intel/blorp: Add a CCS ambiguation pass
[mesa.git] / src / intel / blorp / blorp_clear.c
1 /*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "util/ralloc.h"
25
26 #include "main/macros.h" /* Needed for MAX3 and MAX2 for format_rgb9e5 */
27 #include "util/format_rgb9e5.h"
28 #include "util/format_srgb.h"
29
30 #include "blorp_priv.h"
31 #include "compiler/brw_eu_defines.h"
32
33 #include "blorp_nir_builder.h"
34
35 #define FILE_DEBUG_FLAG DEBUG_BLORP
36
37 struct brw_blorp_const_color_prog_key
38 {
39 enum blorp_shader_type shader_type; /* Must be BLORP_SHADER_TYPE_CLEAR */
40 bool use_simd16_replicated_data;
41 bool pad[3];
42 };
43
44 static bool
45 blorp_params_get_clear_kernel(struct blorp_context *blorp,
46 struct blorp_params *params,
47 bool use_replicated_data)
48 {
49 const struct brw_blorp_const_color_prog_key blorp_key = {
50 .shader_type = BLORP_SHADER_TYPE_CLEAR,
51 .use_simd16_replicated_data = use_replicated_data,
52 };
53
54 if (blorp->lookup_shader(blorp, &blorp_key, sizeof(blorp_key),
55 &params->wm_prog_kernel, &params->wm_prog_data))
56 return true;
57
58 void *mem_ctx = ralloc_context(NULL);
59
60 nir_builder b;
61 nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT, NULL);
62 b.shader->info.name = ralloc_strdup(b.shader, "BLORP-clear");
63
64 nir_variable *v_color =
65 BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type());
66
67 nir_variable *frag_color = nir_variable_create(b.shader, nir_var_shader_out,
68 glsl_vec4_type(),
69 "gl_FragColor");
70 frag_color->data.location = FRAG_RESULT_COLOR;
71
72 nir_copy_var(&b, frag_color, v_color);
73
74 struct brw_wm_prog_key wm_key;
75 brw_blorp_init_wm_prog_key(&wm_key);
76
77 struct brw_wm_prog_data prog_data;
78 const unsigned *program =
79 blorp_compile_fs(blorp, mem_ctx, b.shader, &wm_key, use_replicated_data,
80 &prog_data);
81
82 bool result =
83 blorp->upload_shader(blorp, &blorp_key, sizeof(blorp_key),
84 program, prog_data.base.program_size,
85 &prog_data.base, sizeof(prog_data),
86 &params->wm_prog_kernel, &params->wm_prog_data);
87
88 ralloc_free(mem_ctx);
89 return result;
90 }
91
92 struct layer_offset_vs_key {
93 enum blorp_shader_type shader_type;
94 unsigned num_inputs;
95 };
96
97 /* In the case of doing attachment clears, we are using a surface state that
98 * is handed to us so we can't set (and don't even know) the base array layer.
99 * In order to do a layered clear in this scenario, we need some way of adding
100 * the base array layer to the instance id. Unfortunately, our hardware has
101 * no real concept of "base instance", so we have to do it manually in a
102 * vertex shader.
103 */
104 static bool
105 blorp_params_get_layer_offset_vs(struct blorp_context *blorp,
106 struct blorp_params *params)
107 {
108 struct layer_offset_vs_key blorp_key = {
109 .shader_type = BLORP_SHADER_TYPE_LAYER_OFFSET_VS,
110 };
111
112 if (params->wm_prog_data)
113 blorp_key.num_inputs = params->wm_prog_data->num_varying_inputs;
114
115 if (blorp->lookup_shader(blorp, &blorp_key, sizeof(blorp_key),
116 &params->vs_prog_kernel, &params->vs_prog_data))
117 return true;
118
119 void *mem_ctx = ralloc_context(NULL);
120
121 nir_builder b;
122 nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_VERTEX, NULL);
123 b.shader->info.name = ralloc_strdup(b.shader, "BLORP-layer-offset-vs");
124
125 const struct glsl_type *uvec4_type = glsl_vector_type(GLSL_TYPE_UINT, 4);
126
127 /* First we deal with the header which has instance and base instance */
128 nir_variable *a_header = nir_variable_create(b.shader, nir_var_shader_in,
129 uvec4_type, "header");
130 a_header->data.location = VERT_ATTRIB_GENERIC0;
131
132 nir_variable *v_layer = nir_variable_create(b.shader, nir_var_shader_out,
133 glsl_int_type(), "layer_id");
134 v_layer->data.location = VARYING_SLOT_LAYER;
135
136 /* Compute the layer id */
137 nir_ssa_def *header = nir_load_var(&b, a_header);
138 nir_ssa_def *base_layer = nir_channel(&b, header, 0);
139 nir_ssa_def *instance = nir_channel(&b, header, 1);
140 nir_store_var(&b, v_layer, nir_iadd(&b, instance, base_layer), 0x1);
141
142 /* Then we copy the vertex from the next slot to VARYING_SLOT_POS */
143 nir_variable *a_vertex = nir_variable_create(b.shader, nir_var_shader_in,
144 glsl_vec4_type(), "a_vertex");
145 a_vertex->data.location = VERT_ATTRIB_GENERIC1;
146
147 nir_variable *v_pos = nir_variable_create(b.shader, nir_var_shader_out,
148 glsl_vec4_type(), "v_pos");
149 v_pos->data.location = VARYING_SLOT_POS;
150
151 nir_copy_var(&b, v_pos, a_vertex);
152
153 /* Then we copy everything else */
154 for (unsigned i = 0; i < blorp_key.num_inputs; i++) {
155 nir_variable *a_in = nir_variable_create(b.shader, nir_var_shader_in,
156 uvec4_type, "input");
157 a_in->data.location = VERT_ATTRIB_GENERIC2 + i;
158
159 nir_variable *v_out = nir_variable_create(b.shader, nir_var_shader_out,
160 uvec4_type, "output");
161 v_out->data.location = VARYING_SLOT_VAR0 + i;
162
163 nir_copy_var(&b, v_out, a_in);
164 }
165
166 struct brw_vs_prog_data vs_prog_data;
167 memset(&vs_prog_data, 0, sizeof(vs_prog_data));
168
169 const unsigned *program =
170 blorp_compile_vs(blorp, mem_ctx, b.shader, &vs_prog_data);
171
172 bool result =
173 blorp->upload_shader(blorp, &blorp_key, sizeof(blorp_key),
174 program, vs_prog_data.base.base.program_size,
175 &vs_prog_data.base.base, sizeof(vs_prog_data),
176 &params->vs_prog_kernel, &params->vs_prog_data);
177
178 ralloc_free(mem_ctx);
179 return result;
180 }
181
182 /* The x0, y0, x1, and y1 parameters must already be populated with the render
183 * area of the framebuffer to be cleared.
184 */
185 static void
186 get_fast_clear_rect(const struct isl_device *dev,
187 const struct isl_surf *aux_surf,
188 unsigned *x0, unsigned *y0,
189 unsigned *x1, unsigned *y1)
190 {
191 unsigned int x_align, y_align;
192 unsigned int x_scaledown, y_scaledown;
193
194 /* Only single sampled surfaces need to (and actually can) be resolved. */
195 if (aux_surf->usage == ISL_SURF_USAGE_CCS_BIT) {
196 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
197 * Target(s)", beneath the "Fast Color Clear" bullet (p327):
198 *
199 * Clear pass must have a clear rectangle that must follow
200 * alignment rules in terms of pixels and lines as shown in the
201 * table below. Further, the clear-rectangle height and width
202 * must be multiple of the following dimensions. If the height
203 * and width of the render target being cleared do not meet these
204 * requirements, an MCS buffer can be created such that it
205 * follows the requirement and covers the RT.
206 *
207 * The alignment size in the table that follows is related to the
208 * alignment size that is baked into the CCS surface format but with X
209 * alignment multiplied by 16 and Y alignment multiplied by 32.
210 */
211 x_align = isl_format_get_layout(aux_surf->format)->bw;
212 y_align = isl_format_get_layout(aux_surf->format)->bh;
213
214 x_align *= 16;
215
216 /* SKL+ line alignment requirement for Y-tiled are half those of the prior
217 * generations.
218 */
219 if (dev->info->gen >= 9)
220 y_align *= 16;
221 else
222 y_align *= 32;
223
224 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
225 * Target(s)", beneath the "Fast Color Clear" bullet (p327):
226 *
227 * In order to optimize the performance MCS buffer (when bound to
228 * 1X RT) clear similarly to MCS buffer clear for MSRT case,
229 * clear rect is required to be scaled by the following factors
230 * in the horizontal and vertical directions:
231 *
232 * The X and Y scale down factors in the table that follows are each
233 * equal to half the alignment value computed above.
234 */
235 x_scaledown = x_align / 2;
236 y_scaledown = y_align / 2;
237
238 /* From BSpec: 3D-Media-GPGPU Engine > 3D Pipeline > Pixel > Pixel
239 * Backend > MCS Buffer for Render Target(s) [DevIVB+] > Table "Color
240 * Clear of Non-MultiSampled Render Target Restrictions":
241 *
242 * Clear rectangle must be aligned to two times the number of
243 * pixels in the table shown below due to 16x16 hashing across the
244 * slice.
245 */
246 x_align *= 2;
247 y_align *= 2;
248 } else {
249 assert(aux_surf->usage == ISL_SURF_USAGE_MCS_BIT);
250
251 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
252 * Target(s)", beneath the "MSAA Compression" bullet (p326):
253 *
254 * Clear pass for this case requires that scaled down primitive
255 * is sent down with upper left co-ordinate to coincide with
256 * actual rectangle being cleared. For MSAA, clear rectangle’s
257 * height and width need to as show in the following table in
258 * terms of (width,height) of the RT.
259 *
260 * MSAA Width of Clear Rect Height of Clear Rect
261 * 2X Ceil(1/8*width) Ceil(1/2*height)
262 * 4X Ceil(1/8*width) Ceil(1/2*height)
263 * 8X Ceil(1/2*width) Ceil(1/2*height)
264 * 16X width Ceil(1/2*height)
265 *
266 * The text "with upper left co-ordinate to coincide with actual
267 * rectangle being cleared" is a little confusing--it seems to imply
268 * that to clear a rectangle from (x,y) to (x+w,y+h), one needs to
269 * feed the pipeline using the rectangle (x,y) to
270 * (x+Ceil(w/N),y+Ceil(h/2)), where N is either 2 or 8 depending on
271 * the number of samples. Experiments indicate that this is not
272 * quite correct; actually, what the hardware appears to do is to
273 * align whatever rectangle is sent down the pipeline to the nearest
274 * multiple of 2x2 blocks, and then scale it up by a factor of N
275 * horizontally and 2 vertically. So the resulting alignment is 4
276 * vertically and either 4 or 16 horizontally, and the scaledown
277 * factor is 2 vertically and either 2 or 8 horizontally.
278 */
279 switch (aux_surf->format) {
280 case ISL_FORMAT_MCS_2X:
281 case ISL_FORMAT_MCS_4X:
282 x_scaledown = 8;
283 break;
284 case ISL_FORMAT_MCS_8X:
285 x_scaledown = 2;
286 break;
287 case ISL_FORMAT_MCS_16X:
288 x_scaledown = 1;
289 break;
290 default:
291 unreachable("Unexpected MCS format for fast clear");
292 }
293 y_scaledown = 2;
294 x_align = x_scaledown * 2;
295 y_align = y_scaledown * 2;
296 }
297
298 *x0 = ROUND_DOWN_TO(*x0, x_align) / x_scaledown;
299 *y0 = ROUND_DOWN_TO(*y0, y_align) / y_scaledown;
300 *x1 = ALIGN(*x1, x_align) / x_scaledown;
301 *y1 = ALIGN(*y1, y_align) / y_scaledown;
302 }
303
304 void
305 blorp_fast_clear(struct blorp_batch *batch,
306 const struct blorp_surf *surf, enum isl_format format,
307 uint32_t level, uint32_t start_layer, uint32_t num_layers,
308 uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1)
309 {
310 /* Ensure that all layers undergoing the clear have an auxiliary buffer. */
311 assert(start_layer + num_layers <=
312 MAX2(surf->aux_surf->logical_level0_px.depth >> level,
313 surf->aux_surf->logical_level0_px.array_len));
314
315 struct blorp_params params;
316 blorp_params_init(&params);
317 params.num_layers = num_layers;
318
319 params.x0 = x0;
320 params.y0 = y0;
321 params.x1 = x1;
322 params.y1 = y1;
323
324 memset(&params.wm_inputs.clear_color, 0xff, 4*sizeof(float));
325 params.fast_clear_op = BLORP_FAST_CLEAR_OP_CLEAR;
326
327 get_fast_clear_rect(batch->blorp->isl_dev, surf->aux_surf,
328 &params.x0, &params.y0, &params.x1, &params.y1);
329
330 if (!blorp_params_get_clear_kernel(batch->blorp, &params, true))
331 return;
332
333 brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, level,
334 start_layer, format, true);
335 params.num_samples = params.dst.surf.samples;
336
337 batch->blorp->exec(batch, &params);
338 }
339
340 static union isl_color_value
341 swizzle_color_value(union isl_color_value src, struct isl_swizzle swizzle)
342 {
343 union isl_color_value dst = { .u32 = { 0, } };
344
345 /* We assign colors in ABGR order so that the first one will be taken in
346 * RGBA precedence order. According to the PRM docs for shader channel
347 * select, this matches Haswell hardware behavior.
348 */
349 if ((unsigned)(swizzle.a - ISL_CHANNEL_SELECT_RED) < 4)
350 dst.u32[swizzle.a - ISL_CHANNEL_SELECT_RED] = src.u32[3];
351 if ((unsigned)(swizzle.b - ISL_CHANNEL_SELECT_RED) < 4)
352 dst.u32[swizzle.b - ISL_CHANNEL_SELECT_RED] = src.u32[2];
353 if ((unsigned)(swizzle.g - ISL_CHANNEL_SELECT_RED) < 4)
354 dst.u32[swizzle.g - ISL_CHANNEL_SELECT_RED] = src.u32[1];
355 if ((unsigned)(swizzle.r - ISL_CHANNEL_SELECT_RED) < 4)
356 dst.u32[swizzle.r - ISL_CHANNEL_SELECT_RED] = src.u32[0];
357
358 return dst;
359 }
360
361 void
362 blorp_clear(struct blorp_batch *batch,
363 const struct blorp_surf *surf,
364 enum isl_format format, struct isl_swizzle swizzle,
365 uint32_t level, uint32_t start_layer, uint32_t num_layers,
366 uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
367 union isl_color_value clear_color,
368 const bool color_write_disable[4])
369 {
370 struct blorp_params params;
371 blorp_params_init(&params);
372
373 /* Manually apply the clear destination swizzle. This way swizzled clears
374 * will work for swizzles which we can't normally use for rendering and it
375 * also ensures that they work on pre-Haswell hardware which can't swizlle
376 * at all.
377 */
378 clear_color = swizzle_color_value(clear_color, swizzle);
379 swizzle = ISL_SWIZZLE_IDENTITY;
380
381 if (format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) {
382 clear_color.u32[0] = float3_to_rgb9e5(clear_color.f32);
383 format = ISL_FORMAT_R32_UINT;
384 } else if (format == ISL_FORMAT_L8_UNORM_SRGB) {
385 clear_color.f32[0] = util_format_linear_to_srgb_float(clear_color.f32[0]);
386 format = ISL_FORMAT_R8_UNORM;
387 } else if (format == ISL_FORMAT_A4B4G4R4_UNORM) {
388 /* Broadwell and earlier cannot render to this format so we need to work
389 * around it by swapping the colors around and using B4G4R4A4 instead.
390 */
391 const struct isl_swizzle ARGB = ISL_SWIZZLE(ALPHA, RED, GREEN, BLUE);
392 clear_color = swizzle_color_value(clear_color, ARGB);
393 format = ISL_FORMAT_B4G4R4A4_UNORM;
394 }
395
396 memcpy(&params.wm_inputs.clear_color, clear_color.f32, sizeof(float) * 4);
397
398 bool use_simd16_replicated_data = true;
399
400 /* From the SNB PRM (Vol4_Part1):
401 *
402 * "Replicated data (Message Type = 111) is only supported when
403 * accessing tiled memory. Using this Message Type to access linear
404 * (untiled) memory is UNDEFINED."
405 */
406 if (surf->surf->tiling == ISL_TILING_LINEAR)
407 use_simd16_replicated_data = false;
408
409 /* Replicated clears don't work yet before gen6 */
410 if (batch->blorp->isl_dev->info->gen < 6)
411 use_simd16_replicated_data = false;
412
413 /* Constant color writes ignore everyting in blend and color calculator
414 * state. This is not documented.
415 */
416 if (color_write_disable) {
417 for (unsigned i = 0; i < 4; i++) {
418 params.color_write_disable[i] = color_write_disable[i];
419 if (color_write_disable[i])
420 use_simd16_replicated_data = false;
421 }
422 }
423
424 if (!blorp_params_get_clear_kernel(batch->blorp, &params,
425 use_simd16_replicated_data))
426 return;
427
428 if (!blorp_ensure_sf_program(batch->blorp, &params))
429 return;
430
431 while (num_layers > 0) {
432 brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, level,
433 start_layer, format, true);
434 params.dst.view.swizzle = swizzle;
435
436 params.x0 = x0;
437 params.y0 = y0;
438 params.x1 = x1;
439 params.y1 = y1;
440
441 /* The MinLOD and MinimumArrayElement don't work properly for cube maps.
442 * Convert them to a single slice on gen4.
443 */
444 if (batch->blorp->isl_dev->info->gen == 4 &&
445 (params.dst.surf.usage & ISL_SURF_USAGE_CUBE_BIT)) {
446 blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, &params.dst);
447 }
448
449 if (isl_format_is_compressed(params.dst.surf.format)) {
450 blorp_surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.dst,
451 NULL, NULL, NULL, NULL);
452 //&dst_x, &dst_y, &dst_w, &dst_h);
453 }
454
455 if (params.dst.tile_x_sa || params.dst.tile_y_sa) {
456 /* Either we're on gen4 where there is no multisampling or the
457 * surface is compressed which also implies no multisampling.
458 * Therefore, sa == px and we don't need to do a conversion.
459 */
460 assert(params.dst.surf.samples == 1);
461 params.x0 += params.dst.tile_x_sa;
462 params.y0 += params.dst.tile_y_sa;
463 params.x1 += params.dst.tile_x_sa;
464 params.y1 += params.dst.tile_y_sa;
465 }
466
467 params.num_samples = params.dst.surf.samples;
468
469 /* We may be restricted on the number of layers we can bind at any one
470 * time. In particular, Sandy Bridge has a maximum number of layers of
471 * 512 but a maximum 3D texture size is much larger.
472 */
473 params.num_layers = MIN2(params.dst.view.array_len, num_layers);
474 batch->blorp->exec(batch, &params);
475
476 start_layer += params.num_layers;
477 num_layers -= params.num_layers;
478 }
479 }
480
481 void
482 blorp_clear_depth_stencil(struct blorp_batch *batch,
483 const struct blorp_surf *depth,
484 const struct blorp_surf *stencil,
485 uint32_t level, uint32_t start_layer,
486 uint32_t num_layers,
487 uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
488 bool clear_depth, float depth_value,
489 uint8_t stencil_mask, uint8_t stencil_value)
490 {
491 struct blorp_params params;
492 blorp_params_init(&params);
493
494 params.x0 = x0;
495 params.y0 = y0;
496 params.x1 = x1;
497 params.y1 = y1;
498
499 if (ISL_DEV_GEN(batch->blorp->isl_dev) == 6) {
500 /* For some reason, Sandy Bridge gets occlusion queries wrong if we
501 * don't have a shader. In particular, it records samples even though
502 * we disable statistics in 3DSTATE_WM. Give it the usual clear shader
503 * to work around the issue.
504 */
505 if (!blorp_params_get_clear_kernel(batch->blorp, &params, false))
506 return;
507 }
508
509 while (num_layers > 0) {
510 params.num_layers = num_layers;
511
512 if (stencil_mask) {
513 brw_blorp_surface_info_init(batch->blorp, &params.stencil, stencil,
514 level, start_layer,
515 ISL_FORMAT_UNSUPPORTED, true);
516 params.stencil_mask = stencil_mask;
517 params.stencil_ref = stencil_value;
518
519 params.dst.surf.samples = params.stencil.surf.samples;
520 params.dst.surf.logical_level0_px =
521 params.stencil.surf.logical_level0_px;
522 params.dst.view = params.depth.view;
523
524 params.num_samples = params.stencil.surf.samples;
525
526 /* We may be restricted on the number of layers we can bind at any
527 * one time. In particular, Sandy Bridge has a maximum number of
528 * layers of 512 but a maximum 3D texture size is much larger.
529 */
530 if (params.stencil.view.array_len < params.num_layers)
531 params.num_layers = params.stencil.view.array_len;
532 }
533
534 if (clear_depth) {
535 brw_blorp_surface_info_init(batch->blorp, &params.depth, depth,
536 level, start_layer,
537 ISL_FORMAT_UNSUPPORTED, true);
538 params.z = depth_value;
539 params.depth_format =
540 isl_format_get_depth_format(depth->surf->format, false);
541
542 params.dst.surf.samples = params.depth.surf.samples;
543 params.dst.surf.logical_level0_px =
544 params.depth.surf.logical_level0_px;
545 params.dst.view = params.depth.view;
546
547 params.num_samples = params.depth.surf.samples;
548
549 /* We may be restricted on the number of layers we can bind at any
550 * one time. In particular, Sandy Bridge has a maximum number of
551 * layers of 512 but a maximum 3D texture size is much larger.
552 */
553 if (params.depth.view.array_len < params.num_layers)
554 params.num_layers = params.depth.view.array_len;
555 }
556
557 batch->blorp->exec(batch, &params);
558
559 start_layer += params.num_layers;
560 num_layers -= params.num_layers;
561 }
562 }
563
564 bool
565 blorp_can_hiz_clear_depth(uint8_t gen, enum isl_format format,
566 uint32_t num_samples,
567 uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1)
568 {
569 /* This function currently doesn't support any gen prior to gen8 */
570 assert(gen >= 8);
571
572 if (gen == 8 && format == ISL_FORMAT_R16_UNORM) {
573 /* Apply the D16 alignment restrictions. On BDW, HiZ has an 8x4 sample
574 * block with the following property: as the number of samples increases,
575 * the number of pixels representable by this block decreases by a factor
576 * of the sample dimensions. Sample dimensions scale following the MSAA
577 * interleaved pattern.
578 *
579 * Sample|Sample|Pixel
580 * Count |Dim |Dim
581 * ===================
582 * 1 | 1x1 | 8x4
583 * 2 | 2x1 | 4x4
584 * 4 | 2x2 | 4x2
585 * 8 | 4x2 | 2x2
586 * 16 | 4x4 | 2x1
587 *
588 * Table: Pixel Dimensions in a HiZ Sample Block Pre-SKL
589 */
590 const struct isl_extent2d sa_block_dim =
591 isl_get_interleaved_msaa_px_size_sa(num_samples);
592 const uint8_t align_px_w = 8 / sa_block_dim.w;
593 const uint8_t align_px_h = 4 / sa_block_dim.h;
594
595 /* Fast depth clears clear an entire sample block at a time. As a result,
596 * the rectangle must be aligned to the dimensions of the encompassing
597 * pixel block for a successful operation.
598 *
599 * Fast clears can still work if the upper-left corner is aligned and the
600 * bottom-rigtht corner touches the edge of a depth buffer whose extent
601 * is unaligned. This is because each miplevel in the depth buffer is
602 * padded by the Pixel Dim (similar to a standard compressed texture).
603 * In this case, the clear rectangle could be padded by to match the full
604 * depth buffer extent but to support multiple clearing techniques, we
605 * chose to be unaware of the depth buffer's extent and thus don't handle
606 * this case.
607 */
608 if (x0 % align_px_w || y0 % align_px_h ||
609 x1 % align_px_w || y1 % align_px_h)
610 return false;
611 }
612 return true;
613 }
614
615 /* Given a depth stencil attachment, this function performs a fast depth clear
616 * on a depth portion and a regular clear on the stencil portion. When
617 * performing a fast depth clear on the depth portion, the HiZ buffer is simply
618 * tagged as cleared so the depth clear value is not actually needed.
619 */
620 void
621 blorp_gen8_hiz_clear_attachments(struct blorp_batch *batch,
622 uint32_t num_samples,
623 uint32_t x0, uint32_t y0,
624 uint32_t x1, uint32_t y1,
625 bool clear_depth, bool clear_stencil,
626 uint8_t stencil_value)
627 {
628 assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
629
630 struct blorp_params params;
631 blorp_params_init(&params);
632 params.num_layers = 1;
633 params.hiz_op = BLORP_HIZ_OP_DEPTH_CLEAR;
634 params.x0 = x0;
635 params.y0 = y0;
636 params.x1 = x1;
637 params.y1 = y1;
638 params.num_samples = num_samples;
639 params.depth.enabled = clear_depth;
640 params.stencil.enabled = clear_stencil;
641 params.stencil_ref = stencil_value;
642 batch->blorp->exec(batch, &params);
643 }
644
645 /** Clear active color/depth/stencili attachments
646 *
647 * This function performs a clear operation on the currently bound
648 * color/depth/stencil attachments. It is assumed that any information passed
649 * in here is valid, consistent, and in-bounds relative to the currently
650 * attached depth/stencil. The binding_table_offset parameter is the 32-bit
651 * offset relative to surface state base address where pre-baked binding table
652 * that we are to use lives. If clear_color is false, binding_table_offset
653 * must point to a binding table with one entry which is a valid null surface
654 * that matches the currently bound depth and stencil.
655 */
656 void
657 blorp_clear_attachments(struct blorp_batch *batch,
658 uint32_t binding_table_offset,
659 enum isl_format depth_format,
660 uint32_t num_samples,
661 uint32_t start_layer, uint32_t num_layers,
662 uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
663 bool clear_color, union isl_color_value color_value,
664 bool clear_depth, float depth_value,
665 uint8_t stencil_mask, uint8_t stencil_value)
666 {
667 struct blorp_params params;
668 blorp_params_init(&params);
669
670 assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
671
672 params.x0 = x0;
673 params.y0 = y0;
674 params.x1 = x1;
675 params.y1 = y1;
676
677 params.use_pre_baked_binding_table = true;
678 params.pre_baked_binding_table_offset = binding_table_offset;
679
680 params.num_layers = num_layers;
681 params.num_samples = num_samples;
682
683 if (clear_color) {
684 params.dst.enabled = true;
685
686 memcpy(&params.wm_inputs.clear_color, color_value.f32, sizeof(float) * 4);
687
688 /* Unfortunately, without knowing whether or not our destination surface
689 * is tiled or not, we have to assume it may be linear. This means no
690 * SIMD16_REPDATA for us. :-(
691 */
692 if (!blorp_params_get_clear_kernel(batch->blorp, &params, false))
693 return;
694 }
695
696 if (clear_depth) {
697 params.depth.enabled = true;
698
699 params.z = depth_value;
700 params.depth_format = isl_format_get_depth_format(depth_format, false);
701 }
702
703 if (stencil_mask) {
704 params.stencil.enabled = true;
705
706 params.stencil_mask = stencil_mask;
707 params.stencil_ref = stencil_value;
708 }
709
710 if (!blorp_params_get_layer_offset_vs(batch->blorp, &params))
711 return;
712
713 params.vs_inputs.base_layer = start_layer;
714
715 batch->blorp->exec(batch, &params);
716 }
717
718 void
719 blorp_ccs_resolve(struct blorp_batch *batch,
720 struct blorp_surf *surf, uint32_t level,
721 uint32_t start_layer, uint32_t num_layers,
722 enum isl_format format,
723 enum blorp_fast_clear_op resolve_op)
724 {
725 struct blorp_params params;
726
727 blorp_params_init(&params);
728 brw_blorp_surface_info_init(batch->blorp, &params.dst, surf,
729 level, start_layer, format, true);
730
731 /* From the Ivy Bridge PRM, Vol2 Part1 11.9 "Render Target Resolve":
732 *
733 * A rectangle primitive must be scaled down by the following factors
734 * with respect to render target being resolved.
735 *
736 * The scaledown factors in the table that follows are related to the block
737 * size of the CCS format. For IVB and HSW, we divide by two, for BDW we
738 * multiply by 8 and 16. On Sky Lake, we multiply by 8.
739 */
740 const struct isl_format_layout *aux_fmtl =
741 isl_format_get_layout(params.dst.aux_surf.format);
742 assert(aux_fmtl->txc == ISL_TXC_CCS);
743
744 unsigned x_scaledown, y_scaledown;
745 if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 9) {
746 x_scaledown = aux_fmtl->bw * 8;
747 y_scaledown = aux_fmtl->bh * 8;
748 } else if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 8) {
749 x_scaledown = aux_fmtl->bw * 8;
750 y_scaledown = aux_fmtl->bh * 16;
751 } else {
752 x_scaledown = aux_fmtl->bw / 2;
753 y_scaledown = aux_fmtl->bh / 2;
754 }
755 params.x0 = params.y0 = 0;
756 params.x1 = minify(params.dst.aux_surf.logical_level0_px.width, level);
757 params.y1 = minify(params.dst.aux_surf.logical_level0_px.height, level);
758 params.x1 = ALIGN(params.x1, x_scaledown) / x_scaledown;
759 params.y1 = ALIGN(params.y1, y_scaledown) / y_scaledown;
760
761 if (batch->blorp->isl_dev->info->gen >= 9) {
762 assert(resolve_op == BLORP_FAST_CLEAR_OP_RESOLVE_FULL ||
763 resolve_op == BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL);
764 } else {
765 /* Broadwell and earlier do not have a partial resolve */
766 assert(resolve_op == BLORP_FAST_CLEAR_OP_RESOLVE_FULL);
767 }
768 params.fast_clear_op = resolve_op;
769 params.num_layers = num_layers;
770
771 /* Note: there is no need to initialize push constants because it doesn't
772 * matter what data gets dispatched to the render target. However, we must
773 * ensure that the fragment shader delivers the data using the "replicated
774 * color" message.
775 */
776
777 if (!blorp_params_get_clear_kernel(batch->blorp, &params, true))
778 return;
779
780 batch->blorp->exec(batch, &params);
781 }
782
783 struct blorp_mcs_partial_resolve_key
784 {
785 enum blorp_shader_type shader_type;
786 uint32_t num_samples;
787 };
788
789 static bool
790 blorp_params_get_mcs_partial_resolve_kernel(struct blorp_context *blorp,
791 struct blorp_params *params)
792 {
793 const struct blorp_mcs_partial_resolve_key blorp_key = {
794 .shader_type = BLORP_SHADER_TYPE_MCS_PARTIAL_RESOLVE,
795 .num_samples = params->num_samples,
796 };
797
798 if (blorp->lookup_shader(blorp, &blorp_key, sizeof(blorp_key),
799 &params->wm_prog_kernel, &params->wm_prog_data))
800 return true;
801
802 void *mem_ctx = ralloc_context(NULL);
803
804 nir_builder b;
805 nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT, NULL);
806 b.shader->info.name = ralloc_strdup(b.shader, "BLORP-mcs-partial-resolve");
807
808 nir_variable *v_color =
809 BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type());
810
811 nir_variable *frag_color =
812 nir_variable_create(b.shader, nir_var_shader_out,
813 glsl_vec4_type(), "gl_FragColor");
814 frag_color->data.location = FRAG_RESULT_COLOR;
815
816 /* Do an MCS fetch and check if it is equal to the magic clear value */
817 nir_ssa_def *mcs =
818 blorp_nir_txf_ms_mcs(&b, nir_f2i32(&b, blorp_nir_frag_coord(&b)),
819 nir_load_layer_id(&b));
820 nir_ssa_def *is_clear =
821 blorp_nir_mcs_is_clear_color(&b, mcs, blorp_key.num_samples);
822
823 /* If we aren't the clear value, discard. */
824 nir_intrinsic_instr *discard =
825 nir_intrinsic_instr_create(b.shader, nir_intrinsic_discard_if);
826 discard->src[0] = nir_src_for_ssa(nir_inot(&b, is_clear));
827 nir_builder_instr_insert(&b, &discard->instr);
828
829 nir_copy_var(&b, frag_color, v_color);
830
831 struct brw_wm_prog_key wm_key;
832 brw_blorp_init_wm_prog_key(&wm_key);
833 wm_key.tex.compressed_multisample_layout_mask = 1;
834 wm_key.tex.msaa_16 = blorp_key.num_samples == 16;
835 wm_key.multisample_fbo = true;
836
837 struct brw_wm_prog_data prog_data;
838 const unsigned *program =
839 blorp_compile_fs(blorp, mem_ctx, b.shader, &wm_key, false,
840 &prog_data);
841
842 bool result =
843 blorp->upload_shader(blorp, &blorp_key, sizeof(blorp_key),
844 program, prog_data.base.program_size,
845 &prog_data.base, sizeof(prog_data),
846 &params->wm_prog_kernel, &params->wm_prog_data);
847
848 ralloc_free(mem_ctx);
849 return result;
850 }
851
852 void
853 blorp_mcs_partial_resolve(struct blorp_batch *batch,
854 struct blorp_surf *surf,
855 enum isl_format format,
856 uint32_t start_layer, uint32_t num_layers)
857 {
858 struct blorp_params params;
859 blorp_params_init(&params);
860
861 assert(batch->blorp->isl_dev->info->gen >= 7);
862
863 params.x0 = 0;
864 params.y0 = 0;
865 params.x1 = surf->surf->logical_level0_px.width;
866 params.y1 = surf->surf->logical_level0_px.height;
867
868 brw_blorp_surface_info_init(batch->blorp, &params.src, surf, 0,
869 start_layer, format, false);
870 brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, 0,
871 start_layer, format, true);
872
873 params.num_samples = params.dst.surf.samples;
874 params.num_layers = num_layers;
875
876 memcpy(&params.wm_inputs.clear_color,
877 surf->clear_color.f32, sizeof(float) * 4);
878
879 if (!blorp_params_get_mcs_partial_resolve_kernel(batch->blorp, &params))
880 return;
881
882 batch->blorp->exec(batch, &params);
883 }
884
885 /** Clear a CCS to the "uncompressed" state
886 *
887 * This pass is the CCS equivalent of a "HiZ resolve". It sets the CCS values
888 * for a given layer/level of a surface to 0x0 which is the "uncompressed"
889 * state which tells the sampler to go look at the main surface.
890 */
891 void
892 blorp_ccs_ambiguate(struct blorp_batch *batch,
893 struct blorp_surf *surf,
894 uint32_t level, uint32_t layer)
895 {
896 struct blorp_params params;
897 blorp_params_init(&params);
898
899 assert(ISL_DEV_GEN(batch->blorp->isl_dev) >= 7);
900
901 const struct isl_format_layout *aux_fmtl =
902 isl_format_get_layout(surf->aux_surf->format);
903 assert(aux_fmtl->txc == ISL_TXC_CCS);
904
905 params.dst = (struct brw_blorp_surface_info) {
906 .enabled = true,
907 .addr = surf->aux_addr,
908 .view = {
909 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT,
910 .format = ISL_FORMAT_R32G32B32A32_UINT,
911 .base_level = 0,
912 .base_array_layer = 0,
913 .levels = 1,
914 .array_len = 1,
915 .swizzle = ISL_SWIZZLE_IDENTITY,
916 },
917 };
918
919 uint32_t z = 0;
920 if (surf->surf->dim == ISL_SURF_DIM_3D) {
921 z = layer;
922 layer = 0;
923 }
924
925 uint32_t offset_B, x_offset_el, y_offset_el;
926 isl_surf_get_image_offset_el(surf->aux_surf, level, layer, z,
927 &x_offset_el, &y_offset_el);
928 isl_tiling_get_intratile_offset_el(surf->aux_surf->tiling, aux_fmtl->bpb,
929 surf->aux_surf->row_pitch,
930 x_offset_el, y_offset_el,
931 &offset_B, &x_offset_el, &y_offset_el);
932 params.dst.addr.offset += offset_B;
933
934 const uint32_t width_px =
935 minify(surf->aux_surf->logical_level0_px.width, level);
936 const uint32_t height_px =
937 minify(surf->aux_surf->logical_level0_px.height, level);
938 const uint32_t width_el = DIV_ROUND_UP(width_px, aux_fmtl->bw);
939 const uint32_t height_el = DIV_ROUND_UP(height_px, aux_fmtl->bh);
940
941 struct isl_tile_info ccs_tile_info;
942 isl_surf_get_tile_info(surf->aux_surf, &ccs_tile_info);
943
944 /* We're going to map it as a regular RGBA32_UINT surface. We need to
945 * downscale a good deal. We start by computing the area on the CCS to
946 * clear in units of Y-tiled cache lines.
947 */
948 uint32_t x_offset_cl, y_offset_cl, width_cl, height_cl;
949 if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 8) {
950 /* From the Sky Lake PRM Vol. 12 in the section on planes:
951 *
952 * "The Color Control Surface (CCS) contains the compression status
953 * of the cache-line pairs. The compression state of the cache-line
954 * pair is specified by 2 bits in the CCS. Each CCS cache-line
955 * represents an area on the main surface of 16x16 sets of 128 byte
956 * Y-tiled cache-line-pairs. CCS is always Y tiled."
957 *
958 * Each 2-bit surface element in the CCS corresponds to a single
959 * cache-line pair in the main surface. This means that 16x16 el block
960 * in the CCS maps to a Y-tiled cache line. Fortunately, CCS layouts
961 * are calculated with a very large alignment so we can round up to a
962 * whole cache line without worrying about overdraw.
963 */
964
965 /* On Broadwell and above, a CCS tile is the same as a Y tile when
966 * viewed at the cache-line granularity. Fortunately, the horizontal
967 * and vertical alignment requirements of the CCS are such that we can
968 * align to an entire cache line without worrying about crossing over
969 * from one LOD to another.
970 */
971 const uint32_t x_el_per_cl = ccs_tile_info.logical_extent_el.w / 8;
972 const uint32_t y_el_per_cl = ccs_tile_info.logical_extent_el.h / 8;
973 assert(surf->aux_surf->image_alignment_el.w % x_el_per_cl == 0);
974 assert(surf->aux_surf->image_alignment_el.h % y_el_per_cl == 0);
975
976 assert(x_offset_el % x_el_per_cl == 0);
977 assert(y_offset_el % y_el_per_cl == 0);
978 x_offset_cl = x_offset_el / x_el_per_cl;
979 y_offset_cl = y_offset_el / y_el_per_cl;
980 width_cl = DIV_ROUND_UP(width_el, x_el_per_cl);
981 height_cl = DIV_ROUND_UP(height_el, y_el_per_cl);
982 } else {
983 /* On gen7, the CCS tiling is not so nice. However, there we are
984 * guaranteed that we only have a single level and slice so we don't
985 * have to worry about it and can just align to a whole tile.
986 */
987 assert(surf->aux_surf->logical_level0_px.depth == 1);
988 assert(surf->aux_surf->logical_level0_px.array_len == 1);
989 assert(x_offset_el == 0 && y_offset_el == 0);
990 const uint32_t width_tl =
991 DIV_ROUND_UP(width_el, ccs_tile_info.logical_extent_el.w);
992 const uint32_t height_tl =
993 DIV_ROUND_UP(height_el, ccs_tile_info.logical_extent_el.h);
994 x_offset_cl = 0;
995 y_offset_cl = 0;
996 width_cl = width_tl * 8;
997 height_cl = height_tl * 8;
998 }
999
1000 /* We're going to use a RGBA32 format so as to write data as quickly as
1001 * possible. A y-tiled cache line will then be 1x4 px.
1002 */
1003 const uint32_t x_offset_rgba_px = x_offset_cl;
1004 const uint32_t y_offset_rgba_px = y_offset_cl * 4;
1005 const uint32_t width_rgba_px = width_cl;
1006 const uint32_t height_rgba_px = height_cl * 4;
1007
1008 MAYBE_UNUSED bool ok =
1009 isl_surf_init(batch->blorp->isl_dev, &params.dst.surf,
1010 .dim = ISL_SURF_DIM_2D,
1011 .format = ISL_FORMAT_R32G32B32A32_UINT,
1012 .width = width_rgba_px + x_offset_rgba_px,
1013 .height = height_rgba_px + y_offset_rgba_px,
1014 .depth = 1,
1015 .levels = 1,
1016 .array_len = 1,
1017 .samples = 1,
1018 .row_pitch = surf->aux_surf->row_pitch,
1019 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT,
1020 .tiling_flags = ISL_TILING_Y0_BIT);
1021 assert(ok);
1022
1023 params.x0 = x_offset_rgba_px;
1024 params.y0 = y_offset_rgba_px;
1025 params.x1 = x_offset_rgba_px + width_rgba_px;
1026 params.y1 = y_offset_rgba_px + height_rgba_px;
1027
1028 /* A CCS value of 0 means "uncompressed." */
1029 memset(&params.wm_inputs.clear_color, 0,
1030 sizeof(params.wm_inputs.clear_color));
1031
1032 if (!blorp_params_get_clear_kernel(batch->blorp, &params, true))
1033 return;
1034
1035 batch->blorp->exec(batch, &params);
1036 }