util/hash_set: Rework the API to know about hashing
[mesa.git] / src / glsl / loop_controls.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <limits.h>
25 #include "main/compiler.h"
26 #include "glsl_types.h"
27 #include "loop_analysis.h"
28 #include "ir_hierarchical_visitor.h"
29
30 /**
31 * Find an initializer of a variable outside a loop
32 *
33 * Works backwards from the loop to find the pre-loop value of the variable.
34 * This is used, for example, to find the initial value of loop induction
35 * variables.
36 *
37 * \param loop Loop where \c var is an induction variable
38 * \param var Variable whose initializer is to be found
39 *
40 * \return
41 * The \c ir_rvalue assigned to the variable outside the loop. May return
42 * \c NULL if no initializer can be found.
43 */
44 ir_rvalue *
45 find_initial_value(ir_loop *loop, ir_variable *var)
46 {
47 for (exec_node *node = loop->prev;
48 !node->is_head_sentinel();
49 node = node->prev) {
50 ir_instruction *ir = (ir_instruction *) node;
51
52 switch (ir->ir_type) {
53 case ir_type_call:
54 case ir_type_loop:
55 case ir_type_loop_jump:
56 case ir_type_return:
57 case ir_type_if:
58 return NULL;
59
60 case ir_type_function:
61 case ir_type_function_signature:
62 assert(!"Should not get here.");
63 return NULL;
64
65 case ir_type_assignment: {
66 ir_assignment *assign = ir->as_assignment();
67 ir_variable *assignee = assign->lhs->whole_variable_referenced();
68
69 if (assignee == var)
70 return (assign->condition != NULL) ? NULL : assign->rhs;
71
72 break;
73 }
74
75 default:
76 break;
77 }
78 }
79
80 return NULL;
81 }
82
83
84 int
85 calculate_iterations(ir_rvalue *from, ir_rvalue *to, ir_rvalue *increment,
86 enum ir_expression_operation op)
87 {
88 if (from == NULL || to == NULL || increment == NULL)
89 return -1;
90
91 void *mem_ctx = ralloc_context(NULL);
92
93 ir_expression *const sub =
94 new(mem_ctx) ir_expression(ir_binop_sub, from->type, to, from);
95
96 ir_expression *const div =
97 new(mem_ctx) ir_expression(ir_binop_div, sub->type, sub, increment);
98
99 ir_constant *iter = div->constant_expression_value();
100
101 if (iter == NULL)
102 return -1;
103
104 if (!iter->type->is_integer()) {
105 ir_rvalue *cast =
106 new(mem_ctx) ir_expression(ir_unop_f2i, glsl_type::int_type, iter,
107 NULL);
108
109 iter = cast->constant_expression_value();
110 }
111
112 int iter_value = iter->get_int_component(0);
113
114 /* Make sure that the calculated number of iterations satisfies the exit
115 * condition. This is needed to catch off-by-one errors and some types of
116 * ill-formed loops. For example, we need to detect that the following
117 * loop does not have a maximum iteration count.
118 *
119 * for (float x = 0.0; x != 0.9; x += 0.2)
120 * ;
121 */
122 const int bias[] = { -1, 0, 1 };
123 bool valid_loop = false;
124
125 for (unsigned i = 0; i < Elements(bias); i++) {
126 /* Increment may be of type int, uint or float. */
127 switch (increment->type->base_type) {
128 case GLSL_TYPE_INT:
129 iter = new(mem_ctx) ir_constant(iter_value + bias[i]);
130 break;
131 case GLSL_TYPE_UINT:
132 iter = new(mem_ctx) ir_constant(unsigned(iter_value + bias[i]));
133 break;
134 case GLSL_TYPE_FLOAT:
135 iter = new(mem_ctx) ir_constant(float(iter_value + bias[i]));
136 break;
137 default:
138 unreachable(!"Unsupported type for loop iterator.");
139 }
140
141 ir_expression *const mul =
142 new(mem_ctx) ir_expression(ir_binop_mul, increment->type, iter,
143 increment);
144
145 ir_expression *const add =
146 new(mem_ctx) ir_expression(ir_binop_add, mul->type, mul, from);
147
148 ir_expression *const cmp =
149 new(mem_ctx) ir_expression(op, glsl_type::bool_type, add, to);
150
151 ir_constant *const cmp_result = cmp->constant_expression_value();
152
153 assert(cmp_result != NULL);
154 if (cmp_result->get_bool_component(0)) {
155 iter_value += bias[i];
156 valid_loop = true;
157 break;
158 }
159 }
160
161 ralloc_free(mem_ctx);
162 return (valid_loop) ? iter_value : -1;
163 }
164
165 namespace {
166
167 class loop_control_visitor : public ir_hierarchical_visitor {
168 public:
169 loop_control_visitor(loop_state *state)
170 {
171 this->state = state;
172 this->progress = false;
173 }
174
175 virtual ir_visitor_status visit_leave(ir_loop *ir);
176
177 loop_state *state;
178
179 bool progress;
180 };
181
182 } /* anonymous namespace */
183
184 ir_visitor_status
185 loop_control_visitor::visit_leave(ir_loop *ir)
186 {
187 loop_variable_state *const ls = this->state->get(ir);
188
189 /* If we've entered a loop that hasn't been analyzed, something really,
190 * really bad has happened.
191 */
192 if (ls == NULL) {
193 assert(ls != NULL);
194 return visit_continue;
195 }
196
197 if (ls->limiting_terminator != NULL) {
198 /* If the limiting terminator has an iteration count of zero, then we've
199 * proven that the loop cannot run, so delete it.
200 */
201 int iterations = ls->limiting_terminator->iterations;
202 if (iterations == 0) {
203 ir->remove();
204 this->progress = true;
205 return visit_continue;
206 }
207 }
208
209 /* Remove the conditional break statements associated with all terminators
210 * that are associated with a fixed iteration count, except for the one
211 * associated with the limiting terminator--that one needs to stay, since
212 * it terminates the loop. Exception: if the loop still has a normative
213 * bound, then that terminates the loop, so we don't even need the limiting
214 * terminator.
215 */
216 foreach_in_list(loop_terminator, t, &ls->terminators) {
217 if (t->iterations < 0)
218 continue;
219
220 if (t != ls->limiting_terminator) {
221 t->ir->remove();
222
223 assert(ls->num_loop_jumps > 0);
224 ls->num_loop_jumps--;
225
226 this->progress = true;
227 }
228 }
229
230 return visit_continue;
231 }
232
233
234 bool
235 set_loop_controls(exec_list *instructions, loop_state *ls)
236 {
237 loop_control_visitor v(ls);
238
239 v.run(instructions);
240
241 return v.progress;
242 }