glsl: Initialize coordinate to NULL in ir_texture constructor.
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 /**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45 /**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor. While using type tags is not very C++, it is extremely
51 * convenient. For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types. For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59 enum ir_node_type {
60 /**
61 * Zero is unused so that the IR validator can detect cases where
62 * \c ir_instruction::ir_type has not been initialized.
63 */
64 ir_type_unset,
65 ir_type_variable,
66 ir_type_assignment,
67 ir_type_call,
68 ir_type_constant,
69 ir_type_dereference_array,
70 ir_type_dereference_record,
71 ir_type_dereference_variable,
72 ir_type_discard,
73 ir_type_expression,
74 ir_type_function,
75 ir_type_function_signature,
76 ir_type_if,
77 ir_type_loop,
78 ir_type_loop_jump,
79 ir_type_return,
80 ir_type_swizzle,
81 ir_type_texture,
82 ir_type_max /**< maximum ir_type enum number, for validation */
83 };
84
85 /**
86 * Base class of all IR instructions
87 */
88 class ir_instruction : public exec_node {
89 public:
90 enum ir_node_type ir_type;
91
92 /**
93 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
94 * there's a virtual destructor present. Because we almost
95 * universally use ralloc for our memory management of
96 * ir_instructions, the destructor doesn't need to do any work.
97 */
98 virtual ~ir_instruction()
99 {
100 }
101
102 /** ir_print_visitor helper for debugging. */
103 void print(void) const;
104
105 virtual void accept(ir_visitor *) = 0;
106 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
107 virtual ir_instruction *clone(void *mem_ctx,
108 struct hash_table *ht) const = 0;
109
110 /**
111 * \name IR instruction downcast functions
112 *
113 * These functions either cast the object to a derived class or return
114 * \c NULL if the object's type does not match the specified derived class.
115 * Additional downcast functions will be added as needed.
116 */
117 /*@{*/
118 virtual class ir_variable * as_variable() { return NULL; }
119 virtual class ir_function * as_function() { return NULL; }
120 virtual class ir_dereference * as_dereference() { return NULL; }
121 virtual class ir_dereference_array * as_dereference_array() { return NULL; }
122 virtual class ir_dereference_variable *as_dereference_variable() { return NULL; }
123 virtual class ir_expression * as_expression() { return NULL; }
124 virtual class ir_rvalue * as_rvalue() { return NULL; }
125 virtual class ir_loop * as_loop() { return NULL; }
126 virtual class ir_assignment * as_assignment() { return NULL; }
127 virtual class ir_call * as_call() { return NULL; }
128 virtual class ir_return * as_return() { return NULL; }
129 virtual class ir_if * as_if() { return NULL; }
130 virtual class ir_swizzle * as_swizzle() { return NULL; }
131 virtual class ir_constant * as_constant() { return NULL; }
132 virtual class ir_discard * as_discard() { return NULL; }
133 /*@}*/
134
135 protected:
136 ir_instruction()
137 {
138 ir_type = ir_type_unset;
139 }
140 };
141
142
143 /**
144 * The base class for all "values"/expression trees.
145 */
146 class ir_rvalue : public ir_instruction {
147 public:
148 const struct glsl_type *type;
149
150 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
151
152 virtual void accept(ir_visitor *v)
153 {
154 v->visit(this);
155 }
156
157 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
158
159 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
160
161 virtual ir_rvalue * as_rvalue()
162 {
163 return this;
164 }
165
166 ir_rvalue *as_rvalue_to_saturate();
167
168 virtual bool is_lvalue() const
169 {
170 return false;
171 }
172
173 /**
174 * Get the variable that is ultimately referenced by an r-value
175 */
176 virtual ir_variable *variable_referenced() const
177 {
178 return NULL;
179 }
180
181
182 /**
183 * If an r-value is a reference to a whole variable, get that variable
184 *
185 * \return
186 * Pointer to a variable that is completely dereferenced by the r-value. If
187 * the r-value is not a dereference or the dereference does not access the
188 * entire variable (i.e., it's just one array element, struct field), \c NULL
189 * is returned.
190 */
191 virtual ir_variable *whole_variable_referenced()
192 {
193 return NULL;
194 }
195
196 /**
197 * Determine if an r-value has the value zero
198 *
199 * The base implementation of this function always returns \c false. The
200 * \c ir_constant class over-rides this function to return \c true \b only
201 * for vector and scalar types that have all elements set to the value
202 * zero (or \c false for booleans).
203 *
204 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one,
205 * ir_constant::is_basis
206 */
207 virtual bool is_zero() const;
208
209 /**
210 * Determine if an r-value has the value one
211 *
212 * The base implementation of this function always returns \c false. The
213 * \c ir_constant class over-rides this function to return \c true \b only
214 * for vector and scalar types that have all elements set to the value
215 * one (or \c true for booleans).
216 *
217 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one,
218 * ir_constant::is_basis
219 */
220 virtual bool is_one() const;
221
222 /**
223 * Determine if an r-value has the value negative one
224 *
225 * The base implementation of this function always returns \c false. The
226 * \c ir_constant class over-rides this function to return \c true \b only
227 * for vector and scalar types that have all elements set to the value
228 * negative one. For boolean types, the result is always \c false.
229 *
230 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
231 * ir_constant::is_basis
232 */
233 virtual bool is_negative_one() const;
234
235 /**
236 * Determine if an r-value is a basis vector
237 *
238 * The base implementation of this function always returns \c false. The
239 * \c ir_constant class over-rides this function to return \c true \b only
240 * for vector and scalar types that have one element set to the value one,
241 * and the other elements set to the value zero. For boolean types, the
242 * result is always \c false.
243 *
244 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one,
245 * is_constant::is_negative_one
246 */
247 virtual bool is_basis() const;
248
249
250 /**
251 * Return a generic value of error_type.
252 *
253 * Allocation will be performed with 'mem_ctx' as ralloc owner.
254 */
255 static ir_rvalue *error_value(void *mem_ctx);
256
257 protected:
258 ir_rvalue();
259 };
260
261
262 /**
263 * Variable storage classes
264 */
265 enum ir_variable_mode {
266 ir_var_auto = 0, /**< Function local variables and globals. */
267 ir_var_uniform, /**< Variable declared as a uniform. */
268 ir_var_in,
269 ir_var_out,
270 ir_var_inout,
271 ir_var_const_in, /**< "in" param that must be a constant expression */
272 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
273 ir_var_temporary /**< Temporary variable generated during compilation. */
274 };
275
276 /**
277 * \brief Layout qualifiers for gl_FragDepth.
278 *
279 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
280 * with a layout qualifier.
281 */
282 enum ir_depth_layout {
283 ir_depth_layout_none, /**< No depth layout is specified. */
284 ir_depth_layout_any,
285 ir_depth_layout_greater,
286 ir_depth_layout_less,
287 ir_depth_layout_unchanged
288 };
289
290 /**
291 * \brief Convert depth layout qualifier to string.
292 */
293 const char*
294 depth_layout_string(ir_depth_layout layout);
295
296 /**
297 * Description of built-in state associated with a uniform
298 *
299 * \sa ir_variable::state_slots
300 */
301 struct ir_state_slot {
302 int tokens[5];
303 int swizzle;
304 };
305
306 class ir_variable : public ir_instruction {
307 public:
308 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
309
310 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
311
312 virtual ir_variable *as_variable()
313 {
314 return this;
315 }
316
317 virtual void accept(ir_visitor *v)
318 {
319 v->visit(this);
320 }
321
322 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
323
324
325 /**
326 * Get the string value for the interpolation qualifier
327 *
328 * \return The string that would be used in a shader to specify \c
329 * mode will be returned.
330 *
331 * This function is used to generate error messages of the form "shader
332 * uses %s interpolation qualifier", so in the case where there is no
333 * interpolation qualifier, it returns "no".
334 *
335 * This function should only be used on a shader input or output variable.
336 */
337 const char *interpolation_string() const;
338
339 /**
340 * Determine how this variable should be interpolated based on its
341 * interpolation qualifier (if present), whether it is gl_Color or
342 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
343 * state.
344 *
345 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
346 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
347 */
348 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
349
350 /**
351 * Declared type of the variable
352 */
353 const struct glsl_type *type;
354
355 /**
356 * Declared name of the variable
357 */
358 const char *name;
359
360 /**
361 * Highest element accessed with a constant expression array index
362 *
363 * Not used for non-array variables.
364 */
365 unsigned max_array_access;
366
367 /**
368 * Is the variable read-only?
369 *
370 * This is set for variables declared as \c const, shader inputs,
371 * and uniforms.
372 */
373 unsigned read_only:1;
374 unsigned centroid:1;
375 unsigned invariant:1;
376
377 /**
378 * Has this variable been used for reading or writing?
379 *
380 * Several GLSL semantic checks require knowledge of whether or not a
381 * variable has been used. For example, it is an error to redeclare a
382 * variable as invariant after it has been used.
383 *
384 * This is only maintained in the ast_to_hir.cpp path, not in
385 * Mesa's fixed function or ARB program paths.
386 */
387 unsigned used:1;
388
389 /**
390 * Has this variable been statically assigned?
391 *
392 * This answers whether the variable was assigned in any path of
393 * the shader during ast_to_hir. This doesn't answer whether it is
394 * still written after dead code removal, nor is it maintained in
395 * non-ast_to_hir.cpp (GLSL parsing) paths.
396 */
397 unsigned assigned:1;
398
399 /**
400 * Storage class of the variable.
401 *
402 * \sa ir_variable_mode
403 */
404 unsigned mode:3;
405
406 /**
407 * Interpolation mode for shader inputs / outputs
408 *
409 * \sa ir_variable_interpolation
410 */
411 unsigned interpolation:2;
412
413 /**
414 * \name ARB_fragment_coord_conventions
415 * @{
416 */
417 unsigned origin_upper_left:1;
418 unsigned pixel_center_integer:1;
419 /*@}*/
420
421 /**
422 * Was the location explicitly set in the shader?
423 *
424 * If the location is explicitly set in the shader, it \b cannot be changed
425 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
426 * no effect).
427 */
428 unsigned explicit_location:1;
429 unsigned explicit_index:1;
430
431 /**
432 * Does this variable have an initializer?
433 *
434 * This is used by the linker to cross-validiate initializers of global
435 * variables.
436 */
437 unsigned has_initializer:1;
438
439 /**
440 * \brief Layout qualifier for gl_FragDepth.
441 *
442 * This is not equal to \c ir_depth_layout_none if and only if this
443 * variable is \c gl_FragDepth and a layout qualifier is specified.
444 */
445 ir_depth_layout depth_layout;
446
447 /**
448 * Storage location of the base of this variable
449 *
450 * The precise meaning of this field depends on the nature of the variable.
451 *
452 * - Vertex shader input: one of the values from \c gl_vert_attrib.
453 * - Vertex shader output: one of the values from \c gl_vert_result.
454 * - Fragment shader input: one of the values from \c gl_frag_attrib.
455 * - Fragment shader output: one of the values from \c gl_frag_result.
456 * - Uniforms: Per-stage uniform slot number.
457 * - Other: This field is not currently used.
458 *
459 * If the variable is a uniform, shader input, or shader output, and the
460 * slot has not been assigned, the value will be -1.
461 */
462 int location;
463
464 /**
465 * output index for dual source blending.
466 */
467 int index;
468
469 /**
470 * Built-in state that backs this uniform
471 *
472 * Once set at variable creation, \c state_slots must remain invariant.
473 * This is because, ideally, this array would be shared by all clones of
474 * this variable in the IR tree. In other words, we'd really like for it
475 * to be a fly-weight.
476 *
477 * If the variable is not a uniform, \c num_state_slots will be zero and
478 * \c state_slots will be \c NULL.
479 */
480 /*@{*/
481 unsigned num_state_slots; /**< Number of state slots used */
482 ir_state_slot *state_slots; /**< State descriptors. */
483 /*@}*/
484
485 /**
486 * Emit a warning if this variable is accessed.
487 */
488 const char *warn_extension;
489
490 /**
491 * Value assigned in the initializer of a variable declared "const"
492 */
493 ir_constant *constant_value;
494
495 /**
496 * Constant expression assigned in the initializer of the variable
497 *
498 * \warning
499 * This field and \c ::constant_value are distinct. Even if the two fields
500 * refer to constants with the same value, they must point to separate
501 * objects.
502 */
503 ir_constant *constant_initializer;
504 };
505
506
507 /*@{*/
508 /**
509 * The representation of a function instance; may be the full definition or
510 * simply a prototype.
511 */
512 class ir_function_signature : public ir_instruction {
513 /* An ir_function_signature will be part of the list of signatures in
514 * an ir_function.
515 */
516 public:
517 ir_function_signature(const glsl_type *return_type);
518
519 virtual ir_function_signature *clone(void *mem_ctx,
520 struct hash_table *ht) const;
521 ir_function_signature *clone_prototype(void *mem_ctx,
522 struct hash_table *ht) const;
523
524 virtual void accept(ir_visitor *v)
525 {
526 v->visit(this);
527 }
528
529 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
530
531 /**
532 * Attempt to evaluate this function as a constant expression,
533 * given a list of the actual parameters and the variable context.
534 * Returns NULL for non-built-ins.
535 */
536 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
537
538 /**
539 * Get the name of the function for which this is a signature
540 */
541 const char *function_name() const;
542
543 /**
544 * Get a handle to the function for which this is a signature
545 *
546 * There is no setter function, this function returns a \c const pointer,
547 * and \c ir_function_signature::_function is private for a reason. The
548 * only way to make a connection between a function and function signature
549 * is via \c ir_function::add_signature. This helps ensure that certain
550 * invariants (i.e., a function signature is in the list of signatures for
551 * its \c _function) are met.
552 *
553 * \sa ir_function::add_signature
554 */
555 inline const class ir_function *function() const
556 {
557 return this->_function;
558 }
559
560 /**
561 * Check whether the qualifiers match between this signature's parameters
562 * and the supplied parameter list. If not, returns the name of the first
563 * parameter with mismatched qualifiers (for use in error messages).
564 */
565 const char *qualifiers_match(exec_list *params);
566
567 /**
568 * Replace the current parameter list with the given one. This is useful
569 * if the current information came from a prototype, and either has invalid
570 * or missing parameter names.
571 */
572 void replace_parameters(exec_list *new_params);
573
574 /**
575 * Function return type.
576 *
577 * \note This discards the optional precision qualifier.
578 */
579 const struct glsl_type *return_type;
580
581 /**
582 * List of ir_variable of function parameters.
583 *
584 * This represents the storage. The paramaters passed in a particular
585 * call will be in ir_call::actual_paramaters.
586 */
587 struct exec_list parameters;
588
589 /** Whether or not this function has a body (which may be empty). */
590 unsigned is_defined:1;
591
592 /** Whether or not this function signature is a built-in. */
593 unsigned is_builtin:1;
594
595 /** Body of instructions in the function. */
596 struct exec_list body;
597
598 private:
599 /** Function of which this signature is one overload. */
600 class ir_function *_function;
601
602 /** Function signature of which this one is a prototype clone */
603 const ir_function_signature *origin;
604
605 friend class ir_function;
606
607 /**
608 * Helper function to run a list of instructions for constant
609 * expression evaluation.
610 *
611 * The hash table represents the values of the visible variables.
612 * There are no scoping issues because the table is indexed on
613 * ir_variable pointers, not variable names.
614 *
615 * Returns false if the expression is not constant, true otherwise,
616 * and the value in *result if result is non-NULL.
617 */
618 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
619 struct hash_table *variable_context,
620 ir_constant **result);
621 };
622
623
624 /**
625 * Header for tracking multiple overloaded functions with the same name.
626 * Contains a list of ir_function_signatures representing each of the
627 * actual functions.
628 */
629 class ir_function : public ir_instruction {
630 public:
631 ir_function(const char *name);
632
633 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
634
635 virtual ir_function *as_function()
636 {
637 return this;
638 }
639
640 virtual void accept(ir_visitor *v)
641 {
642 v->visit(this);
643 }
644
645 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
646
647 void add_signature(ir_function_signature *sig)
648 {
649 sig->_function = this;
650 this->signatures.push_tail(sig);
651 }
652
653 /**
654 * Get an iterator for the set of function signatures
655 */
656 exec_list_iterator iterator()
657 {
658 return signatures.iterator();
659 }
660
661 /**
662 * Find a signature that matches a set of actual parameters, taking implicit
663 * conversions into account. Also flags whether the match was exact.
664 */
665 ir_function_signature *matching_signature(const exec_list *actual_param,
666 bool *match_is_exact);
667
668 /**
669 * Find a signature that matches a set of actual parameters, taking implicit
670 * conversions into account.
671 */
672 ir_function_signature *matching_signature(const exec_list *actual_param);
673
674 /**
675 * Find a signature that exactly matches a set of actual parameters without
676 * any implicit type conversions.
677 */
678 ir_function_signature *exact_matching_signature(const exec_list *actual_ps);
679
680 /**
681 * Name of the function.
682 */
683 const char *name;
684
685 /** Whether or not this function has a signature that isn't a built-in. */
686 bool has_user_signature();
687
688 /**
689 * List of ir_function_signature for each overloaded function with this name.
690 */
691 struct exec_list signatures;
692 };
693
694 inline const char *ir_function_signature::function_name() const
695 {
696 return this->_function->name;
697 }
698 /*@}*/
699
700
701 /**
702 * IR instruction representing high-level if-statements
703 */
704 class ir_if : public ir_instruction {
705 public:
706 ir_if(ir_rvalue *condition)
707 : condition(condition)
708 {
709 ir_type = ir_type_if;
710 }
711
712 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
713
714 virtual ir_if *as_if()
715 {
716 return this;
717 }
718
719 virtual void accept(ir_visitor *v)
720 {
721 v->visit(this);
722 }
723
724 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
725
726 ir_rvalue *condition;
727 /** List of ir_instruction for the body of the then branch */
728 exec_list then_instructions;
729 /** List of ir_instruction for the body of the else branch */
730 exec_list else_instructions;
731 };
732
733
734 /**
735 * IR instruction representing a high-level loop structure.
736 */
737 class ir_loop : public ir_instruction {
738 public:
739 ir_loop();
740
741 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
742
743 virtual void accept(ir_visitor *v)
744 {
745 v->visit(this);
746 }
747
748 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
749
750 virtual ir_loop *as_loop()
751 {
752 return this;
753 }
754
755 /**
756 * Get an iterator for the instructions of the loop body
757 */
758 exec_list_iterator iterator()
759 {
760 return body_instructions.iterator();
761 }
762
763 /** List of ir_instruction that make up the body of the loop. */
764 exec_list body_instructions;
765
766 /**
767 * \name Loop counter and controls
768 *
769 * Represents a loop like a FORTRAN \c do-loop.
770 *
771 * \note
772 * If \c from and \c to are the same value, the loop will execute once.
773 */
774 /*@{*/
775 ir_rvalue *from; /** Value of the loop counter on the first
776 * iteration of the loop.
777 */
778 ir_rvalue *to; /** Value of the loop counter on the last
779 * iteration of the loop.
780 */
781 ir_rvalue *increment;
782 ir_variable *counter;
783
784 /**
785 * Comparison operation in the loop terminator.
786 *
787 * If any of the loop control fields are non-\c NULL, this field must be
788 * one of \c ir_binop_less, \c ir_binop_greater, \c ir_binop_lequal,
789 * \c ir_binop_gequal, \c ir_binop_equal, or \c ir_binop_nequal.
790 */
791 int cmp;
792 /*@}*/
793 };
794
795
796 class ir_assignment : public ir_instruction {
797 public:
798 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
799
800 /**
801 * Construct an assignment with an explicit write mask
802 *
803 * \note
804 * Since a write mask is supplied, the LHS must already be a bare
805 * \c ir_dereference. The cannot be any swizzles in the LHS.
806 */
807 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
808 unsigned write_mask);
809
810 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
811
812 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
813
814 virtual void accept(ir_visitor *v)
815 {
816 v->visit(this);
817 }
818
819 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
820
821 virtual ir_assignment * as_assignment()
822 {
823 return this;
824 }
825
826 /**
827 * Get a whole variable written by an assignment
828 *
829 * If the LHS of the assignment writes a whole variable, the variable is
830 * returned. Otherwise \c NULL is returned. Examples of whole-variable
831 * assignment are:
832 *
833 * - Assigning to a scalar
834 * - Assigning to all components of a vector
835 * - Whole array (or matrix) assignment
836 * - Whole structure assignment
837 */
838 ir_variable *whole_variable_written();
839
840 /**
841 * Set the LHS of an assignment
842 */
843 void set_lhs(ir_rvalue *lhs);
844
845 /**
846 * Left-hand side of the assignment.
847 *
848 * This should be treated as read only. If you need to set the LHS of an
849 * assignment, use \c ir_assignment::set_lhs.
850 */
851 ir_dereference *lhs;
852
853 /**
854 * Value being assigned
855 */
856 ir_rvalue *rhs;
857
858 /**
859 * Optional condition for the assignment.
860 */
861 ir_rvalue *condition;
862
863
864 /**
865 * Component mask written
866 *
867 * For non-vector types in the LHS, this field will be zero. For vector
868 * types, a bit will be set for each component that is written. Note that
869 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
870 *
871 * A partially-set write mask means that each enabled channel gets
872 * the value from a consecutive channel of the rhs. For example,
873 * to write just .xyw of gl_FrontColor with color:
874 *
875 * (assign (constant bool (1)) (xyw)
876 * (var_ref gl_FragColor)
877 * (swiz xyw (var_ref color)))
878 */
879 unsigned write_mask:4;
880 };
881
882 /* Update ir_expression::num_operands() and operator_strs when
883 * updating this list.
884 */
885 enum ir_expression_operation {
886 ir_unop_bit_not,
887 ir_unop_logic_not,
888 ir_unop_neg,
889 ir_unop_abs,
890 ir_unop_sign,
891 ir_unop_rcp,
892 ir_unop_rsq,
893 ir_unop_sqrt,
894 ir_unop_exp, /**< Log base e on gentype */
895 ir_unop_log, /**< Natural log on gentype */
896 ir_unop_exp2,
897 ir_unop_log2,
898 ir_unop_f2i, /**< Float-to-integer conversion. */
899 ir_unop_f2u, /**< Float-to-unsigned conversion. */
900 ir_unop_i2f, /**< Integer-to-float conversion. */
901 ir_unop_f2b, /**< Float-to-boolean conversion */
902 ir_unop_b2f, /**< Boolean-to-float conversion */
903 ir_unop_i2b, /**< int-to-boolean conversion */
904 ir_unop_b2i, /**< Boolean-to-int conversion */
905 ir_unop_u2f, /**< Unsigned-to-float conversion. */
906 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
907 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
908 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
909 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
910 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
911 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
912 ir_unop_any,
913
914 /**
915 * \name Unary floating-point rounding operations.
916 */
917 /*@{*/
918 ir_unop_trunc,
919 ir_unop_ceil,
920 ir_unop_floor,
921 ir_unop_fract,
922 ir_unop_round_even,
923 /*@}*/
924
925 /**
926 * \name Trigonometric operations.
927 */
928 /*@{*/
929 ir_unop_sin,
930 ir_unop_cos,
931 ir_unop_sin_reduced, /**< Reduced range sin. [-pi, pi] */
932 ir_unop_cos_reduced, /**< Reduced range cos. [-pi, pi] */
933 /*@}*/
934
935 /**
936 * \name Partial derivatives.
937 */
938 /*@{*/
939 ir_unop_dFdx,
940 ir_unop_dFdy,
941 /*@}*/
942
943 ir_unop_noise,
944
945 /**
946 * A sentinel marking the last of the unary operations.
947 */
948 ir_last_unop = ir_unop_noise,
949
950 ir_binop_add,
951 ir_binop_sub,
952 ir_binop_mul,
953 ir_binop_div,
954
955 /**
956 * Takes one of two combinations of arguments:
957 *
958 * - mod(vecN, vecN)
959 * - mod(vecN, float)
960 *
961 * Does not take integer types.
962 */
963 ir_binop_mod,
964
965 /**
966 * \name Binary comparison operators which return a boolean vector.
967 * The type of both operands must be equal.
968 */
969 /*@{*/
970 ir_binop_less,
971 ir_binop_greater,
972 ir_binop_lequal,
973 ir_binop_gequal,
974 ir_binop_equal,
975 ir_binop_nequal,
976 /**
977 * Returns single boolean for whether all components of operands[0]
978 * equal the components of operands[1].
979 */
980 ir_binop_all_equal,
981 /**
982 * Returns single boolean for whether any component of operands[0]
983 * is not equal to the corresponding component of operands[1].
984 */
985 ir_binop_any_nequal,
986 /*@}*/
987
988 /**
989 * \name Bit-wise binary operations.
990 */
991 /*@{*/
992 ir_binop_lshift,
993 ir_binop_rshift,
994 ir_binop_bit_and,
995 ir_binop_bit_xor,
996 ir_binop_bit_or,
997 /*@}*/
998
999 ir_binop_logic_and,
1000 ir_binop_logic_xor,
1001 ir_binop_logic_or,
1002
1003 ir_binop_dot,
1004 ir_binop_min,
1005 ir_binop_max,
1006
1007 ir_binop_pow,
1008
1009 /**
1010 * A sentinel marking the last of the binary operations.
1011 */
1012 ir_last_binop = ir_binop_pow,
1013
1014 ir_quadop_vector,
1015
1016 /**
1017 * A sentinel marking the last of all operations.
1018 */
1019 ir_last_opcode = ir_last_binop
1020 };
1021
1022 class ir_expression : public ir_rvalue {
1023 public:
1024 /**
1025 * Constructor for unary operation expressions
1026 */
1027 ir_expression(int op, const struct glsl_type *type, ir_rvalue *);
1028 ir_expression(int op, ir_rvalue *);
1029
1030 /**
1031 * Constructor for binary operation expressions
1032 */
1033 ir_expression(int op, const struct glsl_type *type,
1034 ir_rvalue *, ir_rvalue *);
1035 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1036
1037 /**
1038 * Constructor for quad operator expressions
1039 */
1040 ir_expression(int op, const struct glsl_type *type,
1041 ir_rvalue *, ir_rvalue *, ir_rvalue *, ir_rvalue *);
1042
1043 virtual ir_expression *as_expression()
1044 {
1045 return this;
1046 }
1047
1048 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1049
1050 /**
1051 * Attempt to constant-fold the expression
1052 *
1053 * The "variable_context" hash table links ir_variable * to ir_constant *
1054 * that represent the variables' values. \c NULL represents an empty
1055 * context.
1056 *
1057 * If the expression cannot be constant folded, this method will return
1058 * \c NULL.
1059 */
1060 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1061
1062 /**
1063 * Determine the number of operands used by an expression
1064 */
1065 static unsigned int get_num_operands(ir_expression_operation);
1066
1067 /**
1068 * Determine the number of operands used by an expression
1069 */
1070 unsigned int get_num_operands() const
1071 {
1072 return (this->operation == ir_quadop_vector)
1073 ? this->type->vector_elements : get_num_operands(operation);
1074 }
1075
1076 /**
1077 * Return a string representing this expression's operator.
1078 */
1079 const char *operator_string();
1080
1081 /**
1082 * Return a string representing this expression's operator.
1083 */
1084 static const char *operator_string(ir_expression_operation);
1085
1086
1087 /**
1088 * Do a reverse-lookup to translate the given string into an operator.
1089 */
1090 static ir_expression_operation get_operator(const char *);
1091
1092 virtual void accept(ir_visitor *v)
1093 {
1094 v->visit(this);
1095 }
1096
1097 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1098
1099 ir_expression_operation operation;
1100 ir_rvalue *operands[4];
1101 };
1102
1103
1104 /**
1105 * HIR instruction representing a high-level function call, containing a list
1106 * of parameters and returning a value in the supplied temporary.
1107 */
1108 class ir_call : public ir_instruction {
1109 public:
1110 ir_call(ir_function_signature *callee,
1111 ir_dereference_variable *return_deref,
1112 exec_list *actual_parameters)
1113 : return_deref(return_deref), callee(callee)
1114 {
1115 ir_type = ir_type_call;
1116 assert(callee->return_type != NULL);
1117 actual_parameters->move_nodes_to(& this->actual_parameters);
1118 this->use_builtin = callee->is_builtin;
1119 }
1120
1121 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1122
1123 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1124
1125 virtual ir_call *as_call()
1126 {
1127 return this;
1128 }
1129
1130 virtual void accept(ir_visitor *v)
1131 {
1132 v->visit(this);
1133 }
1134
1135 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1136
1137 /**
1138 * Get an iterator for the set of acutal parameters
1139 */
1140 exec_list_iterator iterator()
1141 {
1142 return actual_parameters.iterator();
1143 }
1144
1145 /**
1146 * Get the name of the function being called.
1147 */
1148 const char *callee_name() const
1149 {
1150 return callee->function_name();
1151 }
1152
1153 /**
1154 * Generates an inline version of the function before @ir,
1155 * storing the return value in return_deref.
1156 */
1157 void generate_inline(ir_instruction *ir);
1158
1159 /**
1160 * Storage for the function's return value.
1161 * This must be NULL if the return type is void.
1162 */
1163 ir_dereference_variable *return_deref;
1164
1165 /**
1166 * The specific function signature being called.
1167 */
1168 ir_function_signature *callee;
1169
1170 /* List of ir_rvalue of paramaters passed in this call. */
1171 exec_list actual_parameters;
1172
1173 /** Should this call only bind to a built-in function? */
1174 bool use_builtin;
1175 };
1176
1177
1178 /**
1179 * \name Jump-like IR instructions.
1180 *
1181 * These include \c break, \c continue, \c return, and \c discard.
1182 */
1183 /*@{*/
1184 class ir_jump : public ir_instruction {
1185 protected:
1186 ir_jump()
1187 {
1188 ir_type = ir_type_unset;
1189 }
1190 };
1191
1192 class ir_return : public ir_jump {
1193 public:
1194 ir_return()
1195 : value(NULL)
1196 {
1197 this->ir_type = ir_type_return;
1198 }
1199
1200 ir_return(ir_rvalue *value)
1201 : value(value)
1202 {
1203 this->ir_type = ir_type_return;
1204 }
1205
1206 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1207
1208 virtual ir_return *as_return()
1209 {
1210 return this;
1211 }
1212
1213 ir_rvalue *get_value() const
1214 {
1215 return value;
1216 }
1217
1218 virtual void accept(ir_visitor *v)
1219 {
1220 v->visit(this);
1221 }
1222
1223 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1224
1225 ir_rvalue *value;
1226 };
1227
1228
1229 /**
1230 * Jump instructions used inside loops
1231 *
1232 * These include \c break and \c continue. The \c break within a loop is
1233 * different from the \c break within a switch-statement.
1234 *
1235 * \sa ir_switch_jump
1236 */
1237 class ir_loop_jump : public ir_jump {
1238 public:
1239 enum jump_mode {
1240 jump_break,
1241 jump_continue
1242 };
1243
1244 ir_loop_jump(jump_mode mode)
1245 {
1246 this->ir_type = ir_type_loop_jump;
1247 this->mode = mode;
1248 }
1249
1250 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1251
1252 virtual void accept(ir_visitor *v)
1253 {
1254 v->visit(this);
1255 }
1256
1257 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1258
1259 bool is_break() const
1260 {
1261 return mode == jump_break;
1262 }
1263
1264 bool is_continue() const
1265 {
1266 return mode == jump_continue;
1267 }
1268
1269 /** Mode selector for the jump instruction. */
1270 enum jump_mode mode;
1271 };
1272
1273 /**
1274 * IR instruction representing discard statements.
1275 */
1276 class ir_discard : public ir_jump {
1277 public:
1278 ir_discard()
1279 {
1280 this->ir_type = ir_type_discard;
1281 this->condition = NULL;
1282 }
1283
1284 ir_discard(ir_rvalue *cond)
1285 {
1286 this->ir_type = ir_type_discard;
1287 this->condition = cond;
1288 }
1289
1290 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1291
1292 virtual void accept(ir_visitor *v)
1293 {
1294 v->visit(this);
1295 }
1296
1297 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1298
1299 virtual ir_discard *as_discard()
1300 {
1301 return this;
1302 }
1303
1304 ir_rvalue *condition;
1305 };
1306 /*@}*/
1307
1308
1309 /**
1310 * Texture sampling opcodes used in ir_texture
1311 */
1312 enum ir_texture_opcode {
1313 ir_tex, /**< Regular texture look-up */
1314 ir_txb, /**< Texture look-up with LOD bias */
1315 ir_txl, /**< Texture look-up with explicit LOD */
1316 ir_txd, /**< Texture look-up with partial derivatvies */
1317 ir_txf, /**< Texel fetch with explicit LOD */
1318 ir_txs /**< Texture size */
1319 };
1320
1321
1322 /**
1323 * IR instruction to sample a texture
1324 *
1325 * The specific form of the IR instruction depends on the \c mode value
1326 * selected from \c ir_texture_opcodes. In the printed IR, these will
1327 * appear as:
1328 *
1329 * Texel offset (0 or an expression)
1330 * | Projection divisor
1331 * | | Shadow comparitor
1332 * | | |
1333 * v v v
1334 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1335 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1336 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1337 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1338 * (txf <type> <sampler> <coordinate> 0 <lod>)
1339 * (txs <type> <sampler> <lod>)
1340 */
1341 class ir_texture : public ir_rvalue {
1342 public:
1343 ir_texture(enum ir_texture_opcode op)
1344 : op(op), coordinate(NULL), projector(NULL), shadow_comparitor(NULL),
1345 offset(NULL)
1346 {
1347 this->ir_type = ir_type_texture;
1348 }
1349
1350 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1351
1352 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1353
1354 virtual void accept(ir_visitor *v)
1355 {
1356 v->visit(this);
1357 }
1358
1359 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1360
1361 /**
1362 * Return a string representing the ir_texture_opcode.
1363 */
1364 const char *opcode_string();
1365
1366 /** Set the sampler and type. */
1367 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1368
1369 /**
1370 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1371 */
1372 static ir_texture_opcode get_opcode(const char *);
1373
1374 enum ir_texture_opcode op;
1375
1376 /** Sampler to use for the texture access. */
1377 ir_dereference *sampler;
1378
1379 /** Texture coordinate to sample */
1380 ir_rvalue *coordinate;
1381
1382 /**
1383 * Value used for projective divide.
1384 *
1385 * If there is no projective divide (the common case), this will be
1386 * \c NULL. Optimization passes should check for this to point to a constant
1387 * of 1.0 and replace that with \c NULL.
1388 */
1389 ir_rvalue *projector;
1390
1391 /**
1392 * Coordinate used for comparison on shadow look-ups.
1393 *
1394 * If there is no shadow comparison, this will be \c NULL. For the
1395 * \c ir_txf opcode, this *must* be \c NULL.
1396 */
1397 ir_rvalue *shadow_comparitor;
1398
1399 /** Texel offset. */
1400 ir_rvalue *offset;
1401
1402 union {
1403 ir_rvalue *lod; /**< Floating point LOD */
1404 ir_rvalue *bias; /**< Floating point LOD bias */
1405 struct {
1406 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1407 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1408 } grad;
1409 } lod_info;
1410 };
1411
1412
1413 struct ir_swizzle_mask {
1414 unsigned x:2;
1415 unsigned y:2;
1416 unsigned z:2;
1417 unsigned w:2;
1418
1419 /**
1420 * Number of components in the swizzle.
1421 */
1422 unsigned num_components:3;
1423
1424 /**
1425 * Does the swizzle contain duplicate components?
1426 *
1427 * L-value swizzles cannot contain duplicate components.
1428 */
1429 unsigned has_duplicates:1;
1430 };
1431
1432
1433 class ir_swizzle : public ir_rvalue {
1434 public:
1435 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1436 unsigned count);
1437
1438 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1439
1440 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1441
1442 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1443
1444 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1445
1446 virtual ir_swizzle *as_swizzle()
1447 {
1448 return this;
1449 }
1450
1451 /**
1452 * Construct an ir_swizzle from the textual representation. Can fail.
1453 */
1454 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1455
1456 virtual void accept(ir_visitor *v)
1457 {
1458 v->visit(this);
1459 }
1460
1461 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1462
1463 bool is_lvalue() const
1464 {
1465 return val->is_lvalue() && !mask.has_duplicates;
1466 }
1467
1468 /**
1469 * Get the variable that is ultimately referenced by an r-value
1470 */
1471 virtual ir_variable *variable_referenced() const;
1472
1473 ir_rvalue *val;
1474 ir_swizzle_mask mask;
1475
1476 private:
1477 /**
1478 * Initialize the mask component of a swizzle
1479 *
1480 * This is used by the \c ir_swizzle constructors.
1481 */
1482 void init_mask(const unsigned *components, unsigned count);
1483 };
1484
1485
1486 class ir_dereference : public ir_rvalue {
1487 public:
1488 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1489
1490 virtual ir_dereference *as_dereference()
1491 {
1492 return this;
1493 }
1494
1495 bool is_lvalue() const;
1496
1497 /**
1498 * Get the variable that is ultimately referenced by an r-value
1499 */
1500 virtual ir_variable *variable_referenced() const = 0;
1501
1502 /**
1503 * Get the constant that is ultimately referenced by an r-value,
1504 * in a constant expression evaluation context.
1505 *
1506 * The offset is used when the reference is to a specific column of
1507 * a matrix.
1508 */
1509 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const = 0;
1510 };
1511
1512
1513 class ir_dereference_variable : public ir_dereference {
1514 public:
1515 ir_dereference_variable(ir_variable *var);
1516
1517 virtual ir_dereference_variable *clone(void *mem_ctx,
1518 struct hash_table *) const;
1519
1520 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1521
1522 virtual ir_dereference_variable *as_dereference_variable()
1523 {
1524 return this;
1525 }
1526
1527 /**
1528 * Get the variable that is ultimately referenced by an r-value
1529 */
1530 virtual ir_variable *variable_referenced() const
1531 {
1532 return this->var;
1533 }
1534
1535 /**
1536 * Get the constant that is ultimately referenced by an r-value,
1537 * in a constant expression evaluation context.
1538 *
1539 * The offset is used when the reference is to a specific column of
1540 * a matrix.
1541 */
1542 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1543
1544 virtual ir_variable *whole_variable_referenced()
1545 {
1546 /* ir_dereference_variable objects always dereference the entire
1547 * variable. However, if this dereference is dereferenced by anything
1548 * else, the complete deferefernce chain is not a whole-variable
1549 * dereference. This method should only be called on the top most
1550 * ir_rvalue in a dereference chain.
1551 */
1552 return this->var;
1553 }
1554
1555 virtual void accept(ir_visitor *v)
1556 {
1557 v->visit(this);
1558 }
1559
1560 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1561
1562 /**
1563 * Object being dereferenced.
1564 */
1565 ir_variable *var;
1566 };
1567
1568
1569 class ir_dereference_array : public ir_dereference {
1570 public:
1571 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
1572
1573 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
1574
1575 virtual ir_dereference_array *clone(void *mem_ctx,
1576 struct hash_table *) const;
1577
1578 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1579
1580 virtual ir_dereference_array *as_dereference_array()
1581 {
1582 return this;
1583 }
1584
1585 /**
1586 * Get the variable that is ultimately referenced by an r-value
1587 */
1588 virtual ir_variable *variable_referenced() const
1589 {
1590 return this->array->variable_referenced();
1591 }
1592
1593 /**
1594 * Get the constant that is ultimately referenced by an r-value,
1595 * in a constant expression evaluation context.
1596 *
1597 * The offset is used when the reference is to a specific column of
1598 * a matrix.
1599 */
1600 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1601
1602 virtual void accept(ir_visitor *v)
1603 {
1604 v->visit(this);
1605 }
1606
1607 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1608
1609 ir_rvalue *array;
1610 ir_rvalue *array_index;
1611
1612 private:
1613 void set_array(ir_rvalue *value);
1614 };
1615
1616
1617 class ir_dereference_record : public ir_dereference {
1618 public:
1619 ir_dereference_record(ir_rvalue *value, const char *field);
1620
1621 ir_dereference_record(ir_variable *var, const char *field);
1622
1623 virtual ir_dereference_record *clone(void *mem_ctx,
1624 struct hash_table *) const;
1625
1626 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1627
1628 /**
1629 * Get the variable that is ultimately referenced by an r-value
1630 */
1631 virtual ir_variable *variable_referenced() const
1632 {
1633 return this->record->variable_referenced();
1634 }
1635
1636 /**
1637 * Get the constant that is ultimately referenced by an r-value,
1638 * in a constant expression evaluation context.
1639 *
1640 * The offset is used when the reference is to a specific column of
1641 * a matrix.
1642 */
1643 virtual void constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const;
1644
1645 virtual void accept(ir_visitor *v)
1646 {
1647 v->visit(this);
1648 }
1649
1650 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1651
1652 ir_rvalue *record;
1653 const char *field;
1654 };
1655
1656
1657 /**
1658 * Data stored in an ir_constant
1659 */
1660 union ir_constant_data {
1661 unsigned u[16];
1662 int i[16];
1663 float f[16];
1664 bool b[16];
1665 };
1666
1667
1668 class ir_constant : public ir_rvalue {
1669 public:
1670 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
1671 ir_constant(bool b);
1672 ir_constant(unsigned int u);
1673 ir_constant(int i);
1674 ir_constant(float f);
1675
1676 /**
1677 * Construct an ir_constant from a list of ir_constant values
1678 */
1679 ir_constant(const struct glsl_type *type, exec_list *values);
1680
1681 /**
1682 * Construct an ir_constant from a scalar component of another ir_constant
1683 *
1684 * The new \c ir_constant inherits the type of the component from the
1685 * source constant.
1686 *
1687 * \note
1688 * In the case of a matrix constant, the new constant is a scalar, \b not
1689 * a vector.
1690 */
1691 ir_constant(const ir_constant *c, unsigned i);
1692
1693 /**
1694 * Return a new ir_constant of the specified type containing all zeros.
1695 */
1696 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
1697
1698 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
1699
1700 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1701
1702 virtual ir_constant *as_constant()
1703 {
1704 return this;
1705 }
1706
1707 virtual void accept(ir_visitor *v)
1708 {
1709 v->visit(this);
1710 }
1711
1712 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1713
1714 /**
1715 * Get a particular component of a constant as a specific type
1716 *
1717 * This is useful, for example, to get a value from an integer constant
1718 * as a float or bool. This appears frequently when constructors are
1719 * called with all constant parameters.
1720 */
1721 /*@{*/
1722 bool get_bool_component(unsigned i) const;
1723 float get_float_component(unsigned i) const;
1724 int get_int_component(unsigned i) const;
1725 unsigned get_uint_component(unsigned i) const;
1726 /*@}*/
1727
1728 ir_constant *get_array_element(unsigned i) const;
1729
1730 ir_constant *get_record_field(const char *name);
1731
1732 /**
1733 * Copy the values on another constant at a given offset.
1734 *
1735 * The offset is ignored for array or struct copies, it's only for
1736 * scalars or vectors into vectors or matrices.
1737 *
1738 * With identical types on both sides and zero offset it's clone()
1739 * without creating a new object.
1740 */
1741
1742 void copy_offset(ir_constant *src, int offset);
1743
1744 /**
1745 * Copy the values on another constant at a given offset and
1746 * following an assign-like mask.
1747 *
1748 * The mask is ignored for scalars.
1749 *
1750 * Note that this function only handles what assign can handle,
1751 * i.e. at most a vector as source and a column of a matrix as
1752 * destination.
1753 */
1754
1755 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
1756
1757 /**
1758 * Determine whether a constant has the same value as another constant
1759 *
1760 * \sa ir_constant::is_zero, ir_constant::is_one,
1761 * ir_constant::is_negative_one, ir_constant::is_basis
1762 */
1763 bool has_value(const ir_constant *) const;
1764
1765 virtual bool is_zero() const;
1766 virtual bool is_one() const;
1767 virtual bool is_negative_one() const;
1768 virtual bool is_basis() const;
1769
1770 /**
1771 * Value of the constant.
1772 *
1773 * The field used to back the values supplied by the constant is determined
1774 * by the type associated with the \c ir_instruction. Constants may be
1775 * scalars, vectors, or matrices.
1776 */
1777 union ir_constant_data value;
1778
1779 /* Array elements */
1780 ir_constant **array_elements;
1781
1782 /* Structure fields */
1783 exec_list components;
1784
1785 private:
1786 /**
1787 * Parameterless constructor only used by the clone method
1788 */
1789 ir_constant(void);
1790 };
1791
1792 /*@}*/
1793
1794 /**
1795 * Apply a visitor to each IR node in a list
1796 */
1797 void
1798 visit_exec_list(exec_list *list, ir_visitor *visitor);
1799
1800 /**
1801 * Validate invariants on each IR node in a list
1802 */
1803 void validate_ir_tree(exec_list *instructions);
1804
1805 struct _mesa_glsl_parse_state;
1806 struct gl_shader_program;
1807
1808 /**
1809 * Detect whether an unlinked shader contains static recursion
1810 *
1811 * If the list of instructions is determined to contain static recursion,
1812 * \c _mesa_glsl_error will be called to emit error messages for each function
1813 * that is in the recursion cycle.
1814 */
1815 void
1816 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
1817 exec_list *instructions);
1818
1819 /**
1820 * Detect whether a linked shader contains static recursion
1821 *
1822 * If the list of instructions is determined to contain static recursion,
1823 * \c link_error_printf will be called to emit error messages for each function
1824 * that is in the recursion cycle. In addition,
1825 * \c gl_shader_program::LinkStatus will be set to false.
1826 */
1827 void
1828 detect_recursion_linked(struct gl_shader_program *prog,
1829 exec_list *instructions);
1830
1831 /**
1832 * Make a clone of each IR instruction in a list
1833 *
1834 * \param in List of IR instructions that are to be cloned
1835 * \param out List to hold the cloned instructions
1836 */
1837 void
1838 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
1839
1840 extern void
1841 _mesa_glsl_initialize_variables(exec_list *instructions,
1842 struct _mesa_glsl_parse_state *state);
1843
1844 extern void
1845 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
1846
1847 extern void
1848 _mesa_glsl_release_functions(void);
1849
1850 extern void
1851 reparent_ir(exec_list *list, void *mem_ctx);
1852
1853 struct glsl_symbol_table;
1854
1855 extern void
1856 import_prototypes(const exec_list *source, exec_list *dest,
1857 struct glsl_symbol_table *symbols, void *mem_ctx);
1858
1859 extern bool
1860 ir_has_call(ir_instruction *ir);
1861
1862 extern void
1863 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
1864 bool is_fragment_shader);
1865
1866 extern char *
1867 prototype_string(const glsl_type *return_type, const char *name,
1868 exec_list *parameters);
1869
1870 #endif /* IR_H */