1b9589c231a27197d2b9fb1f315ce9e5fb06d02f
[mesa.git] / src / intel / compiler / brw_compiler.h
1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "dev/gen_device_info.h"
29 #include "main/macros.h"
30 #include "main/mtypes.h"
31 #include "util/ralloc.h"
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 struct ra_regs;
38 struct nir_shader;
39 struct brw_program;
40
41 struct brw_compiler {
42 const struct gen_device_info *devinfo;
43
44 struct {
45 struct ra_regs *regs;
46
47 /**
48 * Array of the ra classes for the unaligned contiguous register
49 * block sizes used.
50 */
51 int *classes;
52
53 /**
54 * Mapping for register-allocated objects in *regs to the first
55 * GRF for that object.
56 */
57 uint8_t *ra_reg_to_grf;
58 } vec4_reg_set;
59
60 struct {
61 struct ra_regs *regs;
62
63 /**
64 * Array of the ra classes for the unaligned contiguous register
65 * block sizes used, indexed by register size.
66 */
67 int classes[16];
68
69 /**
70 * Mapping from classes to ra_reg ranges. Each of the per-size
71 * classes corresponds to a range of ra_reg nodes. This array stores
72 * those ranges in the form of first ra_reg in each class and the
73 * total number of ra_reg elements in the last array element. This
74 * way the range of the i'th class is given by:
75 * [ class_to_ra_reg_range[i], class_to_ra_reg_range[i+1] )
76 */
77 int class_to_ra_reg_range[17];
78
79 /**
80 * Mapping for register-allocated objects in *regs to the first
81 * GRF for that object.
82 */
83 uint8_t *ra_reg_to_grf;
84
85 /**
86 * ra class for the aligned pairs we use for PLN, which doesn't
87 * appear in *classes.
88 */
89 int aligned_pairs_class;
90 } fs_reg_sets[3];
91
92 void (*shader_debug_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
93 void (*shader_perf_log)(void *, const char *str, ...) PRINTFLIKE(2, 3);
94
95 bool scalar_stage[MESA_SHADER_STAGES];
96 struct gl_shader_compiler_options glsl_compiler_options[MESA_SHADER_STAGES];
97
98 /**
99 * Apply workarounds for SIN and COS output range problems.
100 * This can negatively impact performance.
101 */
102 bool precise_trig;
103
104 /**
105 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
106 * Base Address? (If not, it's a normal GPU address.)
107 */
108 bool constant_buffer_0_is_relative;
109
110 /**
111 * Whether or not the driver supports pull constants. If not, the compiler
112 * will attempt to push everything.
113 */
114 bool supports_pull_constants;
115 };
116
117 /**
118 * We use a constant subgroup size of 32. It really only needs to be a
119 * maximum and, since we do SIMD32 for compute shaders in some cases, it
120 * needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
121 * subgroup size of 32 but will act as if 16 or 24 of those channels are
122 * disabled.
123 */
124 #define BRW_SUBGROUP_SIZE 32
125
126 /**
127 * Program key structures.
128 *
129 * When drawing, we look for the currently bound shaders in the program
130 * cache. This is essentially a hash table lookup, and these are the keys.
131 *
132 * Sometimes OpenGL features specified as state need to be simulated via
133 * shader code, due to a mismatch between the API and the hardware. This
134 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
135 * in the program key so it's considered when searching for a program. If
136 * we haven't seen a particular combination before, we have to recompile a
137 * new specialized version.
138 *
139 * Shader compilation should not look up state in gl_context directly, but
140 * instead use the copy in the program key. This guarantees recompiles will
141 * happen correctly.
142 *
143 * @{
144 */
145
146 enum PACKED gen6_gather_sampler_wa {
147 WA_SIGN = 1, /* whether we need to sign extend */
148 WA_8BIT = 2, /* if we have an 8bit format needing wa */
149 WA_16BIT = 4, /* if we have a 16bit format needing wa */
150 };
151
152 /**
153 * Sampler information needed by VS, WM, and GS program cache keys.
154 */
155 struct brw_sampler_prog_key_data {
156 /**
157 * EXT_texture_swizzle and DEPTH_TEXTURE_MODE swizzles.
158 */
159 uint16_t swizzles[MAX_SAMPLERS];
160
161 uint32_t gl_clamp_mask[3];
162
163 /**
164 * For RG32F, gather4's channel select is broken.
165 */
166 uint32_t gather_channel_quirk_mask;
167
168 /**
169 * Whether this sampler uses the compressed multisample surface layout.
170 */
171 uint32_t compressed_multisample_layout_mask;
172
173 /**
174 * Whether this sampler is using 16x multisampling. If so fetching from
175 * this sampler will be handled with a different instruction, ld2dms_w
176 * instead of ld2dms.
177 */
178 uint32_t msaa_16;
179
180 /**
181 * For Sandybridge, which shader w/a we need for gather quirks.
182 */
183 enum gen6_gather_sampler_wa gen6_gather_wa[MAX_SAMPLERS];
184
185 /**
186 * Texture units that have a YUV image bound.
187 */
188 uint32_t y_u_v_image_mask;
189 uint32_t y_uv_image_mask;
190 uint32_t yx_xuxv_image_mask;
191 uint32_t xy_uxvx_image_mask;
192 };
193
194 /**
195 * The VF can't natively handle certain types of attributes, such as GL_FIXED
196 * or most 10_10_10_2 types. These flags enable various VS workarounds to
197 * "fix" attributes at the beginning of shaders.
198 */
199 #define BRW_ATTRIB_WA_COMPONENT_MASK 7 /* mask for GL_FIXED scale channel count */
200 #define BRW_ATTRIB_WA_NORMALIZE 8 /* normalize in shader */
201 #define BRW_ATTRIB_WA_BGRA 16 /* swap r/b channels in shader */
202 #define BRW_ATTRIB_WA_SIGN 32 /* interpret as signed in shader */
203 #define BRW_ATTRIB_WA_SCALE 64 /* interpret as scaled in shader */
204
205 /**
206 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
207 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
208 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
209 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
210 */
211 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
212 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
213
214 /** The program key for Vertex Shaders. */
215 struct brw_vs_prog_key {
216 unsigned program_string_id;
217
218 /**
219 * Per-attribute workaround flags
220 *
221 * For each attribute, a combination of BRW_ATTRIB_WA_*.
222 *
223 * For OpenGL, where we expose a maximum of 16 user input atttributes
224 * we only need up to VERT_ATTRIB_MAX slots, however, in Vulkan
225 * slots preceding VERT_ATTRIB_GENERIC0 are unused and we can
226 * expose up to 28 user input vertex attributes that are mapped to slots
227 * starting at VERT_ATTRIB_GENERIC0, so this array needs to be large
228 * enough to hold this many slots.
229 */
230 uint8_t gl_attrib_wa_flags[MAX2(MAX_GL_VERT_ATTRIB, MAX_VK_VERT_ATTRIB)];
231
232 bool copy_edgeflag:1;
233
234 bool clamp_vertex_color:1;
235
236 /**
237 * How many user clipping planes are being uploaded to the vertex shader as
238 * push constants.
239 *
240 * These are used for lowering legacy gl_ClipVertex/gl_Position clipping to
241 * clip distances.
242 */
243 unsigned nr_userclip_plane_consts:4;
244
245 /**
246 * For pre-Gen6 hardware, a bitfield indicating which texture coordinates
247 * are going to be replaced with point coordinates (as a consequence of a
248 * call to glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)). Because
249 * our SF thread requires exact matching between VS outputs and FS inputs,
250 * these texture coordinates will need to be unconditionally included in
251 * the VUE, even if they aren't written by the vertex shader.
252 */
253 uint8_t point_coord_replace;
254
255 struct brw_sampler_prog_key_data tex;
256 };
257
258 /** The program key for Tessellation Control Shaders. */
259 struct brw_tcs_prog_key
260 {
261 unsigned program_string_id;
262
263 GLenum tes_primitive_mode;
264
265 unsigned input_vertices;
266
267 /** A bitfield of per-patch outputs written. */
268 uint32_t patch_outputs_written;
269
270 /** A bitfield of per-vertex outputs written. */
271 uint64_t outputs_written;
272
273 bool quads_workaround;
274
275 struct brw_sampler_prog_key_data tex;
276 };
277
278 /** The program key for Tessellation Evaluation Shaders. */
279 struct brw_tes_prog_key
280 {
281 unsigned program_string_id;
282
283 /** A bitfield of per-patch inputs read. */
284 uint32_t patch_inputs_read;
285
286 /** A bitfield of per-vertex inputs read. */
287 uint64_t inputs_read;
288
289 struct brw_sampler_prog_key_data tex;
290 };
291
292 /** The program key for Geometry Shaders. */
293 struct brw_gs_prog_key
294 {
295 unsigned program_string_id;
296
297 struct brw_sampler_prog_key_data tex;
298 };
299
300 enum brw_sf_primitive {
301 BRW_SF_PRIM_POINTS = 0,
302 BRW_SF_PRIM_LINES = 1,
303 BRW_SF_PRIM_TRIANGLES = 2,
304 BRW_SF_PRIM_UNFILLED_TRIS = 3,
305 };
306
307 struct brw_sf_prog_key {
308 uint64_t attrs;
309 bool contains_flat_varying;
310 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
311 uint8_t point_sprite_coord_replace;
312 enum brw_sf_primitive primitive:2;
313 bool do_twoside_color:1;
314 bool frontface_ccw:1;
315 bool do_point_sprite:1;
316 bool do_point_coord:1;
317 bool sprite_origin_lower_left:1;
318 bool userclip_active:1;
319 };
320
321 enum brw_clip_mode {
322 BRW_CLIP_MODE_NORMAL = 0,
323 BRW_CLIP_MODE_CLIP_ALL = 1,
324 BRW_CLIP_MODE_CLIP_NON_REJECTED = 2,
325 BRW_CLIP_MODE_REJECT_ALL = 3,
326 BRW_CLIP_MODE_ACCEPT_ALL = 4,
327 BRW_CLIP_MODE_KERNEL_CLIP = 5,
328 };
329
330 enum brw_clip_fill_mode {
331 BRW_CLIP_FILL_MODE_LINE = 0,
332 BRW_CLIP_FILL_MODE_POINT = 1,
333 BRW_CLIP_FILL_MODE_FILL = 2,
334 BRW_CLIP_FILL_MODE_CULL = 3,
335 };
336
337 /* Note that if unfilled primitives are being emitted, we have to fix
338 * up polygon offset and flatshading at this point:
339 */
340 struct brw_clip_prog_key {
341 uint64_t attrs;
342 bool contains_flat_varying;
343 bool contains_noperspective_varying;
344 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
345 unsigned primitive:4;
346 unsigned nr_userclip:4;
347 bool pv_first:1;
348 bool do_unfilled:1;
349 enum brw_clip_fill_mode fill_cw:2; /* includes cull information */
350 enum brw_clip_fill_mode fill_ccw:2; /* includes cull information */
351 bool offset_cw:1;
352 bool offset_ccw:1;
353 bool copy_bfc_cw:1;
354 bool copy_bfc_ccw:1;
355 enum brw_clip_mode clip_mode:3;
356
357 float offset_factor;
358 float offset_units;
359 float offset_clamp;
360 };
361
362 /* A big lookup table is used to figure out which and how many
363 * additional regs will inserted before the main payload in the WM
364 * program execution. These mainly relate to depth and stencil
365 * processing and the early-depth-test optimization.
366 */
367 enum brw_wm_iz_bits {
368 BRW_WM_IZ_PS_KILL_ALPHATEST_BIT = 0x1,
369 BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT = 0x2,
370 BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT = 0x4,
371 BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT = 0x8,
372 BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT = 0x10,
373 BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT = 0x20,
374 BRW_WM_IZ_BIT_MAX = 0x40
375 };
376
377 enum brw_wm_aa_enable {
378 BRW_WM_AA_NEVER,
379 BRW_WM_AA_SOMETIMES,
380 BRW_WM_AA_ALWAYS
381 };
382
383 /** The program key for Fragment/Pixel Shaders. */
384 struct brw_wm_prog_key {
385 /* Some collection of BRW_WM_IZ_* */
386 uint8_t iz_lookup;
387 bool stats_wm:1;
388 bool flat_shade:1;
389 unsigned nr_color_regions:5;
390 bool replicate_alpha:1;
391 bool clamp_fragment_color:1;
392 bool persample_interp:1;
393 bool multisample_fbo:1;
394 bool frag_coord_adds_sample_pos:1;
395 enum brw_wm_aa_enable line_aa:2;
396 bool high_quality_derivatives:1;
397 bool force_dual_color_blend:1;
398 bool coherent_fb_fetch:1;
399
400 uint64_t input_slots_valid;
401 unsigned program_string_id;
402 GLenum alpha_test_func; /* < For Gen4/5 MRT alpha test */
403 float alpha_test_ref;
404
405 struct brw_sampler_prog_key_data tex;
406 };
407
408 struct brw_cs_prog_key {
409 uint32_t program_string_id;
410 struct brw_sampler_prog_key_data tex;
411 };
412
413 /* brw_any_prog_key is any of the keys that map to an API stage */
414 union brw_any_prog_key {
415 struct brw_vs_prog_key vs;
416 struct brw_tcs_prog_key tcs;
417 struct brw_tes_prog_key tes;
418 struct brw_gs_prog_key gs;
419 struct brw_wm_prog_key wm;
420 struct brw_cs_prog_key cs;
421 };
422
423 /*
424 * Image metadata structure as laid out in the shader parameter
425 * buffer. Entries have to be 16B-aligned for the vec4 back-end to be
426 * able to use them. That's okay because the padding and any unused
427 * entries [most of them except when we're doing untyped surface
428 * access] will be removed by the uniform packing pass.
429 */
430 #define BRW_IMAGE_PARAM_SURFACE_IDX_OFFSET 0
431 #define BRW_IMAGE_PARAM_OFFSET_OFFSET 4
432 #define BRW_IMAGE_PARAM_SIZE_OFFSET 8
433 #define BRW_IMAGE_PARAM_STRIDE_OFFSET 12
434 #define BRW_IMAGE_PARAM_TILING_OFFSET 16
435 #define BRW_IMAGE_PARAM_SWIZZLING_OFFSET 20
436 #define BRW_IMAGE_PARAM_SIZE 24
437
438 struct brw_image_param {
439 /** Surface binding table index. */
440 uint32_t surface_idx;
441
442 /** Offset applied to the X and Y surface coordinates. */
443 uint32_t offset[2];
444
445 /** Surface X, Y and Z dimensions. */
446 uint32_t size[3];
447
448 /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
449 * pixels, vertical slice stride in pixels.
450 */
451 uint32_t stride[4];
452
453 /** Log2 of the tiling modulus in the X, Y and Z dimension. */
454 uint32_t tiling[3];
455
456 /**
457 * Right shift to apply for bit 6 address swizzling. Two different
458 * swizzles can be specified and will be applied one after the other. The
459 * resulting address will be:
460 *
461 * addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
462 * (addr >> swizzling[1])))
463 *
464 * Use \c 0xff if any of the swizzles is not required.
465 */
466 uint32_t swizzling[2];
467 };
468
469 /** Max number of render targets in a shader */
470 #define BRW_MAX_DRAW_BUFFERS 8
471
472 /**
473 * Max number of binding table entries used for stream output.
474 *
475 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
476 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
477 *
478 * On Gen6, the size of transform feedback data is limited not by the number
479 * of components but by the number of binding table entries we set aside. We
480 * use one binding table entry for a float, one entry for a vector, and one
481 * entry per matrix column. Since the only way we can communicate our
482 * transform feedback capabilities to the client is via
483 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
484 * worst case, in which all the varyings are floats, so we use up one binding
485 * table entry per component. Therefore we need to set aside at least 64
486 * binding table entries for use by transform feedback.
487 *
488 * Note: since we don't currently pack varyings, it is currently impossible
489 * for the client to actually use up all of these binding table entries--if
490 * all of their varyings were floats, they would run out of varying slots and
491 * fail to link. But that's a bug, so it seems prudent to go ahead and
492 * allocate the number of binding table entries we will need once the bug is
493 * fixed.
494 */
495 #define BRW_MAX_SOL_BINDINGS 64
496
497 /**
498 * Binding table index for the first gen6 SOL binding.
499 */
500 #define BRW_GEN6_SOL_BINDING_START 0
501
502 /**
503 * Stride in bytes between shader_time entries.
504 *
505 * We separate entries by a cacheline to reduce traffic between EUs writing to
506 * different entries.
507 */
508 #define BRW_SHADER_TIME_STRIDE 64
509
510 struct brw_ubo_range
511 {
512 uint16_t block;
513 uint8_t start;
514 uint8_t length;
515 };
516
517 /* We reserve the first 2^16 values for builtins */
518 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
519
520 enum brw_param_builtin {
521 BRW_PARAM_BUILTIN_ZERO,
522
523 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
524 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
525 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
526 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
527 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
528 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
529 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
530 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
531 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
532 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
533 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
534 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
535 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
536 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
537 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
538 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
539 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
540 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
541 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
542 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
543 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
544 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
545 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
546 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
547 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
548 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
549 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
550 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
551 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
552 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
553 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
554 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
555
556 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
557 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
558 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
559 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
560 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
561 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
562
563 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
564 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
565 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
566 BRW_PARAM_BUILTIN_SUBGROUP_ID,
567 };
568
569 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
570 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
571
572 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
573 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
574 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
575
576 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
577 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
578
579 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
580 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
581
582 struct brw_stage_prog_data {
583 struct {
584 /** size of our binding table. */
585 uint32_t size_bytes;
586
587 /** @{
588 * surface indices for the various groups of surfaces
589 */
590 uint32_t pull_constants_start;
591 uint32_t texture_start;
592 uint32_t gather_texture_start;
593 uint32_t ubo_start;
594 uint32_t ssbo_start;
595 uint32_t image_start;
596 uint32_t shader_time_start;
597 uint32_t plane_start[3];
598 /** @} */
599 } binding_table;
600
601 struct brw_ubo_range ubo_ranges[4];
602
603 GLuint nr_params; /**< number of float params/constants */
604 GLuint nr_pull_params;
605
606 unsigned curb_read_length;
607 unsigned total_scratch;
608 unsigned total_shared;
609
610 unsigned program_size;
611
612 /**
613 * Register where the thread expects to find input data from the URB
614 * (typically uniforms, followed by vertex or fragment attributes).
615 */
616 unsigned dispatch_grf_start_reg;
617
618 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
619
620 /* 32-bit identifiers for all push/pull parameters. These can be anything
621 * the driver wishes them to be; the core of the back-end compiler simply
622 * re-arranges them. The one restriction is that the bottom 2^16 values
623 * are reserved for builtins defined in the brw_param_builtin enum defined
624 * above.
625 */
626 uint32_t *param;
627 uint32_t *pull_param;
628 };
629
630 static inline uint32_t *
631 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
632 unsigned nr_new_params)
633 {
634 unsigned old_nr_params = prog_data->nr_params;
635 prog_data->nr_params += nr_new_params;
636 prog_data->param = reralloc(ralloc_parent(prog_data->param),
637 prog_data->param, uint32_t,
638 prog_data->nr_params);
639 return prog_data->param + old_nr_params;
640 }
641
642 static inline void
643 brw_mark_surface_used(struct brw_stage_prog_data *prog_data,
644 unsigned surf_index)
645 {
646 /* A binding table index is 8 bits and the top 3 values are reserved for
647 * special things (stateless and SLM).
648 */
649 assert(surf_index <= 252);
650
651 prog_data->binding_table.size_bytes =
652 MAX2(prog_data->binding_table.size_bytes, (surf_index + 1) * 4);
653 }
654
655 enum brw_barycentric_mode {
656 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
657 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
658 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
659 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
660 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
661 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
662 BRW_BARYCENTRIC_MODE_COUNT = 6
663 };
664 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
665 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
666 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
667 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
668
669 enum brw_pixel_shader_computed_depth_mode {
670 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
671 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
672 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
673 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
674 };
675
676 /* Data about a particular attempt to compile a program. Note that
677 * there can be many of these, each in a different GL state
678 * corresponding to a different brw_wm_prog_key struct, with different
679 * compiled programs.
680 */
681 struct brw_wm_prog_data {
682 struct brw_stage_prog_data base;
683
684 GLuint num_varying_inputs;
685
686 uint8_t reg_blocks_8;
687 uint8_t reg_blocks_16;
688
689 uint8_t dispatch_grf_start_reg_16;
690 uint32_t prog_offset_16;
691
692 struct {
693 /** @{
694 * surface indices the WM-specific surfaces
695 */
696 uint32_t render_target_read_start;
697 /** @} */
698 } binding_table;
699
700 uint8_t computed_depth_mode;
701 bool computed_stencil;
702
703 bool early_fragment_tests;
704 bool post_depth_coverage;
705 bool inner_coverage;
706 bool dispatch_8;
707 bool dispatch_16;
708 bool dual_src_blend;
709 bool persample_dispatch;
710 bool uses_pos_offset;
711 bool uses_omask;
712 bool uses_kill;
713 bool uses_src_depth;
714 bool uses_src_w;
715 bool uses_sample_mask;
716 bool has_render_target_reads;
717 bool has_side_effects;
718 bool pulls_bary;
719
720 bool contains_flat_varying;
721 bool contains_noperspective_varying;
722
723 /**
724 * Mask of which interpolation modes are required by the fragment shader.
725 * Used in hardware setup on gen6+.
726 */
727 uint32_t barycentric_interp_modes;
728
729 /**
730 * Mask of which FS inputs are marked flat by the shader source. This is
731 * needed for setting up 3DSTATE_SF/SBE.
732 */
733 uint32_t flat_inputs;
734
735 /* Mapping of VUE slots to interpolation modes.
736 * Used by the Gen4-5 clip/sf/wm stages.
737 */
738 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
739
740 /**
741 * Map from gl_varying_slot to the position within the FS setup data
742 * payload where the varying's attribute vertex deltas should be delivered.
743 * For varying slots that are not used by the FS, the value is -1.
744 */
745 int urb_setup[VARYING_SLOT_MAX];
746 };
747
748 /** Returns the SIMD width corresponding to a given KSP index
749 *
750 * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
751 * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
752 * kernel start pointer (KSP) indices that is based on what dispatch widths
753 * are enabled. This function provides, effectively, the reverse mapping.
754 *
755 * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
756 * width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned.
757 */
758 static inline unsigned
759 brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
760 bool simd16_enabled, bool simd32_enabled)
761 {
762 /* This function strictly ignores contiguous dispatch */
763 switch (ksp_idx) {
764 case 0:
765 return simd8_enabled ? 8 :
766 (simd16_enabled && !simd32_enabled) ? 16 :
767 (simd32_enabled && !simd16_enabled) ? 32 : 0;
768 case 1:
769 return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
770 case 2:
771 return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
772 default:
773 unreachable("Invalid KSP index");
774 }
775 }
776
777 #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
778 brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
779 (wm_state)._16PixelDispatchEnable, \
780 (wm_state)._32PixelDispatchEnable)
781
782 #define brw_wm_state_has_ksp(wm_state, ksp_idx) \
783 (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
784
785 static inline uint32_t
786 _brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
787 unsigned simd_width)
788 {
789 switch (simd_width) {
790 case 8: return 0;
791 case 16: return prog_data->prog_offset_16;
792 default: return 0;
793 }
794 }
795
796 #define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
797 _brw_wm_prog_data_prog_offset(prog_data, \
798 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
799
800 static inline uint8_t
801 _brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
802 unsigned simd_width)
803 {
804 switch (simd_width) {
805 case 8: return prog_data->base.dispatch_grf_start_reg;
806 case 16: return prog_data->dispatch_grf_start_reg_16;
807 default: return 0;
808 }
809 }
810
811 #define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
812 _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
813 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
814
815 static inline uint8_t
816 _brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data,
817 unsigned simd_width)
818 {
819 switch (simd_width) {
820 case 8: return prog_data->reg_blocks_8;
821 case 16: return prog_data->reg_blocks_16;
822 default: return 0;
823 }
824 }
825
826 #define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
827 _brw_wm_prog_data_reg_blocks(prog_data, \
828 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
829
830 struct brw_push_const_block {
831 unsigned dwords; /* Dword count, not reg aligned */
832 unsigned regs;
833 unsigned size; /* Bytes, register aligned */
834 };
835
836 struct brw_cs_prog_data {
837 struct brw_stage_prog_data base;
838
839 unsigned local_size[3];
840 unsigned simd_size;
841 unsigned threads;
842 bool uses_barrier;
843 bool uses_num_work_groups;
844
845 struct {
846 struct brw_push_const_block cross_thread;
847 struct brw_push_const_block per_thread;
848 struct brw_push_const_block total;
849 } push;
850
851 struct {
852 /** @{
853 * surface indices the CS-specific surfaces
854 */
855 uint32_t work_groups_start;
856 /** @} */
857 } binding_table;
858 };
859
860 /**
861 * Enum representing the i965-specific vertex results that don't correspond
862 * exactly to any element of gl_varying_slot. The values of this enum are
863 * assigned such that they don't conflict with gl_varying_slot.
864 */
865 typedef enum
866 {
867 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
868 BRW_VARYING_SLOT_PAD,
869 /**
870 * Technically this is not a varying but just a placeholder that
871 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
872 * builtin variable to be compiled correctly. see compile_sf_prog() for
873 * more info.
874 */
875 BRW_VARYING_SLOT_PNTC,
876 BRW_VARYING_SLOT_COUNT
877 } brw_varying_slot;
878
879 /**
880 * We always program SF to start reading at an offset of 1 (2 varying slots)
881 * from the start of the vertex URB entry. This causes it to skip:
882 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
883 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
884 */
885 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
886
887 /**
888 * Bitmask indicating which fragment shader inputs represent varyings (and
889 * hence have to be delivered to the fragment shader by the SF/SBE stage).
890 */
891 #define BRW_FS_VARYING_INPUT_MASK \
892 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
893 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
894
895 /**
896 * Data structure recording the relationship between the gl_varying_slot enum
897 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
898 * single octaword within the VUE (128 bits).
899 *
900 * Note that each BRW register contains 256 bits (2 octawords), so when
901 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
902 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
903 * in a vertex shader), each register corresponds to a single VUE slot, since
904 * it contains data for two separate vertices.
905 */
906 struct brw_vue_map {
907 /**
908 * Bitfield representing all varying slots that are (a) stored in this VUE
909 * map, and (b) actually written by the shader. Does not include any of
910 * the additional varying slots defined in brw_varying_slot.
911 */
912 uint64_t slots_valid;
913
914 /**
915 * Is this VUE map for a separate shader pipeline?
916 *
917 * Separable programs (GL_ARB_separate_shader_objects) can be mixed and matched
918 * without the linker having a chance to dead code eliminate unused varyings.
919 *
920 * This means that we have to use a fixed slot layout, based on the output's
921 * location field, rather than assigning slots in a compact contiguous block.
922 */
923 bool separate;
924
925 /**
926 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
927 * not stored in a slot (because they are not written, or because
928 * additional processing is applied before storing them in the VUE), the
929 * value is -1.
930 */
931 signed char varying_to_slot[VARYING_SLOT_TESS_MAX];
932
933 /**
934 * Map from VUE slot to gl_varying_slot value. For slots that do not
935 * directly correspond to a gl_varying_slot, the value comes from
936 * brw_varying_slot.
937 *
938 * For slots that are not in use, the value is BRW_VARYING_SLOT_PAD.
939 */
940 signed char slot_to_varying[VARYING_SLOT_TESS_MAX];
941
942 /**
943 * Total number of VUE slots in use
944 */
945 int num_slots;
946
947 /**
948 * Number of per-patch VUE slots. Only valid for tessellation control
949 * shader outputs and tessellation evaluation shader inputs.
950 */
951 int num_per_patch_slots;
952
953 /**
954 * Number of per-vertex VUE slots. Only valid for tessellation control
955 * shader outputs and tessellation evaluation shader inputs.
956 */
957 int num_per_vertex_slots;
958 };
959
960 void brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map);
961
962 /**
963 * Convert a VUE slot number into a byte offset within the VUE.
964 */
965 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
966 {
967 return 16*slot;
968 }
969
970 /**
971 * Convert a vertex output (brw_varying_slot) into a byte offset within the
972 * VUE.
973 */
974 static inline
975 GLuint brw_varying_to_offset(const struct brw_vue_map *vue_map, GLuint varying)
976 {
977 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
978 }
979
980 void brw_compute_vue_map(const struct gen_device_info *devinfo,
981 struct brw_vue_map *vue_map,
982 uint64_t slots_valid,
983 bool separate_shader);
984
985 void brw_compute_tess_vue_map(struct brw_vue_map *const vue_map,
986 uint64_t slots_valid,
987 uint32_t is_patch);
988
989 /* brw_interpolation_map.c */
990 void brw_setup_vue_interpolation(struct brw_vue_map *vue_map,
991 struct nir_shader *nir,
992 struct brw_wm_prog_data *prog_data,
993 const struct gen_device_info *devinfo);
994
995 enum shader_dispatch_mode {
996 DISPATCH_MODE_4X1_SINGLE = 0,
997 DISPATCH_MODE_4X2_DUAL_INSTANCE = 1,
998 DISPATCH_MODE_4X2_DUAL_OBJECT = 2,
999 DISPATCH_MODE_SIMD8 = 3,
1000 };
1001
1002 /**
1003 * @defgroup Tessellator parameter enumerations.
1004 *
1005 * These correspond to the hardware values in 3DSTATE_TE, and are provided
1006 * as part of the tessellation evaluation shader.
1007 *
1008 * @{
1009 */
1010 enum brw_tess_partitioning {
1011 BRW_TESS_PARTITIONING_INTEGER = 0,
1012 BRW_TESS_PARTITIONING_ODD_FRACTIONAL = 1,
1013 BRW_TESS_PARTITIONING_EVEN_FRACTIONAL = 2,
1014 };
1015
1016 enum brw_tess_output_topology {
1017 BRW_TESS_OUTPUT_TOPOLOGY_POINT = 0,
1018 BRW_TESS_OUTPUT_TOPOLOGY_LINE = 1,
1019 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW = 2,
1020 BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW = 3,
1021 };
1022
1023 enum brw_tess_domain {
1024 BRW_TESS_DOMAIN_QUAD = 0,
1025 BRW_TESS_DOMAIN_TRI = 1,
1026 BRW_TESS_DOMAIN_ISOLINE = 2,
1027 };
1028 /** @} */
1029
1030 struct brw_vue_prog_data {
1031 struct brw_stage_prog_data base;
1032 struct brw_vue_map vue_map;
1033
1034 /** Should the hardware deliver input VUE handles for URB pull loads? */
1035 bool include_vue_handles;
1036
1037 GLuint urb_read_length;
1038 GLuint total_grf;
1039
1040 uint32_t clip_distance_mask;
1041 uint32_t cull_distance_mask;
1042
1043 /* Used for calculating urb partitions. In the VS, this is the size of the
1044 * URB entry used for both input and output to the thread. In the GS, this
1045 * is the size of the URB entry used for output.
1046 */
1047 GLuint urb_entry_size;
1048
1049 enum shader_dispatch_mode dispatch_mode;
1050 };
1051
1052 struct brw_vs_prog_data {
1053 struct brw_vue_prog_data base;
1054
1055 GLbitfield64 inputs_read;
1056 GLbitfield64 double_inputs_read;
1057
1058 unsigned nr_attribute_slots;
1059
1060 bool uses_vertexid;
1061 bool uses_instanceid;
1062 bool uses_is_indexed_draw;
1063 bool uses_firstvertex;
1064 bool uses_baseinstance;
1065 bool uses_drawid;
1066 };
1067
1068 struct brw_tcs_prog_data
1069 {
1070 struct brw_vue_prog_data base;
1071
1072 /** Number vertices in output patch */
1073 int instances;
1074 };
1075
1076
1077 struct brw_tes_prog_data
1078 {
1079 struct brw_vue_prog_data base;
1080
1081 enum brw_tess_partitioning partitioning;
1082 enum brw_tess_output_topology output_topology;
1083 enum brw_tess_domain domain;
1084 };
1085
1086 struct brw_gs_prog_data
1087 {
1088 struct brw_vue_prog_data base;
1089
1090 unsigned vertices_in;
1091
1092 /**
1093 * Size of an output vertex, measured in HWORDS (32 bytes).
1094 */
1095 unsigned output_vertex_size_hwords;
1096
1097 unsigned output_topology;
1098
1099 /**
1100 * Size of the control data (cut bits or StreamID bits), in hwords (32
1101 * bytes). 0 if there is no control data.
1102 */
1103 unsigned control_data_header_size_hwords;
1104
1105 /**
1106 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1107 * if the control data is StreamID bits, or
1108 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1109 * Ignored if control_data_header_size is 0.
1110 */
1111 unsigned control_data_format;
1112
1113 bool include_primitive_id;
1114
1115 /**
1116 * The number of vertices emitted, if constant - otherwise -1.
1117 */
1118 int static_vertex_count;
1119
1120 int invocations;
1121
1122 /**
1123 * Gen6: Provoking vertex convention for odd-numbered triangles
1124 * in tristrips.
1125 */
1126 GLuint pv_first:1;
1127
1128 /**
1129 * Gen6: Number of varyings that are output to transform feedback.
1130 */
1131 GLuint num_transform_feedback_bindings:7; /* 0-BRW_MAX_SOL_BINDINGS */
1132
1133 /**
1134 * Gen6: Map from the index of a transform feedback binding table entry to the
1135 * gl_varying_slot that should be streamed out through that binding table
1136 * entry.
1137 */
1138 unsigned char transform_feedback_bindings[64 /* BRW_MAX_SOL_BINDINGS */];
1139
1140 /**
1141 * Gen6: Map from the index of a transform feedback binding table entry to the
1142 * swizzles that should be used when streaming out data through that
1143 * binding table entry.
1144 */
1145 unsigned char transform_feedback_swizzles[64 /* BRW_MAX_SOL_BINDINGS */];
1146 };
1147
1148 struct brw_sf_prog_data {
1149 uint32_t urb_read_length;
1150 uint32_t total_grf;
1151
1152 /* Each vertex may have upto 12 attributes, 4 components each,
1153 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
1154 * rows.
1155 *
1156 * Actually we use 4 for each, so call it 12 rows.
1157 */
1158 unsigned urb_entry_size;
1159 };
1160
1161 struct brw_clip_prog_data {
1162 uint32_t curb_read_length; /* user planes? */
1163 uint32_t clip_mode;
1164 uint32_t urb_read_length;
1165 uint32_t total_grf;
1166 };
1167
1168 /* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1169 union brw_any_prog_data {
1170 struct brw_stage_prog_data base;
1171 struct brw_vue_prog_data vue;
1172 struct brw_vs_prog_data vs;
1173 struct brw_tcs_prog_data tcs;
1174 struct brw_tes_prog_data tes;
1175 struct brw_gs_prog_data gs;
1176 struct brw_wm_prog_data wm;
1177 struct brw_cs_prog_data cs;
1178 };
1179
1180 #define DEFINE_PROG_DATA_DOWNCAST(stage) \
1181 static inline struct brw_##stage##_prog_data * \
1182 brw_##stage##_prog_data(struct brw_stage_prog_data *prog_data) \
1183 { \
1184 return (struct brw_##stage##_prog_data *) prog_data; \
1185 }
1186 DEFINE_PROG_DATA_DOWNCAST(vue)
1187 DEFINE_PROG_DATA_DOWNCAST(vs)
1188 DEFINE_PROG_DATA_DOWNCAST(tcs)
1189 DEFINE_PROG_DATA_DOWNCAST(tes)
1190 DEFINE_PROG_DATA_DOWNCAST(gs)
1191 DEFINE_PROG_DATA_DOWNCAST(wm)
1192 DEFINE_PROG_DATA_DOWNCAST(cs)
1193 DEFINE_PROG_DATA_DOWNCAST(ff_gs)
1194 DEFINE_PROG_DATA_DOWNCAST(clip)
1195 DEFINE_PROG_DATA_DOWNCAST(sf)
1196 #undef DEFINE_PROG_DATA_DOWNCAST
1197
1198 /** @} */
1199
1200 struct brw_compiler *
1201 brw_compiler_create(void *mem_ctx, const struct gen_device_info *devinfo);
1202
1203 unsigned
1204 brw_prog_data_size(gl_shader_stage stage);
1205
1206 unsigned
1207 brw_prog_key_size(gl_shader_stage stage);
1208
1209 /**
1210 * Compile a vertex shader.
1211 *
1212 * Returns the final assembly and the program's size.
1213 */
1214 const unsigned *
1215 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
1216 void *mem_ctx,
1217 const struct brw_vs_prog_key *key,
1218 struct brw_vs_prog_data *prog_data,
1219 const struct nir_shader *shader,
1220 int shader_time_index,
1221 char **error_str);
1222
1223 /**
1224 * Compile a tessellation control shader.
1225 *
1226 * Returns the final assembly and the program's size.
1227 */
1228 const unsigned *
1229 brw_compile_tcs(const struct brw_compiler *compiler,
1230 void *log_data,
1231 void *mem_ctx,
1232 const struct brw_tcs_prog_key *key,
1233 struct brw_tcs_prog_data *prog_data,
1234 const struct nir_shader *nir,
1235 int shader_time_index,
1236 char **error_str);
1237
1238 /**
1239 * Compile a tessellation evaluation shader.
1240 *
1241 * Returns the final assembly and the program's size.
1242 */
1243 const unsigned *
1244 brw_compile_tes(const struct brw_compiler *compiler, void *log_data,
1245 void *mem_ctx,
1246 const struct brw_tes_prog_key *key,
1247 const struct brw_vue_map *input_vue_map,
1248 struct brw_tes_prog_data *prog_data,
1249 const struct nir_shader *shader,
1250 struct gl_program *prog,
1251 int shader_time_index,
1252 char **error_str);
1253
1254 /**
1255 * Compile a vertex shader.
1256 *
1257 * Returns the final assembly and the program's size.
1258 */
1259 const unsigned *
1260 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
1261 void *mem_ctx,
1262 const struct brw_gs_prog_key *key,
1263 struct brw_gs_prog_data *prog_data,
1264 const struct nir_shader *shader,
1265 struct gl_program *prog,
1266 int shader_time_index,
1267 char **error_str);
1268
1269 /**
1270 * Compile a strips and fans shader.
1271 *
1272 * This is a fixed-function shader determined entirely by the shader key and
1273 * a VUE map.
1274 *
1275 * Returns the final assembly and the program's size.
1276 */
1277 const unsigned *
1278 brw_compile_sf(const struct brw_compiler *compiler,
1279 void *mem_ctx,
1280 const struct brw_sf_prog_key *key,
1281 struct brw_sf_prog_data *prog_data,
1282 struct brw_vue_map *vue_map,
1283 unsigned *final_assembly_size);
1284
1285 /**
1286 * Compile a clipper shader.
1287 *
1288 * This is a fixed-function shader determined entirely by the shader key and
1289 * a VUE map.
1290 *
1291 * Returns the final assembly and the program's size.
1292 */
1293 const unsigned *
1294 brw_compile_clip(const struct brw_compiler *compiler,
1295 void *mem_ctx,
1296 const struct brw_clip_prog_key *key,
1297 struct brw_clip_prog_data *prog_data,
1298 struct brw_vue_map *vue_map,
1299 unsigned *final_assembly_size);
1300
1301 /**
1302 * Compile a fragment shader.
1303 *
1304 * Returns the final assembly and the program's size.
1305 */
1306 const unsigned *
1307 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
1308 void *mem_ctx,
1309 const struct brw_wm_prog_key *key,
1310 struct brw_wm_prog_data *prog_data,
1311 const struct nir_shader *shader,
1312 struct gl_program *prog,
1313 int shader_time_index8,
1314 int shader_time_index16,
1315 int shader_time_index32,
1316 bool allow_spilling,
1317 bool use_rep_send, struct brw_vue_map *vue_map,
1318 char **error_str);
1319
1320 /**
1321 * Compile a compute shader.
1322 *
1323 * Returns the final assembly and the program's size.
1324 */
1325 const unsigned *
1326 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
1327 void *mem_ctx,
1328 const struct brw_cs_prog_key *key,
1329 struct brw_cs_prog_data *prog_data,
1330 const struct nir_shader *shader,
1331 int shader_time_index,
1332 char **error_str);
1333
1334 static inline uint32_t
1335 encode_slm_size(unsigned gen, uint32_t bytes)
1336 {
1337 uint32_t slm_size = 0;
1338
1339 /* Shared Local Memory is specified as powers of two, and encoded in
1340 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1341 *
1342 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1343 * -------------------------------------------------------------------
1344 * Gen7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1345 * -------------------------------------------------------------------
1346 * Gen9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1347 */
1348 assert(bytes <= 64 * 1024);
1349
1350 if (bytes > 0) {
1351 /* Shared Local Memory Size is specified as powers of two. */
1352 slm_size = util_next_power_of_two(bytes);
1353
1354 if (gen >= 9) {
1355 /* Use a minimum of 1kB; turn an exponent of 10 (1024 kB) into 1. */
1356 slm_size = ffs(MAX2(slm_size, 1024)) - 10;
1357 } else {
1358 /* Use a minimum of 4kB; convert to the pre-Gen9 representation. */
1359 slm_size = MAX2(slm_size, 4096) / 4096;
1360 }
1361 }
1362
1363 return slm_size;
1364 }
1365
1366 /**
1367 * Return true if the given shader stage is dispatched contiguously by the
1368 * relevant fixed function starting from channel 0 of the SIMD thread, which
1369 * implies that the dispatch mask of a thread can be assumed to have the form
1370 * '2^n - 1' for some n.
1371 */
1372 static inline bool
1373 brw_stage_has_packed_dispatch(MAYBE_UNUSED const struct gen_device_info *devinfo,
1374 gl_shader_stage stage,
1375 const struct brw_stage_prog_data *prog_data)
1376 {
1377 /* The code below makes assumptions about the hardware's thread dispatch
1378 * behavior that could be proven wrong in future generations -- Make sure
1379 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1380 * the NIR front-end before changing this assertion.
1381 */
1382 assert(devinfo->gen <= 11);
1383
1384 switch (stage) {
1385 case MESA_SHADER_FRAGMENT: {
1386 /* The PSD discards subspans coming in with no lit samples, which in the
1387 * per-pixel shading case implies that each subspan will either be fully
1388 * lit (due to the VMask being used to allow derivative computations),
1389 * or not dispatched at all. In per-sample dispatch mode individual
1390 * samples from the same subspan have a fixed relative location within
1391 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1392 * general and we should return false.
1393 */
1394 const struct brw_wm_prog_data *wm_prog_data =
1395 (const struct brw_wm_prog_data *)prog_data;
1396 return !wm_prog_data->persample_dispatch;
1397 }
1398 case MESA_SHADER_COMPUTE:
1399 /* Compute shaders will be spawned with either a fully enabled dispatch
1400 * mask or with whatever bottom/right execution mask was given to the
1401 * GPGPU walker command to be used along the workgroup edges -- In both
1402 * cases the dispatch mask is required to be tightly packed for our
1403 * invocation index calculations to work.
1404 */
1405 return true;
1406 default:
1407 /* Most remaining fixed functions are limited to use a packed dispatch
1408 * mask due to the hardware representation of the dispatch mask as a
1409 * single counter representing the number of enabled channels.
1410 */
1411 return true;
1412 }
1413 }
1414
1415 /**
1416 * Computes the first varying slot in the URB produced by the previous stage
1417 * that is used in the next stage. We do this by testing the varying slots in
1418 * the previous stage's vue map against the inputs read in the next stage.
1419 *
1420 * Note that:
1421 *
1422 * - Each URB offset contains two varying slots and we can only skip a
1423 * full offset if both slots are unused, so the value we return here is always
1424 * rounded down to the closest multiple of two.
1425 *
1426 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1427 * part of the vue header, so if these are read we can't skip anything.
1428 */
1429 static inline int
1430 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1431 const struct brw_vue_map *prev_stage_vue_map)
1432 {
1433 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT)) == 0) {
1434 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1435 int varying = prev_stage_vue_map->slot_to_varying[i];
1436 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1437 return ROUND_DOWN_TO(i, 2);
1438 }
1439 }
1440
1441 return 0;
1442 }
1443
1444 #ifdef __cplusplus
1445 } /* extern "C" */
1446 #endif
1447
1448 #endif /* BRW_COMPILER_H */