nir: Use pointers for nir_src_copy and nir_dest_copy
[mesa.git] / src / glsl / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "../list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/ralloc.h"
34 #include "util/set.h"
35 #include "main/mtypes.h"
36 #include "main/bitset.h"
37 #include "nir_types.h"
38 #include <stdio.h>
39
40 #include "nir_opcodes.h"
41
42 #ifdef __cplusplus
43 extern "C" {
44 #endif
45
46 #define NIR_FALSE 0u
47 #define NIR_TRUE (~0u)
48
49 /** Defines a cast function
50 *
51 * This macro defines a cast function from in_type to out_type where
52 * out_type is some structure type that contains a field of type out_type.
53 *
54 * Note that you have to be a bit careful as the generated cast function
55 * destroys constness.
56 */
57 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
58 static inline out_type * \
59 name(const in_type *parent) \
60 { \
61 return exec_node_data(out_type, parent, field); \
62 }
63
64 struct nir_function_overload;
65 struct nir_function;
66 struct nir_shader;
67
68
69 /**
70 * Description of built-in state associated with a uniform
71 *
72 * \sa nir_variable::state_slots
73 */
74 typedef struct {
75 int tokens[5];
76 int swizzle;
77 } nir_state_slot;
78
79 typedef enum {
80 nir_var_shader_in,
81 nir_var_shader_out,
82 nir_var_global,
83 nir_var_local,
84 nir_var_uniform,
85 nir_var_system_value
86 } nir_variable_mode;
87
88 /**
89 * Data stored in an nir_constant
90 */
91 union nir_constant_data {
92 unsigned u[16];
93 int i[16];
94 float f[16];
95 bool b[16];
96 };
97
98 typedef struct nir_constant {
99 /**
100 * Value of the constant.
101 *
102 * The field used to back the values supplied by the constant is determined
103 * by the type associated with the \c nir_variable. Constants may be
104 * scalars, vectors, or matrices.
105 */
106 union nir_constant_data value;
107
108 /* Array elements / Structure Fields */
109 struct nir_constant **elements;
110 } nir_constant;
111
112 /**
113 * \brief Layout qualifiers for gl_FragDepth.
114 *
115 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
116 * with a layout qualifier.
117 */
118 typedef enum {
119 nir_depth_layout_none, /**< No depth layout is specified. */
120 nir_depth_layout_any,
121 nir_depth_layout_greater,
122 nir_depth_layout_less,
123 nir_depth_layout_unchanged
124 } nir_depth_layout;
125
126 /**
127 * Either a uniform, global variable, shader input, or shader output. Based on
128 * ir_variable - it should be easy to translate between the two.
129 */
130
131 typedef struct {
132 struct exec_node node;
133
134 /**
135 * Declared type of the variable
136 */
137 const struct glsl_type *type;
138
139 /**
140 * Declared name of the variable
141 */
142 char *name;
143
144 /**
145 * For variables which satisfy the is_interface_instance() predicate, this
146 * points to an array of integers such that if the ith member of the
147 * interface block is an array, max_ifc_array_access[i] is the maximum
148 * array element of that member that has been accessed. If the ith member
149 * of the interface block is not an array, max_ifc_array_access[i] is
150 * unused.
151 *
152 * For variables whose type is not an interface block, this pointer is
153 * NULL.
154 */
155 unsigned *max_ifc_array_access;
156
157 struct nir_variable_data {
158
159 /**
160 * Is the variable read-only?
161 *
162 * This is set for variables declared as \c const, shader inputs,
163 * and uniforms.
164 */
165 unsigned read_only:1;
166 unsigned centroid:1;
167 unsigned sample:1;
168 unsigned invariant:1;
169
170 /**
171 * Storage class of the variable.
172 *
173 * \sa nir_variable_mode
174 */
175 nir_variable_mode mode:4;
176
177 /**
178 * Interpolation mode for shader inputs / outputs
179 *
180 * \sa glsl_interp_qualifier
181 */
182 unsigned interpolation:2;
183
184 /**
185 * \name ARB_fragment_coord_conventions
186 * @{
187 */
188 unsigned origin_upper_left:1;
189 unsigned pixel_center_integer:1;
190 /*@}*/
191
192 /**
193 * Was the location explicitly set in the shader?
194 *
195 * If the location is explicitly set in the shader, it \b cannot be changed
196 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
197 * no effect).
198 */
199 unsigned explicit_location:1;
200 unsigned explicit_index:1;
201
202 /**
203 * Was an initial binding explicitly set in the shader?
204 *
205 * If so, constant_initializer contains an integer nir_constant
206 * representing the initial binding point.
207 */
208 unsigned explicit_binding:1;
209
210 /**
211 * Does this variable have an initializer?
212 *
213 * This is used by the linker to cross-validiate initializers of global
214 * variables.
215 */
216 unsigned has_initializer:1;
217
218 /**
219 * Is this variable a generic output or input that has not yet been matched
220 * up to a variable in another stage of the pipeline?
221 *
222 * This is used by the linker as scratch storage while assigning locations
223 * to generic inputs and outputs.
224 */
225 unsigned is_unmatched_generic_inout:1;
226
227 /**
228 * If non-zero, then this variable may be packed along with other variables
229 * into a single varying slot, so this offset should be applied when
230 * accessing components. For example, an offset of 1 means that the x
231 * component of this variable is actually stored in component y of the
232 * location specified by \c location.
233 */
234 unsigned location_frac:2;
235
236 /**
237 * Non-zero if this variable was created by lowering a named interface
238 * block which was not an array.
239 *
240 * Note that this variable and \c from_named_ifc_block_array will never
241 * both be non-zero.
242 */
243 unsigned from_named_ifc_block_nonarray:1;
244
245 /**
246 * Non-zero if this variable was created by lowering a named interface
247 * block which was an array.
248 *
249 * Note that this variable and \c from_named_ifc_block_nonarray will never
250 * both be non-zero.
251 */
252 unsigned from_named_ifc_block_array:1;
253
254 /**
255 * \brief Layout qualifier for gl_FragDepth.
256 *
257 * This is not equal to \c ir_depth_layout_none if and only if this
258 * variable is \c gl_FragDepth and a layout qualifier is specified.
259 */
260 nir_depth_layout depth_layout;
261
262 /**
263 * Storage location of the base of this variable
264 *
265 * The precise meaning of this field depends on the nature of the variable.
266 *
267 * - Vertex shader input: one of the values from \c gl_vert_attrib.
268 * - Vertex shader output: one of the values from \c gl_varying_slot.
269 * - Geometry shader input: one of the values from \c gl_varying_slot.
270 * - Geometry shader output: one of the values from \c gl_varying_slot.
271 * - Fragment shader input: one of the values from \c gl_varying_slot.
272 * - Fragment shader output: one of the values from \c gl_frag_result.
273 * - Uniforms: Per-stage uniform slot number for default uniform block.
274 * - Uniforms: Index within the uniform block definition for UBO members.
275 * - Other: This field is not currently used.
276 *
277 * If the variable is a uniform, shader input, or shader output, and the
278 * slot has not been assigned, the value will be -1.
279 */
280 int location;
281
282 /**
283 * The actual location of the variable in the IR. Only valid for inputs
284 * and outputs.
285 */
286 unsigned int driver_location;
287
288 /**
289 * output index for dual source blending.
290 */
291 int index;
292
293 /**
294 * Initial binding point for a sampler or UBO.
295 *
296 * For array types, this represents the binding point for the first element.
297 */
298 int binding;
299
300 /**
301 * Location an atomic counter is stored at.
302 */
303 struct {
304 unsigned buffer_index;
305 unsigned offset;
306 } atomic;
307
308 /**
309 * ARB_shader_image_load_store qualifiers.
310 */
311 struct {
312 bool read_only; /**< "readonly" qualifier. */
313 bool write_only; /**< "writeonly" qualifier. */
314 bool coherent;
315 bool _volatile;
316 bool restrict_flag;
317
318 /** Image internal format if specified explicitly, otherwise GL_NONE. */
319 GLenum format;
320 } image;
321
322 /**
323 * Highest element accessed with a constant expression array index
324 *
325 * Not used for non-array variables.
326 */
327 unsigned max_array_access;
328
329 } data;
330
331 /**
332 * Built-in state that backs this uniform
333 *
334 * Once set at variable creation, \c state_slots must remain invariant.
335 * This is because, ideally, this array would be shared by all clones of
336 * this variable in the IR tree. In other words, we'd really like for it
337 * to be a fly-weight.
338 *
339 * If the variable is not a uniform, \c num_state_slots will be zero and
340 * \c state_slots will be \c NULL.
341 */
342 /*@{*/
343 unsigned num_state_slots; /**< Number of state slots used */
344 nir_state_slot *state_slots; /**< State descriptors. */
345 /*@}*/
346
347 /**
348 * Constant expression assigned in the initializer of the variable
349 */
350 nir_constant *constant_initializer;
351
352 /**
353 * For variables that are in an interface block or are an instance of an
354 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
355 *
356 * \sa ir_variable::location
357 */
358 const struct glsl_type *interface_type;
359 } nir_variable;
360
361 typedef struct {
362 struct exec_node node;
363
364 unsigned num_components; /** < number of vector components */
365 unsigned num_array_elems; /** < size of array (0 for no array) */
366
367 /** generic register index. */
368 unsigned index;
369
370 /** only for debug purposes, can be NULL */
371 const char *name;
372
373 /** whether this register is local (per-function) or global (per-shader) */
374 bool is_global;
375
376 /**
377 * If this flag is set to true, then accessing channels >= num_components
378 * is well-defined, and simply spills over to the next array element. This
379 * is useful for backends that can do per-component accessing, in
380 * particular scalar backends. By setting this flag and making
381 * num_components equal to 1, structures can be packed tightly into
382 * registers and then registers can be accessed per-component to get to
383 * each structure member, even if it crosses vec4 boundaries.
384 */
385 bool is_packed;
386
387 /** set of nir_instr's where this register is used (read from) */
388 struct set *uses;
389
390 /** set of nir_instr's where this register is defined (written to) */
391 struct set *defs;
392
393 /** set of nir_if's where this register is used as a condition */
394 struct set *if_uses;
395 } nir_register;
396
397 typedef enum {
398 nir_instr_type_alu,
399 nir_instr_type_call,
400 nir_instr_type_tex,
401 nir_instr_type_intrinsic,
402 nir_instr_type_load_const,
403 nir_instr_type_jump,
404 nir_instr_type_ssa_undef,
405 nir_instr_type_phi,
406 nir_instr_type_parallel_copy,
407 } nir_instr_type;
408
409 typedef struct {
410 struct exec_node node;
411 nir_instr_type type;
412 struct nir_block *block;
413
414 /* flag for dead code elimination (see nir_opt_dce.c) */
415 bool live;
416 } nir_instr;
417
418 static inline nir_instr *
419 nir_instr_next(const nir_instr *instr)
420 {
421 return exec_node_data(nir_instr, (instr)->node.next, node);
422 }
423
424 static inline nir_instr *
425 nir_instr_prev(const nir_instr *instr)
426 {
427 return exec_node_data(nir_instr, (instr)->node.prev, node);
428 }
429
430 typedef struct {
431 /** for debugging only, can be NULL */
432 const char* name;
433
434 /** generic SSA definition index. */
435 unsigned index;
436
437 /** Index into the live_in and live_out bitfields */
438 unsigned live_index;
439
440 nir_instr *parent_instr;
441
442 /** set of nir_instr's where this register is used (read from) */
443 struct set *uses;
444
445 /** set of nir_if's where this register is used as a condition */
446 struct set *if_uses;
447
448 uint8_t num_components;
449 } nir_ssa_def;
450
451 struct nir_src;
452
453 typedef struct {
454 nir_register *reg;
455 struct nir_src *indirect; /** < NULL for no indirect offset */
456 unsigned base_offset;
457
458 /* TODO use-def chain goes here */
459 } nir_reg_src;
460
461 typedef struct {
462 nir_register *reg;
463 struct nir_src *indirect; /** < NULL for no indirect offset */
464 unsigned base_offset;
465
466 /* TODO def-use chain goes here */
467 } nir_reg_dest;
468
469 typedef struct nir_src {
470 union {
471 nir_reg_src reg;
472 nir_ssa_def *ssa;
473 };
474
475 bool is_ssa;
476 } nir_src;
477
478 typedef struct {
479 union {
480 nir_reg_dest reg;
481 nir_ssa_def ssa;
482 };
483
484 bool is_ssa;
485 } nir_dest;
486
487 static inline nir_src
488 nir_src_for_ssa(nir_ssa_def *def)
489 {
490 nir_src src;
491
492 src.is_ssa = true;
493 src.ssa = def;
494
495 return src;
496 }
497
498 static inline nir_src
499 nir_src_for_reg(nir_register *reg)
500 {
501 nir_src src;
502
503 src.is_ssa = false;
504 src.reg.reg = reg;
505 src.reg.indirect = NULL;
506 src.reg.base_offset = 0;
507
508 return src;
509 }
510
511 static inline nir_dest
512 nir_dest_for_reg(nir_register *reg)
513 {
514 nir_dest dest;
515
516 dest.is_ssa = false;
517 dest.reg.reg = reg;
518 dest.reg.indirect = NULL;
519 dest.reg.base_offset = 0;
520
521 return dest;
522 }
523
524 void nir_src_copy(nir_src *dest, const nir_src *src, void *mem_ctx);
525 void nir_dest_copy(nir_dest *dest, const nir_dest *src, void *mem_ctx);
526
527 typedef struct {
528 nir_src src;
529
530 /**
531 * \name input modifiers
532 */
533 /*@{*/
534 /**
535 * For inputs interpreted as floating point, flips the sign bit. For
536 * inputs interpreted as integers, performs the two's complement negation.
537 */
538 bool negate;
539
540 /**
541 * Clears the sign bit for floating point values, and computes the integer
542 * absolute value for integers. Note that the negate modifier acts after
543 * the absolute value modifier, therefore if both are set then all inputs
544 * will become negative.
545 */
546 bool abs;
547 /*@}*/
548
549 /**
550 * For each input component, says which component of the register it is
551 * chosen from. Note that which elements of the swizzle are used and which
552 * are ignored are based on the write mask for most opcodes - for example,
553 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
554 * a swizzle of {2, x, 1, 0} where x means "don't care."
555 */
556 uint8_t swizzle[4];
557 } nir_alu_src;
558
559 typedef struct {
560 nir_dest dest;
561
562 /**
563 * \name saturate output modifier
564 *
565 * Only valid for opcodes that output floating-point numbers. Clamps the
566 * output to between 0.0 and 1.0 inclusive.
567 */
568
569 bool saturate;
570
571 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
572 } nir_alu_dest;
573
574 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src, void *mem_ctx);
575 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
576 void *mem_ctx);
577
578 typedef enum {
579 nir_type_float,
580 nir_type_int,
581 nir_type_unsigned,
582 nir_type_bool
583 } nir_alu_type;
584
585 typedef enum {
586 NIR_OP_IS_COMMUTATIVE = (1 << 0),
587 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
588 } nir_op_algebraic_property;
589
590 typedef struct {
591 const char *name;
592
593 unsigned num_inputs;
594
595 /**
596 * The number of components in the output
597 *
598 * If non-zero, this is the size of the output and input sizes are
599 * explicitly given; swizzle and writemask are still in effect, but if
600 * the output component is masked out, then the input component may
601 * still be in use.
602 *
603 * If zero, the opcode acts in the standard, per-component manner; the
604 * operation is performed on each component (except the ones that are
605 * masked out) with the input being taken from the input swizzle for
606 * that component.
607 *
608 * The size of some of the inputs may be given (i.e. non-zero) even
609 * though output_size is zero; in that case, the inputs with a zero
610 * size act per-component, while the inputs with non-zero size don't.
611 */
612 unsigned output_size;
613
614 /**
615 * The type of vector that the instruction outputs. Note that the
616 * staurate modifier is only allowed on outputs with the float type.
617 */
618
619 nir_alu_type output_type;
620
621 /**
622 * The number of components in each input
623 */
624 unsigned input_sizes[4];
625
626 /**
627 * The type of vector that each input takes. Note that negate and
628 * absolute value are only allowed on inputs with int or float type and
629 * behave differently on the two.
630 */
631 nir_alu_type input_types[4];
632
633 nir_op_algebraic_property algebraic_properties;
634 } nir_op_info;
635
636 extern const nir_op_info nir_op_infos[nir_num_opcodes];
637
638 typedef struct nir_alu_instr {
639 nir_instr instr;
640 nir_op op;
641 nir_alu_dest dest;
642 nir_alu_src src[];
643 } nir_alu_instr;
644
645 /* is this source channel used? */
646 static inline bool
647 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
648 {
649 if (nir_op_infos[instr->op].input_sizes[src] > 0)
650 return channel < nir_op_infos[instr->op].input_sizes[src];
651
652 return (instr->dest.write_mask >> channel) & 1;
653 }
654
655 typedef enum {
656 nir_deref_type_var,
657 nir_deref_type_array,
658 nir_deref_type_struct
659 } nir_deref_type;
660
661 typedef struct nir_deref {
662 nir_deref_type deref_type;
663 struct nir_deref *child;
664 const struct glsl_type *type;
665 } nir_deref;
666
667 typedef struct {
668 nir_deref deref;
669
670 nir_variable *var;
671 } nir_deref_var;
672
673 /* This enum describes how the array is referenced. If the deref is
674 * direct then the base_offset is used. If the deref is indirect then then
675 * offset is given by base_offset + indirect. If the deref is a wildcard
676 * then the deref refers to all of the elements of the array at the same
677 * time. Wildcard dereferences are only ever allowed in copy_var
678 * intrinsics and the source and destination derefs must have matching
679 * wildcards.
680 */
681 typedef enum {
682 nir_deref_array_type_direct,
683 nir_deref_array_type_indirect,
684 nir_deref_array_type_wildcard,
685 } nir_deref_array_type;
686
687 typedef struct {
688 nir_deref deref;
689
690 nir_deref_array_type deref_array_type;
691 unsigned base_offset;
692 nir_src indirect;
693 } nir_deref_array;
694
695 typedef struct {
696 nir_deref deref;
697
698 unsigned index;
699 } nir_deref_struct;
700
701 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
702 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
703 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
704
705 typedef struct {
706 nir_instr instr;
707
708 unsigned num_params;
709 nir_deref_var **params;
710 nir_deref_var *return_deref;
711
712 struct nir_function_overload *callee;
713 } nir_call_instr;
714
715 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
716 num_variables, num_indices, flags) \
717 nir_intrinsic_##name,
718
719 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
720
721 typedef enum {
722 #include "nir_intrinsics.h"
723 nir_num_intrinsics = nir_last_intrinsic + 1
724 } nir_intrinsic_op;
725
726 #undef INTRINSIC
727 #undef LAST_INTRINSIC
728
729 /** Represents an intrinsic
730 *
731 * An intrinsic is an instruction type for handling things that are
732 * more-or-less regular operations but don't just consume and produce SSA
733 * values like ALU operations do. Intrinsics are not for things that have
734 * special semantic meaning such as phi nodes and parallel copies.
735 * Examples of intrinsics include variable load/store operations, system
736 * value loads, and the like. Even though texturing more-or-less falls
737 * under this category, texturing is its own instruction type because
738 * trying to represent texturing with intrinsics would lead to a
739 * combinatorial explosion of intrinsic opcodes.
740 *
741 * By having a single instruction type for handling a lot of different
742 * cases, optimization passes can look for intrinsics and, for the most
743 * part, completely ignore them. Each intrinsic type also has a few
744 * possible flags that govern whether or not they can be reordered or
745 * eliminated. That way passes like dead code elimination can still work
746 * on intrisics without understanding the meaning of each.
747 *
748 * Each intrinsic has some number of constant indices, some number of
749 * variables, and some number of sources. What these sources, variables,
750 * and indices mean depends on the intrinsic and is documented with the
751 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
752 * instructions are the only types of instruction that can operate on
753 * variables.
754 */
755 typedef struct {
756 nir_instr instr;
757
758 nir_intrinsic_op intrinsic;
759
760 nir_dest dest;
761
762 /** number of components if this is a vectorized intrinsic
763 *
764 * Similarly to ALU operations, some intrinsics are vectorized.
765 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
766 * For vectorized intrinsics, the num_components field specifies the
767 * number of destination components and the number of source components
768 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
769 */
770 uint8_t num_components;
771
772 int const_index[3];
773
774 nir_deref_var *variables[2];
775
776 nir_src src[];
777 } nir_intrinsic_instr;
778
779 /**
780 * \name NIR intrinsics semantic flags
781 *
782 * information about what the compiler can do with the intrinsics.
783 *
784 * \sa nir_intrinsic_info::flags
785 */
786 typedef enum {
787 /**
788 * whether the intrinsic can be safely eliminated if none of its output
789 * value is not being used.
790 */
791 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
792
793 /**
794 * Whether the intrinsic can be reordered with respect to any other
795 * intrinsic, i.e. whether the only reordering dependencies of the
796 * intrinsic are due to the register reads/writes.
797 */
798 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
799 } nir_intrinsic_semantic_flag;
800
801 #define NIR_INTRINSIC_MAX_INPUTS 4
802
803 typedef struct {
804 const char *name;
805
806 unsigned num_srcs; /** < number of register/SSA inputs */
807
808 /** number of components of each input register
809 *
810 * If this value is 0, the number of components is given by the
811 * num_components field of nir_intrinsic_instr.
812 */
813 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
814
815 bool has_dest;
816
817 /** number of components of the output register
818 *
819 * If this value is 0, the number of components is given by the
820 * num_components field of nir_intrinsic_instr.
821 */
822 unsigned dest_components;
823
824 /** the number of inputs/outputs that are variables */
825 unsigned num_variables;
826
827 /** the number of constant indices used by the intrinsic */
828 unsigned num_indices;
829
830 /** semantic flags for calls to this intrinsic */
831 nir_intrinsic_semantic_flag flags;
832 } nir_intrinsic_info;
833
834 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
835
836 /**
837 * \group texture information
838 *
839 * This gives semantic information about textures which is useful to the
840 * frontend, the backend, and lowering passes, but not the optimizer.
841 */
842
843 typedef enum {
844 nir_tex_src_coord,
845 nir_tex_src_projector,
846 nir_tex_src_comparitor, /* shadow comparitor */
847 nir_tex_src_offset,
848 nir_tex_src_bias,
849 nir_tex_src_lod,
850 nir_tex_src_ms_index, /* MSAA sample index */
851 nir_tex_src_ddx,
852 nir_tex_src_ddy,
853 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
854 nir_num_tex_src_types
855 } nir_tex_src_type;
856
857 typedef struct {
858 nir_src src;
859 nir_tex_src_type src_type;
860 } nir_tex_src;
861
862 typedef enum {
863 nir_texop_tex, /**< Regular texture look-up */
864 nir_texop_txb, /**< Texture look-up with LOD bias */
865 nir_texop_txl, /**< Texture look-up with explicit LOD */
866 nir_texop_txd, /**< Texture look-up with partial derivatvies */
867 nir_texop_txf, /**< Texel fetch with explicit LOD */
868 nir_texop_txf_ms, /**< Multisample texture fetch */
869 nir_texop_txs, /**< Texture size */
870 nir_texop_lod, /**< Texture lod query */
871 nir_texop_tg4, /**< Texture gather */
872 nir_texop_query_levels /**< Texture levels query */
873 } nir_texop;
874
875 typedef struct {
876 nir_instr instr;
877
878 enum glsl_sampler_dim sampler_dim;
879 nir_alu_type dest_type;
880
881 nir_texop op;
882 nir_dest dest;
883 nir_tex_src *src;
884 unsigned num_srcs, coord_components;
885 bool is_array, is_shadow;
886
887 /**
888 * If is_shadow is true, whether this is the old-style shadow that outputs 4
889 * components or the new-style shadow that outputs 1 component.
890 */
891 bool is_new_style_shadow;
892
893 /* constant offset - must be 0 if the offset source is used */
894 int const_offset[4];
895
896 /* gather component selector */
897 unsigned component : 2;
898
899 /** The sampler index
900 *
901 * If this texture instruction has a nir_tex_src_sampler_offset source,
902 * then the sampler index is given by sampler_index + sampler_offset.
903 */
904 unsigned sampler_index;
905
906 /** The size of the sampler array or 0 if it's not an array */
907 unsigned sampler_array_size;
908
909 nir_deref_var *sampler; /* if this is NULL, use sampler_index instead */
910 } nir_tex_instr;
911
912 static inline unsigned
913 nir_tex_instr_dest_size(nir_tex_instr *instr)
914 {
915 if (instr->op == nir_texop_txs) {
916 unsigned ret;
917 switch (instr->sampler_dim) {
918 case GLSL_SAMPLER_DIM_1D:
919 case GLSL_SAMPLER_DIM_BUF:
920 ret = 1;
921 break;
922 case GLSL_SAMPLER_DIM_2D:
923 case GLSL_SAMPLER_DIM_CUBE:
924 case GLSL_SAMPLER_DIM_MS:
925 case GLSL_SAMPLER_DIM_RECT:
926 case GLSL_SAMPLER_DIM_EXTERNAL:
927 ret = 2;
928 break;
929 case GLSL_SAMPLER_DIM_3D:
930 ret = 3;
931 break;
932 default:
933 unreachable("not reached");
934 }
935 if (instr->is_array)
936 ret++;
937 return ret;
938 }
939
940 if (instr->op == nir_texop_query_levels)
941 return 2;
942
943 if (instr->is_shadow && instr->is_new_style_shadow)
944 return 1;
945
946 return 4;
947 }
948
949 static inline unsigned
950 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
951 {
952 if (instr->src[src].src_type == nir_tex_src_coord)
953 return instr->coord_components;
954
955
956 if (instr->src[src].src_type == nir_tex_src_offset ||
957 instr->src[src].src_type == nir_tex_src_ddx ||
958 instr->src[src].src_type == nir_tex_src_ddy) {
959 if (instr->is_array)
960 return instr->coord_components - 1;
961 else
962 return instr->coord_components;
963 }
964
965 return 1;
966 }
967
968 static inline int
969 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
970 {
971 for (unsigned i = 0; i < instr->num_srcs; i++)
972 if (instr->src[i].src_type == type)
973 return (int) i;
974
975 return -1;
976 }
977
978 typedef struct {
979 union {
980 float f[4];
981 int32_t i[4];
982 uint32_t u[4];
983 };
984 } nir_const_value;
985
986 typedef struct {
987 nir_instr instr;
988
989 nir_const_value value;
990
991 nir_ssa_def def;
992 } nir_load_const_instr;
993
994 typedef enum {
995 nir_jump_return,
996 nir_jump_break,
997 nir_jump_continue,
998 } nir_jump_type;
999
1000 typedef struct {
1001 nir_instr instr;
1002 nir_jump_type type;
1003 } nir_jump_instr;
1004
1005 /* creates a new SSA variable in an undefined state */
1006
1007 typedef struct {
1008 nir_instr instr;
1009 nir_ssa_def def;
1010 } nir_ssa_undef_instr;
1011
1012 typedef struct {
1013 struct exec_node node;
1014
1015 /* The predecessor block corresponding to this source */
1016 struct nir_block *pred;
1017
1018 nir_src src;
1019 } nir_phi_src;
1020
1021 #define nir_foreach_phi_src(phi, entry) \
1022 foreach_list_typed(nir_phi_src, entry, node, &(phi)->srcs)
1023
1024 typedef struct {
1025 nir_instr instr;
1026
1027 struct exec_list srcs; /** < list of nir_phi_src */
1028
1029 nir_dest dest;
1030 } nir_phi_instr;
1031
1032 typedef struct {
1033 struct exec_node node;
1034 nir_src src;
1035 nir_dest dest;
1036 } nir_parallel_copy_entry;
1037
1038 #define nir_foreach_parallel_copy_entry(pcopy, entry) \
1039 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1040
1041 typedef struct {
1042 nir_instr instr;
1043
1044 /* A list of nir_parallel_copy_entry's. The sources of all of the
1045 * entries are copied to the corresponding destinations "in parallel".
1046 * In other words, if we have two entries: a -> b and b -> a, the values
1047 * get swapped.
1048 */
1049 struct exec_list entries;
1050 } nir_parallel_copy_instr;
1051
1052 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1053 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1054 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1055 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1056 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1057 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1058 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1059 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1060 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1061 nir_parallel_copy_instr, instr)
1062
1063 /*
1064 * Control flow
1065 *
1066 * Control flow consists of a tree of control flow nodes, which include
1067 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1068 * instructions that always run start-to-finish. Each basic block also keeps
1069 * track of its successors (blocks which may run immediately after the current
1070 * block) and predecessors (blocks which could have run immediately before the
1071 * current block). Each function also has a start block and an end block which
1072 * all return statements point to (which is always empty). Together, all the
1073 * blocks with their predecessors and successors make up the control flow
1074 * graph (CFG) of the function. There are helpers that modify the tree of
1075 * control flow nodes while modifying the CFG appropriately; these should be
1076 * used instead of modifying the tree directly.
1077 */
1078
1079 typedef enum {
1080 nir_cf_node_block,
1081 nir_cf_node_if,
1082 nir_cf_node_loop,
1083 nir_cf_node_function
1084 } nir_cf_node_type;
1085
1086 typedef struct nir_cf_node {
1087 struct exec_node node;
1088 nir_cf_node_type type;
1089 struct nir_cf_node *parent;
1090 } nir_cf_node;
1091
1092 typedef struct nir_block {
1093 nir_cf_node cf_node;
1094
1095 struct exec_list instr_list; /** < list of nir_instr */
1096
1097 /** generic block index; generated by nir_index_blocks */
1098 unsigned index;
1099
1100 /*
1101 * Each block can only have up to 2 successors, so we put them in a simple
1102 * array - no need for anything more complicated.
1103 */
1104 struct nir_block *successors[2];
1105
1106 /* Set of nir_block predecessors in the CFG */
1107 struct set *predecessors;
1108
1109 /*
1110 * this node's immediate dominator in the dominance tree - set to NULL for
1111 * the start block.
1112 */
1113 struct nir_block *imm_dom;
1114
1115 /* This node's children in the dominance tree */
1116 unsigned num_dom_children;
1117 struct nir_block **dom_children;
1118
1119 /* Set of nir_block's on the dominance frontier of this block */
1120 struct set *dom_frontier;
1121
1122 /* live in and out for this block; used for liveness analysis */
1123 BITSET_WORD *live_in;
1124 BITSET_WORD *live_out;
1125 } nir_block;
1126
1127 static inline nir_instr *
1128 nir_block_first_instr(nir_block *block)
1129 {
1130 struct exec_node *head = exec_list_get_head(&block->instr_list);
1131 return exec_node_data(nir_instr, head, node);
1132 }
1133
1134 static inline nir_instr *
1135 nir_block_last_instr(nir_block *block)
1136 {
1137 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1138 return exec_node_data(nir_instr, tail, node);
1139 }
1140
1141 #define nir_foreach_instr(block, instr) \
1142 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1143 #define nir_foreach_instr_reverse(block, instr) \
1144 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1145 #define nir_foreach_instr_safe(block, instr) \
1146 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1147
1148 typedef struct {
1149 nir_cf_node cf_node;
1150 nir_src condition;
1151
1152 struct exec_list then_list; /** < list of nir_cf_node */
1153 struct exec_list else_list; /** < list of nir_cf_node */
1154 } nir_if;
1155
1156 static inline nir_cf_node *
1157 nir_if_first_then_node(nir_if *if_stmt)
1158 {
1159 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1160 return exec_node_data(nir_cf_node, head, node);
1161 }
1162
1163 static inline nir_cf_node *
1164 nir_if_last_then_node(nir_if *if_stmt)
1165 {
1166 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1167 return exec_node_data(nir_cf_node, tail, node);
1168 }
1169
1170 static inline nir_cf_node *
1171 nir_if_first_else_node(nir_if *if_stmt)
1172 {
1173 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1174 return exec_node_data(nir_cf_node, head, node);
1175 }
1176
1177 static inline nir_cf_node *
1178 nir_if_last_else_node(nir_if *if_stmt)
1179 {
1180 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1181 return exec_node_data(nir_cf_node, tail, node);
1182 }
1183
1184 typedef struct {
1185 nir_cf_node cf_node;
1186
1187 struct exec_list body; /** < list of nir_cf_node */
1188 } nir_loop;
1189
1190 static inline nir_cf_node *
1191 nir_loop_first_cf_node(nir_loop *loop)
1192 {
1193 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1194 }
1195
1196 static inline nir_cf_node *
1197 nir_loop_last_cf_node(nir_loop *loop)
1198 {
1199 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1200 }
1201
1202 /**
1203 * Various bits of metadata that can may be created or required by
1204 * optimization and analysis passes
1205 */
1206 typedef enum {
1207 nir_metadata_none = 0x0,
1208 nir_metadata_block_index = 0x1,
1209 nir_metadata_dominance = 0x2,
1210 nir_metadata_live_variables = 0x4,
1211 } nir_metadata;
1212
1213 typedef struct {
1214 nir_cf_node cf_node;
1215
1216 /** pointer to the overload of which this is an implementation */
1217 struct nir_function_overload *overload;
1218
1219 struct exec_list body; /** < list of nir_cf_node */
1220
1221 nir_block *start_block, *end_block;
1222
1223 /** list for all local variables in the function */
1224 struct exec_list locals;
1225
1226 /** array of variables used as parameters */
1227 unsigned num_params;
1228 nir_variable **params;
1229
1230 /** variable used to hold the result of the function */
1231 nir_variable *return_var;
1232
1233 /** list of local registers in the function */
1234 struct exec_list registers;
1235
1236 /** next available local register index */
1237 unsigned reg_alloc;
1238
1239 /** next available SSA value index */
1240 unsigned ssa_alloc;
1241
1242 /* total number of basic blocks, only valid when block_index_dirty = false */
1243 unsigned num_blocks;
1244
1245 nir_metadata valid_metadata;
1246 } nir_function_impl;
1247
1248 static inline nir_cf_node *
1249 nir_cf_node_next(nir_cf_node *node)
1250 {
1251 return exec_node_data(nir_cf_node, exec_node_get_next(&node->node), node);
1252 }
1253
1254 static inline nir_cf_node *
1255 nir_cf_node_prev(nir_cf_node *node)
1256 {
1257 return exec_node_data(nir_cf_node, exec_node_get_prev(&node->node), node);
1258 }
1259
1260 static inline bool
1261 nir_cf_node_is_first(const nir_cf_node *node)
1262 {
1263 return exec_node_is_head_sentinel(node->node.prev);
1264 }
1265
1266 static inline bool
1267 nir_cf_node_is_last(const nir_cf_node *node)
1268 {
1269 return exec_node_is_tail_sentinel(node->node.next);
1270 }
1271
1272 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1273 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1274 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1275 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1276
1277 typedef enum {
1278 nir_parameter_in,
1279 nir_parameter_out,
1280 nir_parameter_inout,
1281 } nir_parameter_type;
1282
1283 typedef struct {
1284 nir_parameter_type param_type;
1285 const struct glsl_type *type;
1286 } nir_parameter;
1287
1288 typedef struct nir_function_overload {
1289 struct exec_node node;
1290
1291 unsigned num_params;
1292 nir_parameter *params;
1293 const struct glsl_type *return_type;
1294
1295 nir_function_impl *impl; /** < NULL if the overload is only declared yet */
1296
1297 /** pointer to the function of which this is an overload */
1298 struct nir_function *function;
1299 } nir_function_overload;
1300
1301 typedef struct nir_function {
1302 struct exec_node node;
1303
1304 struct exec_list overload_list; /** < list of nir_function_overload */
1305 const char *name;
1306 struct nir_shader *shader;
1307 } nir_function;
1308
1309 #define nir_function_first_overload(func) \
1310 exec_node_data(nir_function_overload, \
1311 exec_list_get_head(&(func)->overload_list), node)
1312
1313 typedef struct nir_shader {
1314 /** hash table of name -> uniform nir_variable */
1315 struct hash_table *uniforms;
1316
1317 /** hash table of name -> input nir_variable */
1318 struct hash_table *inputs;
1319
1320 /** hash table of name -> output nir_variable */
1321 struct hash_table *outputs;
1322
1323 /** list of global variables in the shader */
1324 struct exec_list globals;
1325
1326 /** list of system value variables in the shader */
1327 struct exec_list system_values;
1328
1329 struct exec_list functions; /** < list of nir_function */
1330
1331 /** list of global register in the shader */
1332 struct exec_list registers;
1333
1334 /** structures used in this shader */
1335 unsigned num_user_structures;
1336 struct glsl_type **user_structures;
1337
1338 /** next available global register index */
1339 unsigned reg_alloc;
1340
1341 /**
1342 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1343 * access plus one
1344 */
1345 unsigned num_inputs, num_uniforms, num_outputs;
1346 } nir_shader;
1347
1348 #define nir_foreach_overload(shader, overload) \
1349 foreach_list_typed(nir_function, func, node, &(shader)->functions) \
1350 foreach_list_typed(nir_function_overload, overload, node, \
1351 &(func)->overload_list)
1352
1353 nir_shader *nir_shader_create(void *mem_ctx);
1354
1355 /** creates a register, including assigning it an index and adding it to the list */
1356 nir_register *nir_global_reg_create(nir_shader *shader);
1357
1358 nir_register *nir_local_reg_create(nir_function_impl *impl);
1359
1360 void nir_reg_remove(nir_register *reg);
1361
1362 /** creates a function and adds it to the shader's list of functions */
1363 nir_function *nir_function_create(nir_shader *shader, const char *name);
1364
1365 /** creates a null function returning null */
1366 nir_function_overload *nir_function_overload_create(nir_function *func);
1367
1368 nir_function_impl *nir_function_impl_create(nir_function_overload *func);
1369
1370 nir_block *nir_block_create(void *mem_ctx);
1371 nir_if *nir_if_create(void *mem_ctx);
1372 nir_loop *nir_loop_create(void *mem_ctx);
1373
1374 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1375
1376 /** puts a control flow node immediately after another control flow node */
1377 void nir_cf_node_insert_after(nir_cf_node *node, nir_cf_node *after);
1378
1379 /** puts a control flow node immediately before another control flow node */
1380 void nir_cf_node_insert_before(nir_cf_node *node, nir_cf_node *before);
1381
1382 /** puts a control flow node at the beginning of a list from an if, loop, or function */
1383 void nir_cf_node_insert_begin(struct exec_list *list, nir_cf_node *node);
1384
1385 /** puts a control flow node at the end of a list from an if, loop, or function */
1386 void nir_cf_node_insert_end(struct exec_list *list, nir_cf_node *node);
1387
1388 /** removes a control flow node, doing any cleanup necessary */
1389 void nir_cf_node_remove(nir_cf_node *node);
1390
1391 /** requests that the given pieces of metadata be generated */
1392 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1393 /** dirties all but the preserved metadata */
1394 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1395
1396 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1397 nir_alu_instr *nir_alu_instr_create(void *mem_ctx, nir_op op);
1398
1399 nir_jump_instr *nir_jump_instr_create(void *mem_ctx, nir_jump_type type);
1400
1401 nir_load_const_instr *nir_load_const_instr_create(void *mem_ctx,
1402 unsigned num_components);
1403
1404 nir_intrinsic_instr *nir_intrinsic_instr_create(void *mem_ctx,
1405 nir_intrinsic_op op);
1406
1407 nir_call_instr *nir_call_instr_create(void *mem_ctx,
1408 nir_function_overload *callee);
1409
1410 nir_tex_instr *nir_tex_instr_create(void *mem_ctx, unsigned num_srcs);
1411
1412 nir_phi_instr *nir_phi_instr_create(void *mem_ctx);
1413
1414 nir_parallel_copy_instr *nir_parallel_copy_instr_create(void *mem_ctx);
1415
1416 nir_ssa_undef_instr *nir_ssa_undef_instr_create(void *mem_ctx,
1417 unsigned num_components);
1418
1419 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1420 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1421 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1422
1423 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1424
1425 void nir_instr_insert_before(nir_instr *instr, nir_instr *before);
1426 void nir_instr_insert_after(nir_instr *instr, nir_instr *after);
1427
1428 void nir_instr_insert_before_block(nir_block *block, nir_instr *before);
1429 void nir_instr_insert_after_block(nir_block *block, nir_instr *after);
1430
1431 void nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before);
1432 void nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after);
1433
1434 void nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before);
1435 void nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after);
1436
1437 void nir_instr_remove(nir_instr *instr);
1438
1439 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
1440 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
1441 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
1442 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
1443 void *state);
1444 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
1445 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
1446
1447 nir_const_value *nir_src_as_const_value(nir_src src);
1448 bool nir_srcs_equal(nir_src src1, nir_src src2);
1449 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
1450
1451 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
1452 unsigned num_components, const char *name);
1453 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
1454 unsigned num_components, const char *name);
1455 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src, void *mem_ctx);
1456
1457 /* visits basic blocks in source-code order */
1458 typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state);
1459 bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb,
1460 void *state);
1461 bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb,
1462 void *state);
1463
1464 /* If the following CF node is an if, this function returns that if.
1465 * Otherwise, it returns NULL.
1466 */
1467 nir_if *nir_block_get_following_if(nir_block *block);
1468
1469 void nir_index_local_regs(nir_function_impl *impl);
1470 void nir_index_global_regs(nir_shader *shader);
1471 void nir_index_ssa_defs(nir_function_impl *impl);
1472
1473 void nir_index_blocks(nir_function_impl *impl);
1474
1475 void nir_print_shader(nir_shader *shader, FILE *fp);
1476 void nir_print_instr(nir_instr *instr, FILE *fp);
1477
1478 #ifdef DEBUG
1479 void nir_validate_shader(nir_shader *shader);
1480 #else
1481 static inline void nir_validate_shader(nir_shader *shader) { }
1482 #endif /* DEBUG */
1483
1484 void nir_calc_dominance_impl(nir_function_impl *impl);
1485 void nir_calc_dominance(nir_shader *shader);
1486
1487 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
1488 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
1489
1490 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
1491 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
1492
1493 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
1494 void nir_dump_cfg(nir_shader *shader, FILE *fp);
1495
1496 void nir_split_var_copies(nir_shader *shader);
1497
1498 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
1499 void nir_lower_var_copies(nir_shader *shader);
1500
1501 void nir_lower_global_vars_to_local(nir_shader *shader);
1502
1503 void nir_lower_locals_to_regs(nir_shader *shader);
1504
1505 void nir_lower_io(nir_shader *shader);
1506
1507 void nir_lower_vars_to_ssa(nir_shader *shader);
1508
1509 void nir_remove_dead_variables(nir_shader *shader);
1510
1511 void nir_lower_vec_to_movs(nir_shader *shader);
1512 void nir_lower_alu_to_scalar(nir_shader *shader);
1513
1514 void nir_lower_samplers(nir_shader *shader,
1515 struct gl_shader_program *shader_program,
1516 struct gl_program *prog);
1517
1518 void nir_lower_system_values(nir_shader *shader);
1519
1520 void nir_lower_atomics(nir_shader *shader);
1521 void nir_lower_to_source_mods(nir_shader *shader);
1522
1523 void nir_live_variables_impl(nir_function_impl *impl);
1524 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
1525
1526 void nir_convert_to_ssa_impl(nir_function_impl *impl);
1527 void nir_convert_to_ssa(nir_shader *shader);
1528 void nir_convert_from_ssa(nir_shader *shader);
1529
1530 bool nir_opt_algebraic(nir_shader *shader);
1531 bool nir_opt_constant_folding(nir_shader *shader);
1532
1533 bool nir_opt_global_to_local(nir_shader *shader);
1534
1535 bool nir_copy_prop_impl(nir_function_impl *impl);
1536 bool nir_copy_prop(nir_shader *shader);
1537
1538 bool nir_opt_cse(nir_shader *shader);
1539
1540 bool nir_opt_dce_impl(nir_function_impl *impl);
1541 bool nir_opt_dce(nir_shader *shader);
1542
1543 bool nir_opt_peephole_select(nir_shader *shader);
1544 bool nir_opt_peephole_ffma(nir_shader *shader);
1545
1546 #ifdef __cplusplus
1547 } /* extern "C" */
1548 #endif