Merge remote branch 'origin/master' into nv50-compiler
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <cstdio>
30 #include <cstdlib>
31
32 extern "C" {
33 #include <talloc.h>
34 }
35
36 #include "list.h"
37 #include "ir_visitor.h"
38 #include "ir_hierarchical_visitor.h"
39
40 #ifndef ARRAY_SIZE
41 #define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
42 #endif
43
44 enum ir_node_type {
45 ir_type_unset,
46 ir_type_variable,
47 ir_type_assignment,
48 ir_type_call,
49 ir_type_constant,
50 ir_type_dereference_array,
51 ir_type_dereference_record,
52 ir_type_dereference_variable,
53 ir_type_discard,
54 ir_type_expression,
55 ir_type_function,
56 ir_type_function_signature,
57 ir_type_if,
58 ir_type_loop,
59 ir_type_loop_jump,
60 ir_type_return,
61 ir_type_swizzle,
62 ir_type_texture,
63 ir_type_max /**< maximum ir_type enum number, for validation */
64 };
65
66 /**
67 * Base class of all IR instructions
68 */
69 class ir_instruction : public exec_node {
70 public:
71 enum ir_node_type ir_type;
72 const struct glsl_type *type;
73
74 /** ir_print_visitor helper for debugging. */
75 void print(void) const;
76
77 virtual void accept(ir_visitor *) = 0;
78 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
79 virtual ir_instruction *clone(void *mem_ctx,
80 struct hash_table *ht) const = 0;
81
82 /**
83 * \name IR instruction downcast functions
84 *
85 * These functions either cast the object to a derived class or return
86 * \c NULL if the object's type does not match the specified derived class.
87 * Additional downcast functions will be added as needed.
88 */
89 /*@{*/
90 virtual class ir_variable * as_variable() { return NULL; }
91 virtual class ir_function * as_function() { return NULL; }
92 virtual class ir_dereference * as_dereference() { return NULL; }
93 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
94 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
95 virtual class ir_expression * as_expression() { return NULL; }
96 virtual class ir_rvalue * as_rvalue() { return NULL; }
97 virtual class ir_loop * as_loop() { return NULL; }
98 virtual class ir_assignment * as_assignment() { return NULL; }
99 virtual class ir_call * as_call() { return NULL; }
100 virtual class ir_return * as_return() { return NULL; }
101 virtual class ir_if * as_if() { return NULL; }
102 virtual class ir_swizzle * as_swizzle() { return NULL; }
103 virtual class ir_constant * as_constant() { return NULL; }
104 /*@}*/
105
106 protected:
107 ir_instruction()
108 {
109 ir_type = ir_type_unset;
110 type = NULL;
111 }
112 };
113
114
115 class ir_rvalue : public ir_instruction {
116 public:
117 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0;
118
119 virtual ir_constant *constant_expression_value() = 0;
120
121 virtual ir_rvalue * as_rvalue()
122 {
123 return this;
124 }
125
126 virtual bool is_lvalue()
127 {
128 return false;
129 }
130
131 /**
132 * Get the variable that is ultimately referenced by an r-value
133 */
134 virtual ir_variable *variable_referenced()
135 {
136 return NULL;
137 }
138
139
140 /**
141 * If an r-value is a reference to a whole variable, get that variable
142 *
143 * \return
144 * Pointer to a variable that is completely dereferenced by the r-value. If
145 * the r-value is not a dereference or the dereference does not access the
146 * entire variable (i.e., it's just one array element, struct field), \c NULL
147 * is returned.
148 */
149 virtual ir_variable *whole_variable_referenced()
150 {
151 return NULL;
152 }
153
154 protected:
155 ir_rvalue();
156 };
157
158
159 enum ir_variable_mode {
160 ir_var_auto = 0,
161 ir_var_uniform,
162 ir_var_in,
163 ir_var_out,
164 ir_var_inout,
165 ir_var_temporary /**< Temporary variable generated during compilation. */
166 };
167
168 enum ir_variable_interpolation {
169 ir_var_smooth = 0,
170 ir_var_flat,
171 ir_var_noperspective
172 };
173
174
175 class ir_variable : public ir_instruction {
176 public:
177 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
178
179 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
180
181 virtual ir_variable *as_variable()
182 {
183 return this;
184 }
185
186 virtual void accept(ir_visitor *v)
187 {
188 v->visit(this);
189 }
190
191 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
192
193
194 /**
195 * Get the string value for the interpolation qualifier
196 *
197 * \return The string that would be used in a shader to specify \c
198 * mode will be returned.
199 *
200 * This function should only be used on a shader input or output variable.
201 */
202 const char *interpolation_string() const;
203
204 /**
205 * Calculate the number of slots required to hold this variable
206 *
207 * This is used to determine how many uniform or varying locations a variable
208 * occupies. The count is in units of floating point components.
209 */
210 unsigned component_slots() const;
211
212 const char *name;
213
214 /**
215 * Highest element accessed with a constant expression array index
216 *
217 * Not used for non-array variables.
218 */
219 unsigned max_array_access;
220
221 unsigned read_only:1;
222 unsigned centroid:1;
223 unsigned invariant:1;
224
225 unsigned mode:3;
226 unsigned interpolation:2;
227
228 /**
229 * Flag that the whole array is assignable
230 *
231 * In GLSL 1.20 and later whole arrays are assignable (and comparable for
232 * equality). This flag enables this behavior.
233 */
234 unsigned array_lvalue:1;
235
236 /* ARB_fragment_coord_conventions */
237 unsigned origin_upper_left:1;
238 unsigned pixel_center_integer:1;
239
240 /**
241 * Storage location of the base of this variable
242 *
243 * The precise meaning of this field depends on the nature of the variable.
244 *
245 * - Vertex shader input: one of the values from \c gl_vert_attrib.
246 * - Vertex shader output: one of the values from \c gl_vert_result.
247 * - Fragment shader input: one of the values from \c gl_frag_attrib.
248 * - Fragment shader output: one of the values from \c gl_frag_result.
249 * - Uniforms: Per-stage uniform slot number.
250 * - Other: This field is not currently used.
251 *
252 * If the variable is a uniform, shader input, or shader output, and the
253 * slot has not been assigned, the value will be -1.
254 */
255 int location;
256
257 /**
258 * Emit a warning if this variable is accessed.
259 */
260 const char *warn_extension;
261
262 /**
263 * Value assigned in the initializer of a variable declared "const"
264 */
265 ir_constant *constant_value;
266 };
267
268
269 /*@{*/
270 /**
271 * The representation of a function instance; may be the full definition or
272 * simply a prototype.
273 */
274 class ir_function_signature : public ir_instruction {
275 /* An ir_function_signature will be part of the list of signatures in
276 * an ir_function.
277 */
278 public:
279 ir_function_signature(const glsl_type *return_type);
280
281 virtual ir_function_signature *clone(void *mem_ctx,
282 struct hash_table *ht) const;
283
284 virtual void accept(ir_visitor *v)
285 {
286 v->visit(this);
287 }
288
289 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
290
291 /**
292 * Get the name of the function for which this is a signature
293 */
294 const char *function_name() const;
295
296 /**
297 * Get a handle to the function for which this is a signature
298 *
299 * There is no setter function, this function returns a \c const pointer,
300 * and \c ir_function_signature::_function is private for a reason. The
301 * only way to make a connection between a function and function signature
302 * is via \c ir_function::add_signature. This helps ensure that certain
303 * invariants (i.e., a function signature is in the list of signatures for
304 * its \c _function) are met.
305 *
306 * \sa ir_function::add_signature
307 */
308 inline const class ir_function *function() const
309 {
310 return this->_function;
311 }
312
313 /**
314 * Check whether the qualifiers match between this signature's parameters
315 * and the supplied parameter list. If not, returns the name of the first
316 * parameter with mismatched qualifiers (for use in error messages).
317 */
318 const char *qualifiers_match(exec_list *params);
319
320 /**
321 * Replace the current parameter list with the given one. This is useful
322 * if the current information came from a prototype, and either has invalid
323 * or missing parameter names.
324 */
325 void replace_parameters(exec_list *new_params);
326
327 /**
328 * Function return type.
329 *
330 * \note This discards the optional precision qualifier.
331 */
332 const struct glsl_type *return_type;
333
334 /**
335 * List of ir_variable of function parameters.
336 *
337 * This represents the storage. The paramaters passed in a particular
338 * call will be in ir_call::actual_paramaters.
339 */
340 struct exec_list parameters;
341
342 /** Whether or not this function has a body (which may be empty). */
343 unsigned is_defined:1;
344
345 /** Body of instructions in the function. */
346 struct exec_list body;
347
348 private:
349 /** Function of which this signature is one overload. */
350 class ir_function *_function;
351
352 friend class ir_function;
353 };
354
355
356 /**
357 * Header for tracking multiple overloaded functions with the same name.
358 * Contains a list of ir_function_signatures representing each of the
359 * actual functions.
360 */
361 class ir_function : public ir_instruction {
362 public:
363 ir_function(const char *name);
364
365 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
366
367 virtual ir_function *as_function()
368 {
369 return this;
370 }
371
372 virtual void accept(ir_visitor *v)
373 {
374 v->visit(this);
375 }
376
377 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
378
379 void add_signature(ir_function_signature *sig)
380 {
381 sig->_function = this;
382 this->signatures.push_tail(sig);
383 }
384
385 /**
386 * Get an iterator for the set of function signatures
387 */
388 exec_list_iterator iterator()
389 {
390 return signatures.iterator();
391 }
392
393 /**
394 * Find a signature that matches a set of actual parameters, taking implicit
395 * conversions into account.
396 */
397 ir_function_signature *matching_signature(const exec_list *actual_param);
398
399 /**
400 * Find a signature that exactly matches a set of actual parameters without
401 * any implicit type conversions.
402 */
403 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
404
405 /**
406 * Name of the function.
407 */
408 const char *name;
409
410 /** Whether or not this function is a built-in. */
411 unsigned is_builtin:1;
412
413 /**
414 * List of ir_function_signature for each overloaded function with this name.
415 */
416 struct exec_list signatures;
417 };
418
419 inline const char *ir_function_signature::function_name() const
420 {
421 return this->_function->name;
422 }
423 /*@}*/
424
425
426 /**
427 * IR instruction representing high-level if-statements
428 */
429 class ir_if : public ir_instruction {
430 public:
431 ir_if(ir_rvalue *condition)
432 : condition(condition)
433 {
434 ir_type = ir_type_if;
435 }
436
437 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
438
439 virtual ir_if *as_if()
440 {
441 return this;
442 }
443
444 virtual void accept(ir_visitor *v)
445 {
446 v->visit(this);
447 }
448
449 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
450
451 ir_rvalue *condition;
452 /** List of ir_instruction for the body of the then branch */
453 exec_list then_instructions;
454 /** List of ir_instruction for the body of the else branch */
455 exec_list else_instructions;
456 };
457
458
459 /**
460 * IR instruction representing a high-level loop structure.
461 */
462 class ir_loop : public ir_instruction {
463 public:
464 ir_loop() : from(NULL), to(NULL), increment(NULL), counter(NULL)
465 {
466 ir_type = ir_type_loop;
467 }
468
469 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
470
471 virtual void accept(ir_visitor *v)
472 {
473 v->visit(this);
474 }
475
476 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
477
478 virtual ir_loop *as_loop()
479 {
480 return this;
481 }
482
483 /**
484 * Get an iterator for the instructions of the loop body
485 */
486 exec_list_iterator iterator()
487 {
488 return body_instructions.iterator();
489 }
490
491 /** List of ir_instruction that make up the body of the loop. */
492 exec_list body_instructions;
493
494 /**
495 * \name Loop counter and controls
496 */
497 /*@{*/
498 ir_rvalue *from;
499 ir_rvalue *to;
500 ir_rvalue *increment;
501 ir_variable *counter;
502 /*@}*/
503 };
504
505
506 class ir_assignment : public ir_instruction {
507 public:
508 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition);
509
510 /**
511 * Construct an assignment with an explicit write mask
512 *
513 * \note
514 * Since a write mask is supplied, the LHS must already be a bare
515 * \c ir_dereference. The cannot be any swizzles in the LHS.
516 */
517 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
518 unsigned write_mask);
519
520 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
521
522 virtual ir_constant *constant_expression_value();
523
524 virtual void accept(ir_visitor *v)
525 {
526 v->visit(this);
527 }
528
529 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
530
531 virtual ir_assignment * as_assignment()
532 {
533 return this;
534 }
535
536 /**
537 * Get a whole variable written by an assignment
538 *
539 * If the LHS of the assignment writes a whole variable, the variable is
540 * returned. Otherwise \c NULL is returned. Examples of whole-variable
541 * assignment are:
542 *
543 * - Assigning to a scalar
544 * - Assigning to all components of a vector
545 * - Whole array (or matrix) assignment
546 * - Whole structure assignment
547 */
548 ir_variable *whole_variable_written();
549
550 /**
551 * Set the LHS of an assignment
552 */
553 void set_lhs(ir_rvalue *lhs);
554
555 /**
556 * Left-hand side of the assignment.
557 *
558 * This should be treated as read only. If you need to set the LHS of an
559 * assignment, use \c ir_assignment::set_lhs.
560 */
561 ir_dereference *lhs;
562
563 /**
564 * Value being assigned
565 */
566 ir_rvalue *rhs;
567
568 /**
569 * Optional condition for the assignment.
570 */
571 ir_rvalue *condition;
572
573
574 /**
575 * Component mask written
576 *
577 * For non-vector types in the LHS, this field will be zero. For vector
578 * types, a bit will be set for each component that is written. Note that
579 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
580 */
581 unsigned write_mask:4;
582 };
583
584 /* Update ir_expression::num_operands() and operator_strs when
585 * updating this list.
586 */
587 enum ir_expression_operation {
588 ir_unop_bit_not,
589 ir_unop_logic_not,
590 ir_unop_neg,
591 ir_unop_abs,
592 ir_unop_sign,
593 ir_unop_rcp,
594 ir_unop_rsq,
595 ir_unop_sqrt,
596 ir_unop_exp, /**< Log base e on gentype */
597 ir_unop_log, /**< Natural log on gentype */
598 ir_unop_exp2,
599 ir_unop_log2,
600 ir_unop_f2i, /**< Float-to-integer conversion. */
601 ir_unop_i2f, /**< Integer-to-float conversion. */
602 ir_unop_f2b, /**< Float-to-boolean conversion */
603 ir_unop_b2f, /**< Boolean-to-float conversion */
604 ir_unop_i2b, /**< int-to-boolean conversion */
605 ir_unop_b2i, /**< Boolean-to-int conversion */
606 ir_unop_u2f, /**< Unsigned-to-float conversion. */
607 ir_unop_any,
608
609 /**
610 * \name Unary floating-point rounding operations.
611 */
612 /*@{*/
613 ir_unop_trunc,
614 ir_unop_ceil,
615 ir_unop_floor,
616 ir_unop_fract,
617 /*@}*/
618
619 /**
620 * \name Trigonometric operations.
621 */
622 /*@{*/
623 ir_unop_sin,
624 ir_unop_cos,
625 /*@}*/
626
627 /**
628 * \name Partial derivatives.
629 */
630 /*@{*/
631 ir_unop_dFdx,
632 ir_unop_dFdy,
633 /*@}*/
634
635 ir_binop_add,
636 ir_binop_sub,
637 ir_binop_mul,
638 ir_binop_div,
639
640 /**
641 * Takes one of two combinations of arguments:
642 *
643 * - mod(vecN, vecN)
644 * - mod(vecN, float)
645 *
646 * Does not take integer types.
647 */
648 ir_binop_mod,
649
650 /**
651 * \name Binary comparison operators
652 */
653 /*@{*/
654 ir_binop_less,
655 ir_binop_greater,
656 ir_binop_lequal,
657 ir_binop_gequal,
658 /**
659 * Returns single boolean for whether all components of operands[0]
660 * equal the components of operands[1].
661 */
662 ir_binop_equal,
663 /**
664 * Returns single boolean for whether any component of operands[0]
665 * is not equal to the corresponding component of operands[1].
666 */
667 ir_binop_nequal,
668 /*@}*/
669
670 /**
671 * \name Bit-wise binary operations.
672 */
673 /*@{*/
674 ir_binop_lshift,
675 ir_binop_rshift,
676 ir_binop_bit_and,
677 ir_binop_bit_xor,
678 ir_binop_bit_or,
679 /*@}*/
680
681 ir_binop_logic_and,
682 ir_binop_logic_xor,
683 ir_binop_logic_or,
684
685 ir_binop_dot,
686 ir_binop_cross,
687 ir_binop_min,
688 ir_binop_max,
689
690 ir_binop_pow
691 };
692
693 class ir_expression : public ir_rvalue {
694 public:
695 ir_expression(int op, const struct glsl_type *type,
696 ir_rvalue *, ir_rvalue *);
697
698 virtual ir_expression *as_expression()
699 {
700 return this;
701 }
702
703 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
704
705 virtual ir_constant *constant_expression_value();
706
707 static unsigned int get_num_operands(ir_expression_operation);
708 unsigned int get_num_operands() const
709 {
710 return get_num_operands(operation);
711 }
712
713 /**
714 * Return a string representing this expression's operator.
715 */
716 const char *operator_string();
717
718 /**
719 * Do a reverse-lookup to translate the given string into an operator.
720 */
721 static ir_expression_operation get_operator(const char *);
722
723 virtual void accept(ir_visitor *v)
724 {
725 v->visit(this);
726 }
727
728 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
729
730 ir_expression_operation operation;
731 ir_rvalue *operands[2];
732 };
733
734
735 /**
736 * IR instruction representing a function call
737 */
738 class ir_call : public ir_rvalue {
739 public:
740 ir_call(ir_function_signature *callee, exec_list *actual_parameters)
741 : callee(callee)
742 {
743 ir_type = ir_type_call;
744 assert(callee->return_type != NULL);
745 type = callee->return_type;
746 actual_parameters->move_nodes_to(& this->actual_parameters);
747 }
748
749 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
750
751 virtual ir_constant *constant_expression_value();
752
753 virtual ir_call *as_call()
754 {
755 return this;
756 }
757
758 virtual void accept(ir_visitor *v)
759 {
760 v->visit(this);
761 }
762
763 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
764
765 /**
766 * Get a generic ir_call object when an error occurs
767 *
768 * Any allocation will be performed with 'ctx' as talloc owner.
769 */
770 static ir_call *get_error_instruction(void *ctx);
771
772 /**
773 * Get an iterator for the set of acutal parameters
774 */
775 exec_list_iterator iterator()
776 {
777 return actual_parameters.iterator();
778 }
779
780 /**
781 * Get the name of the function being called.
782 */
783 const char *callee_name() const
784 {
785 return callee->function_name();
786 }
787
788 ir_function_signature *get_callee()
789 {
790 return callee;
791 }
792
793 /**
794 * Set the function call target
795 */
796 void set_callee(ir_function_signature *sig);
797
798 /**
799 * Generates an inline version of the function before @ir,
800 * returning the return value of the function.
801 */
802 ir_rvalue *generate_inline(ir_instruction *ir);
803
804 /* List of ir_rvalue of paramaters passed in this call. */
805 exec_list actual_parameters;
806
807 private:
808 ir_call()
809 : callee(NULL)
810 {
811 this->ir_type = ir_type_call;
812 }
813
814 ir_function_signature *callee;
815 };
816
817
818 /**
819 * \name Jump-like IR instructions.
820 *
821 * These include \c break, \c continue, \c return, and \c discard.
822 */
823 /*@{*/
824 class ir_jump : public ir_instruction {
825 protected:
826 ir_jump()
827 {
828 ir_type = ir_type_unset;
829 }
830 };
831
832 class ir_return : public ir_jump {
833 public:
834 ir_return()
835 : value(NULL)
836 {
837 this->ir_type = ir_type_return;
838 }
839
840 ir_return(ir_rvalue *value)
841 : value(value)
842 {
843 this->ir_type = ir_type_return;
844 }
845
846 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
847
848 virtual ir_return *as_return()
849 {
850 return this;
851 }
852
853 ir_rvalue *get_value() const
854 {
855 return value;
856 }
857
858 virtual void accept(ir_visitor *v)
859 {
860 v->visit(this);
861 }
862
863 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
864
865 ir_rvalue *value;
866 };
867
868
869 /**
870 * Jump instructions used inside loops
871 *
872 * These include \c break and \c continue. The \c break within a loop is
873 * different from the \c break within a switch-statement.
874 *
875 * \sa ir_switch_jump
876 */
877 class ir_loop_jump : public ir_jump {
878 public:
879 enum jump_mode {
880 jump_break,
881 jump_continue
882 };
883
884 ir_loop_jump(jump_mode mode)
885 {
886 this->ir_type = ir_type_loop_jump;
887 this->mode = mode;
888 this->loop = loop;
889 }
890
891 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
892
893 virtual void accept(ir_visitor *v)
894 {
895 v->visit(this);
896 }
897
898 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
899
900 bool is_break() const
901 {
902 return mode == jump_break;
903 }
904
905 bool is_continue() const
906 {
907 return mode == jump_continue;
908 }
909
910 /** Mode selector for the jump instruction. */
911 enum jump_mode mode;
912 private:
913 /** Loop containing this break instruction. */
914 ir_loop *loop;
915 };
916
917 /**
918 * IR instruction representing discard statements.
919 */
920 class ir_discard : public ir_jump {
921 public:
922 ir_discard()
923 {
924 this->ir_type = ir_type_discard;
925 this->condition = NULL;
926 }
927
928 ir_discard(ir_rvalue *cond)
929 {
930 this->ir_type = ir_type_discard;
931 this->condition = cond;
932 }
933
934 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
935
936 virtual void accept(ir_visitor *v)
937 {
938 v->visit(this);
939 }
940
941 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
942
943 ir_rvalue *condition;
944 };
945 /*@}*/
946
947
948 /**
949 * Texture sampling opcodes used in ir_texture
950 */
951 enum ir_texture_opcode {
952 ir_tex, /* Regular texture look-up */
953 ir_txb, /* Texture look-up with LOD bias */
954 ir_txl, /* Texture look-up with explicit LOD */
955 ir_txd, /* Texture look-up with partial derivatvies */
956 ir_txf /* Texel fetch with explicit LOD */
957 };
958
959
960 /**
961 * IR instruction to sample a texture
962 *
963 * The specific form of the IR instruction depends on the \c mode value
964 * selected from \c ir_texture_opcodes. In the printed IR, these will
965 * appear as:
966 *
967 * Texel offset
968 * | Projection divisor
969 * | | Shadow comparitor
970 * | | |
971 * v v v
972 * (tex (sampler) (coordinate) (0 0 0) (1) ( ))
973 * (txb (sampler) (coordinate) (0 0 0) (1) ( ) (bias))
974 * (txl (sampler) (coordinate) (0 0 0) (1) ( ) (lod))
975 * (txd (sampler) (coordinate) (0 0 0) (1) ( ) (dPdx dPdy))
976 * (txf (sampler) (coordinate) (0 0 0) (lod))
977 */
978 class ir_texture : public ir_rvalue {
979 public:
980 ir_texture(enum ir_texture_opcode op)
981 : op(op), projector(NULL), shadow_comparitor(NULL)
982 {
983 this->ir_type = ir_type_texture;
984 }
985
986 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
987
988 virtual ir_constant *constant_expression_value();
989
990 virtual void accept(ir_visitor *v)
991 {
992 v->visit(this);
993 }
994
995 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
996
997 /**
998 * Return a string representing the ir_texture_opcode.
999 */
1000 const char *opcode_string();
1001
1002 /** Set the sampler and infer the type. */
1003 void set_sampler(ir_dereference *sampler);
1004
1005 /**
1006 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1007 */
1008 static ir_texture_opcode get_opcode(const char *);
1009
1010 enum ir_texture_opcode op;
1011
1012 /** Sampler to use for the texture access. */
1013 ir_dereference *sampler;
1014
1015 /** Texture coordinate to sample */
1016 ir_rvalue *coordinate;
1017
1018 /**
1019 * Value used for projective divide.
1020 *
1021 * If there is no projective divide (the common case), this will be
1022 * \c NULL. Optimization passes should check for this to point to a constant
1023 * of 1.0 and replace that with \c NULL.
1024 */
1025 ir_rvalue *projector;
1026
1027 /**
1028 * Coordinate used for comparison on shadow look-ups.
1029 *
1030 * If there is no shadow comparison, this will be \c NULL. For the
1031 * \c ir_txf opcode, this *must* be \c NULL.
1032 */
1033 ir_rvalue *shadow_comparitor;
1034
1035 /** Explicit texel offsets. */
1036 signed char offsets[3];
1037
1038 union {
1039 ir_rvalue *lod; /**< Floating point LOD */
1040 ir_rvalue *bias; /**< Floating point LOD bias */
1041 struct {
1042 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1043 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1044 } grad;
1045 } lod_info;
1046 };
1047
1048
1049 struct ir_swizzle_mask {
1050 unsigned x:2;
1051 unsigned y:2;
1052 unsigned z:2;
1053 unsigned w:2;
1054
1055 /**
1056 * Number of components in the swizzle.
1057 */
1058 unsigned num_components:3;
1059
1060 /**
1061 * Does the swizzle contain duplicate components?
1062 *
1063 * L-value swizzles cannot contain duplicate components.
1064 */
1065 unsigned has_duplicates:1;
1066 };
1067
1068
1069 class ir_swizzle : public ir_rvalue {
1070 public:
1071 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1072 unsigned count);
1073
1074 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1075
1076 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1077
1078 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1079
1080 virtual ir_constant *constant_expression_value();
1081
1082 virtual ir_swizzle *as_swizzle()
1083 {
1084 return this;
1085 }
1086
1087 /**
1088 * Construct an ir_swizzle from the textual representation. Can fail.
1089 */
1090 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1091
1092 virtual void accept(ir_visitor *v)
1093 {
1094 v->visit(this);
1095 }
1096
1097 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1098
1099 bool is_lvalue()
1100 {
1101 return val->is_lvalue() && !mask.has_duplicates;
1102 }
1103
1104 /**
1105 * Get the variable that is ultimately referenced by an r-value
1106 */
1107 virtual ir_variable *variable_referenced();
1108
1109 ir_rvalue *val;
1110 ir_swizzle_mask mask;
1111
1112 private:
1113 /**
1114 * Initialize the mask component of a swizzle
1115 *
1116 * This is used by the \c ir_swizzle constructors.
1117 */
1118 void init_mask(const unsigned *components, unsigned count);
1119 };
1120
1121
1122 class ir_dereference : public ir_rvalue {
1123 public:
1124 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1125
1126 virtual ir_dereference *as_dereference()
1127 {
1128 return this;
1129 }
1130
1131 bool is_lvalue();
1132
1133 /**
1134 * Get the variable that is ultimately referenced by an r-value
1135 */
1136 virtual ir_variable *variable_referenced() = 0;
1137 };
1138
1139
1140 class ir_dereference_variable : public ir_dereference {
1141 public:
1142 ir_dereference_variable(ir_variable *var);
1143
1144 virtual ir_dereference_variable *clone(void *mem_ctx,
1145 struct hash_table *) const;
1146
1147 virtual ir_constant *constant_expression_value();
1148
1149 virtual ir_dereference_variable *as_dereference_variable()
1150 {
1151 return this;
1152 }
1153
1154 /**
1155 * Get the variable that is ultimately referenced by an r-value
1156 */
1157 virtual ir_variable *variable_referenced()
1158 {
1159 return this->var;
1160 }
1161
1162 virtual ir_variable *whole_variable_referenced()
1163 {
1164 /* ir_dereference_variable objects always dereference the entire
1165 * variable. However, if this dereference is dereferenced by anything
1166 * else, the complete deferefernce chain is not a whole-variable
1167 * dereference. This method should only be called on the top most
1168 * ir_rvalue in a dereference chain.
1169 */
1170 return this->var;
1171 }
1172
1173 virtual void accept(ir_visitor *v)
1174 {
1175 v->visit(this);
1176 }
1177
1178 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1179
1180 /**
1181 * Object being dereferenced.
1182 */
1183 ir_variable *var;
1184 };
1185
1186
1187 class ir_dereference_array : public ir_dereference {
1188 public:
1189 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1190
1191 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1192
1193 virtual ir_dereference_array *clone(void *mem_ctx,
1194 struct hash_table *) const;
1195
1196 virtual ir_constant *constant_expression_value();
1197
1198 virtual ir_dereference_array *as_dereference_array()
1199 {
1200 return this;
1201 }
1202
1203 /**
1204 * Get the variable that is ultimately referenced by an r-value
1205 */
1206 virtual ir_variable *variable_referenced()
1207 {
1208 return this->array->variable_referenced();
1209 }
1210
1211 virtual void accept(ir_visitor *v)
1212 {
1213 v->visit(this);
1214 }
1215
1216 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1217
1218 ir_rvalue *array;
1219 ir_rvalue *array_index;
1220
1221 private:
1222 void set_array(ir_rvalue *value);
1223 };
1224
1225
1226 class ir_dereference_record : public ir_dereference {
1227 public:
1228 ir_dereference_record(ir_rvalue *value, const char *field);
1229
1230 ir_dereference_record(ir_variable *var, const char *field);
1231
1232 virtual ir_dereference_record *clone(void *mem_ctx,
1233 struct hash_table *) const;
1234
1235 virtual ir_constant *constant_expression_value();
1236
1237 /**
1238 * Get the variable that is ultimately referenced by an r-value
1239 */
1240 virtual ir_variable *variable_referenced()
1241 {
1242 return this->record->variable_referenced();
1243 }
1244
1245 virtual void accept(ir_visitor *v)
1246 {
1247 v->visit(this);
1248 }
1249
1250 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1251
1252 ir_rvalue *record;
1253 const char *field;
1254 };
1255
1256
1257 /**
1258 * Data stored in an ir_constant
1259 */
1260 union ir_constant_data {
1261 unsigned u[16];
1262 int i[16];
1263 float f[16];
1264 bool b[16];
1265 };
1266
1267
1268 class ir_constant : public ir_rvalue {
1269 public:
1270 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1271 ir_constant(bool b);
1272 ir_constant(unsigned int u);
1273 ir_constant(int i);
1274 ir_constant(float f);
1275
1276 /**
1277 * Construct an ir_constant from a list of ir_constant values
1278 */
1279 ir_constant(const struct glsl_type *type, exec_list *values);
1280
1281 /**
1282 * Construct an ir_constant from a scalar component of another ir_constant
1283 *
1284 * The new \c ir_constant inherits the type of the component from the
1285 * source constant.
1286 *
1287 * \note
1288 * In the case of a matrix constant, the new constant is a scalar, \b not
1289 * a vector.
1290 */
1291 ir_constant(const ir_constant *c, unsigned i);
1292
1293 /**
1294 * Return a new ir_constant of the specified type containing all zeros.
1295 */
1296 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1297
1298 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1299
1300 virtual ir_constant *constant_expression_value();
1301
1302 virtual ir_constant *as_constant()
1303 {
1304 return this;
1305 }
1306
1307 virtual void accept(ir_visitor *v)
1308 {
1309 v->visit(this);
1310 }
1311
1312 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1313
1314 /**
1315 * Get a particular component of a constant as a specific type
1316 *
1317 * This is useful, for example, to get a value from an integer constant
1318 * as a float or bool. This appears frequently when constructors are
1319 * called with all constant parameters.
1320 */
1321 /*@{*/
1322 bool get_bool_component(unsigned i) const;
1323 float get_float_component(unsigned i) const;
1324 int get_int_component(unsigned i) const;
1325 unsigned get_uint_component(unsigned i) const;
1326 /*@}*/
1327
1328 ir_constant *get_array_element(unsigned i) const;
1329
1330 ir_constant *get_record_field(const char *name);
1331
1332 /**
1333 * Determine whether a constant has the same value as another constant
1334 */
1335 bool has_value(const ir_constant *) const;
1336
1337 /**
1338 * Value of the constant.
1339 *
1340 * The field used to back the values supplied by the constant is determined
1341 * by the type associated with the \c ir_instruction. Constants may be
1342 * scalars, vectors, or matrices.
1343 */
1344 union ir_constant_data value;
1345
1346 /* Array elements */
1347 ir_constant **array_elements;
1348
1349 /* Structure fields */
1350 exec_list components;
1351
1352 private:
1353 /**
1354 * Parameterless constructor only used by the clone method
1355 */
1356 ir_constant(void);
1357 };
1358
1359 void
1360 visit_exec_list(exec_list *list, ir_visitor *visitor);
1361
1362 void validate_ir_tree(exec_list *instructions);
1363
1364 /**
1365 * Make a clone of each IR instruction in a list
1366 *
1367 * \param in List of IR instructions that are to be cloned
1368 * \param out List to hold the cloned instructions
1369 */
1370 void
1371 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1372
1373 extern void
1374 _mesa_glsl_initialize_variables(exec_list *instructions,
1375 struct _mesa_glsl_parse_state *state);
1376
1377 extern void
1378 _mesa_glsl_initialize_functions(exec_list *instructions,
1379 struct _mesa_glsl_parse_state *state);
1380
1381 extern void
1382 _mesa_glsl_release_functions(void);
1383
1384 extern void
1385 reparent_ir(exec_list *list, void *mem_ctx);
1386
1387 struct glsl_symbol_table;
1388
1389 extern void
1390 import_prototypes(const exec_list *source, exec_list *dest,
1391 struct glsl_symbol_table *symbols, void *mem_ctx);
1392
1393 extern bool
1394 ir_has_call(ir_instruction *ir);
1395
1396 extern void
1397 do_set_program_inouts(exec_list *instructions, struct gl_program *prog);
1398
1399 #endif /* IR_H */