nir: Use a source for uniform buffer indices instead of an index
[mesa.git] / src / glsl / nir / nir_intrinsics.h
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 /**
29 * This header file defines all the available intrinsics in one place. It
30 * expands to a list of macros of the form:
31 *
32 * INTRINSIC(name, num_srcs, src_components, has_dest, dest_components,
33 * num_variables, num_indices, flags)
34 *
35 * Which should correspond one-to-one with the nir_intrinsic_info structure. It
36 * is included in both ir.h to create the nir_intrinsic enum (with members of
37 * the form nir_intrinsic_(name)) and and in opcodes.c to create
38 * nir_intrinsic_infos, which is a const array of nir_intrinsic_info structures
39 * for each intrinsic.
40 */
41
42 #define ARR(...) { __VA_ARGS__ }
43
44
45 INTRINSIC(load_var, 0, ARR(), true, 0, 1, 0, NIR_INTRINSIC_CAN_ELIMINATE)
46 INTRINSIC(store_var, 1, ARR(0), false, 0, 1, 0, 0)
47 INTRINSIC(copy_var, 0, ARR(), false, 0, 2, 0, 0)
48
49 /*
50 * Interpolation of input. The interp_var_at* intrinsics are similar to the
51 * load_var intrinsic acting an a shader input except that they interpolate
52 * the input differently. The at_sample and at_offset intrinsics take an
53 * aditional source that is a integer sample id or a vec2 position offset
54 * respectively.
55 */
56
57 INTRINSIC(interp_var_at_centroid, 0, ARR(0), true, 0, 1, 0,
58 NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
59 INTRINSIC(interp_var_at_sample, 1, ARR(1), true, 0, 1, 0,
60 NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
61 INTRINSIC(interp_var_at_offset, 1, ARR(2), true, 0, 1, 0,
62 NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
63
64 /*
65 * a barrier is an intrinsic with no inputs/outputs but which can't be moved
66 * around/optimized in general
67 */
68 #define BARRIER(name) INTRINSIC(name, 0, ARR(), false, 0, 0, 0, 0)
69
70 BARRIER(discard)
71
72 INTRINSIC(emit_vertex, 0, ARR(), false, 0, 0, 1, 0)
73 INTRINSIC(end_primitive, 0, ARR(), false, 0, 0, 1, 0)
74
75 /*
76 * Atomic counters
77 *
78 * The *_var variants take an atomic_uint nir_variable, while the other,
79 * lowered, variants take a constant buffer index and register offset.
80 */
81
82 #define ATOMIC(name, flags) \
83 INTRINSIC(atomic_counter_##name##_var, 0, ARR(), true, 1, 1, 0, flags) \
84 INTRINSIC(atomic_counter_##name, 1, ARR(1), true, 1, 0, 1, flags)
85
86 ATOMIC(inc, 0)
87 ATOMIC(dec, 0)
88 ATOMIC(read, NIR_INTRINSIC_CAN_ELIMINATE)
89
90 #define SYSTEM_VALUE(name, components) \
91 INTRINSIC(load_##name, 0, ARR(), true, components, 0, 0, \
92 NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
93
94 SYSTEM_VALUE(front_face, 1)
95 SYSTEM_VALUE(vertex_id, 1)
96 SYSTEM_VALUE(instance_id, 1)
97 SYSTEM_VALUE(sample_id, 1)
98 SYSTEM_VALUE(sample_pos, 2)
99 SYSTEM_VALUE(sample_mask_in, 1)
100 SYSTEM_VALUE(invocation_id, 1)
101
102 /*
103 * The first index is the address to load from, and the second index is the
104 * number of array elements to load. Indirect loads have an additional
105 * register input, which is added to the constant address to compute the
106 * final address to load from. For UBO's (and SSBO's), the first source is
107 * the (possibly constant) UBO buffer index and the indirect (if it exists)
108 * is the second source.
109 *
110 * For vector backends, the address is in terms of one vec4, and so each array
111 * element is +4 scalar components from the previous array element. For scalar
112 * backends, the address is in terms of a single 4-byte float/int and arrays
113 * elements begin immediately after the previous array element.
114 */
115
116 #define LOAD(name, extra_srcs, flags) \
117 INTRINSIC(load_##name, extra_srcs, ARR(1), true, 0, 0, 2, flags) \
118 INTRINSIC(load_##name##_indirect, extra_srcs + 1, ARR(1, 1), \
119 true, 0, 0, 2, flags)
120
121 LOAD(uniform, 0, NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
122 LOAD(ubo, 1, NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
123 LOAD(input, 0, NIR_INTRINSIC_CAN_ELIMINATE | NIR_INTRINSIC_CAN_REORDER)
124 /* LOAD(ssbo, 1, 0) */
125
126 /*
127 * Stores work the same way as loads, except now the first register input is
128 * the value or array to store and the optional second input is the indirect
129 * offset.
130 */
131
132 #define STORE(name, num_indices, flags) \
133 INTRINSIC(store_##name, 1, ARR(0), false, 0, 0, num_indices, flags) \
134 INTRINSIC(store_##name##_indirect, 2, ARR(0, 1), false, 0, 0, \
135 num_indices, flags) \
136
137 STORE(output, 2, 0)
138 /* STORE(ssbo, 3, 0) */
139
140 LAST_INTRINSIC(store_output_indirect)