glsl: Extend ir_expression_operation for ARB_shading_language_packing
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 /**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45 /**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor. While using type tags is not very C++, it is extremely
51 * convenient. For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types. For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59 enum ir_node_type {
60 /**
61 * Zero is unused so that the IR validator can detect cases where
62 * \c ir_instruction::ir_type has not been initialized.
63 */
64 ir_type_unset,
65 ir_type_variable,
66 ir_type_assignment,
67 ir_type_call,
68 ir_type_constant,
69 ir_type_dereference_array,
70 ir_type_dereference_record,
71 ir_type_dereference_variable,
72 ir_type_discard,
73 ir_type_expression,
74 ir_type_function,
75 ir_type_function_signature,
76 ir_type_if,
77 ir_type_loop,
78 ir_type_loop_jump,
79 ir_type_return,
80 ir_type_swizzle,
81 ir_type_texture,
82 ir_type_max /**< maximum ir_type enum number, for validation */
83 };
84
85 /**
86 * Base class of all IR instructions
87 */
88 class ir_instruction : public exec_node {
89 public:
90 enum ir_node_type ir_type;
91
92 /**
93 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
94 * there's a virtual destructor present. Because we almost
95 * universally use ralloc for our memory management of
96 * ir_instructions, the destructor doesn't need to do any work.
97 */
98 virtual ~ir_instruction()
99 {
100 }
101
102 /** ir_print_visitor helper for debugging. */
103 void print(void) const;
104
105 virtual void accept(ir_visitor *) = 0;
106 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
107 virtual ir_instruction *clone(void *mem_ctx,
108 struct hash_table *ht) const = 0;
109
110 /**
111 * \name IR instruction downcast functions
112 *
113 * These functions either cast the object to a derived class or return
114 * \c NULL if the object's type does not match the specified derived class.
115 * Additional downcast functions will be added as needed.
116 */
117 /*@{*/
118 virtual class ir_variable * as_variable() { return NULL; }
119 virtual class ir_function * as_function() { return NULL; }
120 virtual class ir_dereference * as_dereference() { return NULL; }
121 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
122 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
123 virtual class ir_expression * as_expression() { return NULL; }
124 virtual class ir_rvalue * as_rvalue() { return NULL; }
125 virtual class ir_loop * as_loop() { return NULL; }
126 virtual class ir_assignment * as_assignment() { return NULL; }
127 virtual class ir_call * as_call() { return NULL; }
128 virtual class ir_return * as_return() { return NULL; }
129 virtual class ir_if * as_if() { return NULL; }
130 virtual class ir_swizzle * as_swizzle() { return NULL; }
131 virtual class ir_constant * as_constant() { return NULL; }
132 virtual class ir_discard * as_discard() { return NULL; }
133 /*@}*/
134
135 protected:
136 ir_instruction()
137 {
138 ir_type = ir_type_unset;
139 }
140 };
141
142
143 /**
144 * The base class for all "values"/expression trees.
145 */
146 class ir_rvalue : public ir_instruction {
147 public:
148 const struct glsl_type *type;
149
150 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
151
152 virtual void accept(ir_visitor *v)
153 {
154 v->visit(this);
155 }
156
157 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
158
159 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
160
161 virtual ir_rvalue * as_rvalue()
162 {
163 return this;
164 }
165
166 ir_rvalue *as_rvalue_to_saturate();
167
168 virtual bool is_lvalue() const
169 {
170 return false;
171 }
172
173 /**
174 * Get the variable that is ultimately referenced by an r-value
175 */
176 virtual ir_variable *variable_referenced() const
177 {
178 return NULL;
179 }
180
181
182 /**
183 * If an r-value is a reference to a whole variable, get that variable
184 *
185 * \return
186 * Pointer to a variable that is completely dereferenced by the r-value. If
187 * the r-value is not a dereference or the dereference does not access the
188 * entire variable (i.e., it's just one array element, struct field), \c NULL
189 * is returned.
190 */
191 virtual ir_variable *whole_variable_referenced()
192 {
193 return NULL;
194 }
195
196 /**
197 * Determine if an r-value has the value zero
198 *
199 * The base implementation of this function always returns \c false. The
200 * \c ir_constant class over-rides this function to return \c true \b only
201 * for vector and scalar types that have all elements set to the value
202 * zero (or \c false for booleans).
203 *
204 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one,
205 * ir_constant::is_basis
206 */
207 virtual bool is_zero() const;
208
209 /**
210 * Determine if an r-value has the value one
211 *
212 * The base implementation of this function always returns \c false. The
213 * \c ir_constant class over-rides this function to return \c true \b only
214 * for vector and scalar types that have all elements set to the value
215 * one (or \c true for booleans).
216 *
217 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one,
218 * ir_constant::is_basis
219 */
220 virtual bool is_one() const;
221
222 /**
223 * Determine if an r-value has the value negative one
224 *
225 * The base implementation of this function always returns \c false. The
226 * \c ir_constant class over-rides this function to return \c true \b only
227 * for vector and scalar types that have all elements set to the value
228 * negative one. For boolean types, the result is always \c false.
229 *
230 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
231 * ir_constant::is_basis
232 */
233 virtual bool is_negative_one() const;
234
235 /**
236 * Determine if an r-value is a basis vector
237 *
238 * The base implementation of this function always returns \c false. The
239 * \c ir_constant class over-rides this function to return \c true \b only
240 * for vector and scalar types that have one element set to the value one,
241 * and the other elements set to the value zero. For boolean types, the
242 * result is always \c false.
243 *
244 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one,
245 * is_constant::is_negative_one
246 */
247 virtual bool is_basis() const;
248
249
250 /**
251 * Return a generic value of error_type.
252 *
253 * Allocation will be performed with 'mem_ctx' as ralloc owner.
254 */
255 static ir_rvalue *error_value(void *mem_ctx);
256
257 protected:
258 ir_rvalue();
259 };
260
261
262 /**
263 * Variable storage classes
264 */
265 enum ir_variable_mode {
266 ir_var_auto = 0, /**< Function local variables and globals. */
267 ir_var_uniform, /**< Variable declared as a uniform. */
268 ir_var_shader_in,
269 ir_var_shader_out,
270 ir_var_function_in,
271 ir_var_function_out,
272 ir_var_function_inout,
273 ir_var_const_in, /**< "in" param that must be a constant expression */
274 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
275 ir_var_temporary /**< Temporary variable generated during compilation. */
276 };
277
278 /**
279 * \brief Layout qualifiers for gl_FragDepth.
280 *
281 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
282 * with a layout qualifier.
283 */
284 enum ir_depth_layout {
285 ir_depth_layout_none, /**< No depth layout is specified. */
286 ir_depth_layout_any,
287 ir_depth_layout_greater,
288 ir_depth_layout_less,
289 ir_depth_layout_unchanged
290 };
291
292 /**
293 * \brief Convert depth layout qualifier to string.
294 */
295 const char*
296 depth_layout_string(ir_depth_layout layout);
297
298 /**
299 * Description of built-in state associated with a uniform
300 *
301 * \sa ir_variable::state_slots
302 */
303 struct ir_state_slot {
304 int tokens[5];
305 int swizzle;
306 };
307
308 class ir_variable : public ir_instruction {
309 public:
310 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
311
312 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
313
314 virtual ir_variable *as_variable()
315 {
316 return this;
317 }
318
319 virtual void accept(ir_visitor *v)
320 {
321 v->visit(this);
322 }
323
324 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
325
326
327 /**
328 * Get the string value for the interpolation qualifier
329 *
330 * \return The string that would be used in a shader to specify \c
331 * mode will be returned.
332 *
333 * This function is used to generate error messages of the form "shader
334 * uses %s interpolation qualifier", so in the case where there is no
335 * interpolation qualifier, it returns "no".
336 *
337 * This function should only be used on a shader input or output variable.
338 */
339 const char *interpolation_string() const;
340
341 /**
342 * Determine how this variable should be interpolated based on its
343 * interpolation qualifier (if present), whether it is gl_Color or
344 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
345 * state.
346 *
347 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
348 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
349 */
350 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
351
352 /**
353 * Determine whether or not a variable is part of a uniform block.
354 */
355 inline bool is_in_uniform_block() const
356 {
357 return this->mode == ir_var_uniform && this->interface_type != NULL;
358 }
359
360 /**
361 * Determine whether or not a variable is the declaration of an interface
362 * block
363 *
364 * For the first declaration below, there will be an \c ir_variable named
365 * "instance" whose type and whose instance_type will be the same
366 * \cglsl_type. For the second declaration, there will be an \c ir_variable
367 * named "f" whose type is float and whose instance_type is B2.
368 *
369 * "instance" is an interface instance variable, but "f" is not.
370 *
371 * uniform B1 {
372 * float f;
373 * } instance;
374 *
375 * uniform B2 {
376 * float f;
377 * };
378 */
379 inline bool is_interface_instance() const
380 {
381 const glsl_type *const t = this->type;
382
383 return (t == this->interface_type)
384 || (t->is_array() && t->fields.array == this->interface_type);
385 }
386
387 /**
388 * Declared type of the variable
389 */
390 const struct glsl_type *type;
391
392 /**
393 * Declared name of the variable
394 */
395 const char *name;
396
397 /**
398 * Highest element accessed with a constant expression array index
399 *
400 * Not used for non-array variables.
401 */
402 unsigned max_array_access;
403
404 /**
405 * Is the variable read-only?
406 *
407 * This is set for variables declared as \c const, shader inputs,
408 * and uniforms.
409 */
410 unsigned read_only:1;
411 unsigned centroid:1;
412 unsigned invariant:1;
413
414 /**
415 * Has this variable been used for reading or writing?
416 *
417 * Several GLSL semantic checks require knowledge of whether or not a
418 * variable has been used. For example, it is an error to redeclare a
419 * variable as invariant after it has been used.
420 *
421 * This is only maintained in the ast_to_hir.cpp path, not in
422 * Mesa's fixed function or ARB program paths.
423 */
424 unsigned used:1;
425
426 /**
427 * Has this variable been statically assigned?
428 *
429 * This answers whether the variable was assigned in any path of
430 * the shader during ast_to_hir. This doesn't answer whether it is
431 * still written after dead code removal, nor is it maintained in
432 * non-ast_to_hir.cpp (GLSL parsing) paths.
433 */
434 unsigned assigned:1;
435
436 /**
437 * Storage class of the variable.
438 *
439 * \sa ir_variable_mode
440 */
441 unsigned mode:4;
442
443 /**
444 * Interpolation mode for shader inputs / outputs
445 *
446 * \sa ir_variable_interpolation
447 */
448 unsigned interpolation:2;
449
450 /**
451 * \name ARB_fragment_coord_conventions
452 * @{
453 */
454 unsigned origin_upper_left:1;
455 unsigned pixel_center_integer:1;
456 /*@}*/
457
458 /**
459 * Was the location explicitly set in the shader?
460 *
461 * If the location is explicitly set in the shader, it \b cannot be changed
462 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
463 * no effect).
464 */
465 unsigned explicit_location:1;
466 unsigned explicit_index:1;
467
468 /**
469 * Does this variable have an initializer?
470 *
471 * This is used by the linker to cross-validiate initializers of global
472 * variables.
473 */
474 unsigned has_initializer:1;
475
476 /**
477 * Is this variable a generic output or input that has not yet been matched
478 * up to a variable in another stage of the pipeline?
479 *
480 * This is used by the linker as scratch storage while assigning locations
481 * to generic inputs and outputs.
482 */
483 unsigned is_unmatched_generic_inout:1;
484
485 /**
486 * If non-zero, then this variable may be packed along with other variables
487 * into a single varying slot, so this offset should be applied when
488 * accessing components. For example, an offset of 1 means that the x
489 * component of this variable is actually stored in component y of the
490 * location specified by \c location.
491 */
492 unsigned location_frac:2;
493
494 /**
495 * \brief Layout qualifier for gl_FragDepth.
496 *
497 * This is not equal to \c ir_depth_layout_none if and only if this
498 * variable is \c gl_FragDepth and a layout qualifier is specified.
499 */
500 ir_depth_layout depth_layout;
501
502 /**
503 * Storage location of the base of this variable
504 *
505 * The precise meaning of this field depends on the nature of the variable.
506 *
507 * - Vertex shader input: one of the values from \c gl_vert_attrib.
508 * - Vertex shader output: one of the values from \c gl_vert_result.
509 * - Fragment shader input: one of the values from \c gl_frag_attrib.
510 * - Fragment shader output: one of the values from \c gl_frag_result.
511 * - Uniforms: Per-stage uniform slot number for default uniform block.
512 * - Uniforms: Index within the uniform block definition for UBO members.
513 * - Other: This field is not currently used.
514 *
515 * If the variable is a uniform, shader input, or shader output, and the
516 * slot has not been assigned, the value will be -1.
517 */
518 int location;
519
520 /**
521 * output index for dual source blending.
522 */
523 int index;
524
525 /**
526 * Built-in state that backs this uniform
527 *
528 * Once set at variable creation, \c state_slots must remain invariant.
529 * This is because, ideally, this array would be shared by all clones of
530 * this variable in the IR tree. In other words, we'd really like for it
531 * to be a fly-weight.
532 *
533 * If the variable is not a uniform, \c num_state_slots will be zero and
534 * \c state_slots will be \c NULL.
535 */
536 /*@{*/
537 unsigned num_state_slots; /**< Number of state slots used */
538 ir_state_slot *state_slots; /**< State descriptors. */
539 /*@}*/
540
541 /**
542 * Emit a warning if this variable is accessed.
543 */
544 const char *warn_extension;
545
546 /**
547 * Value assigned in the initializer of a variable declared "const"
548 */
549 ir_constant *constant_value;
550
551 /**
552 * Constant expression assigned in the initializer of the variable
553 *
554 * \warning
555 * This field and \c ::constant_value are distinct. Even if the two fields
556 * refer to constants with the same value, they must point to separate
557 * objects.
558 */
559 ir_constant *constant_initializer;
560
561 /**
562 * For variables that are in an interface block or are an instance of an
563 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
564 *
565 * \sa ir_variable::location
566 */
567 const glsl_type *interface_type;
568 };
569
570
571 /*@{*/
572 /**
573 * The representation of a function instance; may be the full definition or
574 * simply a prototype.
575 */
576 class ir_function_signature : public ir_instruction {
577 /* An ir_function_signature will be part of the list of signatures in
578 * an ir_function.
579 */
580 public:
581 ir_function_signature(const glsl_type *return_type);
582
583 virtual ir_function_signature *clone(void *mem_ctx,
584 struct hash_table *ht) const;
585 ir_function_signature *clone_prototype(void *mem_ctx,
586 struct hash_table *ht) const;
587
588 virtual void accept(ir_visitor *v)
589 {
590 v->visit(this);
591 }
592
593 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
594
595 /**
596 * Attempt to evaluate this function as a constant expression,
597 * given a list of the actual parameters and the variable context.
598 * Returns NULL for non-built-ins.
599 */
600 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
601
602 /**
603 * Get the name of the function for which this is a signature
604 */
605 const char *function_name() const;
606
607 /**
608 * Get a handle to the function for which this is a signature
609 *
610 * There is no setter function, this function returns a \c const pointer,
611 * and \c ir_function_signature::_function is private for a reason. The
612 * only way to make a connection between a function and function signature
613 * is via \c ir_function::add_signature. This helps ensure that certain
614 * invariants (i.e., a function signature is in the list of signatures for
615 * its \c _function) are met.
616 *
617 * \sa ir_function::add_signature
618 */
619 inline const class ir_function *function() const
620 {
621 return this->_function;
622 }
623
624 /**
625 * Check whether the qualifiers match between this signature's parameters
626 * and the supplied parameter list. If not, returns the name of the first
627 * parameter with mismatched qualifiers (for use in error messages).
628 */
629 const char *qualifiers_match(exec_list *params);
630
631 /**
632 * Replace the current parameter list with the given one. This is useful
633 * if the current information came from a prototype, and either has invalid
634 * or missing parameter names.
635 */
636 void replace_parameters(exec_list *new_params);
637
638 /**
639 * Function return type.
640 *
641 * \note This discards the optional precision qualifier.
642 */
643 const struct glsl_type *return_type;
644
645 /**
646 * List of ir_variable of function parameters.
647 *
648 * This represents the storage. The paramaters passed in a particular
649 * call will be in ir_call::actual_paramaters.
650 */
651 struct exec_list parameters;
652
653 /** Whether or not this function has a body (which may be empty). */
654 unsigned is_defined:1;
655
656 /** Whether or not this function signature is a built-in. */
657 unsigned is_builtin:1;
658
659 /** Body of instructions in the function. */
660 struct exec_list body;
661
662 private:
663 /** Function of which this signature is one overload. */
664 class ir_function *_function;
665
666 /** Function signature of which this one is a prototype clone */
667 const ir_function_signature *origin;
668
669 friend class ir_function;
670
671 /**
672 * Helper function to run a list of instructions for constant
673 * expression evaluation.
674 *
675 * The hash table represents the values of the visible variables.
676 * There are no scoping issues because the table is indexed on
677 * ir_variable pointers, not variable names.
678 *
679 * Returns false if the expression is not constant, true otherwise,
680 * and the value in *result if result is non-NULL.
681 */
682 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
683 struct hash_table *variable_context,
684 ir_constant **result);
685 };
686
687
688 /**
689 * Header for tracking multiple overloaded functions with the same name.
690 * Contains a list of ir_function_signatures representing each of the
691 * actual functions.
692 */
693 class ir_function : public ir_instruction {
694 public:
695 ir_function(const char *name);
696
697 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
698
699 virtual ir_function *as_function()
700 {
701 return this;
702 }
703
704 virtual void accept(ir_visitor *v)
705 {
706 v->visit(this);
707 }
708
709 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
710
711 void add_signature(ir_function_signature *sig)
712 {
713 sig->_function = this;
714 this->signatures.push_tail(sig);
715 }
716
717 /**
718 * Get an iterator for the set of function signatures
719 */
720 exec_list_iterator iterator()
721 {
722 return signatures.iterator();
723 }
724
725 /**
726 * Find a signature that matches a set of actual parameters, taking implicit
727 * conversions into account. Also flags whether the match was exact.
728 */
729 ir_function_signature *matching_signature(const exec_list *actual_param,
730 bool *match_is_exact);
731
732 /**
733 * Find a signature that matches a set of actual parameters, taking implicit
734 * conversions into account.
735 */
736 ir_function_signature *matching_signature(const exec_list *actual_param);
737
738 /**
739 * Find a signature that exactly matches a set of actual parameters without
740 * any implicit type conversions.
741 */
742 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
743
744 /**
745 * Name of the function.
746 */
747 const char *name;
748
749 /** Whether or not this function has a signature that isn't a built-in. */
750 bool has_user_signature();
751
752 /**
753 * List of ir_function_signature for each overloaded function with this name.
754 */
755 struct exec_list signatures;
756 };
757
758 inline const char *ir_function_signature::function_name() const
759 {
760 return this->_function->name;
761 }
762 /*@}*/
763
764
765 /**
766 * IR instruction representing high-level if-statements
767 */
768 class ir_if : public ir_instruction {
769 public:
770 ir_if(ir_rvalue *condition)
771 : condition(condition)
772 {
773 ir_type = ir_type_if;
774 }
775
776 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
777
778 virtual ir_if *as_if()
779 {
780 return this;
781 }
782
783 virtual void accept(ir_visitor *v)
784 {
785 v->visit(this);
786 }
787
788 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
789
790 ir_rvalue *condition;
791 /** List of ir_instruction for the body of the then branch */
792 exec_list then_instructions;
793 /** List of ir_instruction for the body of the else branch */
794 exec_list else_instructions;
795 };
796
797
798 /**
799 * IR instruction representing a high-level loop structure.
800 */
801 class ir_loop : public ir_instruction {
802 public:
803 ir_loop();
804
805 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
806
807 virtual void accept(ir_visitor *v)
808 {
809 v->visit(this);
810 }
811
812 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
813
814 virtual ir_loop *as_loop()
815 {
816 return this;
817 }
818
819 /**
820 * Get an iterator for the instructions of the loop body
821 */
822 exec_list_iterator iterator()
823 {
824 return body_instructions.iterator();
825 }
826
827 /** List of ir_instruction that make up the body of the loop. */
828 exec_list body_instructions;
829
830 /**
831 * \name Loop counter and controls
832 *
833 * Represents a loop like a FORTRAN \c do-loop.
834 *
835 * \note
836 * If \c from and \c to are the same value, the loop will execute once.
837 */
838 /*@{*/
839 ir_rvalue *from; /** Value of the loop counter on the first
840 * iteration of the loop.
841 */
842 ir_rvalue *to; /** Value of the loop counter on the last
843 * iteration of the loop.
844 */
845 ir_rvalue *increment;
846 ir_variable *counter;
847
848 /**
849 * Comparison operation in the loop terminator.
850 *
851 * If any of the loop control fields are non-\c NULL, this field must be
852 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
853 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
854 */
855 int cmp;
856 /*@}*/
857 };
858
859
860 class ir_assignment : public ir_instruction {
861 public:
862 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
863
864 /**
865 * Construct an assignment with an explicit write mask
866 *
867 * \note
868 * Since a write mask is supplied, the LHS must already be a bare
869 * \c ir_dereference. The cannot be any swizzles in the LHS.
870 */
871 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
872 unsigned write_mask);
873
874 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
875
876 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
877
878 virtual void accept(ir_visitor *v)
879 {
880 v->visit(this);
881 }
882
883 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
884
885 virtual ir_assignment * as_assignment()
886 {
887 return this;
888 }
889
890 /**
891 * Get a whole variable written by an assignment
892 *
893 * If the LHS of the assignment writes a whole variable, the variable is
894 * returned. Otherwise \c NULL is returned. Examples of whole-variable
895 * assignment are:
896 *
897 * - Assigning to a scalar
898 * - Assigning to all components of a vector
899 * - Whole array (or matrix) assignment
900 * - Whole structure assignment
901 */
902 ir_variable *whole_variable_written();
903
904 /**
905 * Set the LHS of an assignment
906 */
907 void set_lhs(ir_rvalue *lhs);
908
909 /**
910 * Left-hand side of the assignment.
911 *
912 * This should be treated as read only. If you need to set the LHS of an
913 * assignment, use \c ir_assignment::set_lhs.
914 */
915 ir_dereference *lhs;
916
917 /**
918 * Value being assigned
919 */
920 ir_rvalue *rhs;
921
922 /**
923 * Optional condition for the assignment.
924 */
925 ir_rvalue *condition;
926
927
928 /**
929 * Component mask written
930 *
931 * For non-vector types in the LHS, this field will be zero. For vector
932 * types, a bit will be set for each component that is written. Note that
933 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
934 *
935 * A partially-set write mask means that each enabled channel gets
936 * the value from a consecutive channel of the rhs. For example,
937 * to write just .xyw of gl_FrontColor with color:
938 *
939 * (assign (constant bool (1)) (xyw)
940 * (var_ref gl_FragColor)
941 * (swiz xyw (var_ref color)))
942 */
943 unsigned write_mask:4;
944 };
945
946 /* Update ir_expression::get_num_operands() and operator_strs when
947 * updating this list.
948 */
949 enum ir_expression_operation {
950 ir_unop_bit_not,
951 ir_unop_logic_not,
952 ir_unop_neg,
953 ir_unop_abs,
954 ir_unop_sign,
955 ir_unop_rcp,
956 ir_unop_rsq,
957 ir_unop_sqrt,
958 ir_unop_exp, /**< Log base e on gentype */
959 ir_unop_log, /**< Natural log on gentype */
960 ir_unop_exp2,
961 ir_unop_log2,
962 ir_unop_f2i, /**< Float-to-integer conversion. */
963 ir_unop_f2u, /**< Float-to-unsigned conversion. */
964 ir_unop_i2f, /**< Integer-to-float conversion. */
965 ir_unop_f2b, /**< Float-to-boolean conversion */
966 ir_unop_b2f, /**< Boolean-to-float conversion */
967 ir_unop_i2b, /**< int-to-boolean conversion */
968 ir_unop_b2i, /**< Boolean-to-int conversion */
969 ir_unop_u2f, /**< Unsigned-to-float conversion. */
970 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
971 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
972 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
973 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
974 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
975 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
976 ir_unop_any,
977
978 /**
979 * \name Unary floating-point rounding operations.
980 */
981 /*@{*/
982 ir_unop_trunc,
983 ir_unop_ceil,
984 ir_unop_floor,
985 ir_unop_fract,
986 ir_unop_round_even,
987 /*@}*/
988
989 /**
990 * \name Trigonometric operations.
991 */
992 /*@{*/
993 ir_unop_sin,
994 ir_unop_cos,
995 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
996 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
997 /*@}*/
998
999 /**
1000 * \name Partial derivatives.
1001 */
1002 /*@{*/
1003 ir_unop_dFdx,
1004 ir_unop_dFdy,
1005 /*@}*/
1006
1007 /**
1008 * \name Floating point pack and unpack operations.
1009 */
1010 /*@{*/
1011 ir_unop_pack_snorm_2x16,
1012 ir_unop_pack_snorm_4x8,
1013 ir_unop_pack_unorm_2x16,
1014 ir_unop_pack_unorm_4x8,
1015 ir_unop_pack_half_2x16,
1016 ir_unop_unpack_snorm_2x16,
1017 ir_unop_unpack_snorm_4x8,
1018 ir_unop_unpack_unorm_2x16,
1019 ir_unop_unpack_unorm_4x8,
1020 ir_unop_unpack_half_2x16,
1021 /*@}*/
1022
1023 /**
1024 * \name Lowered floating point unpacking operations.
1025 *
1026 * \see lower_packing_builtins_visitor::split_unpack_half_2x16
1027 */
1028 /*@{*/
1029 ir_unop_unpack_half_2x16_split_x,
1030 ir_unop_unpack_half_2x16_split_y,
1031 /*@}*/
1032
1033 ir_unop_noise,
1034
1035 /**
1036 * A sentinel marking the last of the unary operations.
1037 */
1038 ir_last_unop = ir_unop_noise,
1039
1040 ir_binop_add,
1041 ir_binop_sub,
1042 ir_binop_mul,
1043 ir_binop_div,
1044
1045 /**
1046 * Takes one of two combinations of arguments:
1047 *
1048 * - mod(vecN, vecN)
1049 * - mod(vecN, float)
1050 *
1051 * Does not take integer types.
1052 */
1053 ir_binop_mod,
1054
1055 /**
1056 * \name Binary comparison operators which return a boolean vector.
1057 * The type of both operands must be equal.
1058 */
1059 /*@{*/
1060 ir_binop_less,
1061 ir_binop_greater,
1062 ir_binop_lequal,
1063 ir_binop_gequal,
1064 ir_binop_equal,
1065 ir_binop_nequal,
1066 /**
1067 * Returns single boolean for whether all components of operands[0]
1068 * equal the components of operands[1].
1069 */
1070 ir_binop_all_equal,
1071 /**
1072 * Returns single boolean for whether any component of operands[0]
1073 * is not equal to the corresponding component of operands[1].
1074 */
1075 ir_binop_any_nequal,
1076 /*@}*/
1077
1078 /**
1079 * \name Bit-wise binary operations.
1080 */
1081 /*@{*/
1082 ir_binop_lshift,
1083 ir_binop_rshift,
1084 ir_binop_bit_and,
1085 ir_binop_bit_xor,
1086 ir_binop_bit_or,
1087 /*@}*/
1088
1089 ir_binop_logic_and,
1090 ir_binop_logic_xor,
1091 ir_binop_logic_or,
1092
1093 ir_binop_dot,
1094 ir_binop_min,
1095 ir_binop_max,
1096
1097 ir_binop_pow,
1098
1099 /**
1100 * \name Lowered floating point packing operations.
1101 *
1102 * \see lower_packing_builtins_visitor::split_pack_half_2x16
1103 */
1104 /*@{*/
1105 ir_binop_pack_half_2x16_split,
1106 /*@}*/
1107
1108 /**
1109 * Load a value the size of a given GLSL type from a uniform block.
1110 *
1111 * operand0 is the ir_constant uniform block index in the linked shader.
1112 * operand1 is a byte offset within the uniform block.
1113 */
1114 ir_binop_ubo_load,
1115
1116 /**
1117 * A sentinel marking the last of the binary operations.
1118 */
1119 ir_last_binop = ir_binop_ubo_load,
1120
1121 ir_quadop_vector,
1122
1123 /**
1124 * A sentinel marking the last of all operations.
1125 */
1126 ir_last_opcode = ir_quadop_vector
1127 };
1128
1129 class ir_expression : public ir_rvalue {
1130 public:
1131 /**
1132 * Constructor for unary operation expressions
1133 */
1134 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
1135 ir_expression(int op, ir_rvalue *);
1136
1137 /**
1138 * Constructor for binary operation expressions
1139 */
1140 ir_expression(int op, const struct glsl_type *type,
1141 ir_rvalue *, ir_rvalue *);
1142 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1143
1144 /**
1145 * Constructor for quad operator expressions
1146 */
1147 ir_expression(int op, const struct glsl_type *type,
1148 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
1149
1150 virtual ir_expression *as_expression()
1151 {
1152 return this;
1153 }
1154
1155 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1156
1157 /**
1158 * Attempt to constant-fold the expression
1159 *
1160 * The "variable_context" hash table links ir_variable * to ir_constant *
1161 * that represent the variables' values. \c NULL represents an empty
1162 * context.
1163 *
1164 * If the expression cannot be constant folded, this method will return
1165 * \c NULL.
1166 */
1167 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1168
1169 /**
1170 * Determine the number of operands used by an expression
1171 */
1172 static unsigned int get_num_operands(ir_expression_operation);
1173
1174 /**
1175 * Determine the number of operands used by an expression
1176 */
1177 unsigned int get_num_operands() const
1178 {
1179 return (this->operation == ir_quadop_vector)
1180 ? this->type->vector_elements : get_num_operands(operation);
1181 }
1182
1183 /**
1184 * Return a string representing this expression's operator.
1185 */
1186 const char *operator_string();
1187
1188 /**
1189 * Return a string representing this expression's operator.
1190 */
1191 static const char *operator_string(ir_expression_operation);
1192
1193
1194 /**
1195 * Do a reverse-lookup to translate the given string into an operator.
1196 */
1197 static ir_expression_operation get_operator(const char *);
1198
1199 virtual void accept(ir_visitor *v)
1200 {
1201 v->visit(this);
1202 }
1203
1204 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1205
1206 ir_expression_operation operation;
1207 ir_rvalue *operands[4];
1208 };
1209
1210
1211 /**
1212 * HIR instruction representing a high-level function call, containing a list
1213 * of parameters and returning a value in the supplied temporary.
1214 */
1215 class ir_call : public ir_instruction {
1216 public:
1217 ir_call(ir_function_signature *callee,
1218 ir_dereference_variable *return_deref,
1219 exec_list *actual_parameters)
1220 : return_deref(return_deref), callee(callee)
1221 {
1222 ir_type = ir_type_call;
1223 assert(callee->return_type != NULL);
1224 actual_parameters->move_nodes_to(& this->actual_parameters);
1225 this->use_builtin = callee->is_builtin;
1226 }
1227
1228 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1229
1230 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1231
1232 virtual ir_call *as_call()
1233 {
1234 return this;
1235 }
1236
1237 virtual void accept(ir_visitor *v)
1238 {
1239 v->visit(this);
1240 }
1241
1242 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1243
1244 /**
1245 * Get an iterator for the set of acutal parameters
1246 */
1247 exec_list_iterator iterator()
1248 {
1249 return actual_parameters.iterator();
1250 }
1251
1252 /**
1253 * Get the name of the function being called.
1254 */
1255 const char *callee_name() const
1256 {
1257 return callee->function_name();
1258 }
1259
1260 /**
1261 * Generates an inline version of the function before @ir,
1262 * storing the return value in return_deref.
1263 */
1264 void generate_inline(ir_instruction *ir);
1265
1266 /**
1267 * Storage for the function's return value.
1268 * This must be NULL if the return type is void.
1269 */
1270 ir_dereference_variable *return_deref;
1271
1272 /**
1273 * The specific function signature being called.
1274 */
1275 ir_function_signature *callee;
1276
1277 /* List of ir_rvalue of paramaters passed in this call. */
1278 exec_list actual_parameters;
1279
1280 /** Should this call only bind to a built-in function? */
1281 bool use_builtin;
1282 };
1283
1284
1285 /**
1286 * \name Jump-like IR instructions.
1287 *
1288 * These include \c break, \c continue, \c return, and \c discard.
1289 */
1290 /*@{*/
1291 class ir_jump : public ir_instruction {
1292 protected:
1293 ir_jump()
1294 {
1295 ir_type = ir_type_unset;
1296 }
1297 };
1298
1299 class ir_return : public ir_jump {
1300 public:
1301 ir_return()
1302 : value(NULL)
1303 {
1304 this->ir_type = ir_type_return;
1305 }
1306
1307 ir_return(ir_rvalue *value)
1308 : value(value)
1309 {
1310 this->ir_type = ir_type_return;
1311 }
1312
1313 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1314
1315 virtual ir_return *as_return()
1316 {
1317 return this;
1318 }
1319
1320 ir_rvalue *get_value() const
1321 {
1322 return value;
1323 }
1324
1325 virtual void accept(ir_visitor *v)
1326 {
1327 v->visit(this);
1328 }
1329
1330 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1331
1332 ir_rvalue *value;
1333 };
1334
1335
1336 /**
1337 * Jump instructions used inside loops
1338 *
1339 * These include \c break and \c continue. The \c break within a loop is
1340 * different from the \c break within a switch-statement.
1341 *
1342 * \sa ir_switch_jump
1343 */
1344 class ir_loop_jump : public ir_jump {
1345 public:
1346 enum jump_mode {
1347 jump_break,
1348 jump_continue
1349 };
1350
1351 ir_loop_jump(jump_mode mode)
1352 {
1353 this->ir_type = ir_type_loop_jump;
1354 this->mode = mode;
1355 }
1356
1357 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1358
1359 virtual void accept(ir_visitor *v)
1360 {
1361 v->visit(this);
1362 }
1363
1364 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1365
1366 bool is_break() const
1367 {
1368 return mode == jump_break;
1369 }
1370
1371 bool is_continue() const
1372 {
1373 return mode == jump_continue;
1374 }
1375
1376 /** Mode selector for the jump instruction. */
1377 enum jump_mode mode;
1378 };
1379
1380 /**
1381 * IR instruction representing discard statements.
1382 */
1383 class ir_discard : public ir_jump {
1384 public:
1385 ir_discard()
1386 {
1387 this->ir_type = ir_type_discard;
1388 this->condition = NULL;
1389 }
1390
1391 ir_discard(ir_rvalue *cond)
1392 {
1393 this->ir_type = ir_type_discard;
1394 this->condition = cond;
1395 }
1396
1397 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1398
1399 virtual void accept(ir_visitor *v)
1400 {
1401 v->visit(this);
1402 }
1403
1404 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1405
1406 virtual ir_discard *as_discard()
1407 {
1408 return this;
1409 }
1410
1411 ir_rvalue *condition;
1412 };
1413 /*@}*/
1414
1415
1416 /**
1417 * Texture sampling opcodes used in ir_texture
1418 */
1419 enum ir_texture_opcode {
1420 ir_tex, /**< Regular texture look-up */
1421 ir_txb, /**< Texture look-up with LOD bias */
1422 ir_txl, /**< Texture look-up with explicit LOD */
1423 ir_txd, /**< Texture look-up with partial derivatvies */
1424 ir_txf, /**< Texel fetch with explicit LOD */
1425 ir_txs /**< Texture size */
1426 };
1427
1428
1429 /**
1430 * IR instruction to sample a texture
1431 *
1432 * The specific form of the IR instruction depends on the \c mode value
1433 * selected from \c ir_texture_opcodes. In the printed IR, these will
1434 * appear as:
1435 *
1436 * Texel offset (0 or an expression)
1437 * | Projection divisor
1438 * | | Shadow comparitor
1439 * | | |
1440 * v v v
1441 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1442 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1443 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1444 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1445 * (txf <type> <sampler> <coordinate> 0 <lod>)
1446 * (txs <type> <sampler> <lod>)
1447 */
1448 class ir_texture : public ir_rvalue {
1449 public:
1450 ir_texture(enum ir_texture_opcode op)
1451 : op(op), coordinate(NULL), projector(NULL), shadow_comparitor(NULL),
1452 offset(NULL)
1453 {
1454 this->ir_type = ir_type_texture;
1455 }
1456
1457 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1458
1459 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1460
1461 virtual void accept(ir_visitor *v)
1462 {
1463 v->visit(this);
1464 }
1465
1466 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1467
1468 /**
1469 * Return a string representing the ir_texture_opcode.
1470 */
1471 const char *opcode_string();
1472
1473 /** Set the sampler and type. */
1474 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1475
1476 /**
1477 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1478 */
1479 static ir_texture_opcode get_opcode(const char *);
1480
1481 enum ir_texture_opcode op;
1482
1483 /** Sampler to use for the texture access. */
1484 ir_dereference *sampler;
1485
1486 /** Texture coordinate to sample */
1487 ir_rvalue *coordinate;
1488
1489 /**
1490 * Value used for projective divide.
1491 *
1492 * If there is no projective divide (the common case), this will be
1493 * \c NULL. Optimization passes should check for this to point to a constant
1494 * of 1.0 and replace that with \c NULL.
1495 */
1496 ir_rvalue *projector;
1497
1498 /**
1499 * Coordinate used for comparison on shadow look-ups.
1500 *
1501 * If there is no shadow comparison, this will be \c NULL. For the
1502 * \c ir_txf opcode, this *must* be \c NULL.
1503 */
1504 ir_rvalue *shadow_comparitor;
1505
1506 /** Texel offset. */
1507 ir_rvalue *offset;
1508
1509 union {
1510 ir_rvalue *lod; /**< Floating point LOD */
1511 ir_rvalue *bias; /**< Floating point LOD bias */
1512 struct {
1513 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1514 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1515 } grad;
1516 } lod_info;
1517 };
1518
1519
1520 struct ir_swizzle_mask {
1521 unsigned x:2;
1522 unsigned y:2;
1523 unsigned z:2;
1524 unsigned w:2;
1525
1526 /**
1527 * Number of components in the swizzle.
1528 */
1529 unsigned num_components:3;
1530
1531 /**
1532 * Does the swizzle contain duplicate components?
1533 *
1534 * L-value swizzles cannot contain duplicate components.
1535 */
1536 unsigned has_duplicates:1;
1537 };
1538
1539
1540 class ir_swizzle : public ir_rvalue {
1541 public:
1542 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1543 unsigned count);
1544
1545 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1546
1547 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1548
1549 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1550
1551 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1552
1553 virtual ir_swizzle *as_swizzle()
1554 {
1555 return this;
1556 }
1557
1558 /**
1559 * Construct an ir_swizzle from the textual representation. Can fail.
1560 */
1561 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1562
1563 virtual void accept(ir_visitor *v)
1564 {
1565 v->visit(this);
1566 }
1567
1568 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1569
1570 bool is_lvalue() const
1571 {
1572 return val->is_lvalue() && !mask.has_duplicates;
1573 }
1574
1575 /**
1576 * Get the variable that is ultimately referenced by an r-value
1577 */
1578 virtual ir_variable *variable_referenced() const;
1579
1580 ir_rvalue *val;
1581 ir_swizzle_mask mask;
1582
1583 private:
1584 /**
1585 * Initialize the mask component of a swizzle
1586 *
1587 * This is used by the \c ir_swizzle constructors.
1588 */
1589 void init_mask(const unsigned *components, unsigned count);
1590 };
1591
1592
1593 class ir_dereference : public ir_rvalue {
1594 public:
1595 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1596
1597 virtual ir_dereference *as_dereference()
1598 {
1599 return this;
1600 }
1601
1602 bool is_lvalue() const;
1603
1604 /**
1605 * Get the variable that is ultimately referenced by an r-value
1606 */
1607 virtual ir_variable *variable_referenced() const = 0;
1608
1609 /**
1610 * Get the constant that is ultimately referenced by an r-value,
1611 * in a constant expression evaluation context.
1612 *
1613 * The offset is used when the reference is to a specific column of
1614 * a matrix.
1615 */
1616 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const = 0;
1617 };
1618
1619
1620 class ir_dereference_variable : public ir_dereference {
1621 public:
1622 ir_dereference_variable(ir_variable *var);
1623
1624 virtual ir_dereference_variable *clone(void *mem_ctx,
1625 struct hash_table *) const;
1626
1627 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1628
1629 virtual ir_dereference_variable *as_dereference_variable()
1630 {
1631 return this;
1632 }
1633
1634 /**
1635 * Get the variable that is ultimately referenced by an r-value
1636 */
1637 virtual ir_variable *variable_referenced() const
1638 {
1639 return this->var;
1640 }
1641
1642 /**
1643 * Get the constant that is ultimately referenced by an r-value,
1644 * in a constant expression evaluation context.
1645 *
1646 * The offset is used when the reference is to a specific column of
1647 * a matrix.
1648 */
1649 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1650
1651 virtual ir_variable *whole_variable_referenced()
1652 {
1653 /* ir_dereference_variable objects always dereference the entire
1654 * variable. However, if this dereference is dereferenced by anything
1655 * else, the complete deferefernce chain is not a whole-variable
1656 * dereference. This method should only be called on the top most
1657 * ir_rvalue in a dereference chain.
1658 */
1659 return this->var;
1660 }
1661
1662 virtual void accept(ir_visitor *v)
1663 {
1664 v->visit(this);
1665 }
1666
1667 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1668
1669 /**
1670 * Object being dereferenced.
1671 */
1672 ir_variable *var;
1673 };
1674
1675
1676 class ir_dereference_array : public ir_dereference {
1677 public:
1678 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1679
1680 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1681
1682 virtual ir_dereference_array *clone(void *mem_ctx,
1683 struct hash_table *) const;
1684
1685 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1686
1687 virtual ir_dereference_array *as_dereference_array()
1688 {
1689 return this;
1690 }
1691
1692 /**
1693 * Get the variable that is ultimately referenced by an r-value
1694 */
1695 virtual ir_variable *variable_referenced() const
1696 {
1697 return this->array->variable_referenced();
1698 }
1699
1700 /**
1701 * Get the constant that is ultimately referenced by an r-value,
1702 * in a constant expression evaluation context.
1703 *
1704 * The offset is used when the reference is to a specific column of
1705 * a matrix.
1706 */
1707 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1708
1709 virtual void accept(ir_visitor *v)
1710 {
1711 v->visit(this);
1712 }
1713
1714 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1715
1716 ir_rvalue *array;
1717 ir_rvalue *array_index;
1718
1719 private:
1720 void set_array(ir_rvalue *value);
1721 };
1722
1723
1724 class ir_dereference_record : public ir_dereference {
1725 public:
1726 ir_dereference_record(ir_rvalue *value, const char *field);
1727
1728 ir_dereference_record(ir_variable *var, const char *field);
1729
1730 virtual ir_dereference_record *clone(void *mem_ctx,
1731 struct hash_table *) const;
1732
1733 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1734
1735 /**
1736 * Get the variable that is ultimately referenced by an r-value
1737 */
1738 virtual ir_variable *variable_referenced() const
1739 {
1740 return this->record->variable_referenced();
1741 }
1742
1743 /**
1744 * Get the constant that is ultimately referenced by an r-value,
1745 * in a constant expression evaluation context.
1746 *
1747 * The offset is used when the reference is to a specific column of
1748 * a matrix.
1749 */
1750 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1751
1752 virtual void accept(ir_visitor *v)
1753 {
1754 v->visit(this);
1755 }
1756
1757 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1758
1759 ir_rvalue *record;
1760 const char *field;
1761 };
1762
1763
1764 /**
1765 * Data stored in an ir_constant
1766 */
1767 union ir_constant_data {
1768 unsigned u[16];
1769 int i[16];
1770 float f[16];
1771 bool b[16];
1772 };
1773
1774
1775 class ir_constant : public ir_rvalue {
1776 public:
1777 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1778 ir_constant(bool b);
1779 ir_constant(unsigned int u);
1780 ir_constant(int i);
1781 ir_constant(float f);
1782
1783 /**
1784 * Construct an ir_constant from a list of ir_constant values
1785 */
1786 ir_constant(const struct glsl_type *type, exec_list *values);
1787
1788 /**
1789 * Construct an ir_constant from a scalar component of another ir_constant
1790 *
1791 * The new \c ir_constant inherits the type of the component from the
1792 * source constant.
1793 *
1794 * \note
1795 * In the case of a matrix constant, the new constant is a scalar, \b not
1796 * a vector.
1797 */
1798 ir_constant(const ir_constant *c, unsigned i);
1799
1800 /**
1801 * Return a new ir_constant of the specified type containing all zeros.
1802 */
1803 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1804
1805 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1806
1807 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1808
1809 virtual ir_constant *as_constant()
1810 {
1811 return this;
1812 }
1813
1814 virtual void accept(ir_visitor *v)
1815 {
1816 v->visit(this);
1817 }
1818
1819 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1820
1821 /**
1822 * Get a particular component of a constant as a specific type
1823 *
1824 * This is useful, for example, to get a value from an integer constant
1825 * as a float or bool. This appears frequently when constructors are
1826 * called with all constant parameters.
1827 */
1828 /*@{*/
1829 bool get_bool_component(unsigned i) const;
1830 float get_float_component(unsigned i) const;
1831 int get_int_component(unsigned i) const;
1832 unsigned get_uint_component(unsigned i) const;
1833 /*@}*/
1834
1835 ir_constant *get_array_element(unsigned i) const;
1836
1837 ir_constant *get_record_field(const char *name);
1838
1839 /**
1840 * Copy the values on another constant at a given offset.
1841 *
1842 * The offset is ignored for array or struct copies, it's only for
1843 * scalars or vectors into vectors or matrices.
1844 *
1845 * With identical types on both sides and zero offset it's clone()
1846 * without creating a new object.
1847 */
1848
1849 void copy_offset(ir_constant *src, int offset);
1850
1851 /**
1852 * Copy the values on another constant at a given offset and
1853 * following an assign-like mask.
1854 *
1855 * The mask is ignored for scalars.
1856 *
1857 * Note that this function only handles what assign can handle,
1858 * i.e. at most a vector as source and a column of a matrix as
1859 * destination.
1860 */
1861
1862 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
1863
1864 /**
1865 * Determine whether a constant has the same value as another constant
1866 *
1867 * \sa ir_constant::is_zero, ir_constant::is_one,
1868 * ir_constant::is_negative_one, ir_constant::is_basis
1869 */
1870 bool has_value(const ir_constant *) const;
1871
1872 virtual bool is_zero() const;
1873 virtual bool is_one() const;
1874 virtual bool is_negative_one() const;
1875 virtual bool is_basis() const;
1876
1877 /**
1878 * Value of the constant.
1879 *
1880 * The field used to back the values supplied by the constant is determined
1881 * by the type associated with the \c ir_instruction. Constants may be
1882 * scalars, vectors, or matrices.
1883 */
1884 union ir_constant_data value;
1885
1886 /* Array elements */
1887 ir_constant **array_elements;
1888
1889 /* Structure fields */
1890 exec_list components;
1891
1892 private:
1893 /**
1894 * Parameterless constructor only used by the clone method
1895 */
1896 ir_constant(void);
1897 };
1898
1899 /*@}*/
1900
1901 /**
1902 * Apply a visitor to each IR node in a list
1903 */
1904 void
1905 visit_exec_list(exec_list *list, ir_visitor *visitor);
1906
1907 /**
1908 * Validate invariants on each IR node in a list
1909 */
1910 void validate_ir_tree(exec_list *instructions);
1911
1912 struct _mesa_glsl_parse_state;
1913 struct gl_shader_program;
1914
1915 /**
1916 * Detect whether an unlinked shader contains static recursion
1917 *
1918 * If the list of instructions is determined to contain static recursion,
1919 * \c _mesa_glsl_error will be called to emit error messages for each function
1920 * that is in the recursion cycle.
1921 */
1922 void
1923 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
1924 exec_list *instructions);
1925
1926 /**
1927 * Detect whether a linked shader contains static recursion
1928 *
1929 * If the list of instructions is determined to contain static recursion,
1930 * \c link_error_printf will be called to emit error messages for each function
1931 * that is in the recursion cycle. In addition,
1932 * \c gl_shader_program::LinkStatus will be set to false.
1933 */
1934 void
1935 detect_recursion_linked(struct gl_shader_program *prog,
1936 exec_list *instructions);
1937
1938 /**
1939 * Make a clone of each IR instruction in a list
1940 *
1941 * \param in List of IR instructions that are to be cloned
1942 * \param out List to hold the cloned instructions
1943 */
1944 void
1945 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1946
1947 extern void
1948 _mesa_glsl_initialize_variables(exec_list *instructions,
1949 struct _mesa_glsl_parse_state *state);
1950
1951 extern void
1952 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
1953
1954 extern void
1955 _mesa_glsl_release_functions(void);
1956
1957 extern void
1958 reparent_ir(exec_list *list, void *mem_ctx);
1959
1960 struct glsl_symbol_table;
1961
1962 extern void
1963 import_prototypes(const exec_list *source, exec_list *dest,
1964 struct glsl_symbol_table *symbols, void *mem_ctx);
1965
1966 extern bool
1967 ir_has_call(ir_instruction *ir);
1968
1969 extern void
1970 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
1971 bool is_fragment_shader);
1972
1973 extern char *
1974 prototype_string(const glsl_type *return_type, const char *name,
1975 exec_list *parameters);
1976
1977 #endif /* IR_H */