Merge branch 'lp-offset-twoside'
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <cstdio>
30 #include <cstdlib>
31
32 extern "C" {
33 #include <talloc.h>
34 }
35
36 #include "glsl_types.h"
37 #include "list.h"
38 #include "ir_visitor.h"
39 #include "ir_hierarchical_visitor.h"
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 /**
63 * Zero is unused so that the IR validator can detect cases where
64 * \c ir_instruction::ir_type has not been initialized.
65 */
66 ir_type_unset,
67 ir_type_variable,
68 ir_type_assignment,
69 ir_type_call,
70 ir_type_constant,
71 ir_type_dereference_array,
72 ir_type_dereference_record,
73 ir_type_dereference_variable,
74 ir_type_discard,
75 ir_type_expression,
76 ir_type_function,
77 ir_type_function_signature,
78 ir_type_if,
79 ir_type_loop,
80 ir_type_loop_jump,
81 ir_type_return,
82 ir_type_swizzle,
83 ir_type_texture,
84 ir_type_max /**< maximum ir_type enum number, for validation */
85 };
86
87 /**
88 * Base class of all IR instructions
89 */
90 class ir_instruction : public exec_node {
91 public:
92 enum ir_node_type ir_type;
93 const struct glsl_type *type;
94
95 /** ir_print_visitor helper for debugging. */
96 void print(void) const;
97
98 virtual void accept(ir_visitor *) = 0;
99 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
100 virtual ir_instruction *clone(void *mem_ctx,
101 struct hash_table *ht) const = 0;
102
103 /**
104 * \name IR instruction downcast functions
105 *
106 * These functions either cast the object to a derived class or return
107 * \c NULL if the object's type does not match the specified derived class.
108 * Additional downcast functions will be added as needed.
109 */
110 /*@{*/
111 virtual class ir_variable * as_variable() { return NULL; }
112 virtual class ir_function * as_function() { return NULL; }
113 virtual class ir_dereference * as_dereference() { return NULL; }
114 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
115 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
116 virtual class ir_expression * as_expression() { return NULL; }
117 virtual class ir_rvalue * as_rvalue() { return NULL; }
118 virtual class ir_loop * as_loop() { return NULL; }
119 virtual class ir_assignment * as_assignment() { return NULL; }
120 virtual class ir_call * as_call() { return NULL; }
121 virtual class ir_return * as_return() { return NULL; }
122 virtual class ir_if * as_if() { return NULL; }
123 virtual class ir_swizzle * as_swizzle() { return NULL; }
124 virtual class ir_constant * as_constant() { return NULL; }
125 /*@}*/
126
127 protected:
128 ir_instruction()
129 {
130 ir_type = ir_type_unset;
131 type = NULL;
132 }
133 };
134
135
136 class ir_rvalue : public ir_instruction {
137 public:
138 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const = 0;
139
140 virtual ir_constant *constant_expression_value() = 0;
141
142 virtual ir_rvalue * as_rvalue()
143 {
144 return this;
145 }
146
147 ir_rvalue *as_rvalue_to_saturate();
148
149 virtual bool is_lvalue()
150 {
151 return false;
152 }
153
154 /**
155 * Get the variable that is ultimately referenced by an r-value
156 */
157 virtual ir_variable *variable_referenced()
158 {
159 return NULL;
160 }
161
162
163 /**
164 * If an r-value is a reference to a whole variable, get that variable
165 *
166 * \return
167 * Pointer to a variable that is completely dereferenced by the r-value. If
168 * the r-value is not a dereference or the dereference does not access the
169 * entire variable (i.e., it's just one array element, struct field), \c NULL
170 * is returned.
171 */
172 virtual ir_variable *whole_variable_referenced()
173 {
174 return NULL;
175 }
176
177 /**
178 * Determine if an r-value has the value zero
179 *
180 * The base implementation of this function always returns \c false. The
181 * \c ir_constant class over-rides this function to return \c true \b only
182 * for vector and scalar types that have all elements set to the value
183 * zero (or \c false for booleans).
184 *
185 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
186 */
187 virtual bool is_zero() const;
188
189 /**
190 * Determine if an r-value has the value one
191 *
192 * The base implementation of this function always returns \c false. The
193 * \c ir_constant class over-rides this function to return \c true \b only
194 * for vector and scalar types that have all elements set to the value
195 * one (or \c true for booleans).
196 *
197 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
198 */
199 virtual bool is_one() const;
200
201 /**
202 * Determine if an r-value has the value negative one
203 *
204 * The base implementation of this function always returns \c false. The
205 * \c ir_constant class over-rides this function to return \c true \b only
206 * for vector and scalar types that have all elements set to the value
207 * negative one. For boolean times, the result is always \c false.
208 *
209 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
210 */
211 virtual bool is_negative_one() const;
212
213 protected:
214 ir_rvalue();
215 };
216
217
218 /**
219 * Variable storage classes
220 */
221 enum ir_variable_mode {
222 ir_var_auto = 0, /**< Function local variables and globals. */
223 ir_var_uniform, /**< Variable declared as a uniform. */
224 ir_var_in,
225 ir_var_out,
226 ir_var_inout,
227 ir_var_temporary /**< Temporary variable generated during compilation. */
228 };
229
230 enum ir_variable_interpolation {
231 ir_var_smooth = 0,
232 ir_var_flat,
233 ir_var_noperspective
234 };
235
236
237 class ir_variable : public ir_instruction {
238 public:
239 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
240
241 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
242
243 virtual ir_variable *as_variable()
244 {
245 return this;
246 }
247
248 virtual void accept(ir_visitor *v)
249 {
250 v->visit(this);
251 }
252
253 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
254
255
256 /**
257 * Get the string value for the interpolation qualifier
258 *
259 * \return The string that would be used in a shader to specify \c
260 * mode will be returned.
261 *
262 * This function should only be used on a shader input or output variable.
263 */
264 const char *interpolation_string() const;
265
266 /**
267 * Calculate the number of slots required to hold this variable
268 *
269 * This is used to determine how many uniform or varying locations a variable
270 * occupies. The count is in units of floating point components.
271 */
272 unsigned component_slots() const;
273
274 /**
275 * Delcared name of the variable
276 */
277 const char *name;
278
279 /**
280 * Highest element accessed with a constant expression array index
281 *
282 * Not used for non-array variables.
283 */
284 unsigned max_array_access;
285
286 /**
287 * Is the variable read-only?
288 *
289 * This is set for variables declared as \c const, shader inputs,
290 * and uniforms.
291 */
292 unsigned read_only:1;
293 unsigned centroid:1;
294 unsigned invariant:1;
295
296 /**
297 * Storage class of the variable.
298 *
299 * \sa ir_variable_mode
300 */
301 unsigned mode:3;
302
303 /**
304 * Interpolation mode for shader inputs / outputs
305 *
306 * \sa ir_variable_interpolation
307 */
308 unsigned interpolation:2;
309
310 /**
311 * Flag that the whole array is assignable
312 *
313 * In GLSL 1.20 and later whole arrays are assignable (and comparable for
314 * equality). This flag enables this behavior.
315 */
316 unsigned array_lvalue:1;
317
318 /**
319 * \name ARB_fragment_coord_conventions
320 * @{
321 */
322 unsigned origin_upper_left:1;
323 unsigned pixel_center_integer:1;
324 /*@}*/
325
326 /**
327 * Was the location explicitly set in the shader?
328 *
329 * If the location is explicitly set in the shader, it \b cannot be changed
330 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
331 * no effect).
332 */
333 unsigned explicit_location:1;
334
335 /**
336 * Storage location of the base of this variable
337 *
338 * The precise meaning of this field depends on the nature of the variable.
339 *
340 * - Vertex shader input: one of the values from \c gl_vert_attrib.
341 * - Vertex shader output: one of the values from \c gl_vert_result.
342 * - Fragment shader input: one of the values from \c gl_frag_attrib.
343 * - Fragment shader output: one of the values from \c gl_frag_result.
344 * - Uniforms: Per-stage uniform slot number.
345 * - Other: This field is not currently used.
346 *
347 * If the variable is a uniform, shader input, or shader output, and the
348 * slot has not been assigned, the value will be -1.
349 */
350 int location;
351
352 /**
353 * Emit a warning if this variable is accessed.
354 */
355 const char *warn_extension;
356
357 /**
358 * Value assigned in the initializer of a variable declared "const"
359 */
360 ir_constant *constant_value;
361 };
362
363
364 /*@{*/
365 /**
366 * The representation of a function instance; may be the full definition or
367 * simply a prototype.
368 */
369 class ir_function_signature : public ir_instruction {
370 /* An ir_function_signature will be part of the list of signatures in
371 * an ir_function.
372 */
373 public:
374 ir_function_signature(const glsl_type *return_type);
375
376 virtual ir_function_signature *clone(void *mem_ctx,
377 struct hash_table *ht) const;
378
379 virtual void accept(ir_visitor *v)
380 {
381 v->visit(this);
382 }
383
384 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
385
386 /**
387 * Get the name of the function for which this is a signature
388 */
389 const char *function_name() const;
390
391 /**
392 * Get a handle to the function for which this is a signature
393 *
394 * There is no setter function, this function returns a \c const pointer,
395 * and \c ir_function_signature::_function is private for a reason. The
396 * only way to make a connection between a function and function signature
397 * is via \c ir_function::add_signature. This helps ensure that certain
398 * invariants (i.e., a function signature is in the list of signatures for
399 * its \c _function) are met.
400 *
401 * \sa ir_function::add_signature
402 */
403 inline const class ir_function *function() const
404 {
405 return this->_function;
406 }
407
408 /**
409 * Check whether the qualifiers match between this signature's parameters
410 * and the supplied parameter list. If not, returns the name of the first
411 * parameter with mismatched qualifiers (for use in error messages).
412 */
413 const char *qualifiers_match(exec_list *params);
414
415 /**
416 * Replace the current parameter list with the given one. This is useful
417 * if the current information came from a prototype, and either has invalid
418 * or missing parameter names.
419 */
420 void replace_parameters(exec_list *new_params);
421
422 /**
423 * Function return type.
424 *
425 * \note This discards the optional precision qualifier.
426 */
427 const struct glsl_type *return_type;
428
429 /**
430 * List of ir_variable of function parameters.
431 *
432 * This represents the storage. The paramaters passed in a particular
433 * call will be in ir_call::actual_paramaters.
434 */
435 struct exec_list parameters;
436
437 /** Whether or not this function has a body (which may be empty). */
438 unsigned is_defined:1;
439
440 /** Whether or not this function signature is a built-in. */
441 unsigned is_builtin:1;
442
443 /** Body of instructions in the function. */
444 struct exec_list body;
445
446 private:
447 /** Function of which this signature is one overload. */
448 class ir_function *_function;
449
450 friend class ir_function;
451 };
452
453
454 /**
455 * Header for tracking multiple overloaded functions with the same name.
456 * Contains a list of ir_function_signatures representing each of the
457 * actual functions.
458 */
459 class ir_function : public ir_instruction {
460 public:
461 ir_function(const char *name);
462
463 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
464
465 virtual ir_function *as_function()
466 {
467 return this;
468 }
469
470 virtual void accept(ir_visitor *v)
471 {
472 v->visit(this);
473 }
474
475 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
476
477 void add_signature(ir_function_signature *sig)
478 {
479 sig->_function = this;
480 this->signatures.push_tail(sig);
481 }
482
483 /**
484 * Get an iterator for the set of function signatures
485 */
486 exec_list_iterator iterator()
487 {
488 return signatures.iterator();
489 }
490
491 /**
492 * Find a signature that matches a set of actual parameters, taking implicit
493 * conversions into account.
494 */
495 ir_function_signature *matching_signature(const exec_list *actual_param);
496
497 /**
498 * Find a signature that exactly matches a set of actual parameters without
499 * any implicit type conversions.
500 */
501 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
502
503 /**
504 * Name of the function.
505 */
506 const char *name;
507
508 /** Whether or not this function has a signature that isn't a built-in. */
509 bool has_user_signature();
510
511 /**
512 * List of ir_function_signature for each overloaded function with this name.
513 */
514 struct exec_list signatures;
515 };
516
517 inline const char *ir_function_signature::function_name() const
518 {
519 return this->_function->name;
520 }
521 /*@}*/
522
523
524 /**
525 * IR instruction representing high-level if-statements
526 */
527 class ir_if : public ir_instruction {
528 public:
529 ir_if(ir_rvalue *condition)
530 : condition(condition)
531 {
532 ir_type = ir_type_if;
533 }
534
535 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
536
537 virtual ir_if *as_if()
538 {
539 return this;
540 }
541
542 virtual void accept(ir_visitor *v)
543 {
544 v->visit(this);
545 }
546
547 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
548
549 ir_rvalue *condition;
550 /** List of ir_instruction for the body of the then branch */
551 exec_list then_instructions;
552 /** List of ir_instruction for the body of the else branch */
553 exec_list else_instructions;
554 };
555
556
557 /**
558 * IR instruction representing a high-level loop structure.
559 */
560 class ir_loop : public ir_instruction {
561 public:
562 ir_loop();
563
564 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
565
566 virtual void accept(ir_visitor *v)
567 {
568 v->visit(this);
569 }
570
571 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
572
573 virtual ir_loop *as_loop()
574 {
575 return this;
576 }
577
578 /**
579 * Get an iterator for the instructions of the loop body
580 */
581 exec_list_iterator iterator()
582 {
583 return body_instructions.iterator();
584 }
585
586 /** List of ir_instruction that make up the body of the loop. */
587 exec_list body_instructions;
588
589 /**
590 * \name Loop counter and controls
591 *
592 * Represents a loop like a FORTRAN \c do-loop.
593 *
594 * \note
595 * If \c from and \c to are the same value, the loop will execute once.
596 */
597 /*@{*/
598 ir_rvalue *from; /** Value of the loop counter on the first
599 * iteration of the loop.
600 */
601 ir_rvalue *to; /** Value of the loop counter on the last
602 * iteration of the loop.
603 */
604 ir_rvalue *increment;
605 ir_variable *counter;
606
607 /**
608 * Comparison operation in the loop terminator.
609 *
610 * If any of the loop control fields are non-\c NULL, this field must be
611 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
612 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
613 */
614 int cmp;
615 /*@}*/
616 };
617
618
619 class ir_assignment : public ir_instruction {
620 public:
621 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition);
622
623 /**
624 * Construct an assignment with an explicit write mask
625 *
626 * \note
627 * Since a write mask is supplied, the LHS must already be a bare
628 * \c ir_dereference. The cannot be any swizzles in the LHS.
629 */
630 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
631 unsigned write_mask);
632
633 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
634
635 virtual ir_constant *constant_expression_value();
636
637 virtual void accept(ir_visitor *v)
638 {
639 v->visit(this);
640 }
641
642 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
643
644 virtual ir_assignment * as_assignment()
645 {
646 return this;
647 }
648
649 /**
650 * Get a whole variable written by an assignment
651 *
652 * If the LHS of the assignment writes a whole variable, the variable is
653 * returned. Otherwise \c NULL is returned. Examples of whole-variable
654 * assignment are:
655 *
656 * - Assigning to a scalar
657 * - Assigning to all components of a vector
658 * - Whole array (or matrix) assignment
659 * - Whole structure assignment
660 */
661 ir_variable *whole_variable_written();
662
663 /**
664 * Set the LHS of an assignment
665 */
666 void set_lhs(ir_rvalue *lhs);
667
668 /**
669 * Left-hand side of the assignment.
670 *
671 * This should be treated as read only. If you need to set the LHS of an
672 * assignment, use \c ir_assignment::set_lhs.
673 */
674 ir_dereference *lhs;
675
676 /**
677 * Value being assigned
678 */
679 ir_rvalue *rhs;
680
681 /**
682 * Optional condition for the assignment.
683 */
684 ir_rvalue *condition;
685
686
687 /**
688 * Component mask written
689 *
690 * For non-vector types in the LHS, this field will be zero. For vector
691 * types, a bit will be set for each component that is written. Note that
692 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
693 *
694 * A partially-set write mask means that each enabled channel gets
695 * the value from a consecutive channel of the rhs. For example,
696 * to write just .xyw of gl_FrontColor with color:
697 *
698 * (assign (constant bool (1)) (xyw)
699 * (var_ref gl_FragColor)
700 * (swiz xyw (var_ref color)))
701 */
702 unsigned write_mask:4;
703 };
704
705 /* Update ir_expression::num_operands() and operator_strs when
706 * updating this list.
707 */
708 enum ir_expression_operation {
709 ir_unop_bit_not,
710 ir_unop_logic_not,
711 ir_unop_neg,
712 ir_unop_abs,
713 ir_unop_sign,
714 ir_unop_rcp,
715 ir_unop_rsq,
716 ir_unop_sqrt,
717 ir_unop_exp, /**< Log base e on gentype */
718 ir_unop_log, /**< Natural log on gentype */
719 ir_unop_exp2,
720 ir_unop_log2,
721 ir_unop_f2i, /**< Float-to-integer conversion. */
722 ir_unop_i2f, /**< Integer-to-float conversion. */
723 ir_unop_f2b, /**< Float-to-boolean conversion */
724 ir_unop_b2f, /**< Boolean-to-float conversion */
725 ir_unop_i2b, /**< int-to-boolean conversion */
726 ir_unop_b2i, /**< Boolean-to-int conversion */
727 ir_unop_u2f, /**< Unsigned-to-float conversion. */
728 ir_unop_any,
729
730 /**
731 * \name Unary floating-point rounding operations.
732 */
733 /*@{*/
734 ir_unop_trunc,
735 ir_unop_ceil,
736 ir_unop_floor,
737 ir_unop_fract,
738 ir_unop_round_even,
739 /*@}*/
740
741 /**
742 * \name Trigonometric operations.
743 */
744 /*@{*/
745 ir_unop_sin,
746 ir_unop_cos,
747 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
748 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
749 /*@}*/
750
751 /**
752 * \name Partial derivatives.
753 */
754 /*@{*/
755 ir_unop_dFdx,
756 ir_unop_dFdy,
757 /*@}*/
758
759 ir_unop_noise,
760
761 /**
762 * A sentinel marking the last of the unary operations.
763 */
764 ir_last_unop = ir_unop_noise,
765
766 ir_binop_add,
767 ir_binop_sub,
768 ir_binop_mul,
769 ir_binop_div,
770
771 /**
772 * Takes one of two combinations of arguments:
773 *
774 * - mod(vecN, vecN)
775 * - mod(vecN, float)
776 *
777 * Does not take integer types.
778 */
779 ir_binop_mod,
780
781 /**
782 * \name Binary comparison operators which return a boolean vector.
783 * The type of both operands must be equal.
784 */
785 /*@{*/
786 ir_binop_less,
787 ir_binop_greater,
788 ir_binop_lequal,
789 ir_binop_gequal,
790 ir_binop_equal,
791 ir_binop_nequal,
792 /**
793 * Returns single boolean for whether all components of operands[0]
794 * equal the components of operands[1].
795 */
796 ir_binop_all_equal,
797 /**
798 * Returns single boolean for whether any component of operands[0]
799 * is not equal to the corresponding component of operands[1].
800 */
801 ir_binop_any_nequal,
802 /*@}*/
803
804 /**
805 * \name Bit-wise binary operations.
806 */
807 /*@{*/
808 ir_binop_lshift,
809 ir_binop_rshift,
810 ir_binop_bit_and,
811 ir_binop_bit_xor,
812 ir_binop_bit_or,
813 /*@}*/
814
815 ir_binop_logic_and,
816 ir_binop_logic_xor,
817 ir_binop_logic_or,
818
819 ir_binop_dot,
820 ir_binop_min,
821 ir_binop_max,
822
823 ir_binop_pow,
824
825 /**
826 * A sentinel marking the last of the binary operations.
827 */
828 ir_last_binop = ir_binop_pow,
829
830 ir_quadop_vector,
831
832 /**
833 * A sentinel marking the last of all operations.
834 */
835 ir_last_opcode = ir_last_binop
836 };
837
838 class ir_expression : public ir_rvalue {
839 public:
840 /**
841 * Constructor for unary operation expressions
842 */
843 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
844
845 /**
846 * Constructor for binary operation expressions
847 */
848 ir_expression(int op, const struct glsl_type *type,
849 ir_rvalue *, ir_rvalue *);
850
851 /**
852 * Constructor for quad operator expressions
853 */
854 ir_expression(int op, const struct glsl_type *type,
855 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
856
857 virtual ir_expression *as_expression()
858 {
859 return this;
860 }
861
862 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
863
864 /**
865 * Attempt to constant-fold the expression
866 *
867 * If the expression cannot be constant folded, this method will return
868 * \c NULL.
869 */
870 virtual ir_constant *constant_expression_value();
871
872 /**
873 * Determine the number of operands used by an expression
874 */
875 static unsigned int get_num_operands(ir_expression_operation);
876
877 /**
878 * Determine the number of operands used by an expression
879 */
880 unsigned int get_num_operands() const
881 {
882 return (this->operation == ir_quadop_vector)
883 ? this->type->vector_elements : get_num_operands(operation);
884 }
885
886 /**
887 * Return a string representing this expression's operator.
888 */
889 const char *operator_string();
890
891 /**
892 * Return a string representing this expression's operator.
893 */
894 static const char *operator_string(ir_expression_operation);
895
896
897 /**
898 * Do a reverse-lookup to translate the given string into an operator.
899 */
900 static ir_expression_operation get_operator(const char *);
901
902 virtual void accept(ir_visitor *v)
903 {
904 v->visit(this);
905 }
906
907 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
908
909 ir_expression_operation operation;
910 ir_rvalue *operands[4];
911 };
912
913
914 /**
915 * IR instruction representing a function call
916 */
917 class ir_call : public ir_rvalue {
918 public:
919 ir_call(ir_function_signature *callee, exec_list *actual_parameters)
920 : callee(callee)
921 {
922 ir_type = ir_type_call;
923 assert(callee->return_type != NULL);
924 type = callee->return_type;
925 actual_parameters->move_nodes_to(& this->actual_parameters);
926 }
927
928 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
929
930 virtual ir_constant *constant_expression_value();
931
932 virtual ir_call *as_call()
933 {
934 return this;
935 }
936
937 virtual void accept(ir_visitor *v)
938 {
939 v->visit(this);
940 }
941
942 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
943
944 /**
945 * Get a generic ir_call object when an error occurs
946 *
947 * Any allocation will be performed with 'ctx' as talloc owner.
948 */
949 static ir_call *get_error_instruction(void *ctx);
950
951 /**
952 * Get an iterator for the set of acutal parameters
953 */
954 exec_list_iterator iterator()
955 {
956 return actual_parameters.iterator();
957 }
958
959 /**
960 * Get the name of the function being called.
961 */
962 const char *callee_name() const
963 {
964 return callee->function_name();
965 }
966
967 /**
968 * Get the function signature bound to this function call
969 */
970 ir_function_signature *get_callee()
971 {
972 return callee;
973 }
974
975 /**
976 * Set the function call target
977 */
978 void set_callee(ir_function_signature *sig);
979
980 /**
981 * Generates an inline version of the function before @ir,
982 * returning the return value of the function.
983 */
984 ir_rvalue *generate_inline(ir_instruction *ir);
985
986 /* List of ir_rvalue of paramaters passed in this call. */
987 exec_list actual_parameters;
988
989 private:
990 ir_call()
991 : callee(NULL)
992 {
993 this->ir_type = ir_type_call;
994 }
995
996 ir_function_signature *callee;
997 };
998
999
1000 /**
1001 * \name Jump-like IR instructions.
1002 *
1003 * These include \c break, \c continue, \c return, and \c discard.
1004 */
1005 /*@{*/
1006 class ir_jump : public ir_instruction {
1007 protected:
1008 ir_jump()
1009 {
1010 ir_type = ir_type_unset;
1011 }
1012 };
1013
1014 class ir_return : public ir_jump {
1015 public:
1016 ir_return()
1017 : value(NULL)
1018 {
1019 this->ir_type = ir_type_return;
1020 }
1021
1022 ir_return(ir_rvalue *value)
1023 : value(value)
1024 {
1025 this->ir_type = ir_type_return;
1026 }
1027
1028 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1029
1030 virtual ir_return *as_return()
1031 {
1032 return this;
1033 }
1034
1035 ir_rvalue *get_value() const
1036 {
1037 return value;
1038 }
1039
1040 virtual void accept(ir_visitor *v)
1041 {
1042 v->visit(this);
1043 }
1044
1045 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1046
1047 ir_rvalue *value;
1048 };
1049
1050
1051 /**
1052 * Jump instructions used inside loops
1053 *
1054 * These include \c break and \c continue. The \c break within a loop is
1055 * different from the \c break within a switch-statement.
1056 *
1057 * \sa ir_switch_jump
1058 */
1059 class ir_loop_jump : public ir_jump {
1060 public:
1061 enum jump_mode {
1062 jump_break,
1063 jump_continue
1064 };
1065
1066 ir_loop_jump(jump_mode mode)
1067 {
1068 this->ir_type = ir_type_loop_jump;
1069 this->mode = mode;
1070 this->loop = loop;
1071 }
1072
1073 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1074
1075 virtual void accept(ir_visitor *v)
1076 {
1077 v->visit(this);
1078 }
1079
1080 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1081
1082 bool is_break() const
1083 {
1084 return mode == jump_break;
1085 }
1086
1087 bool is_continue() const
1088 {
1089 return mode == jump_continue;
1090 }
1091
1092 /** Mode selector for the jump instruction. */
1093 enum jump_mode mode;
1094 private:
1095 /** Loop containing this break instruction. */
1096 ir_loop *loop;
1097 };
1098
1099 /**
1100 * IR instruction representing discard statements.
1101 */
1102 class ir_discard : public ir_jump {
1103 public:
1104 ir_discard()
1105 {
1106 this->ir_type = ir_type_discard;
1107 this->condition = NULL;
1108 }
1109
1110 ir_discard(ir_rvalue *cond)
1111 {
1112 this->ir_type = ir_type_discard;
1113 this->condition = cond;
1114 }
1115
1116 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1117
1118 virtual void accept(ir_visitor *v)
1119 {
1120 v->visit(this);
1121 }
1122
1123 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1124
1125 ir_rvalue *condition;
1126 };
1127 /*@}*/
1128
1129
1130 /**
1131 * Texture sampling opcodes used in ir_texture
1132 */
1133 enum ir_texture_opcode {
1134 ir_tex, /**< Regular texture look-up */
1135 ir_txb, /**< Texture look-up with LOD bias */
1136 ir_txl, /**< Texture look-up with explicit LOD */
1137 ir_txd, /**< Texture look-up with partial derivatvies */
1138 ir_txf /**< Texel fetch with explicit LOD */
1139 };
1140
1141
1142 /**
1143 * IR instruction to sample a texture
1144 *
1145 * The specific form of the IR instruction depends on the \c mode value
1146 * selected from \c ir_texture_opcodes. In the printed IR, these will
1147 * appear as:
1148 *
1149 * Texel offset
1150 * | Projection divisor
1151 * | | Shadow comparitor
1152 * | | |
1153 * v v v
1154 * (tex (sampler) (coordinate) (0 0 0) (1) ( ))
1155 * (txb (sampler) (coordinate) (0 0 0) (1) ( ) (bias))
1156 * (txl (sampler) (coordinate) (0 0 0) (1) ( ) (lod))
1157 * (txd (sampler) (coordinate) (0 0 0) (1) ( ) (dPdx dPdy))
1158 * (txf (sampler) (coordinate) (0 0 0) (lod))
1159 */
1160 class ir_texture : public ir_rvalue {
1161 public:
1162 ir_texture(enum ir_texture_opcode op)
1163 : op(op), projector(NULL), shadow_comparitor(NULL)
1164 {
1165 this->ir_type = ir_type_texture;
1166 }
1167
1168 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1169
1170 virtual ir_constant *constant_expression_value();
1171
1172 virtual void accept(ir_visitor *v)
1173 {
1174 v->visit(this);
1175 }
1176
1177 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1178
1179 /**
1180 * Return a string representing the ir_texture_opcode.
1181 */
1182 const char *opcode_string();
1183
1184 /** Set the sampler and infer the type. */
1185 void set_sampler(ir_dereference *sampler);
1186
1187 /**
1188 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1189 */
1190 static ir_texture_opcode get_opcode(const char *);
1191
1192 enum ir_texture_opcode op;
1193
1194 /** Sampler to use for the texture access. */
1195 ir_dereference *sampler;
1196
1197 /** Texture coordinate to sample */
1198 ir_rvalue *coordinate;
1199
1200 /**
1201 * Value used for projective divide.
1202 *
1203 * If there is no projective divide (the common case), this will be
1204 * \c NULL. Optimization passes should check for this to point to a constant
1205 * of 1.0 and replace that with \c NULL.
1206 */
1207 ir_rvalue *projector;
1208
1209 /**
1210 * Coordinate used for comparison on shadow look-ups.
1211 *
1212 * If there is no shadow comparison, this will be \c NULL. For the
1213 * \c ir_txf opcode, this *must* be \c NULL.
1214 */
1215 ir_rvalue *shadow_comparitor;
1216
1217 /** Explicit texel offsets. */
1218 signed char offsets[3];
1219
1220 union {
1221 ir_rvalue *lod; /**< Floating point LOD */
1222 ir_rvalue *bias; /**< Floating point LOD bias */
1223 struct {
1224 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1225 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1226 } grad;
1227 } lod_info;
1228 };
1229
1230
1231 struct ir_swizzle_mask {
1232 unsigned x:2;
1233 unsigned y:2;
1234 unsigned z:2;
1235 unsigned w:2;
1236
1237 /**
1238 * Number of components in the swizzle.
1239 */
1240 unsigned num_components:3;
1241
1242 /**
1243 * Does the swizzle contain duplicate components?
1244 *
1245 * L-value swizzles cannot contain duplicate components.
1246 */
1247 unsigned has_duplicates:1;
1248 };
1249
1250
1251 class ir_swizzle : public ir_rvalue {
1252 public:
1253 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1254 unsigned count);
1255
1256 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1257
1258 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1259
1260 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1261
1262 virtual ir_constant *constant_expression_value();
1263
1264 virtual ir_swizzle *as_swizzle()
1265 {
1266 return this;
1267 }
1268
1269 /**
1270 * Construct an ir_swizzle from the textual representation. Can fail.
1271 */
1272 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1273
1274 virtual void accept(ir_visitor *v)
1275 {
1276 v->visit(this);
1277 }
1278
1279 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1280
1281 bool is_lvalue()
1282 {
1283 return val->is_lvalue() && !mask.has_duplicates;
1284 }
1285
1286 /**
1287 * Get the variable that is ultimately referenced by an r-value
1288 */
1289 virtual ir_variable *variable_referenced();
1290
1291 ir_rvalue *val;
1292 ir_swizzle_mask mask;
1293
1294 private:
1295 /**
1296 * Initialize the mask component of a swizzle
1297 *
1298 * This is used by the \c ir_swizzle constructors.
1299 */
1300 void init_mask(const unsigned *components, unsigned count);
1301 };
1302
1303
1304 class ir_dereference : public ir_rvalue {
1305 public:
1306 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1307
1308 virtual ir_dereference *as_dereference()
1309 {
1310 return this;
1311 }
1312
1313 bool is_lvalue();
1314
1315 /**
1316 * Get the variable that is ultimately referenced by an r-value
1317 */
1318 virtual ir_variable *variable_referenced() = 0;
1319 };
1320
1321
1322 class ir_dereference_variable : public ir_dereference {
1323 public:
1324 ir_dereference_variable(ir_variable *var);
1325
1326 virtual ir_dereference_variable *clone(void *mem_ctx,
1327 struct hash_table *) const;
1328
1329 virtual ir_constant *constant_expression_value();
1330
1331 virtual ir_dereference_variable *as_dereference_variable()
1332 {
1333 return this;
1334 }
1335
1336 /**
1337 * Get the variable that is ultimately referenced by an r-value
1338 */
1339 virtual ir_variable *variable_referenced()
1340 {
1341 return this->var;
1342 }
1343
1344 virtual ir_variable *whole_variable_referenced()
1345 {
1346 /* ir_dereference_variable objects always dereference the entire
1347 * variable. However, if this dereference is dereferenced by anything
1348 * else, the complete deferefernce chain is not a whole-variable
1349 * dereference. This method should only be called on the top most
1350 * ir_rvalue in a dereference chain.
1351 */
1352 return this->var;
1353 }
1354
1355 virtual void accept(ir_visitor *v)
1356 {
1357 v->visit(this);
1358 }
1359
1360 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1361
1362 /**
1363 * Object being dereferenced.
1364 */
1365 ir_variable *var;
1366 };
1367
1368
1369 class ir_dereference_array : public ir_dereference {
1370 public:
1371 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1372
1373 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1374
1375 virtual ir_dereference_array *clone(void *mem_ctx,
1376 struct hash_table *) const;
1377
1378 virtual ir_constant *constant_expression_value();
1379
1380 virtual ir_dereference_array *as_dereference_array()
1381 {
1382 return this;
1383 }
1384
1385 /**
1386 * Get the variable that is ultimately referenced by an r-value
1387 */
1388 virtual ir_variable *variable_referenced()
1389 {
1390 return this->array->variable_referenced();
1391 }
1392
1393 virtual void accept(ir_visitor *v)
1394 {
1395 v->visit(this);
1396 }
1397
1398 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1399
1400 ir_rvalue *array;
1401 ir_rvalue *array_index;
1402
1403 private:
1404 void set_array(ir_rvalue *value);
1405 };
1406
1407
1408 class ir_dereference_record : public ir_dereference {
1409 public:
1410 ir_dereference_record(ir_rvalue *value, const char *field);
1411
1412 ir_dereference_record(ir_variable *var, const char *field);
1413
1414 virtual ir_dereference_record *clone(void *mem_ctx,
1415 struct hash_table *) const;
1416
1417 virtual ir_constant *constant_expression_value();
1418
1419 /**
1420 * Get the variable that is ultimately referenced by an r-value
1421 */
1422 virtual ir_variable *variable_referenced()
1423 {
1424 return this->record->variable_referenced();
1425 }
1426
1427 virtual void accept(ir_visitor *v)
1428 {
1429 v->visit(this);
1430 }
1431
1432 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1433
1434 ir_rvalue *record;
1435 const char *field;
1436 };
1437
1438
1439 /**
1440 * Data stored in an ir_constant
1441 */
1442 union ir_constant_data {
1443 unsigned u[16];
1444 int i[16];
1445 float f[16];
1446 bool b[16];
1447 };
1448
1449
1450 class ir_constant : public ir_rvalue {
1451 public:
1452 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1453 ir_constant(bool b);
1454 ir_constant(unsigned int u);
1455 ir_constant(int i);
1456 ir_constant(float f);
1457
1458 /**
1459 * Construct an ir_constant from a list of ir_constant values
1460 */
1461 ir_constant(const struct glsl_type *type, exec_list *values);
1462
1463 /**
1464 * Construct an ir_constant from a scalar component of another ir_constant
1465 *
1466 * The new \c ir_constant inherits the type of the component from the
1467 * source constant.
1468 *
1469 * \note
1470 * In the case of a matrix constant, the new constant is a scalar, \b not
1471 * a vector.
1472 */
1473 ir_constant(const ir_constant *c, unsigned i);
1474
1475 /**
1476 * Return a new ir_constant of the specified type containing all zeros.
1477 */
1478 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1479
1480 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1481
1482 virtual ir_constant *constant_expression_value();
1483
1484 virtual ir_constant *as_constant()
1485 {
1486 return this;
1487 }
1488
1489 virtual void accept(ir_visitor *v)
1490 {
1491 v->visit(this);
1492 }
1493
1494 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1495
1496 /**
1497 * Get a particular component of a constant as a specific type
1498 *
1499 * This is useful, for example, to get a value from an integer constant
1500 * as a float or bool. This appears frequently when constructors are
1501 * called with all constant parameters.
1502 */
1503 /*@{*/
1504 bool get_bool_component(unsigned i) const;
1505 float get_float_component(unsigned i) const;
1506 int get_int_component(unsigned i) const;
1507 unsigned get_uint_component(unsigned i) const;
1508 /*@}*/
1509
1510 ir_constant *get_array_element(unsigned i) const;
1511
1512 ir_constant *get_record_field(const char *name);
1513
1514 /**
1515 * Determine whether a constant has the same value as another constant
1516 *
1517 * \sa ir_constant::is_zero, ir_constant::is_one,
1518 * ir_constant::is_negative_one
1519 */
1520 bool has_value(const ir_constant *) const;
1521
1522 virtual bool is_zero() const;
1523 virtual bool is_one() const;
1524 virtual bool is_negative_one() const;
1525
1526 /**
1527 * Value of the constant.
1528 *
1529 * The field used to back the values supplied by the constant is determined
1530 * by the type associated with the \c ir_instruction. Constants may be
1531 * scalars, vectors, or matrices.
1532 */
1533 union ir_constant_data value;
1534
1535 /* Array elements */
1536 ir_constant **array_elements;
1537
1538 /* Structure fields */
1539 exec_list components;
1540
1541 private:
1542 /**
1543 * Parameterless constructor only used by the clone method
1544 */
1545 ir_constant(void);
1546 };
1547
1548 /*@}*/
1549
1550 /**
1551 * Apply a visitor to each IR node in a list
1552 */
1553 void
1554 visit_exec_list(exec_list *list, ir_visitor *visitor);
1555
1556 /**
1557 * Validate invariants on each IR node in a list
1558 */
1559 void validate_ir_tree(exec_list *instructions);
1560
1561 /**
1562 * Make a clone of each IR instruction in a list
1563 *
1564 * \param in List of IR instructions that are to be cloned
1565 * \param out List to hold the cloned instructions
1566 */
1567 void
1568 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1569
1570 extern void
1571 _mesa_glsl_initialize_variables(exec_list *instructions,
1572 struct _mesa_glsl_parse_state *state);
1573
1574 extern void
1575 _mesa_glsl_initialize_functions(exec_list *instructions,
1576 struct _mesa_glsl_parse_state *state);
1577
1578 extern void
1579 _mesa_glsl_release_functions(void);
1580
1581 extern void
1582 reparent_ir(exec_list *list, void *mem_ctx);
1583
1584 struct glsl_symbol_table;
1585
1586 extern void
1587 import_prototypes(const exec_list *source, exec_list *dest,
1588 struct glsl_symbol_table *symbols, void *mem_ctx);
1589
1590 extern bool
1591 ir_has_call(ir_instruction *ir);
1592
1593 extern void
1594 do_set_program_inouts(exec_list *instructions, struct gl_program *prog);
1595
1596 #endif /* IR_H */