nir: remove parent_instr from nir_register
[mesa.git] / src / glsl / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "../list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "nir_types.h"
38 #include "glsl/shader_enums.h"
39 #include <stdio.h>
40
41 #include "nir_opcodes.h"
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47 struct gl_program;
48 struct gl_shader_program;
49
50 #define NIR_FALSE 0u
51 #define NIR_TRUE (~0u)
52
53 /** Defines a cast function
54 *
55 * This macro defines a cast function from in_type to out_type where
56 * out_type is some structure type that contains a field of type out_type.
57 *
58 * Note that you have to be a bit careful as the generated cast function
59 * destroys constness.
60 */
61 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
62 static inline out_type * \
63 name(const in_type *parent) \
64 { \
65 return exec_node_data(out_type, parent, field); \
66 }
67
68 struct nir_function_overload;
69 struct nir_function;
70 struct nir_shader;
71 struct nir_instr;
72
73
74 /**
75 * Description of built-in state associated with a uniform
76 *
77 * \sa nir_variable::state_slots
78 */
79 typedef struct {
80 int tokens[5];
81 int swizzle;
82 } nir_state_slot;
83
84 typedef enum {
85 nir_var_shader_in,
86 nir_var_shader_out,
87 nir_var_global,
88 nir_var_local,
89 nir_var_uniform,
90 nir_var_system_value
91 } nir_variable_mode;
92
93 /**
94 * Data stored in an nir_constant
95 */
96 union nir_constant_data {
97 unsigned u[16];
98 int i[16];
99 float f[16];
100 bool b[16];
101 };
102
103 typedef struct nir_constant {
104 /**
105 * Value of the constant.
106 *
107 * The field used to back the values supplied by the constant is determined
108 * by the type associated with the \c nir_variable. Constants may be
109 * scalars, vectors, or matrices.
110 */
111 union nir_constant_data value;
112
113 /* Array elements / Structure Fields */
114 struct nir_constant **elements;
115 } nir_constant;
116
117 /**
118 * \brief Layout qualifiers for gl_FragDepth.
119 *
120 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
121 * with a layout qualifier.
122 */
123 typedef enum {
124 nir_depth_layout_none, /**< No depth layout is specified. */
125 nir_depth_layout_any,
126 nir_depth_layout_greater,
127 nir_depth_layout_less,
128 nir_depth_layout_unchanged
129 } nir_depth_layout;
130
131 /**
132 * Either a uniform, global variable, shader input, or shader output. Based on
133 * ir_variable - it should be easy to translate between the two.
134 */
135
136 typedef struct {
137 struct exec_node node;
138
139 /**
140 * Declared type of the variable
141 */
142 const struct glsl_type *type;
143
144 /**
145 * Declared name of the variable
146 */
147 char *name;
148
149 /**
150 * For variables which satisfy the is_interface_instance() predicate, this
151 * points to an array of integers such that if the ith member of the
152 * interface block is an array, max_ifc_array_access[i] is the maximum
153 * array element of that member that has been accessed. If the ith member
154 * of the interface block is not an array, max_ifc_array_access[i] is
155 * unused.
156 *
157 * For variables whose type is not an interface block, this pointer is
158 * NULL.
159 */
160 unsigned *max_ifc_array_access;
161
162 struct nir_variable_data {
163
164 /**
165 * Is the variable read-only?
166 *
167 * This is set for variables declared as \c const, shader inputs,
168 * and uniforms.
169 */
170 unsigned read_only:1;
171 unsigned centroid:1;
172 unsigned sample:1;
173 unsigned invariant:1;
174
175 /**
176 * Storage class of the variable.
177 *
178 * \sa nir_variable_mode
179 */
180 nir_variable_mode mode:4;
181
182 /**
183 * Interpolation mode for shader inputs / outputs
184 *
185 * \sa glsl_interp_qualifier
186 */
187 unsigned interpolation:2;
188
189 /**
190 * \name ARB_fragment_coord_conventions
191 * @{
192 */
193 unsigned origin_upper_left:1;
194 unsigned pixel_center_integer:1;
195 /*@}*/
196
197 /**
198 * Was the location explicitly set in the shader?
199 *
200 * If the location is explicitly set in the shader, it \b cannot be changed
201 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
202 * no effect).
203 */
204 unsigned explicit_location:1;
205 unsigned explicit_index:1;
206
207 /**
208 * Was an initial binding explicitly set in the shader?
209 *
210 * If so, constant_initializer contains an integer nir_constant
211 * representing the initial binding point.
212 */
213 unsigned explicit_binding:1;
214
215 /**
216 * Does this variable have an initializer?
217 *
218 * This is used by the linker to cross-validiate initializers of global
219 * variables.
220 */
221 unsigned has_initializer:1;
222
223 /**
224 * Is this variable a generic output or input that has not yet been matched
225 * up to a variable in another stage of the pipeline?
226 *
227 * This is used by the linker as scratch storage while assigning locations
228 * to generic inputs and outputs.
229 */
230 unsigned is_unmatched_generic_inout:1;
231
232 /**
233 * If non-zero, then this variable may be packed along with other variables
234 * into a single varying slot, so this offset should be applied when
235 * accessing components. For example, an offset of 1 means that the x
236 * component of this variable is actually stored in component y of the
237 * location specified by \c location.
238 */
239 unsigned location_frac:2;
240
241 /**
242 * Non-zero if this variable was created by lowering a named interface
243 * block which was not an array.
244 *
245 * Note that this variable and \c from_named_ifc_block_array will never
246 * both be non-zero.
247 */
248 unsigned from_named_ifc_block_nonarray:1;
249
250 /**
251 * Non-zero if this variable was created by lowering a named interface
252 * block which was an array.
253 *
254 * Note that this variable and \c from_named_ifc_block_nonarray will never
255 * both be non-zero.
256 */
257 unsigned from_named_ifc_block_array:1;
258
259 /**
260 * \brief Layout qualifier for gl_FragDepth.
261 *
262 * This is not equal to \c ir_depth_layout_none if and only if this
263 * variable is \c gl_FragDepth and a layout qualifier is specified.
264 */
265 nir_depth_layout depth_layout;
266
267 /**
268 * Storage location of the base of this variable
269 *
270 * The precise meaning of this field depends on the nature of the variable.
271 *
272 * - Vertex shader input: one of the values from \c gl_vert_attrib.
273 * - Vertex shader output: one of the values from \c gl_varying_slot.
274 * - Geometry shader input: one of the values from \c gl_varying_slot.
275 * - Geometry shader output: one of the values from \c gl_varying_slot.
276 * - Fragment shader input: one of the values from \c gl_varying_slot.
277 * - Fragment shader output: one of the values from \c gl_frag_result.
278 * - Uniforms: Per-stage uniform slot number for default uniform block.
279 * - Uniforms: Index within the uniform block definition for UBO members.
280 * - Other: This field is not currently used.
281 *
282 * If the variable is a uniform, shader input, or shader output, and the
283 * slot has not been assigned, the value will be -1.
284 */
285 int location;
286
287 /**
288 * The actual location of the variable in the IR. Only valid for inputs
289 * and outputs.
290 */
291 unsigned int driver_location;
292
293 /**
294 * output index for dual source blending.
295 */
296 int index;
297
298 /**
299 * Initial binding point for a sampler or UBO.
300 *
301 * For array types, this represents the binding point for the first element.
302 */
303 int binding;
304
305 /**
306 * Location an atomic counter is stored at.
307 */
308 struct {
309 unsigned buffer_index;
310 unsigned offset;
311 } atomic;
312
313 /**
314 * ARB_shader_image_load_store qualifiers.
315 */
316 struct {
317 bool read_only; /**< "readonly" qualifier. */
318 bool write_only; /**< "writeonly" qualifier. */
319 bool coherent;
320 bool _volatile;
321 bool restrict_flag;
322
323 /** Image internal format if specified explicitly, otherwise GL_NONE. */
324 GLenum format;
325 } image;
326
327 /**
328 * Highest element accessed with a constant expression array index
329 *
330 * Not used for non-array variables.
331 */
332 unsigned max_array_access;
333
334 } data;
335
336 /**
337 * Built-in state that backs this uniform
338 *
339 * Once set at variable creation, \c state_slots must remain invariant.
340 * This is because, ideally, this array would be shared by all clones of
341 * this variable in the IR tree. In other words, we'd really like for it
342 * to be a fly-weight.
343 *
344 * If the variable is not a uniform, \c num_state_slots will be zero and
345 * \c state_slots will be \c NULL.
346 */
347 /*@{*/
348 unsigned num_state_slots; /**< Number of state slots used */
349 nir_state_slot *state_slots; /**< State descriptors. */
350 /*@}*/
351
352 /**
353 * Constant expression assigned in the initializer of the variable
354 */
355 nir_constant *constant_initializer;
356
357 /**
358 * For variables that are in an interface block or are an instance of an
359 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
360 *
361 * \sa ir_variable::location
362 */
363 const struct glsl_type *interface_type;
364 } nir_variable;
365
366 typedef struct {
367 struct exec_node node;
368
369 unsigned num_components; /** < number of vector components */
370 unsigned num_array_elems; /** < size of array (0 for no array) */
371
372 /** generic register index. */
373 unsigned index;
374
375 /** only for debug purposes, can be NULL */
376 const char *name;
377
378 /** whether this register is local (per-function) or global (per-shader) */
379 bool is_global;
380
381 /**
382 * If this flag is set to true, then accessing channels >= num_components
383 * is well-defined, and simply spills over to the next array element. This
384 * is useful for backends that can do per-component accessing, in
385 * particular scalar backends. By setting this flag and making
386 * num_components equal to 1, structures can be packed tightly into
387 * registers and then registers can be accessed per-component to get to
388 * each structure member, even if it crosses vec4 boundaries.
389 */
390 bool is_packed;
391
392 /** set of nir_instr's where this register is used (read from) */
393 struct list_head uses;
394
395 /** set of nir_instr's where this register is defined (written to) */
396 struct list_head defs;
397
398 /** set of nir_if's where this register is used as a condition */
399 struct list_head if_uses;
400 } nir_register;
401
402 typedef enum {
403 nir_instr_type_alu,
404 nir_instr_type_call,
405 nir_instr_type_tex,
406 nir_instr_type_intrinsic,
407 nir_instr_type_load_const,
408 nir_instr_type_jump,
409 nir_instr_type_ssa_undef,
410 nir_instr_type_phi,
411 nir_instr_type_parallel_copy,
412 } nir_instr_type;
413
414 typedef struct nir_instr {
415 struct exec_node node;
416 nir_instr_type type;
417 struct nir_block *block;
418
419 /* A temporary for optimization and analysis passes to use for storing
420 * flags. For instance, DCE uses this to store the "dead/live" info.
421 */
422 uint8_t pass_flags;
423 } nir_instr;
424
425 static inline nir_instr *
426 nir_instr_next(nir_instr *instr)
427 {
428 struct exec_node *next = exec_node_get_next(&instr->node);
429 if (exec_node_is_tail_sentinel(next))
430 return NULL;
431 else
432 return exec_node_data(nir_instr, next, node);
433 }
434
435 static inline nir_instr *
436 nir_instr_prev(nir_instr *instr)
437 {
438 struct exec_node *prev = exec_node_get_prev(&instr->node);
439 if (exec_node_is_head_sentinel(prev))
440 return NULL;
441 else
442 return exec_node_data(nir_instr, prev, node);
443 }
444
445 typedef struct {
446 /** for debugging only, can be NULL */
447 const char* name;
448
449 /** generic SSA definition index. */
450 unsigned index;
451
452 /** Index into the live_in and live_out bitfields */
453 unsigned live_index;
454
455 nir_instr *parent_instr;
456
457 /** set of nir_instr's where this register is used (read from) */
458 struct list_head uses;
459
460 /** set of nir_if's where this register is used as a condition */
461 struct list_head if_uses;
462
463 uint8_t num_components;
464 } nir_ssa_def;
465
466 struct nir_src;
467
468 typedef struct {
469 nir_register *reg;
470 struct nir_src *indirect; /** < NULL for no indirect offset */
471 unsigned base_offset;
472
473 /* TODO use-def chain goes here */
474 } nir_reg_src;
475
476 typedef struct {
477 nir_instr *parent_instr;
478 struct list_head def_link;
479
480 nir_register *reg;
481 struct nir_src *indirect; /** < NULL for no indirect offset */
482 unsigned base_offset;
483
484 /* TODO def-use chain goes here */
485 } nir_reg_dest;
486
487 struct nir_if;
488
489 typedef struct nir_src {
490 union {
491 nir_instr *parent_instr;
492 struct nir_if *parent_if;
493 };
494
495 struct list_head use_link;
496
497 union {
498 nir_reg_src reg;
499 nir_ssa_def *ssa;
500 };
501
502 bool is_ssa;
503 } nir_src;
504
505 #define NIR_SRC_INIT (nir_src) { { NULL } }
506
507 #define nir_foreach_use(reg_or_ssa_def, src) \
508 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
509
510 #define nir_foreach_use_safe(reg_or_ssa_def, src) \
511 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
512
513 #define nir_foreach_if_use(reg_or_ssa_def, src) \
514 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
515
516 #define nir_foreach_if_use_safe(reg_or_ssa_def, src) \
517 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
518
519 typedef struct {
520 union {
521 nir_reg_dest reg;
522 nir_ssa_def ssa;
523 };
524
525 bool is_ssa;
526 } nir_dest;
527
528 #define NIR_DEST_INIT (nir_dest) { { { NULL } } }
529
530 #define nir_foreach_def(reg, dest) \
531 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
532
533 #define nir_foreach_def_safe(reg, dest) \
534 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
535
536 static inline nir_src
537 nir_src_for_ssa(nir_ssa_def *def)
538 {
539 nir_src src = NIR_SRC_INIT;
540
541 src.is_ssa = true;
542 src.ssa = def;
543
544 return src;
545 }
546
547 static inline nir_src
548 nir_src_for_reg(nir_register *reg)
549 {
550 nir_src src = NIR_SRC_INIT;
551
552 src.is_ssa = false;
553 src.reg.reg = reg;
554 src.reg.indirect = NULL;
555 src.reg.base_offset = 0;
556
557 return src;
558 }
559
560 static inline nir_dest
561 nir_dest_for_reg(nir_register *reg)
562 {
563 nir_dest dest = NIR_DEST_INIT;
564
565 dest.reg.reg = reg;
566
567 return dest;
568 }
569
570 void nir_src_copy(nir_src *dest, const nir_src *src, void *mem_ctx);
571 void nir_dest_copy(nir_dest *dest, const nir_dest *src, void *mem_ctx);
572
573 typedef struct {
574 nir_src src;
575
576 /**
577 * \name input modifiers
578 */
579 /*@{*/
580 /**
581 * For inputs interpreted as floating point, flips the sign bit. For
582 * inputs interpreted as integers, performs the two's complement negation.
583 */
584 bool negate;
585
586 /**
587 * Clears the sign bit for floating point values, and computes the integer
588 * absolute value for integers. Note that the negate modifier acts after
589 * the absolute value modifier, therefore if both are set then all inputs
590 * will become negative.
591 */
592 bool abs;
593 /*@}*/
594
595 /**
596 * For each input component, says which component of the register it is
597 * chosen from. Note that which elements of the swizzle are used and which
598 * are ignored are based on the write mask for most opcodes - for example,
599 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
600 * a swizzle of {2, x, 1, 0} where x means "don't care."
601 */
602 uint8_t swizzle[4];
603 } nir_alu_src;
604
605 typedef struct {
606 nir_dest dest;
607
608 /**
609 * \name saturate output modifier
610 *
611 * Only valid for opcodes that output floating-point numbers. Clamps the
612 * output to between 0.0 and 1.0 inclusive.
613 */
614
615 bool saturate;
616
617 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
618 } nir_alu_dest;
619
620 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src, void *mem_ctx);
621 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
622 void *mem_ctx);
623
624 typedef enum {
625 nir_type_invalid = 0, /* Not a valid type */
626 nir_type_float,
627 nir_type_int,
628 nir_type_unsigned,
629 nir_type_bool
630 } nir_alu_type;
631
632 typedef enum {
633 NIR_OP_IS_COMMUTATIVE = (1 << 0),
634 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
635 } nir_op_algebraic_property;
636
637 typedef struct {
638 const char *name;
639
640 unsigned num_inputs;
641
642 /**
643 * The number of components in the output
644 *
645 * If non-zero, this is the size of the output and input sizes are
646 * explicitly given; swizzle and writemask are still in effect, but if
647 * the output component is masked out, then the input component may
648 * still be in use.
649 *
650 * If zero, the opcode acts in the standard, per-component manner; the
651 * operation is performed on each component (except the ones that are
652 * masked out) with the input being taken from the input swizzle for
653 * that component.
654 *
655 * The size of some of the inputs may be given (i.e. non-zero) even
656 * though output_size is zero; in that case, the inputs with a zero
657 * size act per-component, while the inputs with non-zero size don't.
658 */
659 unsigned output_size;
660
661 /**
662 * The type of vector that the instruction outputs. Note that the
663 * staurate modifier is only allowed on outputs with the float type.
664 */
665
666 nir_alu_type output_type;
667
668 /**
669 * The number of components in each input
670 */
671 unsigned input_sizes[4];
672
673 /**
674 * The type of vector that each input takes. Note that negate and
675 * absolute value are only allowed on inputs with int or float type and
676 * behave differently on the two.
677 */
678 nir_alu_type input_types[4];
679
680 nir_op_algebraic_property algebraic_properties;
681 } nir_op_info;
682
683 extern const nir_op_info nir_op_infos[nir_num_opcodes];
684
685 typedef struct nir_alu_instr {
686 nir_instr instr;
687 nir_op op;
688 nir_alu_dest dest;
689 nir_alu_src src[];
690 } nir_alu_instr;
691
692 /* is this source channel used? */
693 static inline bool
694 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
695 {
696 if (nir_op_infos[instr->op].input_sizes[src] > 0)
697 return channel < nir_op_infos[instr->op].input_sizes[src];
698
699 return (instr->dest.write_mask >> channel) & 1;
700 }
701
702 /*
703 * For instructions whose destinations are SSA, get the number of channels
704 * used for a source
705 */
706 static inline unsigned
707 nir_ssa_alu_instr_src_components(nir_alu_instr *instr, unsigned src)
708 {
709 assert(instr->dest.dest.is_ssa);
710
711 if (nir_op_infos[instr->op].input_sizes[src] > 0)
712 return nir_op_infos[instr->op].input_sizes[src];
713
714 return instr->dest.dest.ssa.num_components;
715 }
716
717 typedef enum {
718 nir_deref_type_var,
719 nir_deref_type_array,
720 nir_deref_type_struct
721 } nir_deref_type;
722
723 typedef struct nir_deref {
724 nir_deref_type deref_type;
725 struct nir_deref *child;
726 const struct glsl_type *type;
727 } nir_deref;
728
729 typedef struct {
730 nir_deref deref;
731
732 nir_variable *var;
733 } nir_deref_var;
734
735 /* This enum describes how the array is referenced. If the deref is
736 * direct then the base_offset is used. If the deref is indirect then then
737 * offset is given by base_offset + indirect. If the deref is a wildcard
738 * then the deref refers to all of the elements of the array at the same
739 * time. Wildcard dereferences are only ever allowed in copy_var
740 * intrinsics and the source and destination derefs must have matching
741 * wildcards.
742 */
743 typedef enum {
744 nir_deref_array_type_direct,
745 nir_deref_array_type_indirect,
746 nir_deref_array_type_wildcard,
747 } nir_deref_array_type;
748
749 typedef struct {
750 nir_deref deref;
751
752 nir_deref_array_type deref_array_type;
753 unsigned base_offset;
754 nir_src indirect;
755 } nir_deref_array;
756
757 typedef struct {
758 nir_deref deref;
759
760 unsigned index;
761 } nir_deref_struct;
762
763 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
764 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
765 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
766
767 typedef struct {
768 nir_instr instr;
769
770 unsigned num_params;
771 nir_deref_var **params;
772 nir_deref_var *return_deref;
773
774 struct nir_function_overload *callee;
775 } nir_call_instr;
776
777 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
778 num_variables, num_indices, flags) \
779 nir_intrinsic_##name,
780
781 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
782
783 typedef enum {
784 #include "nir_intrinsics.h"
785 nir_num_intrinsics = nir_last_intrinsic + 1
786 } nir_intrinsic_op;
787
788 #undef INTRINSIC
789 #undef LAST_INTRINSIC
790
791 /** Represents an intrinsic
792 *
793 * An intrinsic is an instruction type for handling things that are
794 * more-or-less regular operations but don't just consume and produce SSA
795 * values like ALU operations do. Intrinsics are not for things that have
796 * special semantic meaning such as phi nodes and parallel copies.
797 * Examples of intrinsics include variable load/store operations, system
798 * value loads, and the like. Even though texturing more-or-less falls
799 * under this category, texturing is its own instruction type because
800 * trying to represent texturing with intrinsics would lead to a
801 * combinatorial explosion of intrinsic opcodes.
802 *
803 * By having a single instruction type for handling a lot of different
804 * cases, optimization passes can look for intrinsics and, for the most
805 * part, completely ignore them. Each intrinsic type also has a few
806 * possible flags that govern whether or not they can be reordered or
807 * eliminated. That way passes like dead code elimination can still work
808 * on intrisics without understanding the meaning of each.
809 *
810 * Each intrinsic has some number of constant indices, some number of
811 * variables, and some number of sources. What these sources, variables,
812 * and indices mean depends on the intrinsic and is documented with the
813 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
814 * instructions are the only types of instruction that can operate on
815 * variables.
816 */
817 typedef struct {
818 nir_instr instr;
819
820 nir_intrinsic_op intrinsic;
821
822 nir_dest dest;
823
824 /** number of components if this is a vectorized intrinsic
825 *
826 * Similarly to ALU operations, some intrinsics are vectorized.
827 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
828 * For vectorized intrinsics, the num_components field specifies the
829 * number of destination components and the number of source components
830 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
831 */
832 uint8_t num_components;
833
834 int const_index[3];
835
836 nir_deref_var *variables[2];
837
838 nir_src src[];
839 } nir_intrinsic_instr;
840
841 /**
842 * \name NIR intrinsics semantic flags
843 *
844 * information about what the compiler can do with the intrinsics.
845 *
846 * \sa nir_intrinsic_info::flags
847 */
848 typedef enum {
849 /**
850 * whether the intrinsic can be safely eliminated if none of its output
851 * value is not being used.
852 */
853 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
854
855 /**
856 * Whether the intrinsic can be reordered with respect to any other
857 * intrinsic, i.e. whether the only reordering dependencies of the
858 * intrinsic are due to the register reads/writes.
859 */
860 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
861 } nir_intrinsic_semantic_flag;
862
863 #define NIR_INTRINSIC_MAX_INPUTS 4
864
865 typedef struct {
866 const char *name;
867
868 unsigned num_srcs; /** < number of register/SSA inputs */
869
870 /** number of components of each input register
871 *
872 * If this value is 0, the number of components is given by the
873 * num_components field of nir_intrinsic_instr.
874 */
875 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
876
877 bool has_dest;
878
879 /** number of components of the output register
880 *
881 * If this value is 0, the number of components is given by the
882 * num_components field of nir_intrinsic_instr.
883 */
884 unsigned dest_components;
885
886 /** the number of inputs/outputs that are variables */
887 unsigned num_variables;
888
889 /** the number of constant indices used by the intrinsic */
890 unsigned num_indices;
891
892 /** semantic flags for calls to this intrinsic */
893 nir_intrinsic_semantic_flag flags;
894 } nir_intrinsic_info;
895
896 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
897
898 /**
899 * \group texture information
900 *
901 * This gives semantic information about textures which is useful to the
902 * frontend, the backend, and lowering passes, but not the optimizer.
903 */
904
905 typedef enum {
906 nir_tex_src_coord,
907 nir_tex_src_projector,
908 nir_tex_src_comparitor, /* shadow comparitor */
909 nir_tex_src_offset,
910 nir_tex_src_bias,
911 nir_tex_src_lod,
912 nir_tex_src_ms_index, /* MSAA sample index */
913 nir_tex_src_ddx,
914 nir_tex_src_ddy,
915 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
916 nir_num_tex_src_types
917 } nir_tex_src_type;
918
919 typedef struct {
920 nir_src src;
921 nir_tex_src_type src_type;
922 } nir_tex_src;
923
924 typedef enum {
925 nir_texop_tex, /**< Regular texture look-up */
926 nir_texop_txb, /**< Texture look-up with LOD bias */
927 nir_texop_txl, /**< Texture look-up with explicit LOD */
928 nir_texop_txd, /**< Texture look-up with partial derivatvies */
929 nir_texop_txf, /**< Texel fetch with explicit LOD */
930 nir_texop_txf_ms, /**< Multisample texture fetch */
931 nir_texop_txs, /**< Texture size */
932 nir_texop_lod, /**< Texture lod query */
933 nir_texop_tg4, /**< Texture gather */
934 nir_texop_query_levels /**< Texture levels query */
935 } nir_texop;
936
937 typedef struct {
938 nir_instr instr;
939
940 enum glsl_sampler_dim sampler_dim;
941 nir_alu_type dest_type;
942
943 nir_texop op;
944 nir_dest dest;
945 nir_tex_src *src;
946 unsigned num_srcs, coord_components;
947 bool is_array, is_shadow;
948
949 /**
950 * If is_shadow is true, whether this is the old-style shadow that outputs 4
951 * components or the new-style shadow that outputs 1 component.
952 */
953 bool is_new_style_shadow;
954
955 /* constant offset - must be 0 if the offset source is used */
956 int const_offset[4];
957
958 /* gather component selector */
959 unsigned component : 2;
960
961 /** The sampler index
962 *
963 * If this texture instruction has a nir_tex_src_sampler_offset source,
964 * then the sampler index is given by sampler_index + sampler_offset.
965 */
966 unsigned sampler_index;
967
968 /** The size of the sampler array or 0 if it's not an array */
969 unsigned sampler_array_size;
970
971 nir_deref_var *sampler; /* if this is NULL, use sampler_index instead */
972 } nir_tex_instr;
973
974 static inline unsigned
975 nir_tex_instr_dest_size(nir_tex_instr *instr)
976 {
977 switch (instr->op) {
978 case nir_texop_txs: {
979 unsigned ret;
980 switch (instr->sampler_dim) {
981 case GLSL_SAMPLER_DIM_1D:
982 case GLSL_SAMPLER_DIM_BUF:
983 ret = 1;
984 break;
985 case GLSL_SAMPLER_DIM_2D:
986 case GLSL_SAMPLER_DIM_CUBE:
987 case GLSL_SAMPLER_DIM_MS:
988 case GLSL_SAMPLER_DIM_RECT:
989 case GLSL_SAMPLER_DIM_EXTERNAL:
990 ret = 2;
991 break;
992 case GLSL_SAMPLER_DIM_3D:
993 ret = 3;
994 break;
995 default:
996 unreachable("not reached");
997 }
998 if (instr->is_array)
999 ret++;
1000 return ret;
1001 }
1002
1003 case nir_texop_lod:
1004 return 2;
1005
1006 case nir_texop_query_levels:
1007 return 1;
1008
1009 default:
1010 if (instr->is_shadow && instr->is_new_style_shadow)
1011 return 1;
1012
1013 return 4;
1014 }
1015 }
1016
1017 static inline unsigned
1018 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1019 {
1020 if (instr->src[src].src_type == nir_tex_src_coord)
1021 return instr->coord_components;
1022
1023
1024 if (instr->src[src].src_type == nir_tex_src_offset ||
1025 instr->src[src].src_type == nir_tex_src_ddx ||
1026 instr->src[src].src_type == nir_tex_src_ddy) {
1027 if (instr->is_array)
1028 return instr->coord_components - 1;
1029 else
1030 return instr->coord_components;
1031 }
1032
1033 return 1;
1034 }
1035
1036 static inline int
1037 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1038 {
1039 for (unsigned i = 0; i < instr->num_srcs; i++)
1040 if (instr->src[i].src_type == type)
1041 return (int) i;
1042
1043 return -1;
1044 }
1045
1046 typedef struct {
1047 union {
1048 float f[4];
1049 int32_t i[4];
1050 uint32_t u[4];
1051 };
1052 } nir_const_value;
1053
1054 typedef struct {
1055 nir_instr instr;
1056
1057 nir_const_value value;
1058
1059 nir_ssa_def def;
1060 } nir_load_const_instr;
1061
1062 typedef enum {
1063 nir_jump_return,
1064 nir_jump_break,
1065 nir_jump_continue,
1066 } nir_jump_type;
1067
1068 typedef struct {
1069 nir_instr instr;
1070 nir_jump_type type;
1071 } nir_jump_instr;
1072
1073 /* creates a new SSA variable in an undefined state */
1074
1075 typedef struct {
1076 nir_instr instr;
1077 nir_ssa_def def;
1078 } nir_ssa_undef_instr;
1079
1080 typedef struct {
1081 struct exec_node node;
1082
1083 /* The predecessor block corresponding to this source */
1084 struct nir_block *pred;
1085
1086 nir_src src;
1087 } nir_phi_src;
1088
1089 #define nir_foreach_phi_src(phi, entry) \
1090 foreach_list_typed(nir_phi_src, entry, node, &(phi)->srcs)
1091
1092 typedef struct {
1093 nir_instr instr;
1094
1095 struct exec_list srcs; /** < list of nir_phi_src */
1096
1097 nir_dest dest;
1098 } nir_phi_instr;
1099
1100 typedef struct {
1101 struct exec_node node;
1102 nir_src src;
1103 nir_dest dest;
1104 } nir_parallel_copy_entry;
1105
1106 #define nir_foreach_parallel_copy_entry(pcopy, entry) \
1107 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1108
1109 typedef struct {
1110 nir_instr instr;
1111
1112 /* A list of nir_parallel_copy_entry's. The sources of all of the
1113 * entries are copied to the corresponding destinations "in parallel".
1114 * In other words, if we have two entries: a -> b and b -> a, the values
1115 * get swapped.
1116 */
1117 struct exec_list entries;
1118 } nir_parallel_copy_instr;
1119
1120 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1121 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1122 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1123 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1124 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1125 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1126 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1127 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1128 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1129 nir_parallel_copy_instr, instr)
1130
1131 /*
1132 * Control flow
1133 *
1134 * Control flow consists of a tree of control flow nodes, which include
1135 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1136 * instructions that always run start-to-finish. Each basic block also keeps
1137 * track of its successors (blocks which may run immediately after the current
1138 * block) and predecessors (blocks which could have run immediately before the
1139 * current block). Each function also has a start block and an end block which
1140 * all return statements point to (which is always empty). Together, all the
1141 * blocks with their predecessors and successors make up the control flow
1142 * graph (CFG) of the function. There are helpers that modify the tree of
1143 * control flow nodes while modifying the CFG appropriately; these should be
1144 * used instead of modifying the tree directly.
1145 */
1146
1147 typedef enum {
1148 nir_cf_node_block,
1149 nir_cf_node_if,
1150 nir_cf_node_loop,
1151 nir_cf_node_function
1152 } nir_cf_node_type;
1153
1154 typedef struct nir_cf_node {
1155 struct exec_node node;
1156 nir_cf_node_type type;
1157 struct nir_cf_node *parent;
1158 } nir_cf_node;
1159
1160 typedef struct nir_block {
1161 nir_cf_node cf_node;
1162
1163 struct exec_list instr_list; /** < list of nir_instr */
1164
1165 /** generic block index; generated by nir_index_blocks */
1166 unsigned index;
1167
1168 /*
1169 * Each block can only have up to 2 successors, so we put them in a simple
1170 * array - no need for anything more complicated.
1171 */
1172 struct nir_block *successors[2];
1173
1174 /* Set of nir_block predecessors in the CFG */
1175 struct set *predecessors;
1176
1177 /*
1178 * this node's immediate dominator in the dominance tree - set to NULL for
1179 * the start block.
1180 */
1181 struct nir_block *imm_dom;
1182
1183 /* This node's children in the dominance tree */
1184 unsigned num_dom_children;
1185 struct nir_block **dom_children;
1186
1187 /* Set of nir_block's on the dominance frontier of this block */
1188 struct set *dom_frontier;
1189
1190 /*
1191 * These two indices have the property that dom_{pre,post}_index for each
1192 * child of this block in the dominance tree will always be between
1193 * dom_pre_index and dom_post_index for this block, which makes testing if
1194 * a given block is dominated by another block an O(1) operation.
1195 */
1196 unsigned dom_pre_index, dom_post_index;
1197
1198 /* live in and out for this block; used for liveness analysis */
1199 BITSET_WORD *live_in;
1200 BITSET_WORD *live_out;
1201 } nir_block;
1202
1203 static inline nir_instr *
1204 nir_block_first_instr(nir_block *block)
1205 {
1206 struct exec_node *head = exec_list_get_head(&block->instr_list);
1207 return exec_node_data(nir_instr, head, node);
1208 }
1209
1210 static inline nir_instr *
1211 nir_block_last_instr(nir_block *block)
1212 {
1213 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1214 return exec_node_data(nir_instr, tail, node);
1215 }
1216
1217 #define nir_foreach_instr(block, instr) \
1218 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1219 #define nir_foreach_instr_reverse(block, instr) \
1220 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1221 #define nir_foreach_instr_safe(block, instr) \
1222 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1223
1224 typedef struct nir_if {
1225 nir_cf_node cf_node;
1226 nir_src condition;
1227
1228 struct exec_list then_list; /** < list of nir_cf_node */
1229 struct exec_list else_list; /** < list of nir_cf_node */
1230 } nir_if;
1231
1232 static inline nir_cf_node *
1233 nir_if_first_then_node(nir_if *if_stmt)
1234 {
1235 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1236 return exec_node_data(nir_cf_node, head, node);
1237 }
1238
1239 static inline nir_cf_node *
1240 nir_if_last_then_node(nir_if *if_stmt)
1241 {
1242 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1243 return exec_node_data(nir_cf_node, tail, node);
1244 }
1245
1246 static inline nir_cf_node *
1247 nir_if_first_else_node(nir_if *if_stmt)
1248 {
1249 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1250 return exec_node_data(nir_cf_node, head, node);
1251 }
1252
1253 static inline nir_cf_node *
1254 nir_if_last_else_node(nir_if *if_stmt)
1255 {
1256 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1257 return exec_node_data(nir_cf_node, tail, node);
1258 }
1259
1260 typedef struct {
1261 nir_cf_node cf_node;
1262
1263 struct exec_list body; /** < list of nir_cf_node */
1264 } nir_loop;
1265
1266 static inline nir_cf_node *
1267 nir_loop_first_cf_node(nir_loop *loop)
1268 {
1269 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1270 }
1271
1272 static inline nir_cf_node *
1273 nir_loop_last_cf_node(nir_loop *loop)
1274 {
1275 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1276 }
1277
1278 /**
1279 * Various bits of metadata that can may be created or required by
1280 * optimization and analysis passes
1281 */
1282 typedef enum {
1283 nir_metadata_none = 0x0,
1284 nir_metadata_block_index = 0x1,
1285 nir_metadata_dominance = 0x2,
1286 nir_metadata_live_variables = 0x4,
1287 } nir_metadata;
1288
1289 typedef struct {
1290 nir_cf_node cf_node;
1291
1292 /** pointer to the overload of which this is an implementation */
1293 struct nir_function_overload *overload;
1294
1295 struct exec_list body; /** < list of nir_cf_node */
1296
1297 nir_block *start_block, *end_block;
1298
1299 /** list for all local variables in the function */
1300 struct exec_list locals;
1301
1302 /** array of variables used as parameters */
1303 unsigned num_params;
1304 nir_variable **params;
1305
1306 /** variable used to hold the result of the function */
1307 nir_variable *return_var;
1308
1309 /** list of local registers in the function */
1310 struct exec_list registers;
1311
1312 /** next available local register index */
1313 unsigned reg_alloc;
1314
1315 /** next available SSA value index */
1316 unsigned ssa_alloc;
1317
1318 /* total number of basic blocks, only valid when block_index_dirty = false */
1319 unsigned num_blocks;
1320
1321 nir_metadata valid_metadata;
1322 } nir_function_impl;
1323
1324 static inline nir_cf_node *
1325 nir_cf_node_next(nir_cf_node *node)
1326 {
1327 struct exec_node *next = exec_node_get_next(&node->node);
1328 if (exec_node_is_tail_sentinel(next))
1329 return NULL;
1330 else
1331 return exec_node_data(nir_cf_node, next, node);
1332 }
1333
1334 static inline nir_cf_node *
1335 nir_cf_node_prev(nir_cf_node *node)
1336 {
1337 struct exec_node *prev = exec_node_get_prev(&node->node);
1338 if (exec_node_is_head_sentinel(prev))
1339 return NULL;
1340 else
1341 return exec_node_data(nir_cf_node, prev, node);
1342 }
1343
1344 static inline bool
1345 nir_cf_node_is_first(const nir_cf_node *node)
1346 {
1347 return exec_node_is_head_sentinel(node->node.prev);
1348 }
1349
1350 static inline bool
1351 nir_cf_node_is_last(const nir_cf_node *node)
1352 {
1353 return exec_node_is_tail_sentinel(node->node.next);
1354 }
1355
1356 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1357 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1358 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1359 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1360
1361 typedef enum {
1362 nir_parameter_in,
1363 nir_parameter_out,
1364 nir_parameter_inout,
1365 } nir_parameter_type;
1366
1367 typedef struct {
1368 nir_parameter_type param_type;
1369 const struct glsl_type *type;
1370 } nir_parameter;
1371
1372 typedef struct nir_function_overload {
1373 struct exec_node node;
1374
1375 unsigned num_params;
1376 nir_parameter *params;
1377 const struct glsl_type *return_type;
1378
1379 nir_function_impl *impl; /** < NULL if the overload is only declared yet */
1380
1381 /** pointer to the function of which this is an overload */
1382 struct nir_function *function;
1383 } nir_function_overload;
1384
1385 typedef struct nir_function {
1386 struct exec_node node;
1387
1388 struct exec_list overload_list; /** < list of nir_function_overload */
1389 const char *name;
1390 struct nir_shader *shader;
1391 } nir_function;
1392
1393 #define nir_function_first_overload(func) \
1394 exec_node_data(nir_function_overload, \
1395 exec_list_get_head(&(func)->overload_list), node)
1396
1397 typedef struct nir_shader_compiler_options {
1398 bool lower_ffma;
1399 bool lower_flrp;
1400 bool lower_fpow;
1401 bool lower_fsat;
1402 bool lower_fsqrt;
1403 /** lowers fneg and ineg to fsub and isub. */
1404 bool lower_negate;
1405 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1406 bool lower_sub;
1407
1408 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1409 bool lower_scmp;
1410
1411 /**
1412 * Does the driver support real 32-bit integers? (Otherwise, integers
1413 * are simulated by floats.)
1414 */
1415 bool native_integers;
1416 } nir_shader_compiler_options;
1417
1418 typedef struct nir_shader {
1419 /** hash table of name -> uniform nir_variable */
1420 struct exec_list uniforms;
1421
1422 /** hash table of name -> input nir_variable */
1423 struct exec_list inputs;
1424
1425 /** hash table of name -> output nir_variable */
1426 struct exec_list outputs;
1427
1428 /** Set of driver-specific options for the shader.
1429 *
1430 * The memory for the options is expected to be kept in a single static
1431 * copy by the driver.
1432 */
1433 const struct nir_shader_compiler_options *options;
1434
1435 /** list of global variables in the shader */
1436 struct exec_list globals;
1437
1438 /** list of system value variables in the shader */
1439 struct exec_list system_values;
1440
1441 struct exec_list functions; /** < list of nir_function */
1442
1443 /** list of global register in the shader */
1444 struct exec_list registers;
1445
1446 /** next available global register index */
1447 unsigned reg_alloc;
1448
1449 /**
1450 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1451 * access plus one
1452 */
1453 unsigned num_inputs, num_uniforms, num_outputs;
1454
1455 /** the number of uniforms that are only accessed directly */
1456 unsigned num_direct_uniforms;
1457 } nir_shader;
1458
1459 #define nir_foreach_overload(shader, overload) \
1460 foreach_list_typed(nir_function, func, node, &(shader)->functions) \
1461 foreach_list_typed(nir_function_overload, overload, node, \
1462 &(func)->overload_list)
1463
1464 nir_shader *nir_shader_create(void *mem_ctx,
1465 const nir_shader_compiler_options *options);
1466
1467 /** creates a register, including assigning it an index and adding it to the list */
1468 nir_register *nir_global_reg_create(nir_shader *shader);
1469
1470 nir_register *nir_local_reg_create(nir_function_impl *impl);
1471
1472 void nir_reg_remove(nir_register *reg);
1473
1474 /** creates a function and adds it to the shader's list of functions */
1475 nir_function *nir_function_create(nir_shader *shader, const char *name);
1476
1477 /** creates a null function returning null */
1478 nir_function_overload *nir_function_overload_create(nir_function *func);
1479
1480 nir_function_impl *nir_function_impl_create(nir_function_overload *func);
1481
1482 nir_block *nir_block_create(void *mem_ctx);
1483 nir_if *nir_if_create(void *mem_ctx);
1484 nir_loop *nir_loop_create(void *mem_ctx);
1485
1486 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1487
1488 /** puts a control flow node immediately after another control flow node */
1489 void nir_cf_node_insert_after(nir_cf_node *node, nir_cf_node *after);
1490
1491 /** puts a control flow node immediately before another control flow node */
1492 void nir_cf_node_insert_before(nir_cf_node *node, nir_cf_node *before);
1493
1494 /** puts a control flow node at the beginning of a list from an if, loop, or function */
1495 void nir_cf_node_insert_begin(struct exec_list *list, nir_cf_node *node);
1496
1497 /** puts a control flow node at the end of a list from an if, loop, or function */
1498 void nir_cf_node_insert_end(struct exec_list *list, nir_cf_node *node);
1499
1500 /** removes a control flow node, doing any cleanup necessary */
1501 void nir_cf_node_remove(nir_cf_node *node);
1502
1503 /** requests that the given pieces of metadata be generated */
1504 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1505 /** dirties all but the preserved metadata */
1506 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1507
1508 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1509 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1510
1511 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1512
1513 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1514 unsigned num_components);
1515
1516 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1517 nir_intrinsic_op op);
1518
1519 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1520 nir_function_overload *callee);
1521
1522 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1523
1524 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1525
1526 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1527
1528 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1529 unsigned num_components);
1530
1531 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1532 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1533 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1534
1535 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1536
1537 nir_load_const_instr *
1538 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1539
1540 void nir_instr_insert_before(nir_instr *instr, nir_instr *before);
1541 void nir_instr_insert_after(nir_instr *instr, nir_instr *after);
1542
1543 void nir_instr_insert_before_block(nir_block *block, nir_instr *before);
1544 void nir_instr_insert_after_block(nir_block *block, nir_instr *after);
1545
1546 void nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before);
1547 void nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after);
1548
1549 void nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before);
1550 void nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after);
1551
1552 void nir_instr_remove(nir_instr *instr);
1553
1554 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
1555 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
1556 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
1557 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
1558 void *state);
1559 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
1560 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
1561
1562 nir_const_value *nir_src_as_const_value(nir_src src);
1563 bool nir_srcs_equal(nir_src src1, nir_src src2);
1564 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
1565 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
1566 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
1567
1568 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
1569 unsigned num_components, const char *name);
1570 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
1571 unsigned num_components, const char *name);
1572 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src, void *mem_ctx);
1573
1574 /* visits basic blocks in source-code order */
1575 typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state);
1576 bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb,
1577 void *state);
1578 bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb,
1579 void *state);
1580
1581 /* If the following CF node is an if, this function returns that if.
1582 * Otherwise, it returns NULL.
1583 */
1584 nir_if *nir_block_get_following_if(nir_block *block);
1585
1586 void nir_index_local_regs(nir_function_impl *impl);
1587 void nir_index_global_regs(nir_shader *shader);
1588 void nir_index_ssa_defs(nir_function_impl *impl);
1589
1590 void nir_index_blocks(nir_function_impl *impl);
1591
1592 void nir_print_shader(nir_shader *shader, FILE *fp);
1593 void nir_print_instr(const nir_instr *instr, FILE *fp);
1594
1595 #ifdef DEBUG
1596 void nir_validate_shader(nir_shader *shader);
1597 #else
1598 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
1599 #endif /* DEBUG */
1600
1601 void nir_calc_dominance_impl(nir_function_impl *impl);
1602 void nir_calc_dominance(nir_shader *shader);
1603
1604 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
1605 bool nir_block_dominates(nir_block *parent, nir_block *child);
1606
1607 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
1608 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
1609
1610 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
1611 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
1612
1613 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
1614 void nir_dump_cfg(nir_shader *shader, FILE *fp);
1615
1616 void nir_split_var_copies(nir_shader *shader);
1617
1618 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
1619 void nir_lower_var_copies(nir_shader *shader);
1620
1621 void nir_lower_global_vars_to_local(nir_shader *shader);
1622
1623 void nir_lower_locals_to_regs(nir_shader *shader);
1624
1625 void nir_assign_var_locations_scalar(struct exec_list *var_list,
1626 unsigned *size);
1627 void nir_assign_var_locations_scalar_direct_first(nir_shader *shader,
1628 struct exec_list *var_list,
1629 unsigned *direct_size,
1630 unsigned *size);
1631
1632 void nir_lower_io(nir_shader *shader);
1633
1634 void nir_lower_vars_to_ssa(nir_shader *shader);
1635
1636 void nir_remove_dead_variables(nir_shader *shader);
1637
1638 void nir_lower_vec_to_movs(nir_shader *shader);
1639 void nir_lower_alu_to_scalar(nir_shader *shader);
1640
1641 void nir_lower_phis_to_scalar(nir_shader *shader);
1642
1643 void nir_lower_samplers(nir_shader *shader,
1644 const struct gl_shader_program *shader_program,
1645 gl_shader_stage stage);
1646
1647 void nir_lower_system_values(nir_shader *shader);
1648 void nir_lower_tex_projector(nir_shader *shader);
1649 void nir_lower_idiv(nir_shader *shader);
1650
1651 void nir_lower_atomics(nir_shader *shader);
1652 void nir_lower_to_source_mods(nir_shader *shader);
1653
1654 void nir_normalize_cubemap_coords(nir_shader *shader);
1655
1656 void nir_live_variables_impl(nir_function_impl *impl);
1657 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
1658
1659 void nir_convert_to_ssa_impl(nir_function_impl *impl);
1660 void nir_convert_to_ssa(nir_shader *shader);
1661
1662 /* If convert_everything is true, convert all values (even those not involved
1663 * in a phi node) to registers. If false, only convert SSA values involved in
1664 * phi nodes to registers.
1665 */
1666 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
1667
1668 bool nir_opt_algebraic(nir_shader *shader);
1669 bool nir_opt_algebraic_late(nir_shader *shader);
1670 bool nir_opt_constant_folding(nir_shader *shader);
1671
1672 bool nir_opt_global_to_local(nir_shader *shader);
1673
1674 bool nir_copy_prop_impl(nir_function_impl *impl);
1675 bool nir_copy_prop(nir_shader *shader);
1676
1677 bool nir_opt_cse(nir_shader *shader);
1678
1679 bool nir_opt_dce_impl(nir_function_impl *impl);
1680 bool nir_opt_dce(nir_shader *shader);
1681
1682 void nir_opt_gcm(nir_shader *shader);
1683
1684 bool nir_opt_peephole_select(nir_shader *shader);
1685 bool nir_opt_peephole_ffma(nir_shader *shader);
1686
1687 bool nir_opt_remove_phis(nir_shader *shader);
1688
1689 void nir_sweep(nir_shader *shader);
1690
1691 #ifdef __cplusplus
1692 } /* extern "C" */
1693 #endif