glsl: Add ir_rvalue::is_negative_one predicate
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <cstdio>
30 #include <cstdlib>
31
32 extern "C" {
33 #include <talloc.h>
34 }
35
36 #include "list.h"
37 #include "ir_visitor.h"
38 #include "ir_hierarchical_visitor.h"
39
40 /**
41 * \defgroup IR Intermediate representation nodes
42 *
43 * @{
44 */
45
46 /**
47 * Class tags
48 *
49 * Each concrete class derived from \c ir_instruction has a value in this
50 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
51 * by the constructor. While using type tags is not very C++, it is extremely
52 * convenient. For example, during debugging you can simply inspect
53 * \c ir_instruction::ir_type to find out the actual type of the object.
54 *
55 * In addition, it is possible to use a switch-statement based on \c
56 * \c ir_instruction::ir_type to select different behavior for different object
57 * types. For functions that have only slight differences for several object
58 * types, this allows writing very straightforward, readable code.
59 */
60 enum ir_node_type {
61 /**
62 * Zero is unused so that the IR validator can detect cases where
63 * \c ir_instruction::ir_type has not been initialized.
64 */
65 ir_type_unset,
66 ir_type_variable,
67 ir_type_assignment,
68 ir_type_call,
69 ir_type_constant,
70 ir_type_dereference_array,
71 ir_type_dereference_record,
72 ir_type_dereference_variable,
73 ir_type_discard,
74 ir_type_expression,
75 ir_type_function,
76 ir_type_function_signature,
77 ir_type_if,
78 ir_type_loop,
79 ir_type_loop_jump,
80 ir_type_return,
81 ir_type_swizzle,
82 ir_type_texture,
83 ir_type_max /**< maximum ir_type enum number, for validation */
84 };
85
86 /**
87 * Base class of all IR instructions
88 */
89 class ir_instruction : public exec_node {
90 public:
91 enum ir_node_type ir_type;
92 const struct glsl_type *type;
93
94 /** ir_print_visitor helper for debugging. */
95 void print(void) const;
96
97 virtual void accept(ir_visitor *) = 0;
98 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
99 virtual ir_instruction *clone(void *mem_ctx,
100 struct hash_table *ht) const = 0;
101
102 /**
103 * \name IR instruction downcast functions
104 *
105 * These functions either cast the object to a derived class or return
106 * \c NULL if the object's type does not match the specified derived class.
107 * Additional downcast functions will be added as needed.
108 */
109 /*@{*/
110 virtual class ir_variable * as_variable() { return NULL; }
111 virtual class ir_function * as_function() { return NULL; }
112 virtual class ir_dereference * as_dereference() { return NULL; }
113 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
114 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
115 virtual class ir_expression * as_expression() { return NULL; }
116 virtual class ir_rvalue * as_rvalue() { return NULL; }
117 virtual class ir_loop * as_loop() { return NULL; }
118 virtual class ir_assignment * as_assignment() { return NULL; }
119 virtual class ir_call * as_call() { return NULL; }
120 virtual class ir_return * as_return() { return NULL; }
121 virtual class ir_if * as_if() { return NULL; }
122 virtual class ir_swizzle * as_swizzle() { return NULL; }
123 virtual class ir_constant * as_constant() { return NULL; }
124 /*@}*/
125
126 protected:
127 ir_instruction()
128 {
129 ir_type = ir_type_unset;
130 type = NULL;
131 }
132 };
133
134
135 class ir_rvalue : public ir_instruction {
136 public:
137 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0;
138
139 virtual ir_constant *constant_expression_value() = 0;
140
141 virtual ir_rvalue * as_rvalue()
142 {
143 return this;
144 }
145
146 virtual bool is_lvalue()
147 {
148 return false;
149 }
150
151 /**
152 * Get the variable that is ultimately referenced by an r-value
153 */
154 virtual ir_variable *variable_referenced()
155 {
156 return NULL;
157 }
158
159
160 /**
161 * If an r-value is a reference to a whole variable, get that variable
162 *
163 * \return
164 * Pointer to a variable that is completely dereferenced by the r-value. If
165 * the r-value is not a dereference or the dereference does not access the
166 * entire variable (i.e., it's just one array element, struct field), \c NULL
167 * is returned.
168 */
169 virtual ir_variable *whole_variable_referenced()
170 {
171 return NULL;
172 }
173
174 /**
175 * Determine if an r-value has the value zero
176 *
177 * The base implementation of this function always returns \c false. The
178 * \c ir_constant class over-rides this function to return \c true \b only
179 * for vector and scalar types that have all elements set to the value
180 * zero (or \c false for booleans).
181 *
182 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
183 */
184 virtual bool is_zero() const;
185
186 /**
187 * Determine if an r-value has the value one
188 *
189 * The base implementation of this function always returns \c false. The
190 * \c ir_constant class over-rides this function to return \c true \b only
191 * for vector and scalar types that have all elements set to the value
192 * one (or \c true for booleans).
193 *
194 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
195 */
196 virtual bool is_one() const;
197
198 /**
199 * Determine if an r-value has the value negative one
200 *
201 * The base implementation of this function always returns \c false. The
202 * \c ir_constant class over-rides this function to return \c true \b only
203 * for vector and scalar types that have all elements set to the value
204 * negative one. For boolean times, the result is always \c false.
205 *
206 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
207 */
208 virtual bool is_negative_one() const;
209
210 protected:
211 ir_rvalue();
212 };
213
214
215 /**
216 * Variable storage classes
217 */
218 enum ir_variable_mode {
219 ir_var_auto = 0, /**< Function local variables and globals. */
220 ir_var_uniform, /**< Variable declared as a uniform. */
221 ir_var_in,
222 ir_var_out,
223 ir_var_inout,
224 ir_var_temporary /**< Temporary variable generated during compilation. */
225 };
226
227 enum ir_variable_interpolation {
228 ir_var_smooth = 0,
229 ir_var_flat,
230 ir_var_noperspective
231 };
232
233
234 class ir_variable : public ir_instruction {
235 public:
236 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
237
238 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
239
240 virtual ir_variable *as_variable()
241 {
242 return this;
243 }
244
245 virtual void accept(ir_visitor *v)
246 {
247 v->visit(this);
248 }
249
250 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
251
252
253 /**
254 * Get the string value for the interpolation qualifier
255 *
256 * \return The string that would be used in a shader to specify \c
257 * mode will be returned.
258 *
259 * This function should only be used on a shader input or output variable.
260 */
261 const char *interpolation_string() const;
262
263 /**
264 * Calculate the number of slots required to hold this variable
265 *
266 * This is used to determine how many uniform or varying locations a variable
267 * occupies. The count is in units of floating point components.
268 */
269 unsigned component_slots() const;
270
271 /**
272 * Delcared name of the variable
273 */
274 const char *name;
275
276 /**
277 * Highest element accessed with a constant expression array index
278 *
279 * Not used for non-array variables.
280 */
281 unsigned max_array_access;
282
283 /**
284 * Is the variable read-only?
285 *
286 * This is set for variables declared as \c const, shader inputs,
287 * and uniforms.
288 */
289 unsigned read_only:1;
290 unsigned centroid:1;
291 unsigned invariant:1;
292
293 /**
294 * Storage class of the variable.
295 *
296 * \sa ir_variable_mode
297 */
298 unsigned mode:3;
299
300 /**
301 * Interpolation mode for shader inputs / outputs
302 *
303 * \sa ir_variable_interpolation
304 */
305 unsigned interpolation:2;
306
307 /**
308 * Flag that the whole array is assignable
309 *
310 * In GLSL 1.20 and later whole arrays are assignable (and comparable for
311 * equality). This flag enables this behavior.
312 */
313 unsigned array_lvalue:1;
314
315 /**
316 * \name ARB_fragment_coord_conventions
317 * @{
318 */
319 unsigned origin_upper_left:1;
320 unsigned pixel_center_integer:1;
321 /*@}*/
322
323 /**
324 * Was the location explicitly set in the shader?
325 *
326 * If the location is explicitly set in the shader, it \b cannot be changed
327 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
328 * no effect).
329 */
330 unsigned explicit_location:1;
331
332 /**
333 * Storage location of the base of this variable
334 *
335 * The precise meaning of this field depends on the nature of the variable.
336 *
337 * - Vertex shader input: one of the values from \c gl_vert_attrib.
338 * - Vertex shader output: one of the values from \c gl_vert_result.
339 * - Fragment shader input: one of the values from \c gl_frag_attrib.
340 * - Fragment shader output: one of the values from \c gl_frag_result.
341 * - Uniforms: Per-stage uniform slot number.
342 * - Other: This field is not currently used.
343 *
344 * If the variable is a uniform, shader input, or shader output, and the
345 * slot has not been assigned, the value will be -1.
346 */
347 int location;
348
349 /**
350 * Emit a warning if this variable is accessed.
351 */
352 const char *warn_extension;
353
354 /**
355 * Value assigned in the initializer of a variable declared "const"
356 */
357 ir_constant *constant_value;
358 };
359
360
361 /*@{*/
362 /**
363 * The representation of a function instance; may be the full definition or
364 * simply a prototype.
365 */
366 class ir_function_signature : public ir_instruction {
367 /* An ir_function_signature will be part of the list of signatures in
368 * an ir_function.
369 */
370 public:
371 ir_function_signature(const glsl_type *return_type);
372
373 virtual ir_function_signature *clone(void *mem_ctx,
374 struct hash_table *ht) const;
375
376 virtual void accept(ir_visitor *v)
377 {
378 v->visit(this);
379 }
380
381 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
382
383 /**
384 * Get the name of the function for which this is a signature
385 */
386 const char *function_name() const;
387
388 /**
389 * Get a handle to the function for which this is a signature
390 *
391 * There is no setter function, this function returns a \c const pointer,
392 * and \c ir_function_signature::_function is private for a reason. The
393 * only way to make a connection between a function and function signature
394 * is via \c ir_function::add_signature. This helps ensure that certain
395 * invariants (i.e., a function signature is in the list of signatures for
396 * its \c _function) are met.
397 *
398 * \sa ir_function::add_signature
399 */
400 inline const class ir_function *function() const
401 {
402 return this->_function;
403 }
404
405 /**
406 * Check whether the qualifiers match between this signature's parameters
407 * and the supplied parameter list. If not, returns the name of the first
408 * parameter with mismatched qualifiers (for use in error messages).
409 */
410 const char *qualifiers_match(exec_list *params);
411
412 /**
413 * Replace the current parameter list with the given one. This is useful
414 * if the current information came from a prototype, and either has invalid
415 * or missing parameter names.
416 */
417 void replace_parameters(exec_list *new_params);
418
419 /**
420 * Function return type.
421 *
422 * \note This discards the optional precision qualifier.
423 */
424 const struct glsl_type *return_type;
425
426 /**
427 * List of ir_variable of function parameters.
428 *
429 * This represents the storage. The paramaters passed in a particular
430 * call will be in ir_call::actual_paramaters.
431 */
432 struct exec_list parameters;
433
434 /** Whether or not this function has a body (which may be empty). */
435 unsigned is_defined:1;
436
437 /** Whether or not this function signature is a built-in. */
438 unsigned is_builtin:1;
439
440 /** Body of instructions in the function. */
441 struct exec_list body;
442
443 private:
444 /** Function of which this signature is one overload. */
445 class ir_function *_function;
446
447 friend class ir_function;
448 };
449
450
451 /**
452 * Header for tracking multiple overloaded functions with the same name.
453 * Contains a list of ir_function_signatures representing each of the
454 * actual functions.
455 */
456 class ir_function : public ir_instruction {
457 public:
458 ir_function(const char *name);
459
460 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
461
462 virtual ir_function *as_function()
463 {
464 return this;
465 }
466
467 virtual void accept(ir_visitor *v)
468 {
469 v->visit(this);
470 }
471
472 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
473
474 void add_signature(ir_function_signature *sig)
475 {
476 sig->_function = this;
477 this->signatures.push_tail(sig);
478 }
479
480 /**
481 * Get an iterator for the set of function signatures
482 */
483 exec_list_iterator iterator()
484 {
485 return signatures.iterator();
486 }
487
488 /**
489 * Find a signature that matches a set of actual parameters, taking implicit
490 * conversions into account.
491 */
492 ir_function_signature *matching_signature(const exec_list *actual_param);
493
494 /**
495 * Find a signature that exactly matches a set of actual parameters without
496 * any implicit type conversions.
497 */
498 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
499
500 /**
501 * Name of the function.
502 */
503 const char *name;
504
505 /** Whether or not this function has a signature that isn't a built-in. */
506 bool has_user_signature();
507
508 /**
509 * List of ir_function_signature for each overloaded function with this name.
510 */
511 struct exec_list signatures;
512 };
513
514 inline const char *ir_function_signature::function_name() const
515 {
516 return this->_function->name;
517 }
518 /*@}*/
519
520
521 /**
522 * IR instruction representing high-level if-statements
523 */
524 class ir_if : public ir_instruction {
525 public:
526 ir_if(ir_rvalue *condition)
527 : condition(condition)
528 {
529 ir_type = ir_type_if;
530 }
531
532 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
533
534 virtual ir_if *as_if()
535 {
536 return this;
537 }
538
539 virtual void accept(ir_visitor *v)
540 {
541 v->visit(this);
542 }
543
544 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
545
546 ir_rvalue *condition;
547 /** List of ir_instruction for the body of the then branch */
548 exec_list then_instructions;
549 /** List of ir_instruction for the body of the else branch */
550 exec_list else_instructions;
551 };
552
553
554 /**
555 * IR instruction representing a high-level loop structure.
556 */
557 class ir_loop : public ir_instruction {
558 public:
559 ir_loop();
560
561 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
562
563 virtual void accept(ir_visitor *v)
564 {
565 v->visit(this);
566 }
567
568 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
569
570 virtual ir_loop *as_loop()
571 {
572 return this;
573 }
574
575 /**
576 * Get an iterator for the instructions of the loop body
577 */
578 exec_list_iterator iterator()
579 {
580 return body_instructions.iterator();
581 }
582
583 /** List of ir_instruction that make up the body of the loop. */
584 exec_list body_instructions;
585
586 /**
587 * \name Loop counter and controls
588 *
589 * Represents a loop like a FORTRAN \c do-loop.
590 *
591 * \note
592 * If \c from and \c to are the same value, the loop will execute once.
593 */
594 /*@{*/
595 ir_rvalue *from; /** Value of the loop counter on the first
596 * iteration of the loop.
597 */
598 ir_rvalue *to; /** Value of the loop counter on the last
599 * iteration of the loop.
600 */
601 ir_rvalue *increment;
602 ir_variable *counter;
603
604 /**
605 * Comparison operation in the loop terminator.
606 *
607 * If any of the loop control fields are non-\c NULL, this field must be
608 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
609 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
610 */
611 int cmp;
612 /*@}*/
613 };
614
615
616 class ir_assignment : public ir_instruction {
617 public:
618 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition);
619
620 /**
621 * Construct an assignment with an explicit write mask
622 *
623 * \note
624 * Since a write mask is supplied, the LHS must already be a bare
625 * \c ir_dereference. The cannot be any swizzles in the LHS.
626 */
627 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
628 unsigned write_mask);
629
630 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
631
632 virtual ir_constant *constant_expression_value();
633
634 virtual void accept(ir_visitor *v)
635 {
636 v->visit(this);
637 }
638
639 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
640
641 virtual ir_assignment * as_assignment()
642 {
643 return this;
644 }
645
646 /**
647 * Get a whole variable written by an assignment
648 *
649 * If the LHS of the assignment writes a whole variable, the variable is
650 * returned. Otherwise \c NULL is returned. Examples of whole-variable
651 * assignment are:
652 *
653 * - Assigning to a scalar
654 * - Assigning to all components of a vector
655 * - Whole array (or matrix) assignment
656 * - Whole structure assignment
657 */
658 ir_variable *whole_variable_written();
659
660 /**
661 * Set the LHS of an assignment
662 */
663 void set_lhs(ir_rvalue *lhs);
664
665 /**
666 * Left-hand side of the assignment.
667 *
668 * This should be treated as read only. If you need to set the LHS of an
669 * assignment, use \c ir_assignment::set_lhs.
670 */
671 ir_dereference *lhs;
672
673 /**
674 * Value being assigned
675 */
676 ir_rvalue *rhs;
677
678 /**
679 * Optional condition for the assignment.
680 */
681 ir_rvalue *condition;
682
683
684 /**
685 * Component mask written
686 *
687 * For non-vector types in the LHS, this field will be zero. For vector
688 * types, a bit will be set for each component that is written. Note that
689 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
690 *
691 * A partially-set write mask means that each enabled channel gets
692 * the value from a consecutive channel of the rhs. For example,
693 * to write just .xyw of gl_FrontColor with color:
694 *
695 * (assign (constant bool (1)) (xyw)
696 * (var_ref gl_FragColor)
697 * (swiz xyw (var_ref color)))
698 */
699 unsigned write_mask:4;
700 };
701
702 /* Update ir_expression::num_operands() and operator_strs when
703 * updating this list.
704 */
705 enum ir_expression_operation {
706 ir_unop_bit_not,
707 ir_unop_logic_not,
708 ir_unop_neg,
709 ir_unop_abs,
710 ir_unop_sign,
711 ir_unop_rcp,
712 ir_unop_rsq,
713 ir_unop_sqrt,
714 ir_unop_exp, /**< Log base e on gentype */
715 ir_unop_log, /**< Natural log on gentype */
716 ir_unop_exp2,
717 ir_unop_log2,
718 ir_unop_f2i, /**< Float-to-integer conversion. */
719 ir_unop_i2f, /**< Integer-to-float conversion. */
720 ir_unop_f2b, /**< Float-to-boolean conversion */
721 ir_unop_b2f, /**< Boolean-to-float conversion */
722 ir_unop_i2b, /**< int-to-boolean conversion */
723 ir_unop_b2i, /**< Boolean-to-int conversion */
724 ir_unop_u2f, /**< Unsigned-to-float conversion. */
725 ir_unop_any,
726
727 /**
728 * \name Unary floating-point rounding operations.
729 */
730 /*@{*/
731 ir_unop_trunc,
732 ir_unop_ceil,
733 ir_unop_floor,
734 ir_unop_fract,
735 ir_unop_round_even,
736 /*@}*/
737
738 /**
739 * \name Trigonometric operations.
740 */
741 /*@{*/
742 ir_unop_sin,
743 ir_unop_cos,
744 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
745 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
746 /*@}*/
747
748 /**
749 * \name Partial derivatives.
750 */
751 /*@{*/
752 ir_unop_dFdx,
753 ir_unop_dFdy,
754 /*@}*/
755
756 ir_unop_noise,
757
758 /**
759 * A sentinel marking the last of the unary operations.
760 */
761 ir_last_unop = ir_unop_noise,
762
763 ir_binop_add,
764 ir_binop_sub,
765 ir_binop_mul,
766 ir_binop_div,
767
768 /**
769 * Takes one of two combinations of arguments:
770 *
771 * - mod(vecN, vecN)
772 * - mod(vecN, float)
773 *
774 * Does not take integer types.
775 */
776 ir_binop_mod,
777
778 /**
779 * \name Binary comparison operators which return a boolean vector.
780 * The type of both operands must be equal.
781 */
782 /*@{*/
783 ir_binop_less,
784 ir_binop_greater,
785 ir_binop_lequal,
786 ir_binop_gequal,
787 ir_binop_equal,
788 ir_binop_nequal,
789 /**
790 * Returns single boolean for whether all components of operands[0]
791 * equal the components of operands[1].
792 */
793 ir_binop_all_equal,
794 /**
795 * Returns single boolean for whether any component of operands[0]
796 * is not equal to the corresponding component of operands[1].
797 */
798 ir_binop_any_nequal,
799 /*@}*/
800
801 /**
802 * \name Bit-wise binary operations.
803 */
804 /*@{*/
805 ir_binop_lshift,
806 ir_binop_rshift,
807 ir_binop_bit_and,
808 ir_binop_bit_xor,
809 ir_binop_bit_or,
810 /*@}*/
811
812 ir_binop_logic_and,
813 ir_binop_logic_xor,
814 ir_binop_logic_or,
815
816 ir_binop_dot,
817 ir_binop_min,
818 ir_binop_max,
819
820 ir_binop_pow,
821
822 /**
823 * A sentinel marking the last of the binary operations.
824 */
825 ir_last_binop = ir_binop_pow,
826
827 /**
828 * A sentinel marking the last of all operations.
829 */
830 ir_last_opcode = ir_last_binop
831 };
832
833 class ir_expression : public ir_rvalue {
834 public:
835 ir_expression(int op, const struct glsl_type *type,
836 ir_rvalue *, ir_rvalue *);
837
838 virtual ir_expression *as_expression()
839 {
840 return this;
841 }
842
843 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
844
845 /**
846 * Attempt to constant-fold the expression
847 *
848 * If the expression cannot be constant folded, this method will return
849 * \c NULL.
850 */
851 virtual ir_constant *constant_expression_value();
852
853 /**
854 * Determine the number of operands used by an expression
855 */
856 static unsigned int get_num_operands(ir_expression_operation);
857
858 /**
859 * Determine the number of operands used by an expression
860 */
861 unsigned int get_num_operands() const
862 {
863 return get_num_operands(operation);
864 }
865
866 /**
867 * Return a string representing this expression's operator.
868 */
869 const char *operator_string();
870
871 /**
872 * Return a string representing this expression's operator.
873 */
874 static const char *operator_string(ir_expression_operation);
875
876
877 /**
878 * Do a reverse-lookup to translate the given string into an operator.
879 */
880 static ir_expression_operation get_operator(const char *);
881
882 virtual void accept(ir_visitor *v)
883 {
884 v->visit(this);
885 }
886
887 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
888
889 ir_expression_operation operation;
890 ir_rvalue *operands[2];
891 };
892
893
894 /**
895 * IR instruction representing a function call
896 */
897 class ir_call : public ir_rvalue {
898 public:
899 ir_call(ir_function_signature *callee, exec_list *actual_parameters)
900 : callee(callee)
901 {
902 ir_type = ir_type_call;
903 assert(callee->return_type != NULL);
904 type = callee->return_type;
905 actual_parameters->move_nodes_to(& this->actual_parameters);
906 }
907
908 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
909
910 virtual ir_constant *constant_expression_value();
911
912 virtual ir_call *as_call()
913 {
914 return this;
915 }
916
917 virtual void accept(ir_visitor *v)
918 {
919 v->visit(this);
920 }
921
922 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
923
924 /**
925 * Get a generic ir_call object when an error occurs
926 *
927 * Any allocation will be performed with 'ctx' as talloc owner.
928 */
929 static ir_call *get_error_instruction(void *ctx);
930
931 /**
932 * Get an iterator for the set of acutal parameters
933 */
934 exec_list_iterator iterator()
935 {
936 return actual_parameters.iterator();
937 }
938
939 /**
940 * Get the name of the function being called.
941 */
942 const char *callee_name() const
943 {
944 return callee->function_name();
945 }
946
947 /**
948 * Get the function signature bound to this function call
949 */
950 ir_function_signature *get_callee()
951 {
952 return callee;
953 }
954
955 /**
956 * Set the function call target
957 */
958 void set_callee(ir_function_signature *sig);
959
960 /**
961 * Generates an inline version of the function before @ir,
962 * returning the return value of the function.
963 */
964 ir_rvalue *generate_inline(ir_instruction *ir);
965
966 /* List of ir_rvalue of paramaters passed in this call. */
967 exec_list actual_parameters;
968
969 private:
970 ir_call()
971 : callee(NULL)
972 {
973 this->ir_type = ir_type_call;
974 }
975
976 ir_function_signature *callee;
977 };
978
979
980 /**
981 * \name Jump-like IR instructions.
982 *
983 * These include \c break, \c continue, \c return, and \c discard.
984 */
985 /*@{*/
986 class ir_jump : public ir_instruction {
987 protected:
988 ir_jump()
989 {
990 ir_type = ir_type_unset;
991 }
992 };
993
994 class ir_return : public ir_jump {
995 public:
996 ir_return()
997 : value(NULL)
998 {
999 this->ir_type = ir_type_return;
1000 }
1001
1002 ir_return(ir_rvalue *value)
1003 : value(value)
1004 {
1005 this->ir_type = ir_type_return;
1006 }
1007
1008 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1009
1010 virtual ir_return *as_return()
1011 {
1012 return this;
1013 }
1014
1015 ir_rvalue *get_value() const
1016 {
1017 return value;
1018 }
1019
1020 virtual void accept(ir_visitor *v)
1021 {
1022 v->visit(this);
1023 }
1024
1025 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1026
1027 ir_rvalue *value;
1028 };
1029
1030
1031 /**
1032 * Jump instructions used inside loops
1033 *
1034 * These include \c break and \c continue. The \c break within a loop is
1035 * different from the \c break within a switch-statement.
1036 *
1037 * \sa ir_switch_jump
1038 */
1039 class ir_loop_jump : public ir_jump {
1040 public:
1041 enum jump_mode {
1042 jump_break,
1043 jump_continue
1044 };
1045
1046 ir_loop_jump(jump_mode mode)
1047 {
1048 this->ir_type = ir_type_loop_jump;
1049 this->mode = mode;
1050 this->loop = loop;
1051 }
1052
1053 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1054
1055 virtual void accept(ir_visitor *v)
1056 {
1057 v->visit(this);
1058 }
1059
1060 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1061
1062 bool is_break() const
1063 {
1064 return mode == jump_break;
1065 }
1066
1067 bool is_continue() const
1068 {
1069 return mode == jump_continue;
1070 }
1071
1072 /** Mode selector for the jump instruction. */
1073 enum jump_mode mode;
1074 private:
1075 /** Loop containing this break instruction. */
1076 ir_loop *loop;
1077 };
1078
1079 /**
1080 * IR instruction representing discard statements.
1081 */
1082 class ir_discard : public ir_jump {
1083 public:
1084 ir_discard()
1085 {
1086 this->ir_type = ir_type_discard;
1087 this->condition = NULL;
1088 }
1089
1090 ir_discard(ir_rvalue *cond)
1091 {
1092 this->ir_type = ir_type_discard;
1093 this->condition = cond;
1094 }
1095
1096 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1097
1098 virtual void accept(ir_visitor *v)
1099 {
1100 v->visit(this);
1101 }
1102
1103 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1104
1105 ir_rvalue *condition;
1106 };
1107 /*@}*/
1108
1109
1110 /**
1111 * Texture sampling opcodes used in ir_texture
1112 */
1113 enum ir_texture_opcode {
1114 ir_tex, /**< Regular texture look-up */
1115 ir_txb, /**< Texture look-up with LOD bias */
1116 ir_txl, /**< Texture look-up with explicit LOD */
1117 ir_txd, /**< Texture look-up with partial derivatvies */
1118 ir_txf /**< Texel fetch with explicit LOD */
1119 };
1120
1121
1122 /**
1123 * IR instruction to sample a texture
1124 *
1125 * The specific form of the IR instruction depends on the \c mode value
1126 * selected from \c ir_texture_opcodes. In the printed IR, these will
1127 * appear as:
1128 *
1129 * Texel offset
1130 * | Projection divisor
1131 * | | Shadow comparitor
1132 * | | |
1133 * v v v
1134 * (tex (sampler) (coordinate) (0 0 0) (1) ( ))
1135 * (txb (sampler) (coordinate) (0 0 0) (1) ( ) (bias))
1136 * (txl (sampler) (coordinate) (0 0 0) (1) ( ) (lod))
1137 * (txd (sampler) (coordinate) (0 0 0) (1) ( ) (dPdx dPdy))
1138 * (txf (sampler) (coordinate) (0 0 0) (lod))
1139 */
1140 class ir_texture : public ir_rvalue {
1141 public:
1142 ir_texture(enum ir_texture_opcode op)
1143 : op(op), projector(NULL), shadow_comparitor(NULL)
1144 {
1145 this->ir_type = ir_type_texture;
1146 }
1147
1148 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1149
1150 virtual ir_constant *constant_expression_value();
1151
1152 virtual void accept(ir_visitor *v)
1153 {
1154 v->visit(this);
1155 }
1156
1157 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1158
1159 /**
1160 * Return a string representing the ir_texture_opcode.
1161 */
1162 const char *opcode_string();
1163
1164 /** Set the sampler and infer the type. */
1165 void set_sampler(ir_dereference *sampler);
1166
1167 /**
1168 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1169 */
1170 static ir_texture_opcode get_opcode(const char *);
1171
1172 enum ir_texture_opcode op;
1173
1174 /** Sampler to use for the texture access. */
1175 ir_dereference *sampler;
1176
1177 /** Texture coordinate to sample */
1178 ir_rvalue *coordinate;
1179
1180 /**
1181 * Value used for projective divide.
1182 *
1183 * If there is no projective divide (the common case), this will be
1184 * \c NULL. Optimization passes should check for this to point to a constant
1185 * of 1.0 and replace that with \c NULL.
1186 */
1187 ir_rvalue *projector;
1188
1189 /**
1190 * Coordinate used for comparison on shadow look-ups.
1191 *
1192 * If there is no shadow comparison, this will be \c NULL. For the
1193 * \c ir_txf opcode, this *must* be \c NULL.
1194 */
1195 ir_rvalue *shadow_comparitor;
1196
1197 /** Explicit texel offsets. */
1198 signed char offsets[3];
1199
1200 union {
1201 ir_rvalue *lod; /**< Floating point LOD */
1202 ir_rvalue *bias; /**< Floating point LOD bias */
1203 struct {
1204 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1205 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1206 } grad;
1207 } lod_info;
1208 };
1209
1210
1211 struct ir_swizzle_mask {
1212 unsigned x:2;
1213 unsigned y:2;
1214 unsigned z:2;
1215 unsigned w:2;
1216
1217 /**
1218 * Number of components in the swizzle.
1219 */
1220 unsigned num_components:3;
1221
1222 /**
1223 * Does the swizzle contain duplicate components?
1224 *
1225 * L-value swizzles cannot contain duplicate components.
1226 */
1227 unsigned has_duplicates:1;
1228 };
1229
1230
1231 class ir_swizzle : public ir_rvalue {
1232 public:
1233 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1234 unsigned count);
1235
1236 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1237
1238 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1239
1240 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1241
1242 virtual ir_constant *constant_expression_value();
1243
1244 virtual ir_swizzle *as_swizzle()
1245 {
1246 return this;
1247 }
1248
1249 /**
1250 * Construct an ir_swizzle from the textual representation. Can fail.
1251 */
1252 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1253
1254 virtual void accept(ir_visitor *v)
1255 {
1256 v->visit(this);
1257 }
1258
1259 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1260
1261 bool is_lvalue()
1262 {
1263 return val->is_lvalue() && !mask.has_duplicates;
1264 }
1265
1266 /**
1267 * Get the variable that is ultimately referenced by an r-value
1268 */
1269 virtual ir_variable *variable_referenced();
1270
1271 ir_rvalue *val;
1272 ir_swizzle_mask mask;
1273
1274 private:
1275 /**
1276 * Initialize the mask component of a swizzle
1277 *
1278 * This is used by the \c ir_swizzle constructors.
1279 */
1280 void init_mask(const unsigned *components, unsigned count);
1281 };
1282
1283
1284 class ir_dereference : public ir_rvalue {
1285 public:
1286 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1287
1288 virtual ir_dereference *as_dereference()
1289 {
1290 return this;
1291 }
1292
1293 bool is_lvalue();
1294
1295 /**
1296 * Get the variable that is ultimately referenced by an r-value
1297 */
1298 virtual ir_variable *variable_referenced() = 0;
1299 };
1300
1301
1302 class ir_dereference_variable : public ir_dereference {
1303 public:
1304 ir_dereference_variable(ir_variable *var);
1305
1306 virtual ir_dereference_variable *clone(void *mem_ctx,
1307 struct hash_table *) const;
1308
1309 virtual ir_constant *constant_expression_value();
1310
1311 virtual ir_dereference_variable *as_dereference_variable()
1312 {
1313 return this;
1314 }
1315
1316 /**
1317 * Get the variable that is ultimately referenced by an r-value
1318 */
1319 virtual ir_variable *variable_referenced()
1320 {
1321 return this->var;
1322 }
1323
1324 virtual ir_variable *whole_variable_referenced()
1325 {
1326 /* ir_dereference_variable objects always dereference the entire
1327 * variable. However, if this dereference is dereferenced by anything
1328 * else, the complete deferefernce chain is not a whole-variable
1329 * dereference. This method should only be called on the top most
1330 * ir_rvalue in a dereference chain.
1331 */
1332 return this->var;
1333 }
1334
1335 virtual void accept(ir_visitor *v)
1336 {
1337 v->visit(this);
1338 }
1339
1340 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1341
1342 /**
1343 * Object being dereferenced.
1344 */
1345 ir_variable *var;
1346 };
1347
1348
1349 class ir_dereference_array : public ir_dereference {
1350 public:
1351 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1352
1353 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1354
1355 virtual ir_dereference_array *clone(void *mem_ctx,
1356 struct hash_table *) const;
1357
1358 virtual ir_constant *constant_expression_value();
1359
1360 virtual ir_dereference_array *as_dereference_array()
1361 {
1362 return this;
1363 }
1364
1365 /**
1366 * Get the variable that is ultimately referenced by an r-value
1367 */
1368 virtual ir_variable *variable_referenced()
1369 {
1370 return this->array->variable_referenced();
1371 }
1372
1373 virtual void accept(ir_visitor *v)
1374 {
1375 v->visit(this);
1376 }
1377
1378 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1379
1380 ir_rvalue *array;
1381 ir_rvalue *array_index;
1382
1383 private:
1384 void set_array(ir_rvalue *value);
1385 };
1386
1387
1388 class ir_dereference_record : public ir_dereference {
1389 public:
1390 ir_dereference_record(ir_rvalue *value, const char *field);
1391
1392 ir_dereference_record(ir_variable *var, const char *field);
1393
1394 virtual ir_dereference_record *clone(void *mem_ctx,
1395 struct hash_table *) const;
1396
1397 virtual ir_constant *constant_expression_value();
1398
1399 /**
1400 * Get the variable that is ultimately referenced by an r-value
1401 */
1402 virtual ir_variable *variable_referenced()
1403 {
1404 return this->record->variable_referenced();
1405 }
1406
1407 virtual void accept(ir_visitor *v)
1408 {
1409 v->visit(this);
1410 }
1411
1412 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1413
1414 ir_rvalue *record;
1415 const char *field;
1416 };
1417
1418
1419 /**
1420 * Data stored in an ir_constant
1421 */
1422 union ir_constant_data {
1423 unsigned u[16];
1424 int i[16];
1425 float f[16];
1426 bool b[16];
1427 };
1428
1429
1430 class ir_constant : public ir_rvalue {
1431 public:
1432 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1433 ir_constant(bool b);
1434 ir_constant(unsigned int u);
1435 ir_constant(int i);
1436 ir_constant(float f);
1437
1438 /**
1439 * Construct an ir_constant from a list of ir_constant values
1440 */
1441 ir_constant(const struct glsl_type *type, exec_list *values);
1442
1443 /**
1444 * Construct an ir_constant from a scalar component of another ir_constant
1445 *
1446 * The new \c ir_constant inherits the type of the component from the
1447 * source constant.
1448 *
1449 * \note
1450 * In the case of a matrix constant, the new constant is a scalar, \b not
1451 * a vector.
1452 */
1453 ir_constant(const ir_constant *c, unsigned i);
1454
1455 /**
1456 * Return a new ir_constant of the specified type containing all zeros.
1457 */
1458 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1459
1460 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1461
1462 virtual ir_constant *constant_expression_value();
1463
1464 virtual ir_constant *as_constant()
1465 {
1466 return this;
1467 }
1468
1469 virtual void accept(ir_visitor *v)
1470 {
1471 v->visit(this);
1472 }
1473
1474 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1475
1476 /**
1477 * Get a particular component of a constant as a specific type
1478 *
1479 * This is useful, for example, to get a value from an integer constant
1480 * as a float or bool. This appears frequently when constructors are
1481 * called with all constant parameters.
1482 */
1483 /*@{*/
1484 bool get_bool_component(unsigned i) const;
1485 float get_float_component(unsigned i) const;
1486 int get_int_component(unsigned i) const;
1487 unsigned get_uint_component(unsigned i) const;
1488 /*@}*/
1489
1490 ir_constant *get_array_element(unsigned i) const;
1491
1492 ir_constant *get_record_field(const char *name);
1493
1494 /**
1495 * Determine whether a constant has the same value as another constant
1496 *
1497 * \sa ir_constant::is_zero, ir_constant::is_one,
1498 * ir_constant::is_negative_one
1499 */
1500 bool has_value(const ir_constant *) const;
1501
1502 virtual bool is_zero() const;
1503 virtual bool is_one() const;
1504 virtual bool is_negative_one() const;
1505
1506 /**
1507 * Value of the constant.
1508 *
1509 * The field used to back the values supplied by the constant is determined
1510 * by the type associated with the \c ir_instruction. Constants may be
1511 * scalars, vectors, or matrices.
1512 */
1513 union ir_constant_data value;
1514
1515 /* Array elements */
1516 ir_constant **array_elements;
1517
1518 /* Structure fields */
1519 exec_list components;
1520
1521 private:
1522 /**
1523 * Parameterless constructor only used by the clone method
1524 */
1525 ir_constant(void);
1526 };
1527
1528 /*@}*/
1529
1530 /**
1531 * Apply a visitor to each IR node in a list
1532 */
1533 void
1534 visit_exec_list(exec_list *list, ir_visitor *visitor);
1535
1536 /**
1537 * Validate invariants on each IR node in a list
1538 */
1539 void validate_ir_tree(exec_list *instructions);
1540
1541 /**
1542 * Make a clone of each IR instruction in a list
1543 *
1544 * \param in List of IR instructions that are to be cloned
1545 * \param out List to hold the cloned instructions
1546 */
1547 void
1548 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1549
1550 extern void
1551 _mesa_glsl_initialize_variables(exec_list *instructions,
1552 struct _mesa_glsl_parse_state *state);
1553
1554 extern void
1555 _mesa_glsl_initialize_functions(exec_list *instructions,
1556 struct _mesa_glsl_parse_state *state);
1557
1558 extern void
1559 _mesa_glsl_release_functions(void);
1560
1561 extern void
1562 reparent_ir(exec_list *list, void *mem_ctx);
1563
1564 struct glsl_symbol_table;
1565
1566 extern void
1567 import_prototypes(const exec_list *source, exec_list *dest,
1568 struct glsl_symbol_table *symbols, void *mem_ctx);
1569
1570 extern bool
1571 ir_has_call(ir_instruction *ir);
1572
1573 extern void
1574 do_set_program_inouts(exec_list *instructions, struct gl_program *prog);
1575
1576 #endif /* IR_H */