anv/icd: Advertise the right ABI version
[mesa.git] / src / glsl / nir / nir_intrinsics.h
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 /**
29 * This header file defines all the available intrinsics in one place. It
30 * expands to a list of macros of the form:
31 *
32 * INTRINSIC(name, num_srcs, src_components, has_dest, dest_components,
33 * num_variables, num_indices, flags)
34 *
35 * Which should correspond one-to-one with the nir_intrinsic_info structure. It
36 * is included in both ir.h to create the nir_intrinsic enum (with members of
37 * the form nir_intrinsic_(name)) and and in opcodes.c to create
38 * nir_intrinsic_infos, which is a const array of nir_intrinsic_info structures
39 * for each intrinsic.
40 */
41
42 #define ARR(...) { __VA_ARGS__ }
43
44
45 INTRINSIC(load_var, 0, ARR(), true, 0, 1, 0, NIR_INTRINSIC_CAN_ELIMINATE)
46 INTRINSIC(store_var, 1, ARR(0), false, 0, 1, 0, 0)
47 INTRINSIC(copy_var, 0, ARR(), false, 0, 2, 0, 0)
48
49 /*
50 * Interpolation of input. The interp_var_at* intrinsics are similar to the
51 * load_var intrinsic acting an a shader input except that they interpolate
52 * the input differently. The at_sample and at_offset intrinsics take an
53 * aditional source that is a integer sample id or a vec2 position offset
54 * respectively.
55 */
56
57 INTRINSIC(interp_var_at_centroid, 0, ARR(0), true, 0, 1, 0,
58 NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
59 INTRINSIC(interp_var_at_sample, 1, ARR(1), true, 0, 1, 0,
60 NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
61 INTRINSIC(interp_var_at_offset, 1, ARR(2), true, 0, 1, 0,
62 NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
63
64 /*
65 * Ask the driver for the size of a given buffer. It takes the buffer index
66 * as source.
67 */
68 INTRINSIC(get_buffer_size, 1, ARR(1), true, 1, 0, 0,
69 NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
70
71 /*
72 * a barrier is an intrinsic with no inputs/outputs but which can't be moved
73 * around/optimized in general
74 */
75 #define BARRIER(name) INTRINSIC(name, 0, ARR(), false, 0, 0, 0, 0)
76
77 BARRIER(barrier)
78 BARRIER(discard)
79
80 /*
81 * Memory barrier with semantics analogous to the memoryBarrier() GLSL
82 * intrinsic.
83 */
84 BARRIER(memory_barrier)
85
86 /*
87 * Shader clock intrinsic with semantics analogous to the clock2x32ARB()
88 * GLSL intrinsic.
89 * The latter can be used as code motion barrier, which is currently not
90 * feasible with NIR.
91 */
92 INTRINSIC(shader_clock, 0, ARR(), true, 1, 0, 0, NIR_INTRINSIC_CAN_ELIMINATE)
93
94 /*
95 * Memory barrier with semantics analogous to the compute shader
96 * groupMemoryBarrier(), memoryBarrierAtomicCounter(), memoryBarrierBuffer(),
97 * memoryBarrierImage() and memoryBarrierShared() GLSL intrinsics.
98 */
99 BARRIER(group_memory_barrier)
100 BARRIER(memory_barrier_atomic_counter)
101 BARRIER(memory_barrier_buffer)
102 BARRIER(memory_barrier_image)
103 BARRIER(memory_barrier_shared)
104
105 /** A conditional discard, with a single boolean source. */
106 INTRINSIC(discard_if, 1, ARR(1), false, 0, 0, 0, 0)
107
108 /**
109 * Basic Geometry Shader intrinsics.
110 *
111 * emit_vertex implements GLSL's EmitStreamVertex() built-in. It takes a single
112 * index, which is the stream ID to write to.
113 *
114 * end_primitive implements GLSL's EndPrimitive() built-in.
115 */
116 INTRINSIC(emit_vertex, 0, ARR(), false, 0, 0, 1, 0)
117 INTRINSIC(end_primitive, 0, ARR(), false, 0, 0, 1, 0)
118
119 /**
120 * Geometry Shader intrinsics with a vertex count.
121 *
122 * Alternatively, drivers may implement these intrinsics, and use
123 * nir_lower_gs_intrinsics() to convert from the basic intrinsics.
124 *
125 * These maintain a count of the number of vertices emitted, as an additional
126 * unsigned integer source.
127 */
128 INTRINSIC(emit_vertex_with_counter, 1, ARR(1), false, 0, 0, 1, 0)
129 INTRINSIC(end_primitive_with_counter, 1, ARR(1), false, 0, 0, 1, 0)
130 INTRINSIC(set_vertex_count, 1, ARR(1), false, 0, 0, 0, 0)
131
132 /*
133 * Atomic counters
134 *
135 * The *_var variants take an atomic_uint nir_variable, while the other,
136 * lowered, variants take a constant buffer index and register offset.
137 */
138
139 #define ATOMIC(name, flags) \
140 INTRINSIC(atomic_counter_##name##_var, 0, ARR(), true, 1, 1, 0, flags) \
141 INTRINSIC(atomic_counter_##name, 1, ARR(1), true, 1, 0, 1, flags)
142
143 ATOMIC(inc, 0)
144 ATOMIC(dec, 0)
145 ATOMIC(read, NIR_INTRINSIC_CAN_ELIMINATE)
146
147 /*
148 * Image load, store and atomic intrinsics.
149 *
150 * All image intrinsics take an image target passed as a nir_variable. Image
151 * variables contain a number of memory and layout qualifiers that influence
152 * the semantics of the intrinsic.
153 *
154 * All image intrinsics take a four-coordinate vector and a sample index as
155 * first two sources, determining the location within the image that will be
156 * accessed by the intrinsic. Components not applicable to the image target
157 * in use are undefined. Image store takes an additional four-component
158 * argument with the value to be written, and image atomic operations take
159 * either one or two additional scalar arguments with the same meaning as in
160 * the ARB_shader_image_load_store specification.
161 */
162 INTRINSIC(image_load, 2, ARR(4, 1), true, 4, 1, 0,
163 NIR_INTRINSIC_CAN_ELIMINATE)
164 INTRINSIC(image_store, 3, ARR(4, 1, 4), false, 0, 1, 0, 0)
165 INTRINSIC(image_atomic_add, 3, ARR(4, 1, 1), true, 1, 1, 0, 0)
166 INTRINSIC(image_atomic_min, 3, ARR(4, 1, 1), true, 1, 1, 0, 0)
167 INTRINSIC(image_atomic_max, 3, ARR(4, 1, 1), true, 1, 1, 0, 0)
168 INTRINSIC(image_atomic_and, 3, ARR(4, 1, 1), true, 1, 1, 0, 0)
169 INTRINSIC(image_atomic_or, 3, ARR(4, 1, 1), true, 1, 1, 0, 0)
170 INTRINSIC(image_atomic_xor, 3, ARR(4, 1, 1), true, 1, 1, 0, 0)
171 INTRINSIC(image_atomic_exchange, 3, ARR(4, 1, 1), true, 1, 1, 0, 0)
172 INTRINSIC(image_atomic_comp_swap, 4, ARR(4, 1, 1, 1), true, 1, 1, 0, 0)
173 INTRINSIC(image_size, 0, ARR(), true, 4, 1, 0,
174 NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
175 INTRINSIC(image_samples, 0, ARR(), true, 1, 1, 0,
176 NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
177
178 /*
179 * Vulkan descriptor set intrinsic
180 *
181 * The Vulkan API uses a different binding model from GL. In the Vulkan
182 * API, all external resources are represented by a tripple:
183 *
184 * (descriptor set, binding, array index)
185 *
186 * where the array index is the only thing allowed to be indirect. The
187 * vulkan_surface_index intrinsic takes the descriptor set and binding as
188 * its first two indices and the array index as its source. The third
189 * index is a nir_variable_mode in case that's useful to the backend.
190 *
191 * The intended usage is that the shader will call vulkan_surface_index to
192 * get an index and then pass that as the buffer index ubo/ssbo calls.
193 */
194 INTRINSIC(vulkan_resource_index, 1, ARR(1), true, 1, 0, 3,
195 NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
196
197 /*
198 * SSBO atomic intrinsics
199 *
200 * All of the SSBO atomic memory operations read a value from memory,
201 * compute a new value using one of the operations below, write the new
202 * value to memory, and return the original value read.
203 *
204 * All operations take 3 sources except CompSwap that takes 4. These
205 * sources represent:
206 *
207 * 0: The SSBO buffer index.
208 * 1: The offset into the SSBO buffer of the variable that the atomic
209 * operation will operate on.
210 * 2: The data parameter to the atomic function (i.e. the value to add
211 * in ssbo_atomic_add, etc).
212 * 3: For CompSwap only: the second data parameter.
213 */
214 INTRINSIC(ssbo_atomic_add, 3, ARR(1, 1, 1), true, 1, 0, 0, 0)
215 INTRINSIC(ssbo_atomic_imin, 3, ARR(1, 1, 1), true, 1, 0, 0, 0)
216 INTRINSIC(ssbo_atomic_umin, 3, ARR(1, 1, 1), true, 1, 0, 0, 0)
217 INTRINSIC(ssbo_atomic_imax, 3, ARR(1, 1, 1), true, 1, 0, 0, 0)
218 INTRINSIC(ssbo_atomic_umax, 3, ARR(1, 1, 1), true, 1, 0, 0, 0)
219 INTRINSIC(ssbo_atomic_and, 3, ARR(1, 1, 1), true, 1, 0, 0, 0)
220 INTRINSIC(ssbo_atomic_or, 3, ARR(1, 1, 1), true, 1, 0, 0, 0)
221 INTRINSIC(ssbo_atomic_xor, 3, ARR(1, 1, 1), true, 1, 0, 0, 0)
222 INTRINSIC(ssbo_atomic_exchange, 3, ARR(1, 1, 1), true, 1, 0, 0, 0)
223 INTRINSIC(ssbo_atomic_comp_swap, 4, ARR(1, 1, 1, 1), true, 1, 0, 0, 0)
224
225 #define SYSTEM_VALUE(name, components, num_indices) \
226 INTRINSIC(load_##name, 0, ARR(), true, components, 0, num_indices, \
227 NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
228
229 SYSTEM_VALUE(front_face, 1, 0)
230 SYSTEM_VALUE(vertex_id, 1, 0)
231 SYSTEM_VALUE(vertex_id_zero_base, 1, 0)
232 SYSTEM_VALUE(base_vertex, 1, 0)
233 SYSTEM_VALUE(instance_id, 1, 0)
234 SYSTEM_VALUE(sample_id, 1, 0)
235 SYSTEM_VALUE(sample_pos, 2, 0)
236 SYSTEM_VALUE(sample_mask_in, 1, 0)
237 SYSTEM_VALUE(primitive_id, 1, 0)
238 SYSTEM_VALUE(invocation_id, 1, 0)
239 SYSTEM_VALUE(tess_coord, 3, 0)
240 SYSTEM_VALUE(tess_level_outer, 4, 0)
241 SYSTEM_VALUE(tess_level_inner, 2, 0)
242 SYSTEM_VALUE(patch_vertices_in, 1, 0)
243 SYSTEM_VALUE(local_invocation_id, 3, 0)
244 SYSTEM_VALUE(work_group_id, 3, 0)
245 SYSTEM_VALUE(user_clip_plane, 4, 1) /* const_index[0] is user_clip_plane[idx] */
246 SYSTEM_VALUE(num_work_groups, 3, 0)
247 SYSTEM_VALUE(helper_invocation, 1, 0)
248
249 /*
250 * The format of the indices depends on the type of the load. For uniforms,
251 * the first index is the base address and the second index is an offset that
252 * should be added to the base address. (This way you can determine in the
253 * back-end which variable is being accessed even in an array.) For inputs,
254 * the one and only index corresponds to the attribute slot. UBO loads
255 * have two indices the first of which is the descriptor set and the second
256 * is the base address to load from.
257 *
258 * UBO loads have a (possibly constant) source which is the UBO buffer index.
259 * For each type of load, the _indirect variant has one additional source
260 * (the second in the case of UBO's) that is the is an indirect to be added to
261 * the constant address or base offset to compute the final offset.
262 *
263 * For vector backends, the address is in terms of one vec4, and so each array
264 * element is +4 scalar components from the previous array element. For scalar
265 * backends, the address is in terms of a single 4-byte float/int and arrays
266 * elements begin immediately after the previous array element.
267 */
268
269 #define LOAD(name, extra_srcs, indices, flags) \
270 INTRINSIC(load_##name, extra_srcs, ARR(1), true, 0, 0, indices, flags) \
271 INTRINSIC(load_##name##_indirect, extra_srcs + 1, ARR(1, 1), \
272 true, 0, 0, indices, flags)
273
274 LOAD(uniform, 0, 2, NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
275 LOAD(ubo, 1, 2, NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
276 LOAD(input, 0, 1, NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
277 LOAD(per_vertex_input, 1, 1, NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
278 LOAD(ssbo, 1, 1, NIR_INTRINSIC_CAN_ELIMINATE)
279 LOAD(output, 0, 1, NIR_INTRINSIC_CAN_ELIMINATE)
280 LOAD(per_vertex_output, 1, 1, NIR_INTRINSIC_CAN_ELIMINATE)
281 LOAD(push_constant, 0, 1, NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
282
283 /*
284 * Stores work the same way as loads, except now the first register input is
285 * the value or array to store and the optional second input is the indirect
286 * offset. SSBO stores are similar, but they accept an extra source for the
287 * block index and an extra index with the writemask to use.
288 */
289
290 #define STORE(name, extra_srcs, extra_srcs_size, extra_indices, flags) \
291 INTRINSIC(store_##name, 1 + extra_srcs, \
292 ARR(0, extra_srcs_size, extra_srcs_size, extra_srcs_size), \
293 false, 0, 0, 1 + extra_indices, flags) \
294 INTRINSIC(store_##name##_indirect, 2 + extra_srcs, \
295 ARR(0, 1, extra_srcs_size, extra_srcs_size), \
296 false, 0, 0, 1 + extra_indices, flags)
297
298 STORE(output, 0, 0, 0, 0)
299 STORE(per_vertex_output, 1, 1, 0, 0)
300 STORE(ssbo, 1, 1, 1, 0)
301
302 LAST_INTRINSIC(store_ssbo_indirect)