glsl/linker: Make separate ir_variable field to mean "unmatched".
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 /**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45 /**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor. While using type tags is not very C++, it is extremely
51 * convenient. For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types. For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59 enum ir_node_type {
60 /**
61 * Zero is unused so that the IR validator can detect cases where
62 * \c ir_instruction::ir_type has not been initialized.
63 */
64 ir_type_unset,
65 ir_type_variable,
66 ir_type_assignment,
67 ir_type_call,
68 ir_type_constant,
69 ir_type_dereference_array,
70 ir_type_dereference_record,
71 ir_type_dereference_variable,
72 ir_type_discard,
73 ir_type_expression,
74 ir_type_function,
75 ir_type_function_signature,
76 ir_type_if,
77 ir_type_loop,
78 ir_type_loop_jump,
79 ir_type_return,
80 ir_type_swizzle,
81 ir_type_texture,
82 ir_type_max /**< maximum ir_type enum number, for validation */
83 };
84
85 /**
86 * Base class of all IR instructions
87 */
88 class ir_instruction : public exec_node {
89 public:
90 enum ir_node_type ir_type;
91
92 /**
93 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
94 * there's a virtual destructor present. Because we almost
95 * universally use ralloc for our memory management of
96 * ir_instructions, the destructor doesn't need to do any work.
97 */
98 virtual ~ir_instruction()
99 {
100 }
101
102 /** ir_print_visitor helper for debugging. */
103 void print(void) const;
104
105 virtual void accept(ir_visitor *) = 0;
106 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
107 virtual ir_instruction *clone(void *mem_ctx,
108 struct hash_table *ht) const = 0;
109
110 /**
111 * \name IR instruction downcast functions
112 *
113 * These functions either cast the object to a derived class or return
114 * \c NULL if the object's type does not match the specified derived class.
115 * Additional downcast functions will be added as needed.
116 */
117 /*@{*/
118 virtual class ir_variable * as_variable() { return NULL; }
119 virtual class ir_function * as_function() { return NULL; }
120 virtual class ir_dereference * as_dereference() { return NULL; }
121 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
122 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
123 virtual class ir_expression * as_expression() { return NULL; }
124 virtual class ir_rvalue * as_rvalue() { return NULL; }
125 virtual class ir_loop * as_loop() { return NULL; }
126 virtual class ir_assignment * as_assignment() { return NULL; }
127 virtual class ir_call * as_call() { return NULL; }
128 virtual class ir_return * as_return() { return NULL; }
129 virtual class ir_if * as_if() { return NULL; }
130 virtual class ir_swizzle * as_swizzle() { return NULL; }
131 virtual class ir_constant * as_constant() { return NULL; }
132 virtual class ir_discard * as_discard() { return NULL; }
133 /*@}*/
134
135 protected:
136 ir_instruction()
137 {
138 ir_type = ir_type_unset;
139 }
140 };
141
142
143 /**
144 * The base class for all "values"/expression trees.
145 */
146 class ir_rvalue : public ir_instruction {
147 public:
148 const struct glsl_type *type;
149
150 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
151
152 virtual void accept(ir_visitor *v)
153 {
154 v->visit(this);
155 }
156
157 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
158
159 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
160
161 virtual ir_rvalue * as_rvalue()
162 {
163 return this;
164 }
165
166 ir_rvalue *as_rvalue_to_saturate();
167
168 virtual bool is_lvalue() const
169 {
170 return false;
171 }
172
173 /**
174 * Get the variable that is ultimately referenced by an r-value
175 */
176 virtual ir_variable *variable_referenced() const
177 {
178 return NULL;
179 }
180
181
182 /**
183 * If an r-value is a reference to a whole variable, get that variable
184 *
185 * \return
186 * Pointer to a variable that is completely dereferenced by the r-value. If
187 * the r-value is not a dereference or the dereference does not access the
188 * entire variable (i.e., it's just one array element, struct field), \c NULL
189 * is returned.
190 */
191 virtual ir_variable *whole_variable_referenced()
192 {
193 return NULL;
194 }
195
196 /**
197 * Determine if an r-value has the value zero
198 *
199 * The base implementation of this function always returns \c false. The
200 * \c ir_constant class over-rides this function to return \c true \b only
201 * for vector and scalar types that have all elements set to the value
202 * zero (or \c false for booleans).
203 *
204 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one,
205 * ir_constant::is_basis
206 */
207 virtual bool is_zero() const;
208
209 /**
210 * Determine if an r-value has the value one
211 *
212 * The base implementation of this function always returns \c false. The
213 * \c ir_constant class over-rides this function to return \c true \b only
214 * for vector and scalar types that have all elements set to the value
215 * one (or \c true for booleans).
216 *
217 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one,
218 * ir_constant::is_basis
219 */
220 virtual bool is_one() const;
221
222 /**
223 * Determine if an r-value has the value negative one
224 *
225 * The base implementation of this function always returns \c false. The
226 * \c ir_constant class over-rides this function to return \c true \b only
227 * for vector and scalar types that have all elements set to the value
228 * negative one. For boolean types, the result is always \c false.
229 *
230 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
231 * ir_constant::is_basis
232 */
233 virtual bool is_negative_one() const;
234
235 /**
236 * Determine if an r-value is a basis vector
237 *
238 * The base implementation of this function always returns \c false. The
239 * \c ir_constant class over-rides this function to return \c true \b only
240 * for vector and scalar types that have one element set to the value one,
241 * and the other elements set to the value zero. For boolean types, the
242 * result is always \c false.
243 *
244 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one,
245 * is_constant::is_negative_one
246 */
247 virtual bool is_basis() const;
248
249
250 /**
251 * Return a generic value of error_type.
252 *
253 * Allocation will be performed with 'mem_ctx' as ralloc owner.
254 */
255 static ir_rvalue *error_value(void *mem_ctx);
256
257 protected:
258 ir_rvalue();
259 };
260
261
262 /**
263 * Variable storage classes
264 */
265 enum ir_variable_mode {
266 ir_var_auto = 0, /**< Function local variables and globals. */
267 ir_var_uniform, /**< Variable declared as a uniform. */
268 ir_var_in,
269 ir_var_out,
270 ir_var_inout,
271 ir_var_const_in, /**< "in" param that must be a constant expression */
272 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
273 ir_var_temporary /**< Temporary variable generated during compilation. */
274 };
275
276 /**
277 * \brief Layout qualifiers for gl_FragDepth.
278 *
279 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
280 * with a layout qualifier.
281 */
282 enum ir_depth_layout {
283 ir_depth_layout_none, /**< No depth layout is specified. */
284 ir_depth_layout_any,
285 ir_depth_layout_greater,
286 ir_depth_layout_less,
287 ir_depth_layout_unchanged
288 };
289
290 /**
291 * \brief Convert depth layout qualifier to string.
292 */
293 const char*
294 depth_layout_string(ir_depth_layout layout);
295
296 /**
297 * Description of built-in state associated with a uniform
298 *
299 * \sa ir_variable::state_slots
300 */
301 struct ir_state_slot {
302 int tokens[5];
303 int swizzle;
304 };
305
306 class ir_variable : public ir_instruction {
307 public:
308 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
309
310 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
311
312 virtual ir_variable *as_variable()
313 {
314 return this;
315 }
316
317 virtual void accept(ir_visitor *v)
318 {
319 v->visit(this);
320 }
321
322 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
323
324
325 /**
326 * Get the string value for the interpolation qualifier
327 *
328 * \return The string that would be used in a shader to specify \c
329 * mode will be returned.
330 *
331 * This function is used to generate error messages of the form "shader
332 * uses %s interpolation qualifier", so in the case where there is no
333 * interpolation qualifier, it returns "no".
334 *
335 * This function should only be used on a shader input or output variable.
336 */
337 const char *interpolation_string() const;
338
339 /**
340 * Determine how this variable should be interpolated based on its
341 * interpolation qualifier (if present), whether it is gl_Color or
342 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
343 * state.
344 *
345 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
346 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
347 */
348 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
349
350 /**
351 * Declared type of the variable
352 */
353 const struct glsl_type *type;
354
355 /**
356 * Declared name of the variable
357 */
358 const char *name;
359
360 /**
361 * Highest element accessed with a constant expression array index
362 *
363 * Not used for non-array variables.
364 */
365 unsigned max_array_access;
366
367 /**
368 * Is the variable read-only?
369 *
370 * This is set for variables declared as \c const, shader inputs,
371 * and uniforms.
372 */
373 unsigned read_only:1;
374 unsigned centroid:1;
375 unsigned invariant:1;
376
377 /**
378 * Has this variable been used for reading or writing?
379 *
380 * Several GLSL semantic checks require knowledge of whether or not a
381 * variable has been used. For example, it is an error to redeclare a
382 * variable as invariant after it has been used.
383 *
384 * This is only maintained in the ast_to_hir.cpp path, not in
385 * Mesa's fixed function or ARB program paths.
386 */
387 unsigned used:1;
388
389 /**
390 * Has this variable been statically assigned?
391 *
392 * This answers whether the variable was assigned in any path of
393 * the shader during ast_to_hir. This doesn't answer whether it is
394 * still written after dead code removal, nor is it maintained in
395 * non-ast_to_hir.cpp (GLSL parsing) paths.
396 */
397 unsigned assigned:1;
398
399 /**
400 * Storage class of the variable.
401 *
402 * \sa ir_variable_mode
403 */
404 unsigned mode:3;
405
406 /**
407 * Interpolation mode for shader inputs / outputs
408 *
409 * \sa ir_variable_interpolation
410 */
411 unsigned interpolation:2;
412
413 /**
414 * \name ARB_fragment_coord_conventions
415 * @{
416 */
417 unsigned origin_upper_left:1;
418 unsigned pixel_center_integer:1;
419 /*@}*/
420
421 /**
422 * Was the location explicitly set in the shader?
423 *
424 * If the location is explicitly set in the shader, it \b cannot be changed
425 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
426 * no effect).
427 */
428 unsigned explicit_location:1;
429 unsigned explicit_index:1;
430
431 /**
432 * Does this variable have an initializer?
433 *
434 * This is used by the linker to cross-validiate initializers of global
435 * variables.
436 */
437 unsigned has_initializer:1;
438
439 /**
440 * Is this variable a generic output or input that has not yet been matched
441 * up to a variable in another stage of the pipeline?
442 *
443 * This is used by the linker as scratch storage while assigning locations
444 * to generic inputs and outputs.
445 */
446 unsigned is_unmatched_generic_inout:1;
447
448 /**
449 * \brief Layout qualifier for gl_FragDepth.
450 *
451 * This is not equal to \c ir_depth_layout_none if and only if this
452 * variable is \c gl_FragDepth and a layout qualifier is specified.
453 */
454 ir_depth_layout depth_layout;
455
456 /**
457 * Storage location of the base of this variable
458 *
459 * The precise meaning of this field depends on the nature of the variable.
460 *
461 * - Vertex shader input: one of the values from \c gl_vert_attrib.
462 * - Vertex shader output: one of the values from \c gl_vert_result.
463 * - Fragment shader input: one of the values from \c gl_frag_attrib.
464 * - Fragment shader output: one of the values from \c gl_frag_result.
465 * - Uniforms: Per-stage uniform slot number for default uniform block.
466 * - Uniforms: Index within the uniform block definition for UBO members.
467 * - Other: This field is not currently used.
468 *
469 * If the variable is a uniform, shader input, or shader output, and the
470 * slot has not been assigned, the value will be -1.
471 */
472 int location;
473
474 /**
475 * Uniform block number for uniforms.
476 *
477 * This index is into the shader's list of uniform blocks, not the
478 * linked program's merged list.
479 *
480 * If the variable is not in a uniform block, the value will be -1.
481 */
482 int uniform_block;
483
484 /**
485 * output index for dual source blending.
486 */
487 int index;
488
489 /**
490 * Built-in state that backs this uniform
491 *
492 * Once set at variable creation, \c state_slots must remain invariant.
493 * This is because, ideally, this array would be shared by all clones of
494 * this variable in the IR tree. In other words, we'd really like for it
495 * to be a fly-weight.
496 *
497 * If the variable is not a uniform, \c num_state_slots will be zero and
498 * \c state_slots will be \c NULL.
499 */
500 /*@{*/
501 unsigned num_state_slots; /**< Number of state slots used */
502 ir_state_slot *state_slots; /**< State descriptors. */
503 /*@}*/
504
505 /**
506 * Emit a warning if this variable is accessed.
507 */
508 const char *warn_extension;
509
510 /**
511 * Value assigned in the initializer of a variable declared "const"
512 */
513 ir_constant *constant_value;
514
515 /**
516 * Constant expression assigned in the initializer of the variable
517 *
518 * \warning
519 * This field and \c ::constant_value are distinct. Even if the two fields
520 * refer to constants with the same value, they must point to separate
521 * objects.
522 */
523 ir_constant *constant_initializer;
524 };
525
526
527 /*@{*/
528 /**
529 * The representation of a function instance; may be the full definition or
530 * simply a prototype.
531 */
532 class ir_function_signature : public ir_instruction {
533 /* An ir_function_signature will be part of the list of signatures in
534 * an ir_function.
535 */
536 public:
537 ir_function_signature(const glsl_type *return_type);
538
539 virtual ir_function_signature *clone(void *mem_ctx,
540 struct hash_table *ht) const;
541 ir_function_signature *clone_prototype(void *mem_ctx,
542 struct hash_table *ht) const;
543
544 virtual void accept(ir_visitor *v)
545 {
546 v->visit(this);
547 }
548
549 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
550
551 /**
552 * Attempt to evaluate this function as a constant expression,
553 * given a list of the actual parameters and the variable context.
554 * Returns NULL for non-built-ins.
555 */
556 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
557
558 /**
559 * Get the name of the function for which this is a signature
560 */
561 const char *function_name() const;
562
563 /**
564 * Get a handle to the function for which this is a signature
565 *
566 * There is no setter function, this function returns a \c const pointer,
567 * and \c ir_function_signature::_function is private for a reason. The
568 * only way to make a connection between a function and function signature
569 * is via \c ir_function::add_signature. This helps ensure that certain
570 * invariants (i.e., a function signature is in the list of signatures for
571 * its \c _function) are met.
572 *
573 * \sa ir_function::add_signature
574 */
575 inline const class ir_function *function() const
576 {
577 return this->_function;
578 }
579
580 /**
581 * Check whether the qualifiers match between this signature's parameters
582 * and the supplied parameter list. If not, returns the name of the first
583 * parameter with mismatched qualifiers (for use in error messages).
584 */
585 const char *qualifiers_match(exec_list *params);
586
587 /**
588 * Replace the current parameter list with the given one. This is useful
589 * if the current information came from a prototype, and either has invalid
590 * or missing parameter names.
591 */
592 void replace_parameters(exec_list *new_params);
593
594 /**
595 * Function return type.
596 *
597 * \note This discards the optional precision qualifier.
598 */
599 const struct glsl_type *return_type;
600
601 /**
602 * List of ir_variable of function parameters.
603 *
604 * This represents the storage. The paramaters passed in a particular
605 * call will be in ir_call::actual_paramaters.
606 */
607 struct exec_list parameters;
608
609 /** Whether or not this function has a body (which may be empty). */
610 unsigned is_defined:1;
611
612 /** Whether or not this function signature is a built-in. */
613 unsigned is_builtin:1;
614
615 /** Body of instructions in the function. */
616 struct exec_list body;
617
618 private:
619 /** Function of which this signature is one overload. */
620 class ir_function *_function;
621
622 /** Function signature of which this one is a prototype clone */
623 const ir_function_signature *origin;
624
625 friend class ir_function;
626
627 /**
628 * Helper function to run a list of instructions for constant
629 * expression evaluation.
630 *
631 * The hash table represents the values of the visible variables.
632 * There are no scoping issues because the table is indexed on
633 * ir_variable pointers, not variable names.
634 *
635 * Returns false if the expression is not constant, true otherwise,
636 * and the value in *result if result is non-NULL.
637 */
638 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
639 struct hash_table *variable_context,
640 ir_constant **result);
641 };
642
643
644 /**
645 * Header for tracking multiple overloaded functions with the same name.
646 * Contains a list of ir_function_signatures representing each of the
647 * actual functions.
648 */
649 class ir_function : public ir_instruction {
650 public:
651 ir_function(const char *name);
652
653 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
654
655 virtual ir_function *as_function()
656 {
657 return this;
658 }
659
660 virtual void accept(ir_visitor *v)
661 {
662 v->visit(this);
663 }
664
665 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
666
667 void add_signature(ir_function_signature *sig)
668 {
669 sig->_function = this;
670 this->signatures.push_tail(sig);
671 }
672
673 /**
674 * Get an iterator for the set of function signatures
675 */
676 exec_list_iterator iterator()
677 {
678 return signatures.iterator();
679 }
680
681 /**
682 * Find a signature that matches a set of actual parameters, taking implicit
683 * conversions into account. Also flags whether the match was exact.
684 */
685 ir_function_signature *matching_signature(const exec_list *actual_param,
686 bool *match_is_exact);
687
688 /**
689 * Find a signature that matches a set of actual parameters, taking implicit
690 * conversions into account.
691 */
692 ir_function_signature *matching_signature(const exec_list *actual_param);
693
694 /**
695 * Find a signature that exactly matches a set of actual parameters without
696 * any implicit type conversions.
697 */
698 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
699
700 /**
701 * Name of the function.
702 */
703 const char *name;
704
705 /** Whether or not this function has a signature that isn't a built-in. */
706 bool has_user_signature();
707
708 /**
709 * List of ir_function_signature for each overloaded function with this name.
710 */
711 struct exec_list signatures;
712 };
713
714 inline const char *ir_function_signature::function_name() const
715 {
716 return this->_function->name;
717 }
718 /*@}*/
719
720
721 /**
722 * IR instruction representing high-level if-statements
723 */
724 class ir_if : public ir_instruction {
725 public:
726 ir_if(ir_rvalue *condition)
727 : condition(condition)
728 {
729 ir_type = ir_type_if;
730 }
731
732 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
733
734 virtual ir_if *as_if()
735 {
736 return this;
737 }
738
739 virtual void accept(ir_visitor *v)
740 {
741 v->visit(this);
742 }
743
744 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
745
746 ir_rvalue *condition;
747 /** List of ir_instruction for the body of the then branch */
748 exec_list then_instructions;
749 /** List of ir_instruction for the body of the else branch */
750 exec_list else_instructions;
751 };
752
753
754 /**
755 * IR instruction representing a high-level loop structure.
756 */
757 class ir_loop : public ir_instruction {
758 public:
759 ir_loop();
760
761 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
762
763 virtual void accept(ir_visitor *v)
764 {
765 v->visit(this);
766 }
767
768 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
769
770 virtual ir_loop *as_loop()
771 {
772 return this;
773 }
774
775 /**
776 * Get an iterator for the instructions of the loop body
777 */
778 exec_list_iterator iterator()
779 {
780 return body_instructions.iterator();
781 }
782
783 /** List of ir_instruction that make up the body of the loop. */
784 exec_list body_instructions;
785
786 /**
787 * \name Loop counter and controls
788 *
789 * Represents a loop like a FORTRAN \c do-loop.
790 *
791 * \note
792 * If \c from and \c to are the same value, the loop will execute once.
793 */
794 /*@{*/
795 ir_rvalue *from; /** Value of the loop counter on the first
796 * iteration of the loop.
797 */
798 ir_rvalue *to; /** Value of the loop counter on the last
799 * iteration of the loop.
800 */
801 ir_rvalue *increment;
802 ir_variable *counter;
803
804 /**
805 * Comparison operation in the loop terminator.
806 *
807 * If any of the loop control fields are non-\c NULL, this field must be
808 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
809 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
810 */
811 int cmp;
812 /*@}*/
813 };
814
815
816 class ir_assignment : public ir_instruction {
817 public:
818 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
819
820 /**
821 * Construct an assignment with an explicit write mask
822 *
823 * \note
824 * Since a write mask is supplied, the LHS must already be a bare
825 * \c ir_dereference. The cannot be any swizzles in the LHS.
826 */
827 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
828 unsigned write_mask);
829
830 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
831
832 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
833
834 virtual void accept(ir_visitor *v)
835 {
836 v->visit(this);
837 }
838
839 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
840
841 virtual ir_assignment * as_assignment()
842 {
843 return this;
844 }
845
846 /**
847 * Get a whole variable written by an assignment
848 *
849 * If the LHS of the assignment writes a whole variable, the variable is
850 * returned. Otherwise \c NULL is returned. Examples of whole-variable
851 * assignment are:
852 *
853 * - Assigning to a scalar
854 * - Assigning to all components of a vector
855 * - Whole array (or matrix) assignment
856 * - Whole structure assignment
857 */
858 ir_variable *whole_variable_written();
859
860 /**
861 * Set the LHS of an assignment
862 */
863 void set_lhs(ir_rvalue *lhs);
864
865 /**
866 * Left-hand side of the assignment.
867 *
868 * This should be treated as read only. If you need to set the LHS of an
869 * assignment, use \c ir_assignment::set_lhs.
870 */
871 ir_dereference *lhs;
872
873 /**
874 * Value being assigned
875 */
876 ir_rvalue *rhs;
877
878 /**
879 * Optional condition for the assignment.
880 */
881 ir_rvalue *condition;
882
883
884 /**
885 * Component mask written
886 *
887 * For non-vector types in the LHS, this field will be zero. For vector
888 * types, a bit will be set for each component that is written. Note that
889 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
890 *
891 * A partially-set write mask means that each enabled channel gets
892 * the value from a consecutive channel of the rhs. For example,
893 * to write just .xyw of gl_FrontColor with color:
894 *
895 * (assign (constant bool (1)) (xyw)
896 * (var_ref gl_FragColor)
897 * (swiz xyw (var_ref color)))
898 */
899 unsigned write_mask:4;
900 };
901
902 /* Update ir_expression::num_operands() and operator_strs when
903 * updating this list.
904 */
905 enum ir_expression_operation {
906 ir_unop_bit_not,
907 ir_unop_logic_not,
908 ir_unop_neg,
909 ir_unop_abs,
910 ir_unop_sign,
911 ir_unop_rcp,
912 ir_unop_rsq,
913 ir_unop_sqrt,
914 ir_unop_exp, /**< Log base e on gentype */
915 ir_unop_log, /**< Natural log on gentype */
916 ir_unop_exp2,
917 ir_unop_log2,
918 ir_unop_f2i, /**< Float-to-integer conversion. */
919 ir_unop_f2u, /**< Float-to-unsigned conversion. */
920 ir_unop_i2f, /**< Integer-to-float conversion. */
921 ir_unop_f2b, /**< Float-to-boolean conversion */
922 ir_unop_b2f, /**< Boolean-to-float conversion */
923 ir_unop_i2b, /**< int-to-boolean conversion */
924 ir_unop_b2i, /**< Boolean-to-int conversion */
925 ir_unop_u2f, /**< Unsigned-to-float conversion. */
926 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
927 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
928 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
929 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
930 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
931 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
932 ir_unop_any,
933
934 /**
935 * \name Unary floating-point rounding operations.
936 */
937 /*@{*/
938 ir_unop_trunc,
939 ir_unop_ceil,
940 ir_unop_floor,
941 ir_unop_fract,
942 ir_unop_round_even,
943 /*@}*/
944
945 /**
946 * \name Trigonometric operations.
947 */
948 /*@{*/
949 ir_unop_sin,
950 ir_unop_cos,
951 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
952 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
953 /*@}*/
954
955 /**
956 * \name Partial derivatives.
957 */
958 /*@{*/
959 ir_unop_dFdx,
960 ir_unop_dFdy,
961 /*@}*/
962
963 ir_unop_noise,
964
965 /**
966 * A sentinel marking the last of the unary operations.
967 */
968 ir_last_unop = ir_unop_noise,
969
970 ir_binop_add,
971 ir_binop_sub,
972 ir_binop_mul,
973 ir_binop_div,
974
975 /**
976 * Takes one of two combinations of arguments:
977 *
978 * - mod(vecN, vecN)
979 * - mod(vecN, float)
980 *
981 * Does not take integer types.
982 */
983 ir_binop_mod,
984
985 /**
986 * \name Binary comparison operators which return a boolean vector.
987 * The type of both operands must be equal.
988 */
989 /*@{*/
990 ir_binop_less,
991 ir_binop_greater,
992 ir_binop_lequal,
993 ir_binop_gequal,
994 ir_binop_equal,
995 ir_binop_nequal,
996 /**
997 * Returns single boolean for whether all components of operands[0]
998 * equal the components of operands[1].
999 */
1000 ir_binop_all_equal,
1001 /**
1002 * Returns single boolean for whether any component of operands[0]
1003 * is not equal to the corresponding component of operands[1].
1004 */
1005 ir_binop_any_nequal,
1006 /*@}*/
1007
1008 /**
1009 * \name Bit-wise binary operations.
1010 */
1011 /*@{*/
1012 ir_binop_lshift,
1013 ir_binop_rshift,
1014 ir_binop_bit_and,
1015 ir_binop_bit_xor,
1016 ir_binop_bit_or,
1017 /*@}*/
1018
1019 ir_binop_logic_and,
1020 ir_binop_logic_xor,
1021 ir_binop_logic_or,
1022
1023 ir_binop_dot,
1024 ir_binop_min,
1025 ir_binop_max,
1026
1027 ir_binop_pow,
1028
1029 /**
1030 * Load a value the size of a given GLSL type from a uniform block.
1031 *
1032 * operand0 is the ir_constant uniform block index in the linked shader.
1033 * operand1 is a byte offset within the uniform block.
1034 */
1035 ir_binop_ubo_load,
1036
1037 /**
1038 * A sentinel marking the last of the binary operations.
1039 */
1040 ir_last_binop = ir_binop_ubo_load,
1041
1042 ir_quadop_vector,
1043
1044 /**
1045 * A sentinel marking the last of all operations.
1046 */
1047 ir_last_opcode = ir_quadop_vector
1048 };
1049
1050 class ir_expression : public ir_rvalue {
1051 public:
1052 /**
1053 * Constructor for unary operation expressions
1054 */
1055 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
1056 ir_expression(int op, ir_rvalue *);
1057
1058 /**
1059 * Constructor for binary operation expressions
1060 */
1061 ir_expression(int op, const struct glsl_type *type,
1062 ir_rvalue *, ir_rvalue *);
1063 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1064
1065 /**
1066 * Constructor for quad operator expressions
1067 */
1068 ir_expression(int op, const struct glsl_type *type,
1069 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
1070
1071 virtual ir_expression *as_expression()
1072 {
1073 return this;
1074 }
1075
1076 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1077
1078 /**
1079 * Attempt to constant-fold the expression
1080 *
1081 * The "variable_context" hash table links ir_variable * to ir_constant *
1082 * that represent the variables' values. \c NULL represents an empty
1083 * context.
1084 *
1085 * If the expression cannot be constant folded, this method will return
1086 * \c NULL.
1087 */
1088 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1089
1090 /**
1091 * Determine the number of operands used by an expression
1092 */
1093 static unsigned int get_num_operands(ir_expression_operation);
1094
1095 /**
1096 * Determine the number of operands used by an expression
1097 */
1098 unsigned int get_num_operands() const
1099 {
1100 return (this->operation == ir_quadop_vector)
1101 ? this->type->vector_elements : get_num_operands(operation);
1102 }
1103
1104 /**
1105 * Return a string representing this expression's operator.
1106 */
1107 const char *operator_string();
1108
1109 /**
1110 * Return a string representing this expression's operator.
1111 */
1112 static const char *operator_string(ir_expression_operation);
1113
1114
1115 /**
1116 * Do a reverse-lookup to translate the given string into an operator.
1117 */
1118 static ir_expression_operation get_operator(const char *);
1119
1120 virtual void accept(ir_visitor *v)
1121 {
1122 v->visit(this);
1123 }
1124
1125 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1126
1127 ir_expression_operation operation;
1128 ir_rvalue *operands[4];
1129 };
1130
1131
1132 /**
1133 * HIR instruction representing a high-level function call, containing a list
1134 * of parameters and returning a value in the supplied temporary.
1135 */
1136 class ir_call : public ir_instruction {
1137 public:
1138 ir_call(ir_function_signature *callee,
1139 ir_dereference_variable *return_deref,
1140 exec_list *actual_parameters)
1141 : return_deref(return_deref), callee(callee)
1142 {
1143 ir_type = ir_type_call;
1144 assert(callee->return_type != NULL);
1145 actual_parameters->move_nodes_to(& this->actual_parameters);
1146 this->use_builtin = callee->is_builtin;
1147 }
1148
1149 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1150
1151 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1152
1153 virtual ir_call *as_call()
1154 {
1155 return this;
1156 }
1157
1158 virtual void accept(ir_visitor *v)
1159 {
1160 v->visit(this);
1161 }
1162
1163 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1164
1165 /**
1166 * Get an iterator for the set of acutal parameters
1167 */
1168 exec_list_iterator iterator()
1169 {
1170 return actual_parameters.iterator();
1171 }
1172
1173 /**
1174 * Get the name of the function being called.
1175 */
1176 const char *callee_name() const
1177 {
1178 return callee->function_name();
1179 }
1180
1181 /**
1182 * Generates an inline version of the function before @ir,
1183 * storing the return value in return_deref.
1184 */
1185 void generate_inline(ir_instruction *ir);
1186
1187 /**
1188 * Storage for the function's return value.
1189 * This must be NULL if the return type is void.
1190 */
1191 ir_dereference_variable *return_deref;
1192
1193 /**
1194 * The specific function signature being called.
1195 */
1196 ir_function_signature *callee;
1197
1198 /* List of ir_rvalue of paramaters passed in this call. */
1199 exec_list actual_parameters;
1200
1201 /** Should this call only bind to a built-in function? */
1202 bool use_builtin;
1203 };
1204
1205
1206 /**
1207 * \name Jump-like IR instructions.
1208 *
1209 * These include \c break, \c continue, \c return, and \c discard.
1210 */
1211 /*@{*/
1212 class ir_jump : public ir_instruction {
1213 protected:
1214 ir_jump()
1215 {
1216 ir_type = ir_type_unset;
1217 }
1218 };
1219
1220 class ir_return : public ir_jump {
1221 public:
1222 ir_return()
1223 : value(NULL)
1224 {
1225 this->ir_type = ir_type_return;
1226 }
1227
1228 ir_return(ir_rvalue *value)
1229 : value(value)
1230 {
1231 this->ir_type = ir_type_return;
1232 }
1233
1234 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1235
1236 virtual ir_return *as_return()
1237 {
1238 return this;
1239 }
1240
1241 ir_rvalue *get_value() const
1242 {
1243 return value;
1244 }
1245
1246 virtual void accept(ir_visitor *v)
1247 {
1248 v->visit(this);
1249 }
1250
1251 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1252
1253 ir_rvalue *value;
1254 };
1255
1256
1257 /**
1258 * Jump instructions used inside loops
1259 *
1260 * These include \c break and \c continue. The \c break within a loop is
1261 * different from the \c break within a switch-statement.
1262 *
1263 * \sa ir_switch_jump
1264 */
1265 class ir_loop_jump : public ir_jump {
1266 public:
1267 enum jump_mode {
1268 jump_break,
1269 jump_continue
1270 };
1271
1272 ir_loop_jump(jump_mode mode)
1273 {
1274 this->ir_type = ir_type_loop_jump;
1275 this->mode = mode;
1276 }
1277
1278 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1279
1280 virtual void accept(ir_visitor *v)
1281 {
1282 v->visit(this);
1283 }
1284
1285 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1286
1287 bool is_break() const
1288 {
1289 return mode == jump_break;
1290 }
1291
1292 bool is_continue() const
1293 {
1294 return mode == jump_continue;
1295 }
1296
1297 /** Mode selector for the jump instruction. */
1298 enum jump_mode mode;
1299 };
1300
1301 /**
1302 * IR instruction representing discard statements.
1303 */
1304 class ir_discard : public ir_jump {
1305 public:
1306 ir_discard()
1307 {
1308 this->ir_type = ir_type_discard;
1309 this->condition = NULL;
1310 }
1311
1312 ir_discard(ir_rvalue *cond)
1313 {
1314 this->ir_type = ir_type_discard;
1315 this->condition = cond;
1316 }
1317
1318 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1319
1320 virtual void accept(ir_visitor *v)
1321 {
1322 v->visit(this);
1323 }
1324
1325 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1326
1327 virtual ir_discard *as_discard()
1328 {
1329 return this;
1330 }
1331
1332 ir_rvalue *condition;
1333 };
1334 /*@}*/
1335
1336
1337 /**
1338 * Texture sampling opcodes used in ir_texture
1339 */
1340 enum ir_texture_opcode {
1341 ir_tex, /**< Regular texture look-up */
1342 ir_txb, /**< Texture look-up with LOD bias */
1343 ir_txl, /**< Texture look-up with explicit LOD */
1344 ir_txd, /**< Texture look-up with partial derivatvies */
1345 ir_txf, /**< Texel fetch with explicit LOD */
1346 ir_txs /**< Texture size */
1347 };
1348
1349
1350 /**
1351 * IR instruction to sample a texture
1352 *
1353 * The specific form of the IR instruction depends on the \c mode value
1354 * selected from \c ir_texture_opcodes. In the printed IR, these will
1355 * appear as:
1356 *
1357 * Texel offset (0 or an expression)
1358 * | Projection divisor
1359 * | | Shadow comparitor
1360 * | | |
1361 * v v v
1362 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1363 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1364 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1365 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1366 * (txf <type> <sampler> <coordinate> 0 <lod>)
1367 * (txs <type> <sampler> <lod>)
1368 */
1369 class ir_texture : public ir_rvalue {
1370 public:
1371 ir_texture(enum ir_texture_opcode op)
1372 : op(op), coordinate(NULL), projector(NULL), shadow_comparitor(NULL),
1373 offset(NULL)
1374 {
1375 this->ir_type = ir_type_texture;
1376 }
1377
1378 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1379
1380 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1381
1382 virtual void accept(ir_visitor *v)
1383 {
1384 v->visit(this);
1385 }
1386
1387 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1388
1389 /**
1390 * Return a string representing the ir_texture_opcode.
1391 */
1392 const char *opcode_string();
1393
1394 /** Set the sampler and type. */
1395 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1396
1397 /**
1398 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1399 */
1400 static ir_texture_opcode get_opcode(const char *);
1401
1402 enum ir_texture_opcode op;
1403
1404 /** Sampler to use for the texture access. */
1405 ir_dereference *sampler;
1406
1407 /** Texture coordinate to sample */
1408 ir_rvalue *coordinate;
1409
1410 /**
1411 * Value used for projective divide.
1412 *
1413 * If there is no projective divide (the common case), this will be
1414 * \c NULL. Optimization passes should check for this to point to a constant
1415 * of 1.0 and replace that with \c NULL.
1416 */
1417 ir_rvalue *projector;
1418
1419 /**
1420 * Coordinate used for comparison on shadow look-ups.
1421 *
1422 * If there is no shadow comparison, this will be \c NULL. For the
1423 * \c ir_txf opcode, this *must* be \c NULL.
1424 */
1425 ir_rvalue *shadow_comparitor;
1426
1427 /** Texel offset. */
1428 ir_rvalue *offset;
1429
1430 union {
1431 ir_rvalue *lod; /**< Floating point LOD */
1432 ir_rvalue *bias; /**< Floating point LOD bias */
1433 struct {
1434 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1435 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1436 } grad;
1437 } lod_info;
1438 };
1439
1440
1441 struct ir_swizzle_mask {
1442 unsigned x:2;
1443 unsigned y:2;
1444 unsigned z:2;
1445 unsigned w:2;
1446
1447 /**
1448 * Number of components in the swizzle.
1449 */
1450 unsigned num_components:3;
1451
1452 /**
1453 * Does the swizzle contain duplicate components?
1454 *
1455 * L-value swizzles cannot contain duplicate components.
1456 */
1457 unsigned has_duplicates:1;
1458 };
1459
1460
1461 class ir_swizzle : public ir_rvalue {
1462 public:
1463 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1464 unsigned count);
1465
1466 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1467
1468 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1469
1470 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1471
1472 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1473
1474 virtual ir_swizzle *as_swizzle()
1475 {
1476 return this;
1477 }
1478
1479 /**
1480 * Construct an ir_swizzle from the textual representation. Can fail.
1481 */
1482 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1483
1484 virtual void accept(ir_visitor *v)
1485 {
1486 v->visit(this);
1487 }
1488
1489 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1490
1491 bool is_lvalue() const
1492 {
1493 return val->is_lvalue() && !mask.has_duplicates;
1494 }
1495
1496 /**
1497 * Get the variable that is ultimately referenced by an r-value
1498 */
1499 virtual ir_variable *variable_referenced() const;
1500
1501 ir_rvalue *val;
1502 ir_swizzle_mask mask;
1503
1504 private:
1505 /**
1506 * Initialize the mask component of a swizzle
1507 *
1508 * This is used by the \c ir_swizzle constructors.
1509 */
1510 void init_mask(const unsigned *components, unsigned count);
1511 };
1512
1513
1514 class ir_dereference : public ir_rvalue {
1515 public:
1516 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1517
1518 virtual ir_dereference *as_dereference()
1519 {
1520 return this;
1521 }
1522
1523 bool is_lvalue() const;
1524
1525 /**
1526 * Get the variable that is ultimately referenced by an r-value
1527 */
1528 virtual ir_variable *variable_referenced() const = 0;
1529
1530 /**
1531 * Get the constant that is ultimately referenced by an r-value,
1532 * in a constant expression evaluation context.
1533 *
1534 * The offset is used when the reference is to a specific column of
1535 * a matrix.
1536 */
1537 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const = 0;
1538 };
1539
1540
1541 class ir_dereference_variable : public ir_dereference {
1542 public:
1543 ir_dereference_variable(ir_variable *var);
1544
1545 virtual ir_dereference_variable *clone(void *mem_ctx,
1546 struct hash_table *) const;
1547
1548 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1549
1550 virtual ir_dereference_variable *as_dereference_variable()
1551 {
1552 return this;
1553 }
1554
1555 /**
1556 * Get the variable that is ultimately referenced by an r-value
1557 */
1558 virtual ir_variable *variable_referenced() const
1559 {
1560 return this->var;
1561 }
1562
1563 /**
1564 * Get the constant that is ultimately referenced by an r-value,
1565 * in a constant expression evaluation context.
1566 *
1567 * The offset is used when the reference is to a specific column of
1568 * a matrix.
1569 */
1570 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1571
1572 virtual ir_variable *whole_variable_referenced()
1573 {
1574 /* ir_dereference_variable objects always dereference the entire
1575 * variable. However, if this dereference is dereferenced by anything
1576 * else, the complete deferefernce chain is not a whole-variable
1577 * dereference. This method should only be called on the top most
1578 * ir_rvalue in a dereference chain.
1579 */
1580 return this->var;
1581 }
1582
1583 virtual void accept(ir_visitor *v)
1584 {
1585 v->visit(this);
1586 }
1587
1588 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1589
1590 /**
1591 * Object being dereferenced.
1592 */
1593 ir_variable *var;
1594 };
1595
1596
1597 class ir_dereference_array : public ir_dereference {
1598 public:
1599 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1600
1601 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1602
1603 virtual ir_dereference_array *clone(void *mem_ctx,
1604 struct hash_table *) const;
1605
1606 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1607
1608 virtual ir_dereference_array *as_dereference_array()
1609 {
1610 return this;
1611 }
1612
1613 /**
1614 * Get the variable that is ultimately referenced by an r-value
1615 */
1616 virtual ir_variable *variable_referenced() const
1617 {
1618 return this->array->variable_referenced();
1619 }
1620
1621 /**
1622 * Get the constant that is ultimately referenced by an r-value,
1623 * in a constant expression evaluation context.
1624 *
1625 * The offset is used when the reference is to a specific column of
1626 * a matrix.
1627 */
1628 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1629
1630 virtual void accept(ir_visitor *v)
1631 {
1632 v->visit(this);
1633 }
1634
1635 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1636
1637 ir_rvalue *array;
1638 ir_rvalue *array_index;
1639
1640 private:
1641 void set_array(ir_rvalue *value);
1642 };
1643
1644
1645 class ir_dereference_record : public ir_dereference {
1646 public:
1647 ir_dereference_record(ir_rvalue *value, const char *field);
1648
1649 ir_dereference_record(ir_variable *var, const char *field);
1650
1651 virtual ir_dereference_record *clone(void *mem_ctx,
1652 struct hash_table *) const;
1653
1654 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1655
1656 /**
1657 * Get the variable that is ultimately referenced by an r-value
1658 */
1659 virtual ir_variable *variable_referenced() const
1660 {
1661 return this->record->variable_referenced();
1662 }
1663
1664 /**
1665 * Get the constant that is ultimately referenced by an r-value,
1666 * in a constant expression evaluation context.
1667 *
1668 * The offset is used when the reference is to a specific column of
1669 * a matrix.
1670 */
1671 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1672
1673 virtual void accept(ir_visitor *v)
1674 {
1675 v->visit(this);
1676 }
1677
1678 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1679
1680 ir_rvalue *record;
1681 const char *field;
1682 };
1683
1684
1685 /**
1686 * Data stored in an ir_constant
1687 */
1688 union ir_constant_data {
1689 unsigned u[16];
1690 int i[16];
1691 float f[16];
1692 bool b[16];
1693 };
1694
1695
1696 class ir_constant : public ir_rvalue {
1697 public:
1698 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1699 ir_constant(bool b);
1700 ir_constant(unsigned int u);
1701 ir_constant(int i);
1702 ir_constant(float f);
1703
1704 /**
1705 * Construct an ir_constant from a list of ir_constant values
1706 */
1707 ir_constant(const struct glsl_type *type, exec_list *values);
1708
1709 /**
1710 * Construct an ir_constant from a scalar component of another ir_constant
1711 *
1712 * The new \c ir_constant inherits the type of the component from the
1713 * source constant.
1714 *
1715 * \note
1716 * In the case of a matrix constant, the new constant is a scalar, \b not
1717 * a vector.
1718 */
1719 ir_constant(const ir_constant *c, unsigned i);
1720
1721 /**
1722 * Return a new ir_constant of the specified type containing all zeros.
1723 */
1724 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1725
1726 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1727
1728 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1729
1730 virtual ir_constant *as_constant()
1731 {
1732 return this;
1733 }
1734
1735 virtual void accept(ir_visitor *v)
1736 {
1737 v->visit(this);
1738 }
1739
1740 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1741
1742 /**
1743 * Get a particular component of a constant as a specific type
1744 *
1745 * This is useful, for example, to get a value from an integer constant
1746 * as a float or bool. This appears frequently when constructors are
1747 * called with all constant parameters.
1748 */
1749 /*@{*/
1750 bool get_bool_component(unsigned i) const;
1751 float get_float_component(unsigned i) const;
1752 int get_int_component(unsigned i) const;
1753 unsigned get_uint_component(unsigned i) const;
1754 /*@}*/
1755
1756 ir_constant *get_array_element(unsigned i) const;
1757
1758 ir_constant *get_record_field(const char *name);
1759
1760 /**
1761 * Copy the values on another constant at a given offset.
1762 *
1763 * The offset is ignored for array or struct copies, it's only for
1764 * scalars or vectors into vectors or matrices.
1765 *
1766 * With identical types on both sides and zero offset it's clone()
1767 * without creating a new object.
1768 */
1769
1770 void copy_offset(ir_constant *src, int offset);
1771
1772 /**
1773 * Copy the values on another constant at a given offset and
1774 * following an assign-like mask.
1775 *
1776 * The mask is ignored for scalars.
1777 *
1778 * Note that this function only handles what assign can handle,
1779 * i.e. at most a vector as source and a column of a matrix as
1780 * destination.
1781 */
1782
1783 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
1784
1785 /**
1786 * Determine whether a constant has the same value as another constant
1787 *
1788 * \sa ir_constant::is_zero, ir_constant::is_one,
1789 * ir_constant::is_negative_one, ir_constant::is_basis
1790 */
1791 bool has_value(const ir_constant *) const;
1792
1793 virtual bool is_zero() const;
1794 virtual bool is_one() const;
1795 virtual bool is_negative_one() const;
1796 virtual bool is_basis() const;
1797
1798 /**
1799 * Value of the constant.
1800 *
1801 * The field used to back the values supplied by the constant is determined
1802 * by the type associated with the \c ir_instruction. Constants may be
1803 * scalars, vectors, or matrices.
1804 */
1805 union ir_constant_data value;
1806
1807 /* Array elements */
1808 ir_constant **array_elements;
1809
1810 /* Structure fields */
1811 exec_list components;
1812
1813 private:
1814 /**
1815 * Parameterless constructor only used by the clone method
1816 */
1817 ir_constant(void);
1818 };
1819
1820 /*@}*/
1821
1822 /**
1823 * Apply a visitor to each IR node in a list
1824 */
1825 void
1826 visit_exec_list(exec_list *list, ir_visitor *visitor);
1827
1828 /**
1829 * Validate invariants on each IR node in a list
1830 */
1831 void validate_ir_tree(exec_list *instructions);
1832
1833 struct _mesa_glsl_parse_state;
1834 struct gl_shader_program;
1835
1836 /**
1837 * Detect whether an unlinked shader contains static recursion
1838 *
1839 * If the list of instructions is determined to contain static recursion,
1840 * \c _mesa_glsl_error will be called to emit error messages for each function
1841 * that is in the recursion cycle.
1842 */
1843 void
1844 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
1845 exec_list *instructions);
1846
1847 /**
1848 * Detect whether a linked shader contains static recursion
1849 *
1850 * If the list of instructions is determined to contain static recursion,
1851 * \c link_error_printf will be called to emit error messages for each function
1852 * that is in the recursion cycle. In addition,
1853 * \c gl_shader_program::LinkStatus will be set to false.
1854 */
1855 void
1856 detect_recursion_linked(struct gl_shader_program *prog,
1857 exec_list *instructions);
1858
1859 /**
1860 * Make a clone of each IR instruction in a list
1861 *
1862 * \param in List of IR instructions that are to be cloned
1863 * \param out List to hold the cloned instructions
1864 */
1865 void
1866 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1867
1868 extern void
1869 _mesa_glsl_initialize_variables(exec_list *instructions,
1870 struct _mesa_glsl_parse_state *state);
1871
1872 extern void
1873 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
1874
1875 extern void
1876 _mesa_glsl_release_functions(void);
1877
1878 extern void
1879 reparent_ir(exec_list *list, void *mem_ctx);
1880
1881 struct glsl_symbol_table;
1882
1883 extern void
1884 import_prototypes(const exec_list *source, exec_list *dest,
1885 struct glsl_symbol_table *symbols, void *mem_ctx);
1886
1887 extern bool
1888 ir_has_call(ir_instruction *ir);
1889
1890 extern void
1891 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
1892 bool is_fragment_shader);
1893
1894 extern char *
1895 prototype_string(const glsl_type *return_type, const char *name,
1896 exec_list *parameters);
1897
1898 #endif /* IR_H */