nir: Add a nir_deref_tail helper
[mesa.git] / src / glsl / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "../list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "nir_types.h"
38 #include "shader_enums.h"
39 #include <stdio.h>
40
41 #include "nir_opcodes.h"
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47 struct gl_program;
48 struct gl_shader_program;
49
50 #define NIR_FALSE 0u
51 #define NIR_TRUE (~0u)
52
53 /** Defines a cast function
54 *
55 * This macro defines a cast function from in_type to out_type where
56 * out_type is some structure type that contains a field of type out_type.
57 *
58 * Note that you have to be a bit careful as the generated cast function
59 * destroys constness.
60 */
61 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
62 static inline out_type * \
63 name(const in_type *parent) \
64 { \
65 return exec_node_data(out_type, parent, field); \
66 }
67
68 struct nir_function_overload;
69 struct nir_function;
70 struct nir_shader;
71 struct nir_instr;
72
73
74 /**
75 * Description of built-in state associated with a uniform
76 *
77 * \sa nir_variable::state_slots
78 */
79 typedef struct {
80 int tokens[5];
81 int swizzle;
82 } nir_state_slot;
83
84 typedef enum {
85 nir_var_shader_in,
86 nir_var_shader_out,
87 nir_var_global,
88 nir_var_local,
89 nir_var_uniform,
90 nir_var_shader_storage,
91 nir_var_system_value
92 } nir_variable_mode;
93
94 /**
95 * Data stored in an nir_constant
96 */
97 union nir_constant_data {
98 unsigned u[16];
99 int i[16];
100 float f[16];
101 bool b[16];
102 };
103
104 typedef struct nir_constant {
105 /**
106 * Value of the constant.
107 *
108 * The field used to back the values supplied by the constant is determined
109 * by the type associated with the \c nir_variable. Constants may be
110 * scalars, vectors, or matrices.
111 */
112 union nir_constant_data value;
113
114 /* Array elements / Structure Fields */
115 struct nir_constant **elements;
116 } nir_constant;
117
118 /**
119 * \brief Layout qualifiers for gl_FragDepth.
120 *
121 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
122 * with a layout qualifier.
123 */
124 typedef enum {
125 nir_depth_layout_none, /**< No depth layout is specified. */
126 nir_depth_layout_any,
127 nir_depth_layout_greater,
128 nir_depth_layout_less,
129 nir_depth_layout_unchanged
130 } nir_depth_layout;
131
132 /**
133 * Either a uniform, global variable, shader input, or shader output. Based on
134 * ir_variable - it should be easy to translate between the two.
135 */
136
137 typedef struct {
138 struct exec_node node;
139
140 /**
141 * Declared type of the variable
142 */
143 const struct glsl_type *type;
144
145 /**
146 * Declared name of the variable
147 */
148 char *name;
149
150 /**
151 * For variables which satisfy the is_interface_instance() predicate, this
152 * points to an array of integers such that if the ith member of the
153 * interface block is an array, max_ifc_array_access[i] is the maximum
154 * array element of that member that has been accessed. If the ith member
155 * of the interface block is not an array, max_ifc_array_access[i] is
156 * unused.
157 *
158 * For variables whose type is not an interface block, this pointer is
159 * NULL.
160 */
161 unsigned *max_ifc_array_access;
162
163 struct nir_variable_data {
164
165 /**
166 * Is the variable read-only?
167 *
168 * This is set for variables declared as \c const, shader inputs,
169 * and uniforms.
170 */
171 unsigned read_only:1;
172 unsigned centroid:1;
173 unsigned sample:1;
174 unsigned patch:1;
175 unsigned invariant:1;
176
177 /**
178 * Storage class of the variable.
179 *
180 * \sa nir_variable_mode
181 */
182 nir_variable_mode mode:4;
183
184 /**
185 * Interpolation mode for shader inputs / outputs
186 *
187 * \sa glsl_interp_qualifier
188 */
189 unsigned interpolation:2;
190
191 /**
192 * \name ARB_fragment_coord_conventions
193 * @{
194 */
195 unsigned origin_upper_left:1;
196 unsigned pixel_center_integer:1;
197 /*@}*/
198
199 /**
200 * Was the location explicitly set in the shader?
201 *
202 * If the location is explicitly set in the shader, it \b cannot be changed
203 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
204 * no effect).
205 */
206 unsigned explicit_location:1;
207 unsigned explicit_index:1;
208
209 /**
210 * Was an initial binding explicitly set in the shader?
211 *
212 * If so, constant_initializer contains an integer nir_constant
213 * representing the initial binding point.
214 */
215 unsigned explicit_binding:1;
216
217 /**
218 * Does this variable have an initializer?
219 *
220 * This is used by the linker to cross-validiate initializers of global
221 * variables.
222 */
223 unsigned has_initializer:1;
224
225 /**
226 * Is this variable a generic output or input that has not yet been matched
227 * up to a variable in another stage of the pipeline?
228 *
229 * This is used by the linker as scratch storage while assigning locations
230 * to generic inputs and outputs.
231 */
232 unsigned is_unmatched_generic_inout:1;
233
234 /**
235 * If non-zero, then this variable may be packed along with other variables
236 * into a single varying slot, so this offset should be applied when
237 * accessing components. For example, an offset of 1 means that the x
238 * component of this variable is actually stored in component y of the
239 * location specified by \c location.
240 */
241 unsigned location_frac:2;
242
243 /**
244 * Non-zero if this variable was created by lowering a named interface
245 * block which was not an array.
246 *
247 * Note that this variable and \c from_named_ifc_block_array will never
248 * both be non-zero.
249 */
250 unsigned from_named_ifc_block_nonarray:1;
251
252 /**
253 * Non-zero if this variable was created by lowering a named interface
254 * block which was an array.
255 *
256 * Note that this variable and \c from_named_ifc_block_nonarray will never
257 * both be non-zero.
258 */
259 unsigned from_named_ifc_block_array:1;
260
261 /**
262 * \brief Layout qualifier for gl_FragDepth.
263 *
264 * This is not equal to \c ir_depth_layout_none if and only if this
265 * variable is \c gl_FragDepth and a layout qualifier is specified.
266 */
267 nir_depth_layout depth_layout;
268
269 /**
270 * Storage location of the base of this variable
271 *
272 * The precise meaning of this field depends on the nature of the variable.
273 *
274 * - Vertex shader input: one of the values from \c gl_vert_attrib.
275 * - Vertex shader output: one of the values from \c gl_varying_slot.
276 * - Geometry shader input: one of the values from \c gl_varying_slot.
277 * - Geometry shader output: one of the values from \c gl_varying_slot.
278 * - Fragment shader input: one of the values from \c gl_varying_slot.
279 * - Fragment shader output: one of the values from \c gl_frag_result.
280 * - Uniforms: Per-stage uniform slot number for default uniform block.
281 * - Uniforms: Index within the uniform block definition for UBO members.
282 * - Non-UBO Uniforms: uniform slot number.
283 * - Other: This field is not currently used.
284 *
285 * If the variable is a uniform, shader input, or shader output, and the
286 * slot has not been assigned, the value will be -1.
287 */
288 int location;
289
290 /**
291 * The actual location of the variable in the IR. Only valid for inputs
292 * and outputs.
293 */
294 unsigned int driver_location;
295
296 /**
297 * output index for dual source blending.
298 */
299 int index;
300
301 /**
302 * Initial binding point for a sampler or UBO.
303 *
304 * For array types, this represents the binding point for the first element.
305 */
306 int binding;
307
308 /**
309 * Location an atomic counter is stored at.
310 */
311 struct {
312 unsigned offset;
313 } atomic;
314
315 /**
316 * ARB_shader_image_load_store qualifiers.
317 */
318 struct {
319 bool read_only; /**< "readonly" qualifier. */
320 bool write_only; /**< "writeonly" qualifier. */
321 bool coherent;
322 bool _volatile;
323 bool restrict_flag;
324
325 /** Image internal format if specified explicitly, otherwise GL_NONE. */
326 GLenum format;
327 } image;
328
329 /**
330 * Highest element accessed with a constant expression array index
331 *
332 * Not used for non-array variables.
333 */
334 unsigned max_array_access;
335
336 } data;
337
338 /**
339 * Built-in state that backs this uniform
340 *
341 * Once set at variable creation, \c state_slots must remain invariant.
342 * This is because, ideally, this array would be shared by all clones of
343 * this variable in the IR tree. In other words, we'd really like for it
344 * to be a fly-weight.
345 *
346 * If the variable is not a uniform, \c num_state_slots will be zero and
347 * \c state_slots will be \c NULL.
348 */
349 /*@{*/
350 unsigned num_state_slots; /**< Number of state slots used */
351 nir_state_slot *state_slots; /**< State descriptors. */
352 /*@}*/
353
354 /**
355 * Constant expression assigned in the initializer of the variable
356 */
357 nir_constant *constant_initializer;
358
359 /**
360 * For variables that are in an interface block or are an instance of an
361 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
362 *
363 * \sa ir_variable::location
364 */
365 const struct glsl_type *interface_type;
366 } nir_variable;
367
368 #define nir_foreach_variable(var, var_list) \
369 foreach_list_typed(nir_variable, var, node, var_list)
370
371 typedef struct {
372 struct exec_node node;
373
374 unsigned num_components; /** < number of vector components */
375 unsigned num_array_elems; /** < size of array (0 for no array) */
376
377 /** generic register index. */
378 unsigned index;
379
380 /** only for debug purposes, can be NULL */
381 const char *name;
382
383 /** whether this register is local (per-function) or global (per-shader) */
384 bool is_global;
385
386 /**
387 * If this flag is set to true, then accessing channels >= num_components
388 * is well-defined, and simply spills over to the next array element. This
389 * is useful for backends that can do per-component accessing, in
390 * particular scalar backends. By setting this flag and making
391 * num_components equal to 1, structures can be packed tightly into
392 * registers and then registers can be accessed per-component to get to
393 * each structure member, even if it crosses vec4 boundaries.
394 */
395 bool is_packed;
396
397 /** set of nir_src's where this register is used (read from) */
398 struct list_head uses;
399
400 /** set of nir_dest's where this register is defined (written to) */
401 struct list_head defs;
402
403 /** set of nir_if's where this register is used as a condition */
404 struct list_head if_uses;
405 } nir_register;
406
407 typedef enum {
408 nir_instr_type_alu,
409 nir_instr_type_call,
410 nir_instr_type_tex,
411 nir_instr_type_intrinsic,
412 nir_instr_type_load_const,
413 nir_instr_type_jump,
414 nir_instr_type_ssa_undef,
415 nir_instr_type_phi,
416 nir_instr_type_parallel_copy,
417 } nir_instr_type;
418
419 typedef struct nir_instr {
420 struct exec_node node;
421 nir_instr_type type;
422 struct nir_block *block;
423
424 /** generic instruction index. */
425 unsigned index;
426
427 /* A temporary for optimization and analysis passes to use for storing
428 * flags. For instance, DCE uses this to store the "dead/live" info.
429 */
430 uint8_t pass_flags;
431 } nir_instr;
432
433 static inline nir_instr *
434 nir_instr_next(nir_instr *instr)
435 {
436 struct exec_node *next = exec_node_get_next(&instr->node);
437 if (exec_node_is_tail_sentinel(next))
438 return NULL;
439 else
440 return exec_node_data(nir_instr, next, node);
441 }
442
443 static inline nir_instr *
444 nir_instr_prev(nir_instr *instr)
445 {
446 struct exec_node *prev = exec_node_get_prev(&instr->node);
447 if (exec_node_is_head_sentinel(prev))
448 return NULL;
449 else
450 return exec_node_data(nir_instr, prev, node);
451 }
452
453 static inline bool
454 nir_instr_is_first(nir_instr *instr)
455 {
456 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
457 }
458
459 static inline bool
460 nir_instr_is_last(nir_instr *instr)
461 {
462 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
463 }
464
465 typedef struct {
466 /** for debugging only, can be NULL */
467 const char* name;
468
469 /** generic SSA definition index. */
470 unsigned index;
471
472 /** Index into the live_in and live_out bitfields */
473 unsigned live_index;
474
475 nir_instr *parent_instr;
476
477 /** set of nir_instr's where this register is used (read from) */
478 struct list_head uses;
479
480 /** set of nir_if's where this register is used as a condition */
481 struct list_head if_uses;
482
483 uint8_t num_components;
484 } nir_ssa_def;
485
486 struct nir_src;
487
488 typedef struct {
489 nir_register *reg;
490 struct nir_src *indirect; /** < NULL for no indirect offset */
491 unsigned base_offset;
492
493 /* TODO use-def chain goes here */
494 } nir_reg_src;
495
496 typedef struct {
497 nir_instr *parent_instr;
498 struct list_head def_link;
499
500 nir_register *reg;
501 struct nir_src *indirect; /** < NULL for no indirect offset */
502 unsigned base_offset;
503
504 /* TODO def-use chain goes here */
505 } nir_reg_dest;
506
507 struct nir_if;
508
509 typedef struct nir_src {
510 union {
511 nir_instr *parent_instr;
512 struct nir_if *parent_if;
513 };
514
515 struct list_head use_link;
516
517 union {
518 nir_reg_src reg;
519 nir_ssa_def *ssa;
520 };
521
522 bool is_ssa;
523 } nir_src;
524
525 #define NIR_SRC_INIT (nir_src) { { NULL } }
526
527 #define nir_foreach_use(reg_or_ssa_def, src) \
528 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
529
530 #define nir_foreach_use_safe(reg_or_ssa_def, src) \
531 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
532
533 #define nir_foreach_if_use(reg_or_ssa_def, src) \
534 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
535
536 #define nir_foreach_if_use_safe(reg_or_ssa_def, src) \
537 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
538
539 typedef struct {
540 union {
541 nir_reg_dest reg;
542 nir_ssa_def ssa;
543 };
544
545 bool is_ssa;
546 } nir_dest;
547
548 #define NIR_DEST_INIT (nir_dest) { { { NULL } } }
549
550 #define nir_foreach_def(reg, dest) \
551 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
552
553 #define nir_foreach_def_safe(reg, dest) \
554 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
555
556 static inline nir_src
557 nir_src_for_ssa(nir_ssa_def *def)
558 {
559 nir_src src = NIR_SRC_INIT;
560
561 src.is_ssa = true;
562 src.ssa = def;
563
564 return src;
565 }
566
567 static inline nir_src
568 nir_src_for_reg(nir_register *reg)
569 {
570 nir_src src = NIR_SRC_INIT;
571
572 src.is_ssa = false;
573 src.reg.reg = reg;
574 src.reg.indirect = NULL;
575 src.reg.base_offset = 0;
576
577 return src;
578 }
579
580 static inline nir_dest
581 nir_dest_for_reg(nir_register *reg)
582 {
583 nir_dest dest = NIR_DEST_INIT;
584
585 dest.reg.reg = reg;
586
587 return dest;
588 }
589
590 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
591 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
592
593 typedef struct {
594 nir_src src;
595
596 /**
597 * \name input modifiers
598 */
599 /*@{*/
600 /**
601 * For inputs interpreted as floating point, flips the sign bit. For
602 * inputs interpreted as integers, performs the two's complement negation.
603 */
604 bool negate;
605
606 /**
607 * Clears the sign bit for floating point values, and computes the integer
608 * absolute value for integers. Note that the negate modifier acts after
609 * the absolute value modifier, therefore if both are set then all inputs
610 * will become negative.
611 */
612 bool abs;
613 /*@}*/
614
615 /**
616 * For each input component, says which component of the register it is
617 * chosen from. Note that which elements of the swizzle are used and which
618 * are ignored are based on the write mask for most opcodes - for example,
619 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
620 * a swizzle of {2, x, 1, 0} where x means "don't care."
621 */
622 uint8_t swizzle[4];
623 } nir_alu_src;
624
625 typedef struct {
626 nir_dest dest;
627
628 /**
629 * \name saturate output modifier
630 *
631 * Only valid for opcodes that output floating-point numbers. Clamps the
632 * output to between 0.0 and 1.0 inclusive.
633 */
634
635 bool saturate;
636
637 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
638 } nir_alu_dest;
639
640 typedef enum {
641 nir_type_invalid = 0, /* Not a valid type */
642 nir_type_float,
643 nir_type_int,
644 nir_type_unsigned,
645 nir_type_bool
646 } nir_alu_type;
647
648 typedef enum {
649 NIR_OP_IS_COMMUTATIVE = (1 << 0),
650 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
651 } nir_op_algebraic_property;
652
653 typedef struct {
654 const char *name;
655
656 unsigned num_inputs;
657
658 /**
659 * The number of components in the output
660 *
661 * If non-zero, this is the size of the output and input sizes are
662 * explicitly given; swizzle and writemask are still in effect, but if
663 * the output component is masked out, then the input component may
664 * still be in use.
665 *
666 * If zero, the opcode acts in the standard, per-component manner; the
667 * operation is performed on each component (except the ones that are
668 * masked out) with the input being taken from the input swizzle for
669 * that component.
670 *
671 * The size of some of the inputs may be given (i.e. non-zero) even
672 * though output_size is zero; in that case, the inputs with a zero
673 * size act per-component, while the inputs with non-zero size don't.
674 */
675 unsigned output_size;
676
677 /**
678 * The type of vector that the instruction outputs. Note that the
679 * staurate modifier is only allowed on outputs with the float type.
680 */
681
682 nir_alu_type output_type;
683
684 /**
685 * The number of components in each input
686 */
687 unsigned input_sizes[4];
688
689 /**
690 * The type of vector that each input takes. Note that negate and
691 * absolute value are only allowed on inputs with int or float type and
692 * behave differently on the two.
693 */
694 nir_alu_type input_types[4];
695
696 nir_op_algebraic_property algebraic_properties;
697 } nir_op_info;
698
699 extern const nir_op_info nir_op_infos[nir_num_opcodes];
700
701 typedef struct nir_alu_instr {
702 nir_instr instr;
703 nir_op op;
704 nir_alu_dest dest;
705 nir_alu_src src[];
706 } nir_alu_instr;
707
708 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
709 nir_alu_instr *instr);
710 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
711 nir_alu_instr *instr);
712
713 /* is this source channel used? */
714 static inline bool
715 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
716 {
717 if (nir_op_infos[instr->op].input_sizes[src] > 0)
718 return channel < nir_op_infos[instr->op].input_sizes[src];
719
720 return (instr->dest.write_mask >> channel) & 1;
721 }
722
723 /*
724 * For instructions whose destinations are SSA, get the number of channels
725 * used for a source
726 */
727 static inline unsigned
728 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
729 {
730 assert(instr->dest.dest.is_ssa);
731
732 if (nir_op_infos[instr->op].input_sizes[src] > 0)
733 return nir_op_infos[instr->op].input_sizes[src];
734
735 return instr->dest.dest.ssa.num_components;
736 }
737
738 typedef enum {
739 nir_deref_type_var,
740 nir_deref_type_array,
741 nir_deref_type_struct
742 } nir_deref_type;
743
744 typedef struct nir_deref {
745 nir_deref_type deref_type;
746 struct nir_deref *child;
747 const struct glsl_type *type;
748 } nir_deref;
749
750 typedef struct {
751 nir_deref deref;
752
753 nir_variable *var;
754 } nir_deref_var;
755
756 /* This enum describes how the array is referenced. If the deref is
757 * direct then the base_offset is used. If the deref is indirect then then
758 * offset is given by base_offset + indirect. If the deref is a wildcard
759 * then the deref refers to all of the elements of the array at the same
760 * time. Wildcard dereferences are only ever allowed in copy_var
761 * intrinsics and the source and destination derefs must have matching
762 * wildcards.
763 */
764 typedef enum {
765 nir_deref_array_type_direct,
766 nir_deref_array_type_indirect,
767 nir_deref_array_type_wildcard,
768 } nir_deref_array_type;
769
770 typedef struct {
771 nir_deref deref;
772
773 nir_deref_array_type deref_array_type;
774 unsigned base_offset;
775 nir_src indirect;
776 } nir_deref_array;
777
778 typedef struct {
779 nir_deref deref;
780
781 unsigned index;
782 } nir_deref_struct;
783
784 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
785 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
786 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
787
788 /* Returns the last deref in the chain. */
789 static inline nir_deref *
790 nir_deref_tail(nir_deref *deref)
791 {
792 while (deref->child)
793 deref = deref->child;
794 return deref;
795 }
796
797 typedef struct {
798 nir_instr instr;
799
800 unsigned num_params;
801 nir_deref_var **params;
802 nir_deref_var *return_deref;
803
804 struct nir_function_overload *callee;
805 } nir_call_instr;
806
807 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
808 num_variables, num_indices, flags) \
809 nir_intrinsic_##name,
810
811 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
812
813 typedef enum {
814 #include "nir_intrinsics.h"
815 nir_num_intrinsics = nir_last_intrinsic + 1
816 } nir_intrinsic_op;
817
818 #undef INTRINSIC
819 #undef LAST_INTRINSIC
820
821 /** Represents an intrinsic
822 *
823 * An intrinsic is an instruction type for handling things that are
824 * more-or-less regular operations but don't just consume and produce SSA
825 * values like ALU operations do. Intrinsics are not for things that have
826 * special semantic meaning such as phi nodes and parallel copies.
827 * Examples of intrinsics include variable load/store operations, system
828 * value loads, and the like. Even though texturing more-or-less falls
829 * under this category, texturing is its own instruction type because
830 * trying to represent texturing with intrinsics would lead to a
831 * combinatorial explosion of intrinsic opcodes.
832 *
833 * By having a single instruction type for handling a lot of different
834 * cases, optimization passes can look for intrinsics and, for the most
835 * part, completely ignore them. Each intrinsic type also has a few
836 * possible flags that govern whether or not they can be reordered or
837 * eliminated. That way passes like dead code elimination can still work
838 * on intrisics without understanding the meaning of each.
839 *
840 * Each intrinsic has some number of constant indices, some number of
841 * variables, and some number of sources. What these sources, variables,
842 * and indices mean depends on the intrinsic and is documented with the
843 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
844 * instructions are the only types of instruction that can operate on
845 * variables.
846 */
847 typedef struct {
848 nir_instr instr;
849
850 nir_intrinsic_op intrinsic;
851
852 nir_dest dest;
853
854 /** number of components if this is a vectorized intrinsic
855 *
856 * Similarly to ALU operations, some intrinsics are vectorized.
857 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
858 * For vectorized intrinsics, the num_components field specifies the
859 * number of destination components and the number of source components
860 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
861 */
862 uint8_t num_components;
863
864 int const_index[3];
865
866 nir_deref_var *variables[2];
867
868 nir_src src[];
869 } nir_intrinsic_instr;
870
871 /**
872 * \name NIR intrinsics semantic flags
873 *
874 * information about what the compiler can do with the intrinsics.
875 *
876 * \sa nir_intrinsic_info::flags
877 */
878 typedef enum {
879 /**
880 * whether the intrinsic can be safely eliminated if none of its output
881 * value is not being used.
882 */
883 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
884
885 /**
886 * Whether the intrinsic can be reordered with respect to any other
887 * intrinsic, i.e. whether the only reordering dependencies of the
888 * intrinsic are due to the register reads/writes.
889 */
890 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
891 } nir_intrinsic_semantic_flag;
892
893 #define NIR_INTRINSIC_MAX_INPUTS 4
894
895 typedef struct {
896 const char *name;
897
898 unsigned num_srcs; /** < number of register/SSA inputs */
899
900 /** number of components of each input register
901 *
902 * If this value is 0, the number of components is given by the
903 * num_components field of nir_intrinsic_instr.
904 */
905 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
906
907 bool has_dest;
908
909 /** number of components of the output register
910 *
911 * If this value is 0, the number of components is given by the
912 * num_components field of nir_intrinsic_instr.
913 */
914 unsigned dest_components;
915
916 /** the number of inputs/outputs that are variables */
917 unsigned num_variables;
918
919 /** the number of constant indices used by the intrinsic */
920 unsigned num_indices;
921
922 /** semantic flags for calls to this intrinsic */
923 nir_intrinsic_semantic_flag flags;
924 } nir_intrinsic_info;
925
926 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
927
928 /**
929 * \group texture information
930 *
931 * This gives semantic information about textures which is useful to the
932 * frontend, the backend, and lowering passes, but not the optimizer.
933 */
934
935 typedef enum {
936 nir_tex_src_coord,
937 nir_tex_src_projector,
938 nir_tex_src_comparitor, /* shadow comparitor */
939 nir_tex_src_offset,
940 nir_tex_src_bias,
941 nir_tex_src_lod,
942 nir_tex_src_ms_index, /* MSAA sample index */
943 nir_tex_src_ddx,
944 nir_tex_src_ddy,
945 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
946 nir_num_tex_src_types
947 } nir_tex_src_type;
948
949 typedef struct {
950 nir_src src;
951 nir_tex_src_type src_type;
952 } nir_tex_src;
953
954 typedef enum {
955 nir_texop_tex, /**< Regular texture look-up */
956 nir_texop_txb, /**< Texture look-up with LOD bias */
957 nir_texop_txl, /**< Texture look-up with explicit LOD */
958 nir_texop_txd, /**< Texture look-up with partial derivatvies */
959 nir_texop_txf, /**< Texel fetch with explicit LOD */
960 nir_texop_txf_ms, /**< Multisample texture fetch */
961 nir_texop_txs, /**< Texture size */
962 nir_texop_lod, /**< Texture lod query */
963 nir_texop_tg4, /**< Texture gather */
964 nir_texop_query_levels, /**< Texture levels query */
965 nir_texop_texture_samples, /**< Texture samples query */
966 } nir_texop;
967
968 typedef struct {
969 nir_instr instr;
970
971 enum glsl_sampler_dim sampler_dim;
972 nir_alu_type dest_type;
973
974 nir_texop op;
975 nir_dest dest;
976 nir_tex_src *src;
977 unsigned num_srcs, coord_components;
978 bool is_array, is_shadow;
979
980 /**
981 * If is_shadow is true, whether this is the old-style shadow that outputs 4
982 * components or the new-style shadow that outputs 1 component.
983 */
984 bool is_new_style_shadow;
985
986 /* constant offset - must be 0 if the offset source is used */
987 int const_offset[4];
988
989 /* gather component selector */
990 unsigned component : 2;
991
992 /** The sampler index
993 *
994 * If this texture instruction has a nir_tex_src_sampler_offset source,
995 * then the sampler index is given by sampler_index + sampler_offset.
996 */
997 unsigned sampler_index;
998
999 /** The size of the sampler array or 0 if it's not an array */
1000 unsigned sampler_array_size;
1001
1002 nir_deref_var *sampler; /* if this is NULL, use sampler_index instead */
1003 } nir_tex_instr;
1004
1005 static inline unsigned
1006 nir_tex_instr_dest_size(nir_tex_instr *instr)
1007 {
1008 switch (instr->op) {
1009 case nir_texop_txs: {
1010 unsigned ret;
1011 switch (instr->sampler_dim) {
1012 case GLSL_SAMPLER_DIM_1D:
1013 case GLSL_SAMPLER_DIM_BUF:
1014 ret = 1;
1015 break;
1016 case GLSL_SAMPLER_DIM_2D:
1017 case GLSL_SAMPLER_DIM_CUBE:
1018 case GLSL_SAMPLER_DIM_MS:
1019 case GLSL_SAMPLER_DIM_RECT:
1020 case GLSL_SAMPLER_DIM_EXTERNAL:
1021 ret = 2;
1022 break;
1023 case GLSL_SAMPLER_DIM_3D:
1024 ret = 3;
1025 break;
1026 default:
1027 unreachable("not reached");
1028 }
1029 if (instr->is_array)
1030 ret++;
1031 return ret;
1032 }
1033
1034 case nir_texop_lod:
1035 return 2;
1036
1037 case nir_texop_texture_samples:
1038 case nir_texop_query_levels:
1039 return 1;
1040
1041 default:
1042 if (instr->is_shadow && instr->is_new_style_shadow)
1043 return 1;
1044
1045 return 4;
1046 }
1047 }
1048
1049 static inline unsigned
1050 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1051 {
1052 if (instr->src[src].src_type == nir_tex_src_coord)
1053 return instr->coord_components;
1054
1055
1056 if (instr->src[src].src_type == nir_tex_src_offset ||
1057 instr->src[src].src_type == nir_tex_src_ddx ||
1058 instr->src[src].src_type == nir_tex_src_ddy) {
1059 if (instr->is_array)
1060 return instr->coord_components - 1;
1061 else
1062 return instr->coord_components;
1063 }
1064
1065 return 1;
1066 }
1067
1068 static inline int
1069 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1070 {
1071 for (unsigned i = 0; i < instr->num_srcs; i++)
1072 if (instr->src[i].src_type == type)
1073 return (int) i;
1074
1075 return -1;
1076 }
1077
1078 typedef struct {
1079 union {
1080 float f[4];
1081 int32_t i[4];
1082 uint32_t u[4];
1083 };
1084 } nir_const_value;
1085
1086 typedef struct {
1087 nir_instr instr;
1088
1089 nir_const_value value;
1090
1091 nir_ssa_def def;
1092 } nir_load_const_instr;
1093
1094 typedef enum {
1095 nir_jump_return,
1096 nir_jump_break,
1097 nir_jump_continue,
1098 } nir_jump_type;
1099
1100 typedef struct {
1101 nir_instr instr;
1102 nir_jump_type type;
1103 } nir_jump_instr;
1104
1105 /* creates a new SSA variable in an undefined state */
1106
1107 typedef struct {
1108 nir_instr instr;
1109 nir_ssa_def def;
1110 } nir_ssa_undef_instr;
1111
1112 typedef struct {
1113 struct exec_node node;
1114
1115 /* The predecessor block corresponding to this source */
1116 struct nir_block *pred;
1117
1118 nir_src src;
1119 } nir_phi_src;
1120
1121 #define nir_foreach_phi_src(phi, entry) \
1122 foreach_list_typed(nir_phi_src, entry, node, &(phi)->srcs)
1123 #define nir_foreach_phi_src_safe(phi, entry) \
1124 foreach_list_typed_safe(nir_phi_src, entry, node, &(phi)->srcs)
1125
1126 typedef struct {
1127 nir_instr instr;
1128
1129 struct exec_list srcs; /** < list of nir_phi_src */
1130
1131 nir_dest dest;
1132 } nir_phi_instr;
1133
1134 typedef struct {
1135 struct exec_node node;
1136 nir_src src;
1137 nir_dest dest;
1138 } nir_parallel_copy_entry;
1139
1140 #define nir_foreach_parallel_copy_entry(pcopy, entry) \
1141 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1142
1143 typedef struct {
1144 nir_instr instr;
1145
1146 /* A list of nir_parallel_copy_entry's. The sources of all of the
1147 * entries are copied to the corresponding destinations "in parallel".
1148 * In other words, if we have two entries: a -> b and b -> a, the values
1149 * get swapped.
1150 */
1151 struct exec_list entries;
1152 } nir_parallel_copy_instr;
1153
1154 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1155 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1156 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1157 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1158 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1159 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1160 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1161 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1162 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1163 nir_parallel_copy_instr, instr)
1164
1165 /*
1166 * Control flow
1167 *
1168 * Control flow consists of a tree of control flow nodes, which include
1169 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1170 * instructions that always run start-to-finish. Each basic block also keeps
1171 * track of its successors (blocks which may run immediately after the current
1172 * block) and predecessors (blocks which could have run immediately before the
1173 * current block). Each function also has a start block and an end block which
1174 * all return statements point to (which is always empty). Together, all the
1175 * blocks with their predecessors and successors make up the control flow
1176 * graph (CFG) of the function. There are helpers that modify the tree of
1177 * control flow nodes while modifying the CFG appropriately; these should be
1178 * used instead of modifying the tree directly.
1179 */
1180
1181 typedef enum {
1182 nir_cf_node_block,
1183 nir_cf_node_if,
1184 nir_cf_node_loop,
1185 nir_cf_node_function
1186 } nir_cf_node_type;
1187
1188 typedef struct nir_cf_node {
1189 struct exec_node node;
1190 nir_cf_node_type type;
1191 struct nir_cf_node *parent;
1192 } nir_cf_node;
1193
1194 typedef struct nir_block {
1195 nir_cf_node cf_node;
1196
1197 struct exec_list instr_list; /** < list of nir_instr */
1198
1199 /** generic block index; generated by nir_index_blocks */
1200 unsigned index;
1201
1202 /*
1203 * Each block can only have up to 2 successors, so we put them in a simple
1204 * array - no need for anything more complicated.
1205 */
1206 struct nir_block *successors[2];
1207
1208 /* Set of nir_block predecessors in the CFG */
1209 struct set *predecessors;
1210
1211 /*
1212 * this node's immediate dominator in the dominance tree - set to NULL for
1213 * the start block.
1214 */
1215 struct nir_block *imm_dom;
1216
1217 /* This node's children in the dominance tree */
1218 unsigned num_dom_children;
1219 struct nir_block **dom_children;
1220
1221 /* Set of nir_block's on the dominance frontier of this block */
1222 struct set *dom_frontier;
1223
1224 /*
1225 * These two indices have the property that dom_{pre,post}_index for each
1226 * child of this block in the dominance tree will always be between
1227 * dom_pre_index and dom_post_index for this block, which makes testing if
1228 * a given block is dominated by another block an O(1) operation.
1229 */
1230 unsigned dom_pre_index, dom_post_index;
1231
1232 /* live in and out for this block; used for liveness analysis */
1233 BITSET_WORD *live_in;
1234 BITSET_WORD *live_out;
1235 } nir_block;
1236
1237 static inline nir_instr *
1238 nir_block_first_instr(nir_block *block)
1239 {
1240 struct exec_node *head = exec_list_get_head(&block->instr_list);
1241 return exec_node_data(nir_instr, head, node);
1242 }
1243
1244 static inline nir_instr *
1245 nir_block_last_instr(nir_block *block)
1246 {
1247 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1248 return exec_node_data(nir_instr, tail, node);
1249 }
1250
1251 #define nir_foreach_instr(block, instr) \
1252 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1253 #define nir_foreach_instr_reverse(block, instr) \
1254 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1255 #define nir_foreach_instr_safe(block, instr) \
1256 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1257 #define nir_foreach_instr_safe_reverse(block, instr) \
1258 foreach_list_typed_safe_reverse(nir_instr, instr, node, &(block)->instr_list)
1259
1260 typedef struct nir_if {
1261 nir_cf_node cf_node;
1262 nir_src condition;
1263
1264 struct exec_list then_list; /** < list of nir_cf_node */
1265 struct exec_list else_list; /** < list of nir_cf_node */
1266 } nir_if;
1267
1268 static inline nir_cf_node *
1269 nir_if_first_then_node(nir_if *if_stmt)
1270 {
1271 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1272 return exec_node_data(nir_cf_node, head, node);
1273 }
1274
1275 static inline nir_cf_node *
1276 nir_if_last_then_node(nir_if *if_stmt)
1277 {
1278 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1279 return exec_node_data(nir_cf_node, tail, node);
1280 }
1281
1282 static inline nir_cf_node *
1283 nir_if_first_else_node(nir_if *if_stmt)
1284 {
1285 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1286 return exec_node_data(nir_cf_node, head, node);
1287 }
1288
1289 static inline nir_cf_node *
1290 nir_if_last_else_node(nir_if *if_stmt)
1291 {
1292 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1293 return exec_node_data(nir_cf_node, tail, node);
1294 }
1295
1296 typedef struct {
1297 nir_cf_node cf_node;
1298
1299 struct exec_list body; /** < list of nir_cf_node */
1300 } nir_loop;
1301
1302 static inline nir_cf_node *
1303 nir_loop_first_cf_node(nir_loop *loop)
1304 {
1305 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1306 }
1307
1308 static inline nir_cf_node *
1309 nir_loop_last_cf_node(nir_loop *loop)
1310 {
1311 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1312 }
1313
1314 /**
1315 * Various bits of metadata that can may be created or required by
1316 * optimization and analysis passes
1317 */
1318 typedef enum {
1319 nir_metadata_none = 0x0,
1320 nir_metadata_block_index = 0x1,
1321 nir_metadata_dominance = 0x2,
1322 nir_metadata_live_ssa_defs = 0x4,
1323 } nir_metadata;
1324
1325 typedef struct {
1326 nir_cf_node cf_node;
1327
1328 /** pointer to the overload of which this is an implementation */
1329 struct nir_function_overload *overload;
1330
1331 struct exec_list body; /** < list of nir_cf_node */
1332
1333 nir_block *end_block;
1334
1335 /** list for all local variables in the function */
1336 struct exec_list locals;
1337
1338 /** array of variables used as parameters */
1339 unsigned num_params;
1340 nir_variable **params;
1341
1342 /** variable used to hold the result of the function */
1343 nir_variable *return_var;
1344
1345 /** list of local registers in the function */
1346 struct exec_list registers;
1347
1348 /** next available local register index */
1349 unsigned reg_alloc;
1350
1351 /** next available SSA value index */
1352 unsigned ssa_alloc;
1353
1354 /* total number of basic blocks, only valid when block_index_dirty = false */
1355 unsigned num_blocks;
1356
1357 nir_metadata valid_metadata;
1358 } nir_function_impl;
1359
1360 static inline nir_block *
1361 nir_start_block(nir_function_impl *impl)
1362 {
1363 return (nir_block *) exec_list_get_head(&impl->body);
1364 }
1365
1366 static inline nir_cf_node *
1367 nir_cf_node_next(nir_cf_node *node)
1368 {
1369 struct exec_node *next = exec_node_get_next(&node->node);
1370 if (exec_node_is_tail_sentinel(next))
1371 return NULL;
1372 else
1373 return exec_node_data(nir_cf_node, next, node);
1374 }
1375
1376 static inline nir_cf_node *
1377 nir_cf_node_prev(nir_cf_node *node)
1378 {
1379 struct exec_node *prev = exec_node_get_prev(&node->node);
1380 if (exec_node_is_head_sentinel(prev))
1381 return NULL;
1382 else
1383 return exec_node_data(nir_cf_node, prev, node);
1384 }
1385
1386 static inline bool
1387 nir_cf_node_is_first(const nir_cf_node *node)
1388 {
1389 return exec_node_is_head_sentinel(node->node.prev);
1390 }
1391
1392 static inline bool
1393 nir_cf_node_is_last(const nir_cf_node *node)
1394 {
1395 return exec_node_is_tail_sentinel(node->node.next);
1396 }
1397
1398 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1399 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1400 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1401 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1402
1403 typedef enum {
1404 nir_parameter_in,
1405 nir_parameter_out,
1406 nir_parameter_inout,
1407 } nir_parameter_type;
1408
1409 typedef struct {
1410 nir_parameter_type param_type;
1411 const struct glsl_type *type;
1412 } nir_parameter;
1413
1414 typedef struct nir_function_overload {
1415 struct exec_node node;
1416
1417 unsigned num_params;
1418 nir_parameter *params;
1419 const struct glsl_type *return_type;
1420
1421 nir_function_impl *impl; /** < NULL if the overload is only declared yet */
1422
1423 /** pointer to the function of which this is an overload */
1424 struct nir_function *function;
1425 } nir_function_overload;
1426
1427 typedef struct nir_function {
1428 struct exec_node node;
1429
1430 struct exec_list overload_list; /** < list of nir_function_overload */
1431 const char *name;
1432 struct nir_shader *shader;
1433 } nir_function;
1434
1435 #define nir_function_first_overload(func) \
1436 exec_node_data(nir_function_overload, \
1437 exec_list_get_head(&(func)->overload_list), node)
1438
1439 typedef struct nir_shader_compiler_options {
1440 bool lower_ffma;
1441 bool lower_flrp;
1442 bool lower_fpow;
1443 bool lower_fsat;
1444 bool lower_fsqrt;
1445 /** lowers fneg and ineg to fsub and isub. */
1446 bool lower_negate;
1447 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1448 bool lower_sub;
1449
1450 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1451 bool lower_scmp;
1452
1453 /* Does the native fdot instruction replicate its result for four
1454 * components? If so, then opt_algebraic_late will turn all fdotN
1455 * instructions into fdot_replicatedN instructions.
1456 */
1457 bool fdot_replicates;
1458
1459 /** lowers ffract to fsub+ffloor: */
1460 bool lower_ffract;
1461
1462 /**
1463 * Does the driver support real 32-bit integers? (Otherwise, integers
1464 * are simulated by floats.)
1465 */
1466 bool native_integers;
1467 } nir_shader_compiler_options;
1468
1469 typedef struct nir_shader_info {
1470 const char *name;
1471
1472 /* Descriptive name provided by the client; may be NULL */
1473 const char *label;
1474
1475 /* Number of textures used by this shader */
1476 unsigned num_textures;
1477 /* Number of uniform buffers used by this shader */
1478 unsigned num_ubos;
1479 /* Number of atomic buffers used by this shader */
1480 unsigned num_abos;
1481 /* Number of shader storage buffers used by this shader */
1482 unsigned num_ssbos;
1483 /* Number of images used by this shader */
1484 unsigned num_images;
1485
1486 /* Which inputs are actually read */
1487 uint64_t inputs_read;
1488 /* Which outputs are actually written */
1489 uint64_t outputs_written;
1490 /* Which system values are actually read */
1491 uint64_t system_values_read;
1492
1493 /* Whether or not this shader ever uses textureGather() */
1494 bool uses_texture_gather;
1495
1496 /* Whether or not this shader uses the gl_ClipDistance output */
1497 bool uses_clip_distance_out;
1498
1499 /* Whether or not separate shader objects were used */
1500 bool separate_shader;
1501
1502 /** Was this shader linked with any transform feedback varyings? */
1503 bool has_transform_feedback_varyings;
1504
1505 union {
1506 struct {
1507 /** The number of vertices recieves per input primitive */
1508 unsigned vertices_in;
1509
1510 /** The output primitive type (GL enum value) */
1511 unsigned output_primitive;
1512
1513 /** The maximum number of vertices the geometry shader might write. */
1514 unsigned vertices_out;
1515
1516 /** 1 .. MAX_GEOMETRY_SHADER_INVOCATIONS */
1517 unsigned invocations;
1518
1519 /** Whether or not this shader uses EndPrimitive */
1520 bool uses_end_primitive;
1521
1522 /** Whether or not this shader uses non-zero streams */
1523 bool uses_streams;
1524 } gs;
1525
1526 struct {
1527 bool uses_discard;
1528
1529 /**
1530 * Whether early fragment tests are enabled as defined by
1531 * ARB_shader_image_load_store.
1532 */
1533 bool early_fragment_tests;
1534
1535 /** gl_FragDepth layout for ARB_conservative_depth. */
1536 enum gl_frag_depth_layout depth_layout;
1537 } fs;
1538
1539 struct {
1540 unsigned local_size[3];
1541 } cs;
1542 };
1543 } nir_shader_info;
1544
1545 typedef struct nir_shader {
1546 /** list of uniforms (nir_variable) */
1547 struct exec_list uniforms;
1548
1549 /** list of inputs (nir_variable) */
1550 struct exec_list inputs;
1551
1552 /** list of outputs (nir_variable) */
1553 struct exec_list outputs;
1554
1555 /** Set of driver-specific options for the shader.
1556 *
1557 * The memory for the options is expected to be kept in a single static
1558 * copy by the driver.
1559 */
1560 const struct nir_shader_compiler_options *options;
1561
1562 /** Various bits of compile-time information about a given shader */
1563 struct nir_shader_info info;
1564
1565 /** list of global variables in the shader (nir_variable) */
1566 struct exec_list globals;
1567
1568 /** list of system value variables in the shader (nir_variable) */
1569 struct exec_list system_values;
1570
1571 struct exec_list functions; /** < list of nir_function */
1572
1573 /** list of global register in the shader */
1574 struct exec_list registers;
1575
1576 /** next available global register index */
1577 unsigned reg_alloc;
1578
1579 /**
1580 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1581 * access plus one
1582 */
1583 unsigned num_inputs, num_uniforms, num_outputs;
1584
1585 /** The shader stage, such as MESA_SHADER_VERTEX. */
1586 gl_shader_stage stage;
1587 } nir_shader;
1588
1589 #define nir_foreach_overload(shader, overload) \
1590 foreach_list_typed(nir_function, func, node, &(shader)->functions) \
1591 foreach_list_typed(nir_function_overload, overload, node, \
1592 &(func)->overload_list)
1593
1594 nir_shader *nir_shader_create(void *mem_ctx,
1595 gl_shader_stage stage,
1596 const nir_shader_compiler_options *options);
1597
1598 /** creates a register, including assigning it an index and adding it to the list */
1599 nir_register *nir_global_reg_create(nir_shader *shader);
1600
1601 nir_register *nir_local_reg_create(nir_function_impl *impl);
1602
1603 void nir_reg_remove(nir_register *reg);
1604
1605 /** Adds a variable to the appropreate list in nir_shader */
1606 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1607
1608 static inline void
1609 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1610 {
1611 assert(var->data.mode == nir_var_local);
1612 exec_list_push_tail(&impl->locals, &var->node);
1613 }
1614
1615 /** creates a variable, sets a few defaults, and adds it to the list */
1616 nir_variable *nir_variable_create(nir_shader *shader,
1617 nir_variable_mode mode,
1618 const struct glsl_type *type,
1619 const char *name);
1620 /** creates a local variable and adds it to the list */
1621 nir_variable *nir_local_variable_create(nir_function_impl *impl,
1622 const struct glsl_type *type,
1623 const char *name);
1624
1625 /** creates a function and adds it to the shader's list of functions */
1626 nir_function *nir_function_create(nir_shader *shader, const char *name);
1627
1628 /** creates a null function returning null */
1629 nir_function_overload *nir_function_overload_create(nir_function *func);
1630
1631 nir_function_impl *nir_function_impl_create(nir_function_overload *func);
1632
1633 nir_block *nir_block_create(nir_shader *shader);
1634 nir_if *nir_if_create(nir_shader *shader);
1635 nir_loop *nir_loop_create(nir_shader *shader);
1636
1637 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1638
1639 /** requests that the given pieces of metadata be generated */
1640 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1641 /** dirties all but the preserved metadata */
1642 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1643
1644 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1645 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1646
1647 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1648
1649 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1650 unsigned num_components);
1651
1652 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1653 nir_intrinsic_op op);
1654
1655 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1656 nir_function_overload *callee);
1657
1658 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1659
1660 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1661
1662 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1663
1664 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1665 unsigned num_components);
1666
1667 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1668 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1669 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1670
1671 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1672
1673 nir_load_const_instr *
1674 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1675
1676 /**
1677 * NIR Cursors and Instruction Insertion API
1678 * @{
1679 *
1680 * A tiny struct representing a point to insert/extract instructions or
1681 * control flow nodes. Helps reduce the combinatorial explosion of possible
1682 * points to insert/extract.
1683 *
1684 * \sa nir_control_flow.h
1685 */
1686 typedef enum {
1687 nir_cursor_before_block,
1688 nir_cursor_after_block,
1689 nir_cursor_before_instr,
1690 nir_cursor_after_instr,
1691 } nir_cursor_option;
1692
1693 typedef struct {
1694 nir_cursor_option option;
1695 union {
1696 nir_block *block;
1697 nir_instr *instr;
1698 };
1699 } nir_cursor;
1700
1701 static inline nir_cursor
1702 nir_before_block(nir_block *block)
1703 {
1704 nir_cursor cursor;
1705 cursor.option = nir_cursor_before_block;
1706 cursor.block = block;
1707 return cursor;
1708 }
1709
1710 static inline nir_cursor
1711 nir_after_block(nir_block *block)
1712 {
1713 nir_cursor cursor;
1714 cursor.option = nir_cursor_after_block;
1715 cursor.block = block;
1716 return cursor;
1717 }
1718
1719 static inline nir_cursor
1720 nir_before_instr(nir_instr *instr)
1721 {
1722 nir_cursor cursor;
1723 cursor.option = nir_cursor_before_instr;
1724 cursor.instr = instr;
1725 return cursor;
1726 }
1727
1728 static inline nir_cursor
1729 nir_after_instr(nir_instr *instr)
1730 {
1731 nir_cursor cursor;
1732 cursor.option = nir_cursor_after_instr;
1733 cursor.instr = instr;
1734 return cursor;
1735 }
1736
1737 static inline nir_cursor
1738 nir_after_block_before_jump(nir_block *block)
1739 {
1740 nir_instr *last_instr = nir_block_last_instr(block);
1741 if (last_instr && last_instr->type == nir_instr_type_jump) {
1742 return nir_before_instr(last_instr);
1743 } else {
1744 return nir_after_block(block);
1745 }
1746 }
1747
1748 static inline nir_cursor
1749 nir_before_cf_node(nir_cf_node *node)
1750 {
1751 if (node->type == nir_cf_node_block)
1752 return nir_before_block(nir_cf_node_as_block(node));
1753
1754 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
1755 }
1756
1757 static inline nir_cursor
1758 nir_after_cf_node(nir_cf_node *node)
1759 {
1760 if (node->type == nir_cf_node_block)
1761 return nir_after_block(nir_cf_node_as_block(node));
1762
1763 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
1764 }
1765
1766 static inline nir_cursor
1767 nir_before_cf_list(struct exec_list *cf_list)
1768 {
1769 nir_cf_node *first_node = exec_node_data(nir_cf_node,
1770 exec_list_get_head(cf_list), node);
1771 return nir_before_cf_node(first_node);
1772 }
1773
1774 static inline nir_cursor
1775 nir_after_cf_list(struct exec_list *cf_list)
1776 {
1777 nir_cf_node *last_node = exec_node_data(nir_cf_node,
1778 exec_list_get_tail(cf_list), node);
1779 return nir_after_cf_node(last_node);
1780 }
1781
1782 /**
1783 * Insert a NIR instruction at the given cursor.
1784 *
1785 * Note: This does not update the cursor.
1786 */
1787 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
1788
1789 static inline void
1790 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
1791 {
1792 nir_instr_insert(nir_before_instr(instr), before);
1793 }
1794
1795 static inline void
1796 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
1797 {
1798 nir_instr_insert(nir_after_instr(instr), after);
1799 }
1800
1801 static inline void
1802 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
1803 {
1804 nir_instr_insert(nir_before_block(block), before);
1805 }
1806
1807 static inline void
1808 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
1809 {
1810 nir_instr_insert(nir_after_block(block), after);
1811 }
1812
1813 static inline void
1814 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
1815 {
1816 nir_instr_insert(nir_before_cf_node(node), before);
1817 }
1818
1819 static inline void
1820 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
1821 {
1822 nir_instr_insert(nir_after_cf_node(node), after);
1823 }
1824
1825 static inline void
1826 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
1827 {
1828 nir_instr_insert(nir_before_cf_list(list), before);
1829 }
1830
1831 static inline void
1832 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
1833 {
1834 nir_instr_insert(nir_after_cf_list(list), after);
1835 }
1836
1837 void nir_instr_remove(nir_instr *instr);
1838
1839 /** @} */
1840
1841 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
1842 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
1843 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
1844 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
1845 void *state);
1846 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
1847 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
1848
1849 nir_const_value *nir_src_as_const_value(nir_src src);
1850 bool nir_src_is_dynamically_uniform(nir_src src);
1851 bool nir_srcs_equal(nir_src src1, nir_src src2);
1852 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
1853 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
1854 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
1855 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
1856 nir_dest new_dest);
1857
1858 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
1859 unsigned num_components, const char *name);
1860 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
1861 unsigned num_components, const char *name);
1862 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
1863
1864 /* visits basic blocks in source-code order */
1865 typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state);
1866 bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb,
1867 void *state);
1868 bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb,
1869 void *state);
1870 bool nir_foreach_block_in_cf_node(nir_cf_node *node, nir_foreach_block_cb cb,
1871 void *state);
1872
1873 /* If the following CF node is an if, this function returns that if.
1874 * Otherwise, it returns NULL.
1875 */
1876 nir_if *nir_block_get_following_if(nir_block *block);
1877
1878 nir_loop *nir_block_get_following_loop(nir_block *block);
1879
1880 void nir_index_local_regs(nir_function_impl *impl);
1881 void nir_index_global_regs(nir_shader *shader);
1882 void nir_index_ssa_defs(nir_function_impl *impl);
1883 unsigned nir_index_instrs(nir_function_impl *impl);
1884
1885 void nir_index_blocks(nir_function_impl *impl);
1886
1887 void nir_print_shader(nir_shader *shader, FILE *fp);
1888 void nir_print_instr(const nir_instr *instr, FILE *fp);
1889
1890 #ifdef DEBUG
1891 void nir_validate_shader(nir_shader *shader);
1892 #else
1893 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
1894 #endif /* DEBUG */
1895
1896 void nir_calc_dominance_impl(nir_function_impl *impl);
1897 void nir_calc_dominance(nir_shader *shader);
1898
1899 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
1900 bool nir_block_dominates(nir_block *parent, nir_block *child);
1901
1902 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
1903 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
1904
1905 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
1906 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
1907
1908 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
1909 void nir_dump_cfg(nir_shader *shader, FILE *fp);
1910
1911 int nir_gs_count_vertices(const nir_shader *shader);
1912
1913 bool nir_split_var_copies(nir_shader *shader);
1914
1915 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
1916 void nir_lower_var_copies(nir_shader *shader);
1917
1918 bool nir_lower_global_vars_to_local(nir_shader *shader);
1919
1920 bool nir_lower_locals_to_regs(nir_shader *shader);
1921
1922 void nir_lower_outputs_to_temporaries(nir_shader *shader);
1923
1924 void nir_assign_var_locations(struct exec_list *var_list,
1925 unsigned *size,
1926 int (*type_size)(const struct glsl_type *));
1927
1928 void nir_lower_io(nir_shader *shader,
1929 nir_variable_mode mode,
1930 int (*type_size)(const struct glsl_type *));
1931 void nir_lower_vars_to_ssa(nir_shader *shader);
1932
1933 bool nir_remove_dead_variables(nir_shader *shader);
1934
1935 void nir_move_vec_src_uses_to_dest(nir_shader *shader);
1936 bool nir_lower_vec_to_movs(nir_shader *shader);
1937 void nir_lower_alu_to_scalar(nir_shader *shader);
1938 void nir_lower_load_const_to_scalar(nir_shader *shader);
1939
1940 void nir_lower_phis_to_scalar(nir_shader *shader);
1941
1942 void nir_lower_samplers(nir_shader *shader,
1943 const struct gl_shader_program *shader_program);
1944
1945 bool nir_lower_system_values(nir_shader *shader);
1946
1947 typedef struct nir_lower_tex_options {
1948 /**
1949 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
1950 * sampler types a texture projector is lowered.
1951 */
1952 unsigned lower_txp;
1953
1954 /**
1955 * If true, lower rect textures to 2D, using txs to fetch the
1956 * texture dimensions and dividing the texture coords by the
1957 * texture dims to normalize.
1958 */
1959 bool lower_rect;
1960
1961 /**
1962 * To emulate certain texture wrap modes, this can be used
1963 * to saturate the specified tex coord to [0.0, 1.0]. The
1964 * bits are according to sampler #, ie. if, for example:
1965 *
1966 * (conf->saturate_s & (1 << n))
1967 *
1968 * is true, then the s coord for sampler n is saturated.
1969 *
1970 * Note that clamping must happen *after* projector lowering
1971 * so any projected texture sample instruction with a clamped
1972 * coordinate gets automatically lowered, regardless of the
1973 * 'lower_txp' setting.
1974 */
1975 unsigned saturate_s;
1976 unsigned saturate_t;
1977 unsigned saturate_r;
1978 } nir_lower_tex_options;
1979
1980 void nir_lower_tex(nir_shader *shader,
1981 const nir_lower_tex_options *options);
1982
1983 void nir_lower_idiv(nir_shader *shader);
1984
1985 void nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
1986 void nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
1987
1988 void nir_lower_two_sided_color(nir_shader *shader);
1989
1990 void nir_lower_atomics(nir_shader *shader,
1991 const struct gl_shader_program *shader_program);
1992 void nir_lower_to_source_mods(nir_shader *shader);
1993
1994 bool nir_lower_gs_intrinsics(nir_shader *shader);
1995
1996 bool nir_normalize_cubemap_coords(nir_shader *shader);
1997
1998 void nir_live_ssa_defs_impl(nir_function_impl *impl);
1999 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2000
2001 void nir_convert_to_ssa_impl(nir_function_impl *impl);
2002 void nir_convert_to_ssa(nir_shader *shader);
2003
2004 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2005 * registers. If false, convert all values (even those not involved in a phi
2006 * node) to registers.
2007 */
2008 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2009
2010 bool nir_opt_algebraic(nir_shader *shader);
2011 bool nir_opt_algebraic_late(nir_shader *shader);
2012 bool nir_opt_constant_folding(nir_shader *shader);
2013
2014 bool nir_opt_global_to_local(nir_shader *shader);
2015
2016 bool nir_copy_prop(nir_shader *shader);
2017
2018 bool nir_opt_cse(nir_shader *shader);
2019
2020 bool nir_opt_dce(nir_shader *shader);
2021
2022 bool nir_opt_dead_cf(nir_shader *shader);
2023
2024 void nir_opt_gcm(nir_shader *shader);
2025
2026 bool nir_opt_peephole_select(nir_shader *shader);
2027 bool nir_opt_peephole_ffma(nir_shader *shader);
2028
2029 bool nir_opt_remove_phis(nir_shader *shader);
2030
2031 bool nir_opt_undef(nir_shader *shader);
2032
2033 void nir_sweep(nir_shader *shader);
2034
2035 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2036 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2037
2038 #ifdef __cplusplus
2039 } /* extern "C" */
2040 #endif