1283 /** Should this call only bind to a built-in function? */
1284 bool use_builtin;
1285 };
1286
1287
1288 /**
1289 * \name Jump-like IR instructions.
1290 *
1291 * These include \c break, \c continue, \c return, and \c discard.
1292 */
1293 /*@{*/
1294 class ir_jump : public ir_instruction {
1295 protected:
1296 ir_jump()
1297 {
1298 ir_type = ir_type_unset;
1299 }
1300 };
1301
1302 class ir_return : public ir_jump {
1303 public:
1304 ir_return()
1305 : value(NULL)
1306 {
1307 this->ir_type = ir_type_return;
1308 }
1309
1310 ir_return(ir_rvalue *value)
1311 : value(value)
1312 {
1313 this->ir_type = ir_type_return;
1314 }
1315
1316 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1317
1318 virtual ir_return *as_return()
1319 {
1320 return this;
1321 }
1322
1323 ir_rvalue *get_value() const
1324 {
1325 return value;
1326 }
1327
1328 virtual void accept(ir_visitor *v)
1329 {
1330 v->visit(this);
1331 }
1332
1333 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1334
1335 ir_rvalue *value;
1336 };
1337
1338
1339 /**
1340 * Jump instructions used inside loops
1341 *
1342 * These include \c break and \c continue. The \c break within a loop is
1343 * different from the \c break within a switch-statement.
1344 *
1345 * \sa ir_switch_jump
1346 */
1347 class ir_loop_jump : public ir_jump {
1348 public:
1349 enum jump_mode {
1350 jump_break,
1351 jump_continue
1352 };
1353
1354 ir_loop_jump(jump_mode mode)
1355 {
1356 this->ir_type = ir_type_loop_jump;
1357 this->mode = mode;
1358 }
1359
1360 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1361
1362 virtual void accept(ir_visitor *v)
1363 {
1364 v->visit(this);
1365 }
1366
1367 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1368
1369 bool is_break() const
1370 {
1371 return mode == jump_break;
1372 }
1373
1374 bool is_continue() const
1375 {
1376 return mode == jump_continue;
1377 }
1378
1379 /** Mode selector for the jump instruction. */
1380 enum jump_mode mode;
1381 };
1382
1383 /**
1384 * IR instruction representing discard statements.
1385 */
1386 class ir_discard : public ir_jump {
1387 public:
1388 ir_discard()
1389 {
1390 this->ir_type = ir_type_discard;
1391 this->condition = NULL;
1392 }
1393
1394 ir_discard(ir_rvalue *cond)
1395 {
1396 this->ir_type = ir_type_discard;
1397 this->condition = cond;
1398 }
1399
1400 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1401
1402 virtual void accept(ir_visitor *v)
1403 {
1404 v->visit(this);
1405 }
1406
1407 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1408
1409 virtual ir_discard *as_discard()
1410 {
1411 return this;
1412 }
1413
1414 ir_rvalue *condition;
1415 };
1416 /*@}*/
1417
1418
1419 /**
1420 * Texture sampling opcodes used in ir_texture
1421 */
1422 enum ir_texture_opcode {
1423 ir_tex, /**< Regular texture look-up */
1424 ir_txb, /**< Texture look-up with LOD bias */
1425 ir_txl, /**< Texture look-up with explicit LOD */
1426 ir_txd, /**< Texture look-up with partial derivatvies */
1427 ir_txf, /**< Texel fetch with explicit LOD */
1428 ir_txf_ms, /**< Multisample texture fetch */
1429 ir_txs, /**< Texture size */
1430 ir_lod /**< Texture lod query */
1431 };
1432
1433
1434 /**
1435 * IR instruction to sample a texture
1436 *
1437 * The specific form of the IR instruction depends on the \c mode value
1438 * selected from \c ir_texture_opcodes. In the printed IR, these will
1439 * appear as:
1440 *
1441 * Texel offset (0 or an expression)
1442 * | Projection divisor
1443 * | | Shadow comparitor
1444 * | | |
1445 * v v v
1446 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1447 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1448 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1449 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1450 * (txf <type> <sampler> <coordinate> 0 <lod>)
1451 * (txf_ms
1452 * <type> <sampler> <coordinate> <sample_index>)
1453 * (txs <type> <sampler> <lod>)
1454 * (lod <type> <sampler> <coordinate>)
1455 */
1456 class ir_texture : public ir_rvalue {
1457 public:
1458 ir_texture(enum ir_texture_opcode op)
1459 : op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1460 shadow_comparitor(NULL), offset(NULL)
1461 {
1462 this->ir_type = ir_type_texture;
1463 }
1464
1465 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1466
1467 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1468
1469 virtual void accept(ir_visitor *v)
1470 {
1471 v->visit(this);
1472 }
1473
1474 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1475
1476 /**
1477 * Return a string representing the ir_texture_opcode.
1478 */
1479 const char *opcode_string();
1480
1481 /** Set the sampler and type. */
1482 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1483
1484 /**
1485 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1486 */
1487 static ir_texture_opcode get_opcode(const char *);
1488
1489 enum ir_texture_opcode op;
1490
1491 /** Sampler to use for the texture access. */
1492 ir_dereference *sampler;
1493
1494 /** Texture coordinate to sample */
1495 ir_rvalue *coordinate;
1496
1497 /**
1498 * Value used for projective divide.
1499 *
1500 * If there is no projective divide (the common case), this will be
1501 * \c NULL. Optimization passes should check for this to point to a constant
1502 * of 1.0 and replace that with \c NULL.
1503 */
1504 ir_rvalue *projector;
1505
1506 /**
1507 * Coordinate used for comparison on shadow look-ups.
1508 *
1509 * If there is no shadow comparison, this will be \c NULL. For the
1510 * \c ir_txf opcode, this *must* be \c NULL.
1511 */
1512 ir_rvalue *shadow_comparitor;
1513
1514 /** Texel offset. */
1515 ir_rvalue *offset;
1516
1517 union {
1518 ir_rvalue *lod; /**< Floating point LOD */
1519 ir_rvalue *bias; /**< Floating point LOD bias */
1520 ir_rvalue *sample_index; /**< MSAA sample index */
1521 struct {
1522 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1523 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1524 } grad;
1525 } lod_info;
1526 };
1527
1528
1529 struct ir_swizzle_mask {
1530 unsigned x:2;
1531 unsigned y:2;
1532 unsigned z:2;
1533 unsigned w:2;
1534
1535 /**
1536 * Number of components in the swizzle.
1537 */
1538 unsigned num_components:3;
1539
1540 /**
1541 * Does the swizzle contain duplicate components?
1542 *
1543 * L-value swizzles cannot contain duplicate components.
1544 */
1545 unsigned has_duplicates:1;
1546 };
1547
1548
1549 class ir_swizzle : public ir_rvalue {
1550 public:
1551 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1552 unsigned count);
1553
1554 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1555
1556 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1557
1558 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1559
1560 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1561
1562 virtual ir_swizzle *as_swizzle()
1563 {
1564 return this;
1565 }
1566
1567 /**
1568 * Construct an ir_swizzle from the textual representation. Can fail.
1569 */
1570 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1571
1572 virtual void accept(ir_visitor *v)
1573 {
1574 v->visit(this);
1575 }
1576
1577 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1578
1579 bool is_lvalue() const
1580 {
1581 return val->is_lvalue() && !mask.has_duplicates;
1582 }
1583
1584 /**
1585 * Get the variable that is ultimately referenced by an r-value
1586 */
1587 virtual ir_variable *variable_referenced() const;
1588
1589 ir_rvalue *val;
1590 ir_swizzle_mask mask;
1591
1592 private:
1593 /**
1594 * Initialize the mask component of a swizzle
1595 *
1596 * This is used by the \c ir_swizzle constructors.
1597 */
1598 void init_mask(const unsigned *components, unsigned count);
1599 };
1600
1601
1602 class ir_dereference : public ir_rvalue {
1603 public:
1604 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1605
1606 virtual ir_dereference *as_dereference()
1607 {
1608 return this;
1609 }
1610
1611 bool is_lvalue() const;
1612
1613 /**
1614 * Get the variable that is ultimately referenced by an r-value
1615 */
1616 virtual ir_variable *variable_referenced() const = 0;
1617
1618 /**
1619 * Get the constant that is ultimately referenced by an r-value,
1620 * in a constant expression evaluation context.
1621 *
1622 * The offset is used when the reference is to a specific column of
1623 * a matrix.
1624 */
1625 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const = 0;
1626 };
1627
1628
1629 class ir_dereference_variable : public ir_dereference {
1630 public:
1631 ir_dereference_variable(ir_variable *var);
1632
1633 virtual ir_dereference_variable *clone(void *mem_ctx,
1634 struct hash_table *) const;
1635
1636 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1637
1638 virtual ir_dereference_variable *as_dereference_variable()
1639 {
1640 return this;
1641 }
1642
1643 /**
1644 * Get the variable that is ultimately referenced by an r-value
1645 */
1646 virtual ir_variable *variable_referenced() const
1647 {
1648 return this->var;
1649 }
1650
1651 /**
1652 * Get the constant that is ultimately referenced by an r-value,
1653 * in a constant expression evaluation context.
1654 *
1655 * The offset is used when the reference is to a specific column of
1656 * a matrix.
1657 */
1658 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1659
1660 virtual ir_variable *whole_variable_referenced()
1661 {
1662 /* ir_dereference_variable objects always dereference the entire
1663 * variable. However, if this dereference is dereferenced by anything
1664 * else, the complete deferefernce chain is not a whole-variable
1665 * dereference. This method should only be called on the top most
1666 * ir_rvalue in a dereference chain.
1667 */
1668 return this->var;
1669 }
1670
1671 virtual void accept(ir_visitor *v)
1672 {
1673 v->visit(this);
1674 }
1675
1676 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1677
1678 /**
1679 * Object being dereferenced.
1680 */
1681 ir_variable *var;
1682 };
1683
1684
1685 class ir_dereference_array : public ir_dereference {
1686 public:
1687 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1688
1689 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1690
1691 virtual ir_dereference_array *clone(void *mem_ctx,
1692 struct hash_table *) const;
1693
1694 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1695
1696 virtual ir_dereference_array *as_dereference_array()
1697 {
1698 return this;
1699 }
1700
1701 /**
1702 * Get the variable that is ultimately referenced by an r-value
1703 */
1704 virtual ir_variable *variable_referenced() const
1705 {
1706 return this->array->variable_referenced();
1707 }
1708
1709 /**
1710 * Get the constant that is ultimately referenced by an r-value,
1711 * in a constant expression evaluation context.
1712 *
1713 * The offset is used when the reference is to a specific column of
1714 * a matrix.
1715 */
1716 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1717
1718 virtual void accept(ir_visitor *v)
1719 {
1720 v->visit(this);
1721 }
1722
1723 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1724
1725 ir_rvalue *array;
1726 ir_rvalue *array_index;
1727
1728 private:
1729 void set_array(ir_rvalue *value);
1730 };
1731
1732
1733 class ir_dereference_record : public ir_dereference {
1734 public:
1735 ir_dereference_record(ir_rvalue *value, const char *field);
1736
1737 ir_dereference_record(ir_variable *var, const char *field);
1738
1739 virtual ir_dereference_record *clone(void *mem_ctx,
1740 struct hash_table *) const;
1741
1742 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1743
1744 virtual ir_dereference_record *as_dereference_record()
1745 {
1746 return this;
1747 }
1748
1749 /**
1750 * Get the variable that is ultimately referenced by an r-value
1751 */
1752 virtual ir_variable *variable_referenced() const
1753 {
1754 return this->record->variable_referenced();
1755 }
1756
1757 /**
1758 * Get the constant that is ultimately referenced by an r-value,
1759 * in a constant expression evaluation context.
1760 *
1761 * The offset is used when the reference is to a specific column of
1762 * a matrix.
1763 */
1764 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1765
1766 virtual void accept(ir_visitor *v)
1767 {
1768 v->visit(this);
1769 }
1770
1771 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1772
1773 ir_rvalue *record;
1774 const char *field;
1775 };
1776
1777
1778 /**
1779 * Data stored in an ir_constant
1780 */
1781 union ir_constant_data {
1782 unsigned u[16];
1783 int i[16];
1784 float f[16];
1785 bool b[16];
1786 };
1787
1788
1789 class ir_constant : public ir_rvalue {
1790 public:
1791 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1792 ir_constant(bool b);
1793 ir_constant(unsigned int u);
1794 ir_constant(int i);
1795 ir_constant(float f);
1796
1797 /**
1798 * Construct an ir_constant from a list of ir_constant values
1799 */
1800 ir_constant(const struct glsl_type *type, exec_list *values);
1801
1802 /**
1803 * Construct an ir_constant from a scalar component of another ir_constant
1804 *
1805 * The new \c ir_constant inherits the type of the component from the
1806 * source constant.
1807 *
1808 * \note
1809 * In the case of a matrix constant, the new constant is a scalar, \b not
1810 * a vector.
1811 */
1812 ir_constant(const ir_constant *c, unsigned i);
1813
1814 /**
1815 * Return a new ir_constant of the specified type containing all zeros.
1816 */
1817 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1818
1819 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1820
1821 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1822
1823 virtual ir_constant *as_constant()
1824 {
1825 return this;
1826 }
1827
1828 virtual void accept(ir_visitor *v)
1829 {
1830 v->visit(this);
1831 }
1832
1833 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1834
1835 /**
1836 * Get a particular component of a constant as a specific type
1837 *
1838 * This is useful, for example, to get a value from an integer constant
1839 * as a float or bool. This appears frequently when constructors are
1840 * called with all constant parameters.
1841 */
1842 /*@{*/
1843 bool get_bool_component(unsigned i) const;
1844 float get_float_component(unsigned i) const;
1845 int get_int_component(unsigned i) const;
1846 unsigned get_uint_component(unsigned i) const;
1847 /*@}*/
1848
1849 ir_constant *get_array_element(unsigned i) const;
1850
1851 ir_constant *get_record_field(const char *name);
1852
1853 /**
1854 * Copy the values on another constant at a given offset.
1855 *
1856 * The offset is ignored for array or struct copies, it's only for
1857 * scalars or vectors into vectors or matrices.
1858 *
1859 * With identical types on both sides and zero offset it's clone()
1860 * without creating a new object.
1861 */
1862
1863 void copy_offset(ir_constant *src, int offset);
1864
1865 /**
1866 * Copy the values on another constant at a given offset and
1867 * following an assign-like mask.
1868 *
1869 * The mask is ignored for scalars.
1870 *
1871 * Note that this function only handles what assign can handle,
1872 * i.e. at most a vector as source and a column of a matrix as
1873 * destination.
1874 */
1875
1876 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
1877
1878 /**
1879 * Determine whether a constant has the same value as another constant
1880 *
1881 * \sa ir_constant::is_zero, ir_constant::is_one,
1882 * ir_constant::is_negative_one, ir_constant::is_basis
1883 */
1884 bool has_value(const ir_constant *) const;
1885
1886 virtual bool is_zero() const;
1887 virtual bool is_one() const;
1888 virtual bool is_negative_one() const;
1889 virtual bool is_basis() const;
1890
1891 /**
1892 * Value of the constant.
1893 *
1894 * The field used to back the values supplied by the constant is determined
1895 * by the type associated with the \c ir_instruction. Constants may be
1896 * scalars, vectors, or matrices.
1897 */
1898 union ir_constant_data value;
1899
1900 /* Array elements */
1901 ir_constant **array_elements;
1902
1903 /* Structure fields */
1904 exec_list components;
1905
1906 private:
1907 /**
1908 * Parameterless constructor only used by the clone method
1909 */
1910 ir_constant(void);
1911 };
1912
1913 /*@}*/
1914
1915 /**
1916 * Apply a visitor to each IR node in a list
1917 */
1918 void
1919 visit_exec_list(exec_list *list, ir_visitor *visitor);
1920
1921 /**
1922 * Validate invariants on each IR node in a list
1923 */
1924 void validate_ir_tree(exec_list *instructions);
1925
1926 struct _mesa_glsl_parse_state;
1927 struct gl_shader_program;
1928
1929 /**
1930 * Detect whether an unlinked shader contains static recursion
1931 *
1932 * If the list of instructions is determined to contain static recursion,
1933 * \c _mesa_glsl_error will be called to emit error messages for each function
1934 * that is in the recursion cycle.
1935 */
1936 void
1937 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
1938 exec_list *instructions);
1939
1940 /**
1941 * Detect whether a linked shader contains static recursion
1942 *
1943 * If the list of instructions is determined to contain static recursion,
1944 * \c link_error_printf will be called to emit error messages for each function
1945 * that is in the recursion cycle. In addition,
1946 * \c gl_shader_program::LinkStatus will be set to false.
1947 */
1948 void
1949 detect_recursion_linked(struct gl_shader_program *prog,
1950 exec_list *instructions);
1951
1952 /**
1953 * Make a clone of each IR instruction in a list
1954 *
1955 * \param in List of IR instructions that are to be cloned
1956 * \param out List to hold the cloned instructions
1957 */
1958 void
1959 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1960
1961 extern void
1962 _mesa_glsl_initialize_variables(exec_list *instructions,
1963 struct _mesa_glsl_parse_state *state);
1964
1965 extern void
1966 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
1967
1968 extern void
1969 _mesa_glsl_release_functions(void);
1970
1971 extern void
1972 reparent_ir(exec_list *list, void *mem_ctx);
1973
1974 struct glsl_symbol_table;
1975
1976 extern void
1977 import_prototypes(const exec_list *source, exec_list *dest,
1978 struct glsl_symbol_table *symbols, void *mem_ctx);
1979
1980 extern bool
1981 ir_has_call(ir_instruction *ir);
1982
1983 extern void
1984 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
1985 bool is_fragment_shader);
1986
1987 extern char *
1988 prototype_string(const glsl_type *return_type, const char *name,
1989 exec_list *parameters);
1990
1991 #endif /* IR_H */