nir: move to compiler/
[mesa.git] / src / glsl / ir_builder.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "ir_builder.h"
25 #include "program/prog_instruction.h"
26
27 using namespace ir_builder;
28
29 namespace ir_builder {
30
31 void
32 ir_factory::emit(ir_instruction *ir)
33 {
34 instructions->push_tail(ir);
35 }
36
37 ir_variable *
38 ir_factory::make_temp(const glsl_type *type, const char *name)
39 {
40 ir_variable *var;
41
42 var = new(mem_ctx) ir_variable(type, name, ir_var_temporary);
43 emit(var);
44
45 return var;
46 }
47
48 ir_assignment *
49 assign(deref lhs, operand rhs, operand condition, int writemask)
50 {
51 void *mem_ctx = ralloc_parent(lhs.val);
52
53 ir_assignment *assign = new(mem_ctx) ir_assignment(lhs.val,
54 rhs.val,
55 condition.val,
56 writemask);
57
58 return assign;
59 }
60
61 ir_assignment *
62 assign(deref lhs, operand rhs)
63 {
64 return assign(lhs, rhs, (1 << lhs.val->type->vector_elements) - 1);
65 }
66
67 ir_assignment *
68 assign(deref lhs, operand rhs, int writemask)
69 {
70 return assign(lhs, rhs, (ir_rvalue *) NULL, writemask);
71 }
72
73 ir_assignment *
74 assign(deref lhs, operand rhs, operand condition)
75 {
76 return assign(lhs, rhs, condition, (1 << lhs.val->type->vector_elements) - 1);
77 }
78
79 ir_return *
80 ret(operand retval)
81 {
82 void *mem_ctx = ralloc_parent(retval.val);
83 return new(mem_ctx) ir_return(retval.val);
84 }
85
86 ir_swizzle *
87 swizzle(operand a, int swizzle, int components)
88 {
89 void *mem_ctx = ralloc_parent(a.val);
90
91 return new(mem_ctx) ir_swizzle(a.val,
92 GET_SWZ(swizzle, 0),
93 GET_SWZ(swizzle, 1),
94 GET_SWZ(swizzle, 2),
95 GET_SWZ(swizzle, 3),
96 components);
97 }
98
99 ir_swizzle *
100 swizzle_for_size(operand a, unsigned components)
101 {
102 void *mem_ctx = ralloc_parent(a.val);
103
104 if (a.val->type->vector_elements < components)
105 components = a.val->type->vector_elements;
106
107 unsigned s[4] = { 0, 1, 2, 3 };
108 for (int i = components; i < 4; i++)
109 s[i] = components - 1;
110
111 return new(mem_ctx) ir_swizzle(a.val, s, components);
112 }
113
114 ir_swizzle *
115 swizzle_xxxx(operand a)
116 {
117 return swizzle(a, SWIZZLE_XXXX, 4);
118 }
119
120 ir_swizzle *
121 swizzle_yyyy(operand a)
122 {
123 return swizzle(a, SWIZZLE_YYYY, 4);
124 }
125
126 ir_swizzle *
127 swizzle_zzzz(operand a)
128 {
129 return swizzle(a, SWIZZLE_ZZZZ, 4);
130 }
131
132 ir_swizzle *
133 swizzle_wwww(operand a)
134 {
135 return swizzle(a, SWIZZLE_WWWW, 4);
136 }
137
138 ir_swizzle *
139 swizzle_x(operand a)
140 {
141 return swizzle(a, SWIZZLE_XXXX, 1);
142 }
143
144 ir_swizzle *
145 swizzle_y(operand a)
146 {
147 return swizzle(a, SWIZZLE_YYYY, 1);
148 }
149
150 ir_swizzle *
151 swizzle_z(operand a)
152 {
153 return swizzle(a, SWIZZLE_ZZZZ, 1);
154 }
155
156 ir_swizzle *
157 swizzle_w(operand a)
158 {
159 return swizzle(a, SWIZZLE_WWWW, 1);
160 }
161
162 ir_swizzle *
163 swizzle_xy(operand a)
164 {
165 return swizzle(a, SWIZZLE_XYZW, 2);
166 }
167
168 ir_swizzle *
169 swizzle_xyz(operand a)
170 {
171 return swizzle(a, SWIZZLE_XYZW, 3);
172 }
173
174 ir_swizzle *
175 swizzle_xyzw(operand a)
176 {
177 return swizzle(a, SWIZZLE_XYZW, 4);
178 }
179
180 ir_expression *
181 expr(ir_expression_operation op, operand a)
182 {
183 void *mem_ctx = ralloc_parent(a.val);
184
185 return new(mem_ctx) ir_expression(op, a.val);
186 }
187
188 ir_expression *
189 expr(ir_expression_operation op, operand a, operand b)
190 {
191 void *mem_ctx = ralloc_parent(a.val);
192
193 return new(mem_ctx) ir_expression(op, a.val, b.val);
194 }
195
196 ir_expression *
197 expr(ir_expression_operation op, operand a, operand b, operand c)
198 {
199 void *mem_ctx = ralloc_parent(a.val);
200
201 return new(mem_ctx) ir_expression(op, a.val, b.val, c.val);
202 }
203
204 ir_expression *add(operand a, operand b)
205 {
206 return expr(ir_binop_add, a, b);
207 }
208
209 ir_expression *sub(operand a, operand b)
210 {
211 return expr(ir_binop_sub, a, b);
212 }
213
214 ir_expression *min2(operand a, operand b)
215 {
216 return expr(ir_binop_min, a, b);
217 }
218
219 ir_expression *max2(operand a, operand b)
220 {
221 return expr(ir_binop_max, a, b);
222 }
223
224 ir_expression *mul(operand a, operand b)
225 {
226 return expr(ir_binop_mul, a, b);
227 }
228
229 ir_expression *imul_high(operand a, operand b)
230 {
231 return expr(ir_binop_imul_high, a, b);
232 }
233
234 ir_expression *div(operand a, operand b)
235 {
236 return expr(ir_binop_div, a, b);
237 }
238
239 ir_expression *carry(operand a, operand b)
240 {
241 return expr(ir_binop_carry, a, b);
242 }
243
244 ir_expression *borrow(operand a, operand b)
245 {
246 return expr(ir_binop_borrow, a, b);
247 }
248
249 ir_expression *trunc(operand a)
250 {
251 return expr(ir_unop_trunc, a);
252 }
253
254 ir_expression *round_even(operand a)
255 {
256 return expr(ir_unop_round_even, a);
257 }
258
259 ir_expression *fract(operand a)
260 {
261 return expr(ir_unop_fract, a);
262 }
263
264 /* dot for vectors, mul for scalars */
265 ir_expression *dot(operand a, operand b)
266 {
267 assert(a.val->type == b.val->type);
268
269 if (a.val->type->vector_elements == 1)
270 return expr(ir_binop_mul, a, b);
271
272 return expr(ir_binop_dot, a, b);
273 }
274
275 ir_expression*
276 clamp(operand a, operand b, operand c)
277 {
278 return expr(ir_binop_min, expr(ir_binop_max, a, b), c);
279 }
280
281 ir_expression *
282 saturate(operand a)
283 {
284 return expr(ir_unop_saturate, a);
285 }
286
287 ir_expression *
288 abs(operand a)
289 {
290 return expr(ir_unop_abs, a);
291 }
292
293 ir_expression *
294 neg(operand a)
295 {
296 return expr(ir_unop_neg, a);
297 }
298
299 ir_expression *
300 sin(operand a)
301 {
302 return expr(ir_unop_sin, a);
303 }
304
305 ir_expression *
306 cos(operand a)
307 {
308 return expr(ir_unop_cos, a);
309 }
310
311 ir_expression *
312 exp(operand a)
313 {
314 return expr(ir_unop_exp, a);
315 }
316
317 ir_expression *
318 rsq(operand a)
319 {
320 return expr(ir_unop_rsq, a);
321 }
322
323 ir_expression *
324 sqrt(operand a)
325 {
326 return expr(ir_unop_sqrt, a);
327 }
328
329 ir_expression *
330 log(operand a)
331 {
332 return expr(ir_unop_log, a);
333 }
334
335 ir_expression *
336 sign(operand a)
337 {
338 return expr(ir_unop_sign, a);
339 }
340
341 ir_expression *
342 subr_to_int(operand a)
343 {
344 return expr(ir_unop_subroutine_to_int, a);
345 }
346
347 ir_expression*
348 equal(operand a, operand b)
349 {
350 return expr(ir_binop_equal, a, b);
351 }
352
353 ir_expression*
354 nequal(operand a, operand b)
355 {
356 return expr(ir_binop_nequal, a, b);
357 }
358
359 ir_expression*
360 less(operand a, operand b)
361 {
362 return expr(ir_binop_less, a, b);
363 }
364
365 ir_expression*
366 greater(operand a, operand b)
367 {
368 return expr(ir_binop_greater, a, b);
369 }
370
371 ir_expression*
372 lequal(operand a, operand b)
373 {
374 return expr(ir_binop_lequal, a, b);
375 }
376
377 ir_expression*
378 gequal(operand a, operand b)
379 {
380 return expr(ir_binop_gequal, a, b);
381 }
382
383 ir_expression*
384 logic_not(operand a)
385 {
386 return expr(ir_unop_logic_not, a);
387 }
388
389 ir_expression*
390 logic_and(operand a, operand b)
391 {
392 return expr(ir_binop_logic_and, a, b);
393 }
394
395 ir_expression*
396 logic_or(operand a, operand b)
397 {
398 return expr(ir_binop_logic_or, a, b);
399 }
400
401 ir_expression*
402 bit_not(operand a)
403 {
404 return expr(ir_unop_bit_not, a);
405 }
406
407 ir_expression*
408 bit_and(operand a, operand b)
409 {
410 return expr(ir_binop_bit_and, a, b);
411 }
412
413 ir_expression*
414 bit_or(operand a, operand b)
415 {
416 return expr(ir_binop_bit_or, a, b);
417 }
418
419 ir_expression*
420 lshift(operand a, operand b)
421 {
422 return expr(ir_binop_lshift, a, b);
423 }
424
425 ir_expression*
426 rshift(operand a, operand b)
427 {
428 return expr(ir_binop_rshift, a, b);
429 }
430
431 ir_expression*
432 f2i(operand a)
433 {
434 return expr(ir_unop_f2i, a);
435 }
436
437 ir_expression*
438 bitcast_f2i(operand a)
439 {
440 return expr(ir_unop_bitcast_f2i, a);
441 }
442
443 ir_expression*
444 i2f(operand a)
445 {
446 return expr(ir_unop_i2f, a);
447 }
448
449 ir_expression*
450 bitcast_i2f(operand a)
451 {
452 return expr(ir_unop_bitcast_i2f, a);
453 }
454
455 ir_expression*
456 i2u(operand a)
457 {
458 return expr(ir_unop_i2u, a);
459 }
460
461 ir_expression*
462 u2i(operand a)
463 {
464 return expr(ir_unop_u2i, a);
465 }
466
467 ir_expression*
468 f2u(operand a)
469 {
470 return expr(ir_unop_f2u, a);
471 }
472
473 ir_expression*
474 bitcast_f2u(operand a)
475 {
476 return expr(ir_unop_bitcast_f2u, a);
477 }
478
479 ir_expression*
480 u2f(operand a)
481 {
482 return expr(ir_unop_u2f, a);
483 }
484
485 ir_expression*
486 bitcast_u2f(operand a)
487 {
488 return expr(ir_unop_bitcast_u2f, a);
489 }
490
491 ir_expression*
492 i2b(operand a)
493 {
494 return expr(ir_unop_i2b, a);
495 }
496
497 ir_expression*
498 b2i(operand a)
499 {
500 return expr(ir_unop_b2i, a);
501 }
502
503 ir_expression *
504 f2b(operand a)
505 {
506 return expr(ir_unop_f2b, a);
507 }
508
509 ir_expression *
510 b2f(operand a)
511 {
512 return expr(ir_unop_b2f, a);
513 }
514
515 ir_expression *
516 interpolate_at_centroid(operand a)
517 {
518 return expr(ir_unop_interpolate_at_centroid, a);
519 }
520
521 ir_expression *
522 interpolate_at_offset(operand a, operand b)
523 {
524 return expr(ir_binop_interpolate_at_offset, a, b);
525 }
526
527 ir_expression *
528 interpolate_at_sample(operand a, operand b)
529 {
530 return expr(ir_binop_interpolate_at_sample, a, b);
531 }
532
533 ir_expression *
534 f2d(operand a)
535 {
536 return expr(ir_unop_f2d, a);
537 }
538
539 ir_expression *
540 i2d(operand a)
541 {
542 return expr(ir_unop_i2d, a);
543 }
544
545 ir_expression *
546 u2d(operand a)
547 {
548 return expr(ir_unop_u2d, a);
549 }
550
551 ir_expression *
552 fma(operand a, operand b, operand c)
553 {
554 return expr(ir_triop_fma, a, b, c);
555 }
556
557 ir_expression *
558 lrp(operand x, operand y, operand a)
559 {
560 return expr(ir_triop_lrp, x, y, a);
561 }
562
563 ir_expression *
564 csel(operand a, operand b, operand c)
565 {
566 return expr(ir_triop_csel, a, b, c);
567 }
568
569 ir_expression *
570 bitfield_extract(operand a, operand b, operand c)
571 {
572 return expr(ir_triop_bitfield_extract, a, b, c);
573 }
574
575 ir_expression *
576 bitfield_insert(operand a, operand b, operand c, operand d)
577 {
578 void *mem_ctx = ralloc_parent(a.val);
579 return new(mem_ctx) ir_expression(ir_quadop_bitfield_insert,
580 a.val->type, a.val, b.val, c.val, d.val);
581 }
582
583 ir_if*
584 if_tree(operand condition,
585 ir_instruction *then_branch)
586 {
587 assert(then_branch != NULL);
588
589 void *mem_ctx = ralloc_parent(condition.val);
590
591 ir_if *result = new(mem_ctx) ir_if(condition.val);
592 result->then_instructions.push_tail(then_branch);
593 return result;
594 }
595
596 ir_if*
597 if_tree(operand condition,
598 ir_instruction *then_branch,
599 ir_instruction *else_branch)
600 {
601 assert(then_branch != NULL);
602 assert(else_branch != NULL);
603
604 void *mem_ctx = ralloc_parent(condition.val);
605
606 ir_if *result = new(mem_ctx) ir_if(condition.val);
607 result->then_instructions.push_tail(then_branch);
608 result->else_instructions.push_tail(else_branch);
609 return result;
610 }
611
612 } /* namespace ir_builder */