intel/aubinator: Decode 3DSTATE_CONSTANT_ALL.
[mesa.git] / src / intel / common / gen_batch_decoder.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "common/gen_decoder.h"
25 #include "gen_disasm.h"
26 #include "util/macros.h"
27 #include "main/macros.h" /* Needed for ROUND_DOWN_TO */
28
29 #include <string.h>
30
31 void
32 gen_batch_decode_ctx_init(struct gen_batch_decode_ctx *ctx,
33 const struct gen_device_info *devinfo,
34 FILE *fp, enum gen_batch_decode_flags flags,
35 const char *xml_path,
36 struct gen_batch_decode_bo (*get_bo)(void *,
37 bool,
38 uint64_t),
39 unsigned (*get_state_size)(void *, uint32_t),
40 void *user_data)
41 {
42 memset(ctx, 0, sizeof(*ctx));
43
44 ctx->get_bo = get_bo;
45 ctx->get_state_size = get_state_size;
46 ctx->user_data = user_data;
47 ctx->fp = fp;
48 ctx->flags = flags;
49 ctx->max_vbo_decoded_lines = -1; /* No limit! */
50 ctx->engine = I915_ENGINE_CLASS_RENDER;
51
52 if (xml_path == NULL)
53 ctx->spec = gen_spec_load(devinfo);
54 else
55 ctx->spec = gen_spec_load_from_path(devinfo, xml_path);
56 ctx->disasm = gen_disasm_create(devinfo);
57 }
58
59 void
60 gen_batch_decode_ctx_finish(struct gen_batch_decode_ctx *ctx)
61 {
62 gen_spec_destroy(ctx->spec);
63 gen_disasm_destroy(ctx->disasm);
64 }
65
66 #define CSI "\e["
67 #define RED_COLOR CSI "31m"
68 #define BLUE_HEADER CSI "0;44m"
69 #define GREEN_HEADER CSI "1;42m"
70 #define NORMAL CSI "0m"
71
72 static void
73 ctx_print_group(struct gen_batch_decode_ctx *ctx,
74 struct gen_group *group,
75 uint64_t address, const void *map)
76 {
77 gen_print_group(ctx->fp, group, address, map, 0,
78 (ctx->flags & GEN_BATCH_DECODE_IN_COLOR) != 0);
79 }
80
81 static struct gen_batch_decode_bo
82 ctx_get_bo(struct gen_batch_decode_ctx *ctx, bool ppgtt, uint64_t addr)
83 {
84 if (gen_spec_get_gen(ctx->spec) >= gen_make_gen(8,0)) {
85 /* On Broadwell and above, we have 48-bit addresses which consume two
86 * dwords. Some packets require that these get stored in a "canonical
87 * form" which means that bit 47 is sign-extended through the upper
88 * bits. In order to correctly handle those aub dumps, we need to mask
89 * off the top 16 bits.
90 */
91 addr &= (~0ull >> 16);
92 }
93
94 struct gen_batch_decode_bo bo = ctx->get_bo(ctx->user_data, ppgtt, addr);
95
96 if (gen_spec_get_gen(ctx->spec) >= gen_make_gen(8,0))
97 bo.addr &= (~0ull >> 16);
98
99 /* We may actually have an offset into the bo */
100 if (bo.map != NULL) {
101 assert(bo.addr <= addr);
102 uint64_t offset = addr - bo.addr;
103 bo.map += offset;
104 bo.addr += offset;
105 bo.size -= offset;
106 }
107
108 return bo;
109 }
110
111 static int
112 update_count(struct gen_batch_decode_ctx *ctx,
113 uint32_t offset_from_dsba,
114 unsigned element_dwords,
115 unsigned guess)
116 {
117 unsigned size = 0;
118
119 if (ctx->get_state_size)
120 size = ctx->get_state_size(ctx->user_data, offset_from_dsba);
121
122 if (size > 0)
123 return size / (sizeof(uint32_t) * element_dwords);
124
125 /* In the absence of any information, just guess arbitrarily. */
126 return guess;
127 }
128
129 static void
130 ctx_disassemble_program(struct gen_batch_decode_ctx *ctx,
131 uint32_t ksp, const char *type)
132 {
133 uint64_t addr = ctx->instruction_base + ksp;
134 struct gen_batch_decode_bo bo = ctx_get_bo(ctx, true, addr);
135 if (!bo.map)
136 return;
137
138 fprintf(ctx->fp, "\nReferenced %s:\n", type);
139 gen_disasm_disassemble(ctx->disasm, bo.map, 0, ctx->fp);
140 }
141
142 /* Heuristic to determine whether a uint32_t is probably actually a float
143 * (http://stackoverflow.com/a/2953466)
144 */
145
146 static bool
147 probably_float(uint32_t bits)
148 {
149 int exp = ((bits & 0x7f800000U) >> 23) - 127;
150 uint32_t mant = bits & 0x007fffff;
151
152 /* +- 0.0 */
153 if (exp == -127 && mant == 0)
154 return true;
155
156 /* +- 1 billionth to 1 billion */
157 if (-30 <= exp && exp <= 30)
158 return true;
159
160 /* some value with only a few binary digits */
161 if ((mant & 0x0000ffff) == 0)
162 return true;
163
164 return false;
165 }
166
167 static void
168 ctx_print_buffer(struct gen_batch_decode_ctx *ctx,
169 struct gen_batch_decode_bo bo,
170 uint32_t read_length,
171 uint32_t pitch,
172 int max_lines)
173 {
174 const uint32_t *dw_end =
175 bo.map + ROUND_DOWN_TO(MIN2(bo.size, read_length), 4);
176
177 int column_count = 0, line_count = -1;
178 for (const uint32_t *dw = bo.map; dw < dw_end; dw++) {
179 if (column_count * 4 == pitch || column_count == 8) {
180 fprintf(ctx->fp, "\n");
181 column_count = 0;
182 line_count++;
183
184 if (max_lines >= 0 && line_count >= max_lines)
185 break;
186 }
187 fprintf(ctx->fp, column_count == 0 ? " " : " ");
188
189 if ((ctx->flags & GEN_BATCH_DECODE_FLOATS) && probably_float(*dw))
190 fprintf(ctx->fp, " %8.2f", *(float *) dw);
191 else
192 fprintf(ctx->fp, " 0x%08x", *dw);
193
194 column_count++;
195 }
196 fprintf(ctx->fp, "\n");
197 }
198
199 static struct gen_group *
200 gen_ctx_find_instruction(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
201 {
202 return gen_spec_find_instruction(ctx->spec, ctx->engine, p);
203 }
204
205 static void
206 handle_state_base_address(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
207 {
208 struct gen_group *inst = gen_ctx_find_instruction(ctx, p);
209
210 struct gen_field_iterator iter;
211 gen_field_iterator_init(&iter, inst, p, 0, false);
212
213 uint64_t surface_base = 0, dynamic_base = 0, instruction_base = 0;
214 bool surface_modify = 0, dynamic_modify = 0, instruction_modify = 0;
215
216 while (gen_field_iterator_next(&iter)) {
217 if (strcmp(iter.name, "Surface State Base Address") == 0) {
218 surface_base = iter.raw_value;
219 } else if (strcmp(iter.name, "Dynamic State Base Address") == 0) {
220 dynamic_base = iter.raw_value;
221 } else if (strcmp(iter.name, "Instruction Base Address") == 0) {
222 instruction_base = iter.raw_value;
223 } else if (strcmp(iter.name, "Surface State Base Address Modify Enable") == 0) {
224 surface_modify = iter.raw_value;
225 } else if (strcmp(iter.name, "Dynamic State Base Address Modify Enable") == 0) {
226 dynamic_modify = iter.raw_value;
227 } else if (strcmp(iter.name, "Instruction Base Address Modify Enable") == 0) {
228 instruction_modify = iter.raw_value;
229 }
230 }
231
232 if (dynamic_modify)
233 ctx->dynamic_base = dynamic_base;
234
235 if (surface_modify)
236 ctx->surface_base = surface_base;
237
238 if (instruction_modify)
239 ctx->instruction_base = instruction_base;
240 }
241
242 static void
243 dump_binding_table(struct gen_batch_decode_ctx *ctx, uint32_t offset, int count)
244 {
245 struct gen_group *strct =
246 gen_spec_find_struct(ctx->spec, "RENDER_SURFACE_STATE");
247 if (strct == NULL) {
248 fprintf(ctx->fp, "did not find RENDER_SURFACE_STATE info\n");
249 return;
250 }
251
252 if (count < 0)
253 count = update_count(ctx, offset, 1, 8);
254
255 if (offset % 32 != 0 || offset >= UINT16_MAX) {
256 fprintf(ctx->fp, " invalid binding table pointer\n");
257 return;
258 }
259
260 struct gen_batch_decode_bo bind_bo =
261 ctx_get_bo(ctx, true, ctx->surface_base + offset);
262
263 if (bind_bo.map == NULL) {
264 fprintf(ctx->fp, " binding table unavailable\n");
265 return;
266 }
267
268 const uint32_t *pointers = bind_bo.map;
269 for (int i = 0; i < count; i++) {
270 if (pointers[i] == 0)
271 continue;
272
273 uint64_t addr = ctx->surface_base + pointers[i];
274 struct gen_batch_decode_bo bo = ctx_get_bo(ctx, true, addr);
275 uint32_t size = strct->dw_length * 4;
276
277 if (pointers[i] % 32 != 0 ||
278 addr < bo.addr || addr + size >= bo.addr + bo.size) {
279 fprintf(ctx->fp, "pointer %u: 0x%08x <not valid>\n", i, pointers[i]);
280 continue;
281 }
282
283 fprintf(ctx->fp, "pointer %u: 0x%08x\n", i, pointers[i]);
284 ctx_print_group(ctx, strct, addr, bo.map + (addr - bo.addr));
285 }
286 }
287
288 static void
289 dump_samplers(struct gen_batch_decode_ctx *ctx, uint32_t offset, int count)
290 {
291 struct gen_group *strct = gen_spec_find_struct(ctx->spec, "SAMPLER_STATE");
292
293 if (count < 0)
294 count = update_count(ctx, offset, strct->dw_length, 4);
295
296 uint64_t state_addr = ctx->dynamic_base + offset;
297 struct gen_batch_decode_bo bo = ctx_get_bo(ctx, true, state_addr);
298 const void *state_map = bo.map;
299
300 if (state_map == NULL) {
301 fprintf(ctx->fp, " samplers unavailable\n");
302 return;
303 }
304
305 if (offset % 32 != 0 || state_addr - bo.addr >= bo.size) {
306 fprintf(ctx->fp, " invalid sampler state pointer\n");
307 return;
308 }
309
310 for (int i = 0; i < count; i++) {
311 fprintf(ctx->fp, "sampler state %d\n", i);
312 ctx_print_group(ctx, strct, state_addr, state_map);
313 state_addr += 16;
314 state_map += 16;
315 }
316 }
317
318 static void
319 handle_media_interface_descriptor_load(struct gen_batch_decode_ctx *ctx,
320 const uint32_t *p)
321 {
322 struct gen_group *inst = gen_ctx_find_instruction(ctx, p);
323 struct gen_group *desc =
324 gen_spec_find_struct(ctx->spec, "INTERFACE_DESCRIPTOR_DATA");
325
326 struct gen_field_iterator iter;
327 gen_field_iterator_init(&iter, inst, p, 0, false);
328 uint32_t descriptor_offset = 0;
329 int descriptor_count = 0;
330 while (gen_field_iterator_next(&iter)) {
331 if (strcmp(iter.name, "Interface Descriptor Data Start Address") == 0) {
332 descriptor_offset = strtol(iter.value, NULL, 16);
333 } else if (strcmp(iter.name, "Interface Descriptor Total Length") == 0) {
334 descriptor_count =
335 strtol(iter.value, NULL, 16) / (desc->dw_length * 4);
336 }
337 }
338
339 uint64_t desc_addr = ctx->dynamic_base + descriptor_offset;
340 struct gen_batch_decode_bo bo = ctx_get_bo(ctx, true, desc_addr);
341 const void *desc_map = bo.map;
342
343 if (desc_map == NULL) {
344 fprintf(ctx->fp, " interface descriptors unavailable\n");
345 return;
346 }
347
348 for (int i = 0; i < descriptor_count; i++) {
349 fprintf(ctx->fp, "descriptor %d: %08x\n", i, descriptor_offset);
350
351 ctx_print_group(ctx, desc, desc_addr, desc_map);
352
353 gen_field_iterator_init(&iter, desc, desc_map, 0, false);
354 uint64_t ksp = 0;
355 uint32_t sampler_offset = 0, sampler_count = 0;
356 uint32_t binding_table_offset = 0, binding_entry_count = 0;
357 while (gen_field_iterator_next(&iter)) {
358 if (strcmp(iter.name, "Kernel Start Pointer") == 0) {
359 ksp = strtoll(iter.value, NULL, 16);
360 } else if (strcmp(iter.name, "Sampler State Pointer") == 0) {
361 sampler_offset = strtol(iter.value, NULL, 16);
362 } else if (strcmp(iter.name, "Sampler Count") == 0) {
363 sampler_count = strtol(iter.value, NULL, 10);
364 } else if (strcmp(iter.name, "Binding Table Pointer") == 0) {
365 binding_table_offset = strtol(iter.value, NULL, 16);
366 } else if (strcmp(iter.name, "Binding Table Entry Count") == 0) {
367 binding_entry_count = strtol(iter.value, NULL, 10);
368 }
369 }
370
371 ctx_disassemble_program(ctx, ksp, "compute shader");
372 printf("\n");
373
374 dump_samplers(ctx, sampler_offset, sampler_count);
375 dump_binding_table(ctx, binding_table_offset, binding_entry_count);
376
377 desc_map += desc->dw_length;
378 desc_addr += desc->dw_length * 4;
379 }
380 }
381
382 static void
383 handle_3dstate_vertex_buffers(struct gen_batch_decode_ctx *ctx,
384 const uint32_t *p)
385 {
386 struct gen_group *inst = gen_ctx_find_instruction(ctx, p);
387 struct gen_group *vbs = gen_spec_find_struct(ctx->spec, "VERTEX_BUFFER_STATE");
388
389 struct gen_batch_decode_bo vb = {};
390 uint32_t vb_size = 0;
391 int index = -1;
392 int pitch = -1;
393 bool ready = false;
394
395 struct gen_field_iterator iter;
396 gen_field_iterator_init(&iter, inst, p, 0, false);
397 while (gen_field_iterator_next(&iter)) {
398 if (iter.struct_desc != vbs)
399 continue;
400
401 struct gen_field_iterator vbs_iter;
402 gen_field_iterator_init(&vbs_iter, vbs, &iter.p[iter.start_bit / 32], 0, false);
403 while (gen_field_iterator_next(&vbs_iter)) {
404 if (strcmp(vbs_iter.name, "Vertex Buffer Index") == 0) {
405 index = vbs_iter.raw_value;
406 } else if (strcmp(vbs_iter.name, "Buffer Pitch") == 0) {
407 pitch = vbs_iter.raw_value;
408 } else if (strcmp(vbs_iter.name, "Buffer Starting Address") == 0) {
409 vb = ctx_get_bo(ctx, true, vbs_iter.raw_value);
410 } else if (strcmp(vbs_iter.name, "Buffer Size") == 0) {
411 vb_size = vbs_iter.raw_value;
412 ready = true;
413 } else if (strcmp(vbs_iter.name, "End Address") == 0) {
414 if (vb.map && vbs_iter.raw_value >= vb.addr)
415 vb_size = (vbs_iter.raw_value + 1) - vb.addr;
416 else
417 vb_size = 0;
418 ready = true;
419 }
420
421 if (!ready)
422 continue;
423
424 fprintf(ctx->fp, "vertex buffer %d, size %d\n", index, vb_size);
425
426 if (vb.map == NULL) {
427 fprintf(ctx->fp, " buffer contents unavailable\n");
428 continue;
429 }
430
431 if (vb.map == 0 || vb_size == 0)
432 continue;
433
434 ctx_print_buffer(ctx, vb, vb_size, pitch, ctx->max_vbo_decoded_lines);
435
436 vb.map = NULL;
437 vb_size = 0;
438 index = -1;
439 pitch = -1;
440 ready = false;
441 }
442 }
443 }
444
445 static void
446 handle_3dstate_index_buffer(struct gen_batch_decode_ctx *ctx,
447 const uint32_t *p)
448 {
449 struct gen_group *inst = gen_ctx_find_instruction(ctx, p);
450
451 struct gen_batch_decode_bo ib = {};
452 uint32_t ib_size = 0;
453 uint32_t format = 0;
454
455 struct gen_field_iterator iter;
456 gen_field_iterator_init(&iter, inst, p, 0, false);
457 while (gen_field_iterator_next(&iter)) {
458 if (strcmp(iter.name, "Index Format") == 0) {
459 format = iter.raw_value;
460 } else if (strcmp(iter.name, "Buffer Starting Address") == 0) {
461 ib = ctx_get_bo(ctx, true, iter.raw_value);
462 } else if (strcmp(iter.name, "Buffer Size") == 0) {
463 ib_size = iter.raw_value;
464 }
465 }
466
467 if (ib.map == NULL) {
468 fprintf(ctx->fp, " buffer contents unavailable\n");
469 return;
470 }
471
472 const void *m = ib.map;
473 const void *ib_end = ib.map + MIN2(ib.size, ib_size);
474 for (int i = 0; m < ib_end && i < 10; i++) {
475 switch (format) {
476 case 0:
477 fprintf(ctx->fp, "%3d ", *(uint8_t *)m);
478 m += 1;
479 break;
480 case 1:
481 fprintf(ctx->fp, "%3d ", *(uint16_t *)m);
482 m += 2;
483 break;
484 case 2:
485 fprintf(ctx->fp, "%3d ", *(uint32_t *)m);
486 m += 4;
487 break;
488 }
489 }
490
491 if (m < ib_end)
492 fprintf(ctx->fp, "...");
493 fprintf(ctx->fp, "\n");
494 }
495
496 static void
497 decode_single_ksp(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
498 {
499 struct gen_group *inst = gen_ctx_find_instruction(ctx, p);
500
501 uint64_t ksp = 0;
502 bool is_simd8 = false; /* vertex shaders on Gen8+ only */
503 bool is_enabled = true;
504
505 struct gen_field_iterator iter;
506 gen_field_iterator_init(&iter, inst, p, 0, false);
507 while (gen_field_iterator_next(&iter)) {
508 if (strcmp(iter.name, "Kernel Start Pointer") == 0) {
509 ksp = iter.raw_value;
510 } else if (strcmp(iter.name, "SIMD8 Dispatch Enable") == 0) {
511 is_simd8 = iter.raw_value;
512 } else if (strcmp(iter.name, "Dispatch Mode") == 0) {
513 is_simd8 = strcmp(iter.value, "SIMD8") == 0;
514 } else if (strcmp(iter.name, "Dispatch Enable") == 0) {
515 is_simd8 = strcmp(iter.value, "SIMD8") == 0;
516 } else if (strcmp(iter.name, "Enable") == 0) {
517 is_enabled = iter.raw_value;
518 }
519 }
520
521 const char *type =
522 strcmp(inst->name, "VS_STATE") == 0 ? "vertex shader" :
523 strcmp(inst->name, "GS_STATE") == 0 ? "geometry shader" :
524 strcmp(inst->name, "SF_STATE") == 0 ? "strips and fans shader" :
525 strcmp(inst->name, "CLIP_STATE") == 0 ? "clip shader" :
526 strcmp(inst->name, "3DSTATE_DS") == 0 ? "tessellation evaluation shader" :
527 strcmp(inst->name, "3DSTATE_HS") == 0 ? "tessellation control shader" :
528 strcmp(inst->name, "3DSTATE_VS") == 0 ? (is_simd8 ? "SIMD8 vertex shader" : "vec4 vertex shader") :
529 strcmp(inst->name, "3DSTATE_GS") == 0 ? (is_simd8 ? "SIMD8 geometry shader" : "vec4 geometry shader") :
530 NULL;
531
532 if (is_enabled) {
533 ctx_disassemble_program(ctx, ksp, type);
534 printf("\n");
535 }
536 }
537
538 static void
539 decode_ps_kernels(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
540 {
541 struct gen_group *inst = gen_ctx_find_instruction(ctx, p);
542
543 uint64_t ksp[3] = {0, 0, 0};
544 bool enabled[3] = {false, false, false};
545
546 struct gen_field_iterator iter;
547 gen_field_iterator_init(&iter, inst, p, 0, false);
548 while (gen_field_iterator_next(&iter)) {
549 if (strncmp(iter.name, "Kernel Start Pointer ",
550 strlen("Kernel Start Pointer ")) == 0) {
551 int idx = iter.name[strlen("Kernel Start Pointer ")] - '0';
552 ksp[idx] = strtol(iter.value, NULL, 16);
553 } else if (strcmp(iter.name, "8 Pixel Dispatch Enable") == 0) {
554 enabled[0] = strcmp(iter.value, "true") == 0;
555 } else if (strcmp(iter.name, "16 Pixel Dispatch Enable") == 0) {
556 enabled[1] = strcmp(iter.value, "true") == 0;
557 } else if (strcmp(iter.name, "32 Pixel Dispatch Enable") == 0) {
558 enabled[2] = strcmp(iter.value, "true") == 0;
559 }
560 }
561
562 /* Reorder KSPs to be [8, 16, 32] instead of the hardware order. */
563 if (enabled[0] + enabled[1] + enabled[2] == 1) {
564 if (enabled[1]) {
565 ksp[1] = ksp[0];
566 ksp[0] = 0;
567 } else if (enabled[2]) {
568 ksp[2] = ksp[0];
569 ksp[0] = 0;
570 }
571 } else {
572 uint64_t tmp = ksp[1];
573 ksp[1] = ksp[2];
574 ksp[2] = tmp;
575 }
576
577 if (enabled[0])
578 ctx_disassemble_program(ctx, ksp[0], "SIMD8 fragment shader");
579 if (enabled[1])
580 ctx_disassemble_program(ctx, ksp[1], "SIMD16 fragment shader");
581 if (enabled[2])
582 ctx_disassemble_program(ctx, ksp[2], "SIMD32 fragment shader");
583
584 if (enabled[0] || enabled[1] || enabled[2])
585 fprintf(ctx->fp, "\n");
586 }
587
588 static void
589 decode_3dstate_constant_all(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
590 {
591 struct gen_group *inst =
592 gen_spec_find_instruction(ctx->spec, ctx->engine, p);
593 struct gen_group *body =
594 gen_spec_find_struct(ctx->spec, "3DSTATE_CONSTANT_ALL_DATA");
595
596 uint32_t read_length[4];
597 struct gen_batch_decode_bo buffer[4];
598 memset(buffer, 0, sizeof(buffer));
599
600 struct gen_field_iterator outer;
601 gen_field_iterator_init(&outer, inst, p, 0, false);
602 int idx = 0;
603 while (gen_field_iterator_next(&outer)) {
604 if (outer.struct_desc != body)
605 continue;
606
607 struct gen_field_iterator iter;
608 gen_field_iterator_init(&iter, body, &outer.p[outer.start_bit / 32],
609 0, false);
610 while (gen_field_iterator_next(&iter)) {
611 if (!strcmp(iter.name, "Pointer To Constant Buffer")) {
612 buffer[idx] = ctx_get_bo(ctx, true, iter.raw_value);
613 } else if (!strcmp(iter.name, "Constant Buffer Read Length")) {
614 read_length[idx] = iter.raw_value;
615 }
616 }
617 idx++;
618 }
619
620 for (int i = 0; i < 4; i++) {
621 if (read_length[i] == 0 || buffer[i].map == NULL)
622 continue;
623
624 unsigned size = read_length[i] * 32;
625 fprintf(ctx->fp, "constant buffer %d, size %u\n", i, size);
626
627 ctx_print_buffer(ctx, buffer[i], size, 0, -1);
628 }
629 }
630
631 static void
632 decode_3dstate_constant(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
633 {
634 struct gen_group *inst = gen_ctx_find_instruction(ctx, p);
635 struct gen_group *body =
636 gen_spec_find_struct(ctx->spec, "3DSTATE_CONSTANT_BODY");
637
638 uint32_t read_length[4] = {0};
639 uint64_t read_addr[4];
640
641 struct gen_field_iterator outer;
642 gen_field_iterator_init(&outer, inst, p, 0, false);
643 while (gen_field_iterator_next(&outer)) {
644 if (outer.struct_desc != body)
645 continue;
646
647 struct gen_field_iterator iter;
648 gen_field_iterator_init(&iter, body, &outer.p[outer.start_bit / 32],
649 0, false);
650
651 while (gen_field_iterator_next(&iter)) {
652 int idx;
653 if (sscanf(iter.name, "Read Length[%d]", &idx) == 1) {
654 read_length[idx] = iter.raw_value;
655 } else if (sscanf(iter.name, "Buffer[%d]", &idx) == 1) {
656 read_addr[idx] = iter.raw_value;
657 }
658 }
659
660 for (int i = 0; i < 4; i++) {
661 if (read_length[i] == 0)
662 continue;
663
664 struct gen_batch_decode_bo buffer = ctx_get_bo(ctx, true, read_addr[i]);
665 if (!buffer.map) {
666 fprintf(ctx->fp, "constant buffer %d unavailable\n", i);
667 continue;
668 }
669
670 unsigned size = read_length[i] * 32;
671 fprintf(ctx->fp, "constant buffer %d, size %u\n", i, size);
672
673 ctx_print_buffer(ctx, buffer, size, 0, -1);
674 }
675 }
676 }
677
678 static void
679 decode_gen6_3dstate_binding_table_pointers(struct gen_batch_decode_ctx *ctx,
680 const uint32_t *p)
681 {
682 fprintf(ctx->fp, "VS Binding Table:\n");
683 dump_binding_table(ctx, p[1], -1);
684
685 fprintf(ctx->fp, "GS Binding Table:\n");
686 dump_binding_table(ctx, p[2], -1);
687
688 fprintf(ctx->fp, "PS Binding Table:\n");
689 dump_binding_table(ctx, p[3], -1);
690 }
691
692 static void
693 decode_3dstate_binding_table_pointers(struct gen_batch_decode_ctx *ctx,
694 const uint32_t *p)
695 {
696 dump_binding_table(ctx, p[1], -1);
697 }
698
699 static void
700 decode_3dstate_sampler_state_pointers(struct gen_batch_decode_ctx *ctx,
701 const uint32_t *p)
702 {
703 dump_samplers(ctx, p[1], -1);
704 }
705
706 static void
707 decode_3dstate_sampler_state_pointers_gen6(struct gen_batch_decode_ctx *ctx,
708 const uint32_t *p)
709 {
710 dump_samplers(ctx, p[1], -1);
711 dump_samplers(ctx, p[2], -1);
712 dump_samplers(ctx, p[3], -1);
713 }
714
715 static bool
716 str_ends_with(const char *str, const char *end)
717 {
718 int offset = strlen(str) - strlen(end);
719 if (offset < 0)
720 return false;
721
722 return strcmp(str + offset, end) == 0;
723 }
724
725 static void
726 decode_dynamic_state_pointers(struct gen_batch_decode_ctx *ctx,
727 const char *struct_type, const uint32_t *p,
728 int count)
729 {
730 struct gen_group *inst = gen_ctx_find_instruction(ctx, p);
731
732 uint32_t state_offset = 0;
733
734 struct gen_field_iterator iter;
735 gen_field_iterator_init(&iter, inst, p, 0, false);
736 while (gen_field_iterator_next(&iter)) {
737 if (str_ends_with(iter.name, "Pointer")) {
738 state_offset = iter.raw_value;
739 break;
740 }
741 }
742
743 uint64_t state_addr = ctx->dynamic_base + state_offset;
744 struct gen_batch_decode_bo bo = ctx_get_bo(ctx, true, state_addr);
745 const void *state_map = bo.map;
746
747 if (state_map == NULL) {
748 fprintf(ctx->fp, " dynamic %s state unavailable\n", struct_type);
749 return;
750 }
751
752 struct gen_group *state = gen_spec_find_struct(ctx->spec, struct_type);
753 if (strcmp(struct_type, "BLEND_STATE") == 0) {
754 /* Blend states are different from the others because they have a header
755 * struct called BLEND_STATE which is followed by a variable number of
756 * BLEND_STATE_ENTRY structs.
757 */
758 fprintf(ctx->fp, "%s\n", struct_type);
759 ctx_print_group(ctx, state, state_addr, state_map);
760
761 state_addr += state->dw_length * 4;
762 state_map += state->dw_length * 4;
763
764 struct_type = "BLEND_STATE_ENTRY";
765 state = gen_spec_find_struct(ctx->spec, struct_type);
766 }
767
768 count = update_count(ctx, state_offset, state->dw_length, count);
769
770 for (int i = 0; i < count; i++) {
771 fprintf(ctx->fp, "%s %d\n", struct_type, i);
772 ctx_print_group(ctx, state, state_addr, state_map);
773
774 state_addr += state->dw_length * 4;
775 state_map += state->dw_length * 4;
776 }
777 }
778
779 static void
780 decode_3dstate_viewport_state_pointers_cc(struct gen_batch_decode_ctx *ctx,
781 const uint32_t *p)
782 {
783 decode_dynamic_state_pointers(ctx, "CC_VIEWPORT", p, 4);
784 }
785
786 static void
787 decode_3dstate_viewport_state_pointers_sf_clip(struct gen_batch_decode_ctx *ctx,
788 const uint32_t *p)
789 {
790 decode_dynamic_state_pointers(ctx, "SF_CLIP_VIEWPORT", p, 4);
791 }
792
793 static void
794 decode_3dstate_blend_state_pointers(struct gen_batch_decode_ctx *ctx,
795 const uint32_t *p)
796 {
797 decode_dynamic_state_pointers(ctx, "BLEND_STATE", p, 1);
798 }
799
800 static void
801 decode_3dstate_cc_state_pointers(struct gen_batch_decode_ctx *ctx,
802 const uint32_t *p)
803 {
804 decode_dynamic_state_pointers(ctx, "COLOR_CALC_STATE", p, 1);
805 }
806
807 static void
808 decode_3dstate_scissor_state_pointers(struct gen_batch_decode_ctx *ctx,
809 const uint32_t *p)
810 {
811 decode_dynamic_state_pointers(ctx, "SCISSOR_RECT", p, 1);
812 }
813
814 static void
815 decode_3dstate_slice_table_state_pointers(struct gen_batch_decode_ctx *ctx,
816 const uint32_t *p)
817 {
818 decode_dynamic_state_pointers(ctx, "SLICE_HASH_TABLE", p, 1);
819 }
820
821 static void
822 decode_load_register_imm(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
823 {
824 struct gen_group *reg = gen_spec_find_register(ctx->spec, p[1]);
825
826 if (reg != NULL) {
827 fprintf(ctx->fp, "register %s (0x%x): 0x%x\n",
828 reg->name, reg->register_offset, p[2]);
829 ctx_print_group(ctx, reg, reg->register_offset, &p[2]);
830 }
831 }
832
833 struct custom_decoder {
834 const char *cmd_name;
835 void (*decode)(struct gen_batch_decode_ctx *ctx, const uint32_t *p);
836 } custom_decoders[] = {
837 { "STATE_BASE_ADDRESS", handle_state_base_address },
838 { "MEDIA_INTERFACE_DESCRIPTOR_LOAD", handle_media_interface_descriptor_load },
839 { "3DSTATE_VERTEX_BUFFERS", handle_3dstate_vertex_buffers },
840 { "3DSTATE_INDEX_BUFFER", handle_3dstate_index_buffer },
841 { "3DSTATE_VS", decode_single_ksp },
842 { "3DSTATE_GS", decode_single_ksp },
843 { "3DSTATE_DS", decode_single_ksp },
844 { "3DSTATE_HS", decode_single_ksp },
845 { "3DSTATE_PS", decode_ps_kernels },
846 { "3DSTATE_WM", decode_ps_kernels },
847 { "3DSTATE_CONSTANT_VS", decode_3dstate_constant },
848 { "3DSTATE_CONSTANT_GS", decode_3dstate_constant },
849 { "3DSTATE_CONSTANT_PS", decode_3dstate_constant },
850 { "3DSTATE_CONSTANT_HS", decode_3dstate_constant },
851 { "3DSTATE_CONSTANT_DS", decode_3dstate_constant },
852 { "3DSTATE_CONSTANT_ALL", decode_3dstate_constant_all },
853
854 { "3DSTATE_BINDING_TABLE_POINTERS", decode_gen6_3dstate_binding_table_pointers },
855 { "3DSTATE_BINDING_TABLE_POINTERS_VS", decode_3dstate_binding_table_pointers },
856 { "3DSTATE_BINDING_TABLE_POINTERS_HS", decode_3dstate_binding_table_pointers },
857 { "3DSTATE_BINDING_TABLE_POINTERS_DS", decode_3dstate_binding_table_pointers },
858 { "3DSTATE_BINDING_TABLE_POINTERS_GS", decode_3dstate_binding_table_pointers },
859 { "3DSTATE_BINDING_TABLE_POINTERS_PS", decode_3dstate_binding_table_pointers },
860
861 { "3DSTATE_SAMPLER_STATE_POINTERS_VS", decode_3dstate_sampler_state_pointers },
862 { "3DSTATE_SAMPLER_STATE_POINTERS_HS", decode_3dstate_sampler_state_pointers },
863 { "3DSTATE_SAMPLER_STATE_POINTERS_DS", decode_3dstate_sampler_state_pointers },
864 { "3DSTATE_SAMPLER_STATE_POINTERS_GS", decode_3dstate_sampler_state_pointers },
865 { "3DSTATE_SAMPLER_STATE_POINTERS_PS", decode_3dstate_sampler_state_pointers },
866 { "3DSTATE_SAMPLER_STATE_POINTERS", decode_3dstate_sampler_state_pointers_gen6 },
867
868 { "3DSTATE_VIEWPORT_STATE_POINTERS_CC", decode_3dstate_viewport_state_pointers_cc },
869 { "3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", decode_3dstate_viewport_state_pointers_sf_clip },
870 { "3DSTATE_BLEND_STATE_POINTERS", decode_3dstate_blend_state_pointers },
871 { "3DSTATE_CC_STATE_POINTERS", decode_3dstate_cc_state_pointers },
872 { "3DSTATE_SCISSOR_STATE_POINTERS", decode_3dstate_scissor_state_pointers },
873 { "3DSTATE_SLICE_TABLE_STATE_POINTERS", decode_3dstate_slice_table_state_pointers },
874 { "MI_LOAD_REGISTER_IMM", decode_load_register_imm }
875 };
876
877 void
878 gen_print_batch(struct gen_batch_decode_ctx *ctx,
879 const uint32_t *batch, uint32_t batch_size,
880 uint64_t batch_addr, bool from_ring)
881 {
882 const uint32_t *p, *end = batch + batch_size / sizeof(uint32_t);
883 int length;
884 struct gen_group *inst;
885 const char *reset_color = ctx->flags & GEN_BATCH_DECODE_IN_COLOR ? NORMAL : "";
886
887 if (ctx->n_batch_buffer_start >= 100) {
888 fprintf(ctx->fp, "%s0x%08"PRIx64": Max batch buffer jumps exceeded%s\n",
889 (ctx->flags & GEN_BATCH_DECODE_IN_COLOR) ? RED_COLOR : "",
890 (ctx->flags & GEN_BATCH_DECODE_OFFSETS) ? batch_addr : 0,
891 reset_color);
892 return;
893 }
894
895 ctx->n_batch_buffer_start++;
896
897 for (p = batch; p < end; p += length) {
898 inst = gen_ctx_find_instruction(ctx, p);
899 length = gen_group_get_length(inst, p);
900 assert(inst == NULL || length > 0);
901 length = MAX2(1, length);
902
903 uint64_t offset;
904 if (ctx->flags & GEN_BATCH_DECODE_OFFSETS)
905 offset = batch_addr + ((char *)p - (char *)batch);
906 else
907 offset = 0;
908
909 if (inst == NULL) {
910 fprintf(ctx->fp, "%s0x%08"PRIx64": unknown instruction %08x%s\n",
911 (ctx->flags & GEN_BATCH_DECODE_IN_COLOR) ? RED_COLOR : "",
912 offset, p[0], reset_color);
913 continue;
914 }
915
916 const char *color;
917 const char *inst_name = gen_group_get_name(inst);
918 if (ctx->flags & GEN_BATCH_DECODE_IN_COLOR) {
919 reset_color = NORMAL;
920 if (ctx->flags & GEN_BATCH_DECODE_FULL) {
921 if (strcmp(inst_name, "MI_BATCH_BUFFER_START") == 0 ||
922 strcmp(inst_name, "MI_BATCH_BUFFER_END") == 0)
923 color = GREEN_HEADER;
924 else
925 color = BLUE_HEADER;
926 } else {
927 color = NORMAL;
928 }
929 } else {
930 color = "";
931 reset_color = "";
932 }
933
934 fprintf(ctx->fp, "%s0x%08"PRIx64": 0x%08x: %-80s%s\n",
935 color, offset, p[0], inst_name, reset_color);
936
937 if (ctx->flags & GEN_BATCH_DECODE_FULL) {
938 ctx_print_group(ctx, inst, offset, p);
939
940 for (int i = 0; i < ARRAY_SIZE(custom_decoders); i++) {
941 if (strcmp(inst_name, custom_decoders[i].cmd_name) == 0) {
942 custom_decoders[i].decode(ctx, p);
943 break;
944 }
945 }
946 }
947
948 if (strcmp(inst_name, "MI_BATCH_BUFFER_START") == 0) {
949 uint64_t next_batch_addr = 0;
950 bool ppgtt = false;
951 bool second_level = false;
952 struct gen_field_iterator iter;
953 gen_field_iterator_init(&iter, inst, p, 0, false);
954 while (gen_field_iterator_next(&iter)) {
955 if (strcmp(iter.name, "Batch Buffer Start Address") == 0) {
956 next_batch_addr = iter.raw_value;
957 } else if (strcmp(iter.name, "Second Level Batch Buffer") == 0) {
958 second_level = iter.raw_value;
959 } else if (strcmp(iter.name, "Address Space Indicator") == 0) {
960 ppgtt = iter.raw_value;
961 }
962 }
963
964 struct gen_batch_decode_bo next_batch = ctx_get_bo(ctx, ppgtt, next_batch_addr);
965
966 if (next_batch.map == NULL) {
967 fprintf(ctx->fp, "Secondary batch at 0x%08"PRIx64" unavailable\n",
968 next_batch_addr);
969 } else {
970 gen_print_batch(ctx, next_batch.map, next_batch.size,
971 next_batch.addr, false);
972 }
973 if (second_level) {
974 /* MI_BATCH_BUFFER_START with "2nd Level Batch Buffer" set acts
975 * like a subroutine call. Commands that come afterwards get
976 * processed once the 2nd level batch buffer returns with
977 * MI_BATCH_BUFFER_END.
978 */
979 continue;
980 } else if (!from_ring) {
981 /* MI_BATCH_BUFFER_START with "2nd Level Batch Buffer" unset acts
982 * like a goto. Nothing after it will ever get processed. In
983 * order to prevent the recursion from growing, we just reset the
984 * loop and continue;
985 */
986 break;
987 }
988 } else if (strcmp(inst_name, "MI_BATCH_BUFFER_END") == 0) {
989 break;
990 }
991 }
992
993 ctx->n_batch_buffer_start--;
994 }