intel/fs: Add DWord scattered read/write opcodes
[mesa.git] / src / intel / compiler / brw_eu_defines.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keithw@vmware.com>
30 */
31
32 #ifndef BRW_EU_DEFINES_H
33 #define BRW_EU_DEFINES_H
34
35 #include <stdint.h>
36 #include "util/macros.h"
37
38 /* The following hunk, up-to "Execution Unit" is used by both the
39 * intel/compiler and i965 codebase. */
40
41 #define INTEL_MASK(high, low) (((1u<<((high)-(low)+1))-1)<<(low))
42 /* Using the GNU statement expression extension */
43 #define SET_FIELD(value, field) \
44 ({ \
45 uint32_t fieldval = (uint32_t)(value) << field ## _SHIFT; \
46 assert((fieldval & ~ field ## _MASK) == 0); \
47 fieldval & field ## _MASK; \
48 })
49
50 #define SET_BITS(value, high, low) \
51 ({ \
52 const uint32_t fieldval = (uint32_t)(value) << (low); \
53 assert((fieldval & ~INTEL_MASK(high, low)) == 0); \
54 fieldval & INTEL_MASK(high, low); \
55 })
56
57 #define GET_BITS(data, high, low) ((data & INTEL_MASK((high), (low))) >> (low))
58 #define GET_FIELD(word, field) (((word) & field ## _MASK) >> field ## _SHIFT)
59
60 #define _3DPRIM_POINTLIST 0x01
61 #define _3DPRIM_LINELIST 0x02
62 #define _3DPRIM_LINESTRIP 0x03
63 #define _3DPRIM_TRILIST 0x04
64 #define _3DPRIM_TRISTRIP 0x05
65 #define _3DPRIM_TRIFAN 0x06
66 #define _3DPRIM_QUADLIST 0x07
67 #define _3DPRIM_QUADSTRIP 0x08
68 #define _3DPRIM_LINELIST_ADJ 0x09 /* G45+ */
69 #define _3DPRIM_LINESTRIP_ADJ 0x0A /* G45+ */
70 #define _3DPRIM_TRILIST_ADJ 0x0B /* G45+ */
71 #define _3DPRIM_TRISTRIP_ADJ 0x0C /* G45+ */
72 #define _3DPRIM_TRISTRIP_REVERSE 0x0D
73 #define _3DPRIM_POLYGON 0x0E
74 #define _3DPRIM_RECTLIST 0x0F
75 #define _3DPRIM_LINELOOP 0x10
76 #define _3DPRIM_POINTLIST_BF 0x11
77 #define _3DPRIM_LINESTRIP_CONT 0x12
78 #define _3DPRIM_LINESTRIP_BF 0x13
79 #define _3DPRIM_LINESTRIP_CONT_BF 0x14
80 #define _3DPRIM_TRIFAN_NOSTIPPLE 0x16
81 #define _3DPRIM_PATCHLIST(n) ({ assert(n > 0 && n <= 32); 0x20 + (n - 1); })
82
83 /* Bitfields for the URB_WRITE message, DW2 of message header: */
84 #define URB_WRITE_PRIM_END 0x1
85 #define URB_WRITE_PRIM_START 0x2
86 #define URB_WRITE_PRIM_TYPE_SHIFT 2
87
88 #define BRW_SPRITE_POINT_ENABLE 16
89
90 # define GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT 0
91 # define GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID 1
92
93 /* Execution Unit (EU) defines
94 */
95
96 #define BRW_ALIGN_1 0
97 #define BRW_ALIGN_16 1
98
99 #define BRW_ADDRESS_DIRECT 0
100 #define BRW_ADDRESS_REGISTER_INDIRECT_REGISTER 1
101
102 #define BRW_CHANNEL_X 0
103 #define BRW_CHANNEL_Y 1
104 #define BRW_CHANNEL_Z 2
105 #define BRW_CHANNEL_W 3
106
107 enum brw_compression {
108 BRW_COMPRESSION_NONE = 0,
109 BRW_COMPRESSION_2NDHALF = 1,
110 BRW_COMPRESSION_COMPRESSED = 2,
111 };
112
113 #define GEN6_COMPRESSION_1Q 0
114 #define GEN6_COMPRESSION_2Q 1
115 #define GEN6_COMPRESSION_3Q 2
116 #define GEN6_COMPRESSION_4Q 3
117 #define GEN6_COMPRESSION_1H 0
118 #define GEN6_COMPRESSION_2H 2
119
120 enum PACKED brw_conditional_mod {
121 BRW_CONDITIONAL_NONE = 0,
122 BRW_CONDITIONAL_Z = 1,
123 BRW_CONDITIONAL_NZ = 2,
124 BRW_CONDITIONAL_EQ = 1, /* Z */
125 BRW_CONDITIONAL_NEQ = 2, /* NZ */
126 BRW_CONDITIONAL_G = 3,
127 BRW_CONDITIONAL_GE = 4,
128 BRW_CONDITIONAL_L = 5,
129 BRW_CONDITIONAL_LE = 6,
130 BRW_CONDITIONAL_R = 7, /* Gen <= 5 */
131 BRW_CONDITIONAL_O = 8,
132 BRW_CONDITIONAL_U = 9,
133 };
134
135 #define BRW_DEBUG_NONE 0
136 #define BRW_DEBUG_BREAKPOINT 1
137
138 #define BRW_DEPENDENCY_NORMAL 0
139 #define BRW_DEPENDENCY_NOTCLEARED 1
140 #define BRW_DEPENDENCY_NOTCHECKED 2
141 #define BRW_DEPENDENCY_DISABLE 3
142
143 enum PACKED brw_execution_size {
144 BRW_EXECUTE_1 = 0,
145 BRW_EXECUTE_2 = 1,
146 BRW_EXECUTE_4 = 2,
147 BRW_EXECUTE_8 = 3,
148 BRW_EXECUTE_16 = 4,
149 BRW_EXECUTE_32 = 5,
150 };
151
152 enum PACKED brw_horizontal_stride {
153 BRW_HORIZONTAL_STRIDE_0 = 0,
154 BRW_HORIZONTAL_STRIDE_1 = 1,
155 BRW_HORIZONTAL_STRIDE_2 = 2,
156 BRW_HORIZONTAL_STRIDE_4 = 3,
157 };
158
159 enum PACKED gen10_align1_3src_src_horizontal_stride {
160 BRW_ALIGN1_3SRC_SRC_HORIZONTAL_STRIDE_0 = 0,
161 BRW_ALIGN1_3SRC_SRC_HORIZONTAL_STRIDE_1 = 1,
162 BRW_ALIGN1_3SRC_SRC_HORIZONTAL_STRIDE_2 = 2,
163 BRW_ALIGN1_3SRC_SRC_HORIZONTAL_STRIDE_4 = 3,
164 };
165
166 enum PACKED gen10_align1_3src_dst_horizontal_stride {
167 BRW_ALIGN1_3SRC_DST_HORIZONTAL_STRIDE_1 = 0,
168 BRW_ALIGN1_3SRC_DST_HORIZONTAL_STRIDE_2 = 1,
169 };
170
171 #define BRW_INSTRUCTION_NORMAL 0
172 #define BRW_INSTRUCTION_SATURATE 1
173
174 #define BRW_MASK_ENABLE 0
175 #define BRW_MASK_DISABLE 1
176
177 /** @{
178 *
179 * Gen6 has replaced "mask enable/disable" with WECtrl, which is
180 * effectively the same but much simpler to think about. Now, there
181 * are two contributors ANDed together to whether channels are
182 * executed: The predication on the instruction, and the channel write
183 * enable.
184 */
185 /**
186 * This is the default value. It means that a channel's write enable is set
187 * if the per-channel IP is pointing at this instruction.
188 */
189 #define BRW_WE_NORMAL 0
190 /**
191 * This is used like BRW_MASK_DISABLE, and causes all channels to have
192 * their write enable set. Note that predication still contributes to
193 * whether the channel actually gets written.
194 */
195 #define BRW_WE_ALL 1
196 /** @} */
197
198 enum opcode {
199 /* These are the actual hardware instructions. */
200 BRW_OPCODE_ILLEGAL,
201 BRW_OPCODE_SYNC,
202 BRW_OPCODE_MOV,
203 BRW_OPCODE_SEL,
204 BRW_OPCODE_MOVI, /**< G45+ */
205 BRW_OPCODE_NOT,
206 BRW_OPCODE_AND,
207 BRW_OPCODE_OR,
208 BRW_OPCODE_XOR,
209 BRW_OPCODE_SHR,
210 BRW_OPCODE_SHL,
211 BRW_OPCODE_DIM, /**< Gen7.5 only */
212 BRW_OPCODE_SMOV, /**< Gen8+ */
213 BRW_OPCODE_ASR,
214 BRW_OPCODE_ROR, /**< Gen11+ */
215 BRW_OPCODE_ROL, /**< Gen11+ */
216 BRW_OPCODE_CMP,
217 BRW_OPCODE_CMPN,
218 BRW_OPCODE_CSEL, /**< Gen8+ */
219 BRW_OPCODE_F32TO16, /**< Gen7 only */
220 BRW_OPCODE_F16TO32, /**< Gen7 only */
221 BRW_OPCODE_BFREV, /**< Gen7+ */
222 BRW_OPCODE_BFE, /**< Gen7+ */
223 BRW_OPCODE_BFI1, /**< Gen7+ */
224 BRW_OPCODE_BFI2, /**< Gen7+ */
225 BRW_OPCODE_JMPI,
226 BRW_OPCODE_BRD, /**< Gen7+ */
227 BRW_OPCODE_IF,
228 BRW_OPCODE_IFF, /**< Pre-Gen6 */
229 BRW_OPCODE_BRC, /**< Gen7+ */
230 BRW_OPCODE_ELSE,
231 BRW_OPCODE_ENDIF,
232 BRW_OPCODE_DO, /**< Pre-Gen6 */
233 BRW_OPCODE_CASE, /**< Gen6 only */
234 BRW_OPCODE_WHILE,
235 BRW_OPCODE_BREAK,
236 BRW_OPCODE_CONTINUE,
237 BRW_OPCODE_HALT,
238 BRW_OPCODE_CALLA, /**< Gen7.5+ */
239 BRW_OPCODE_MSAVE, /**< Pre-Gen6 */
240 BRW_OPCODE_CALL, /**< Gen6+ */
241 BRW_OPCODE_MREST, /**< Pre-Gen6 */
242 BRW_OPCODE_RET, /**< Gen6+ */
243 BRW_OPCODE_PUSH, /**< Pre-Gen6 */
244 BRW_OPCODE_FORK, /**< Gen6 only */
245 BRW_OPCODE_GOTO, /**< Gen8+ */
246 BRW_OPCODE_POP, /**< Pre-Gen6 */
247 BRW_OPCODE_WAIT,
248 BRW_OPCODE_SEND,
249 BRW_OPCODE_SENDC,
250 BRW_OPCODE_SENDS, /**< Gen9+ */
251 BRW_OPCODE_SENDSC, /**< Gen9+ */
252 BRW_OPCODE_MATH, /**< Gen6+ */
253 BRW_OPCODE_ADD,
254 BRW_OPCODE_MUL,
255 BRW_OPCODE_AVG,
256 BRW_OPCODE_FRC,
257 BRW_OPCODE_RNDU,
258 BRW_OPCODE_RNDD,
259 BRW_OPCODE_RNDE,
260 BRW_OPCODE_RNDZ,
261 BRW_OPCODE_MAC,
262 BRW_OPCODE_MACH,
263 BRW_OPCODE_LZD,
264 BRW_OPCODE_FBH, /**< Gen7+ */
265 BRW_OPCODE_FBL, /**< Gen7+ */
266 BRW_OPCODE_CBIT, /**< Gen7+ */
267 BRW_OPCODE_ADDC, /**< Gen7+ */
268 BRW_OPCODE_SUBB, /**< Gen7+ */
269 BRW_OPCODE_SAD2,
270 BRW_OPCODE_SADA2,
271 BRW_OPCODE_DP4,
272 BRW_OPCODE_DPH,
273 BRW_OPCODE_DP3,
274 BRW_OPCODE_DP2,
275 BRW_OPCODE_LINE,
276 BRW_OPCODE_PLN, /**< G45+ */
277 BRW_OPCODE_MAD, /**< Gen6+ */
278 BRW_OPCODE_LRP, /**< Gen6+ */
279 BRW_OPCODE_MADM, /**< Gen8+ */
280 BRW_OPCODE_NENOP, /**< G45 only */
281 BRW_OPCODE_NOP,
282
283 NUM_BRW_OPCODES,
284
285 /* These are compiler backend opcodes that get translated into other
286 * instructions.
287 */
288 FS_OPCODE_FB_WRITE = NUM_BRW_OPCODES,
289
290 /**
291 * Same as FS_OPCODE_FB_WRITE but expects its arguments separately as
292 * individual sources instead of as a single payload blob. The
293 * position/ordering of the arguments are defined by the enum
294 * fb_write_logical_srcs.
295 */
296 FS_OPCODE_FB_WRITE_LOGICAL,
297
298 FS_OPCODE_REP_FB_WRITE,
299
300 FS_OPCODE_FB_READ,
301 FS_OPCODE_FB_READ_LOGICAL,
302
303 SHADER_OPCODE_RCP,
304 SHADER_OPCODE_RSQ,
305 SHADER_OPCODE_SQRT,
306 SHADER_OPCODE_EXP2,
307 SHADER_OPCODE_LOG2,
308 SHADER_OPCODE_POW,
309 SHADER_OPCODE_INT_QUOTIENT,
310 SHADER_OPCODE_INT_REMAINDER,
311 SHADER_OPCODE_SIN,
312 SHADER_OPCODE_COS,
313
314 /**
315 * A generic "send" opcode. The first two sources are the message
316 * descriptor and extended message descriptor respectively. The third
317 * and optional fourth sources are the message payload
318 */
319 SHADER_OPCODE_SEND,
320
321 /**
322 * An "undefined" write which does nothing but indicates to liveness that
323 * we don't care about any values in the register which predate this
324 * instruction. Used to prevent partial writes from causing issues with
325 * live ranges.
326 */
327 SHADER_OPCODE_UNDEF,
328
329 /**
330 * Texture sampling opcodes.
331 *
332 * LOGICAL opcodes are eventually translated to the matching non-LOGICAL
333 * opcode but instead of taking a single payload blob they expect their
334 * arguments separately as individual sources. The position/ordering of the
335 * arguments are defined by the enum tex_logical_srcs.
336 */
337 SHADER_OPCODE_TEX,
338 SHADER_OPCODE_TEX_LOGICAL,
339 SHADER_OPCODE_TXD,
340 SHADER_OPCODE_TXD_LOGICAL,
341 SHADER_OPCODE_TXF,
342 SHADER_OPCODE_TXF_LOGICAL,
343 SHADER_OPCODE_TXF_LZ,
344 SHADER_OPCODE_TXL,
345 SHADER_OPCODE_TXL_LOGICAL,
346 SHADER_OPCODE_TXL_LZ,
347 SHADER_OPCODE_TXS,
348 SHADER_OPCODE_TXS_LOGICAL,
349 FS_OPCODE_TXB,
350 FS_OPCODE_TXB_LOGICAL,
351 SHADER_OPCODE_TXF_CMS,
352 SHADER_OPCODE_TXF_CMS_LOGICAL,
353 SHADER_OPCODE_TXF_CMS_W,
354 SHADER_OPCODE_TXF_CMS_W_LOGICAL,
355 SHADER_OPCODE_TXF_UMS,
356 SHADER_OPCODE_TXF_UMS_LOGICAL,
357 SHADER_OPCODE_TXF_MCS,
358 SHADER_OPCODE_TXF_MCS_LOGICAL,
359 SHADER_OPCODE_LOD,
360 SHADER_OPCODE_LOD_LOGICAL,
361 SHADER_OPCODE_TG4,
362 SHADER_OPCODE_TG4_LOGICAL,
363 SHADER_OPCODE_TG4_OFFSET,
364 SHADER_OPCODE_TG4_OFFSET_LOGICAL,
365 SHADER_OPCODE_SAMPLEINFO,
366 SHADER_OPCODE_SAMPLEINFO_LOGICAL,
367
368 SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
369
370 /**
371 * Combines multiple sources of size 1 into a larger virtual GRF.
372 * For example, parameters for a send-from-GRF message. Or, updating
373 * channels of a size 4 VGRF used to store vec4s such as texturing results.
374 *
375 * This will be lowered into MOVs from each source to consecutive offsets
376 * of the destination VGRF.
377 *
378 * src[0] may be BAD_FILE. If so, the lowering pass skips emitting the MOV,
379 * but still reserves the first channel of the destination VGRF. This can be
380 * used to reserve space for, say, a message header set up by the generators.
381 */
382 SHADER_OPCODE_LOAD_PAYLOAD,
383
384 /**
385 * Packs a number of sources into a single value. Unlike LOAD_PAYLOAD, this
386 * acts intra-channel, obtaining the final value for each channel by
387 * combining the sources values for the same channel, the first source
388 * occupying the lowest bits and the last source occupying the highest
389 * bits.
390 */
391 FS_OPCODE_PACK,
392
393 SHADER_OPCODE_SHADER_TIME_ADD,
394
395 /**
396 * Typed and untyped surface access opcodes.
397 *
398 * LOGICAL opcodes are eventually translated to the matching non-LOGICAL
399 * opcode but instead of taking a single payload blob they expect their
400 * arguments separately as individual sources:
401 *
402 * Source 0: [required] Surface coordinates.
403 * Source 1: [optional] Operation source.
404 * Source 2: [required] Surface index.
405 * Source 3: [required] Number of coordinate components (as UD immediate).
406 * Source 4: [required] Opcode-specific control immediate, same as source 2
407 * of the matching non-LOGICAL opcode.
408 */
409 VEC4_OPCODE_UNTYPED_ATOMIC,
410 SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
411 SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
412 VEC4_OPCODE_UNTYPED_SURFACE_READ,
413 SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
414 VEC4_OPCODE_UNTYPED_SURFACE_WRITE,
415 SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
416
417 /**
418 * Untyped A64 surface access opcodes.
419 *
420 * Source 0: 64-bit address
421 * Source 1: Operational source
422 * Source 2: [required] Opcode-specific control immediate, same as source 2
423 * of the matching non-LOGICAL opcode.
424 */
425 SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
426 SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
427 SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
428 SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
429 SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
430 SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL,
431 SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL,
432
433 SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
434 SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
435 SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
436
437 SHADER_OPCODE_RND_MODE,
438 SHADER_OPCODE_FLOAT_CONTROL_MODE,
439
440 /**
441 * Byte scattered write/read opcodes.
442 *
443 * LOGICAL opcodes are eventually translated to the matching non-LOGICAL
444 * opcode, but instead of taking a single payload blog they expect their
445 * arguments separately as individual sources, like untyped write/read.
446 */
447 SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
448 SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
449 SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL,
450 SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL,
451
452 /**
453 * Memory fence messages.
454 *
455 * Source 0: Must be register g0, used as header.
456 * Source 1: Immediate bool to indicate whether or not we need to stall
457 * until memory transactions prior to the fence are completed.
458 * Source 2: Immediate byte indicating which memory to fence. Zero means
459 * global memory; GEN7_BTI_SLM means SLM (for Gen11+ only).
460 *
461 * Vec4 backend only uses Source 0.
462 */
463 SHADER_OPCODE_MEMORY_FENCE,
464
465 SHADER_OPCODE_GEN4_SCRATCH_READ,
466 SHADER_OPCODE_GEN4_SCRATCH_WRITE,
467 SHADER_OPCODE_GEN7_SCRATCH_READ,
468
469 /**
470 * Gen8+ SIMD8 URB Read messages.
471 */
472 SHADER_OPCODE_URB_READ_SIMD8,
473 SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT,
474
475 SHADER_OPCODE_URB_WRITE_SIMD8,
476 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT,
477 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
478 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT,
479
480 /**
481 * Return the index of an arbitrary live channel (i.e. one of the channels
482 * enabled in the current execution mask) and assign it to the first
483 * component of the destination. Expected to be used as input for the
484 * BROADCAST pseudo-opcode.
485 */
486 SHADER_OPCODE_FIND_LIVE_CHANNEL,
487
488 /**
489 * Pick the channel from its first source register given by the index
490 * specified as second source. Useful for variable indexing of surfaces.
491 *
492 * Note that because the result of this instruction is by definition
493 * uniform and it can always be splatted to multiple channels using a
494 * scalar regioning mode, only the first channel of the destination region
495 * is guaranteed to be updated, which implies that BROADCAST instructions
496 * should usually be marked force_writemask_all.
497 */
498 SHADER_OPCODE_BROADCAST,
499
500 /* Pick the channel from its first source register given by the index
501 * specified as second source.
502 *
503 * This is similar to the BROADCAST instruction except that it takes a
504 * dynamic index and potentially puts a different value in each output
505 * channel.
506 */
507 SHADER_OPCODE_SHUFFLE,
508
509 /* Select between src0 and src1 based on channel enables.
510 *
511 * This instruction copies src0 into the enabled channels of the
512 * destination and copies src1 into the disabled channels.
513 */
514 SHADER_OPCODE_SEL_EXEC,
515
516 /* This turns into an align16 mov from src0 to dst with a swizzle
517 * provided as an immediate in src1.
518 */
519 SHADER_OPCODE_QUAD_SWIZZLE,
520
521 /* Take every Nth element in src0 and broadcast it to the group of N
522 * channels in which it lives in the destination. The offset within the
523 * cluster is given by src1 and the cluster size is given by src2.
524 */
525 SHADER_OPCODE_CLUSTER_BROADCAST,
526
527 SHADER_OPCODE_GET_BUFFER_SIZE,
528
529 SHADER_OPCODE_INTERLOCK,
530
531 VEC4_OPCODE_MOV_BYTES,
532 VEC4_OPCODE_PACK_BYTES,
533 VEC4_OPCODE_UNPACK_UNIFORM,
534 VEC4_OPCODE_DOUBLE_TO_F32,
535 VEC4_OPCODE_DOUBLE_TO_D32,
536 VEC4_OPCODE_DOUBLE_TO_U32,
537 VEC4_OPCODE_TO_DOUBLE,
538 VEC4_OPCODE_PICK_LOW_32BIT,
539 VEC4_OPCODE_PICK_HIGH_32BIT,
540 VEC4_OPCODE_SET_LOW_32BIT,
541 VEC4_OPCODE_SET_HIGH_32BIT,
542
543 FS_OPCODE_DDX_COARSE,
544 FS_OPCODE_DDX_FINE,
545 /**
546 * Compute dFdy(), dFdyCoarse(), or dFdyFine().
547 */
548 FS_OPCODE_DDY_COARSE,
549 FS_OPCODE_DDY_FINE,
550 FS_OPCODE_LINTERP,
551 FS_OPCODE_PIXEL_X,
552 FS_OPCODE_PIXEL_Y,
553 FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
554 FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7,
555 FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4,
556 FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
557 FS_OPCODE_DISCARD_JUMP,
558 FS_OPCODE_SET_SAMPLE_ID,
559 FS_OPCODE_PACK_HALF_2x16_SPLIT,
560 FS_OPCODE_PLACEHOLDER_HALT,
561 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
562 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
563 FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET,
564
565 VS_OPCODE_URB_WRITE,
566 VS_OPCODE_PULL_CONSTANT_LOAD,
567 VS_OPCODE_PULL_CONSTANT_LOAD_GEN7,
568 VS_OPCODE_SET_SIMD4X2_HEADER_GEN9,
569
570 VS_OPCODE_UNPACK_FLAGS_SIMD4X2,
571
572 /**
573 * Write geometry shader output data to the URB.
574 *
575 * Unlike VS_OPCODE_URB_WRITE, this opcode doesn't do an implied move from
576 * R0 to the first MRF. This allows the geometry shader to override the
577 * "Slot {0,1} Offset" fields in the message header.
578 */
579 GS_OPCODE_URB_WRITE,
580
581 /**
582 * Write geometry shader output data to the URB and request a new URB
583 * handle (gen6).
584 *
585 * This opcode doesn't do an implied move from R0 to the first MRF.
586 */
587 GS_OPCODE_URB_WRITE_ALLOCATE,
588
589 /**
590 * Terminate the geometry shader thread by doing an empty URB write.
591 *
592 * This opcode doesn't do an implied move from R0 to the first MRF. This
593 * allows the geometry shader to override the "GS Number of Output Vertices
594 * for Slot {0,1}" fields in the message header.
595 */
596 GS_OPCODE_THREAD_END,
597
598 /**
599 * Set the "Slot {0,1} Offset" fields of a URB_WRITE message header.
600 *
601 * - dst is the MRF containing the message header.
602 *
603 * - src0.x indicates which portion of the URB should be written to (e.g. a
604 * vertex number)
605 *
606 * - src1 is an immediate multiplier which will be applied to src0
607 * (e.g. the size of a single vertex in the URB).
608 *
609 * Note: the hardware will apply this offset *in addition to* the offset in
610 * vec4_instruction::offset.
611 */
612 GS_OPCODE_SET_WRITE_OFFSET,
613
614 /**
615 * Set the "GS Number of Output Vertices for Slot {0,1}" fields of a
616 * URB_WRITE message header.
617 *
618 * - dst is the MRF containing the message header.
619 *
620 * - src0.x is the vertex count. The upper 16 bits will be ignored.
621 */
622 GS_OPCODE_SET_VERTEX_COUNT,
623
624 /**
625 * Set DWORD 2 of dst to the value in src.
626 */
627 GS_OPCODE_SET_DWORD_2,
628
629 /**
630 * Prepare the dst register for storage in the "Channel Mask" fields of a
631 * URB_WRITE message header.
632 *
633 * DWORD 4 of dst is shifted left by 4 bits, so that later,
634 * GS_OPCODE_SET_CHANNEL_MASKS can OR DWORDs 0 and 4 together to form the
635 * final channel mask.
636 *
637 * Note: since GS_OPCODE_SET_CHANNEL_MASKS ORs DWORDs 0 and 4 together to
638 * form the final channel mask, DWORDs 0 and 4 of the dst register must not
639 * have any extraneous bits set prior to execution of this opcode (that is,
640 * they should be in the range 0x0 to 0xf).
641 */
642 GS_OPCODE_PREPARE_CHANNEL_MASKS,
643
644 /**
645 * Set the "Channel Mask" fields of a URB_WRITE message header.
646 *
647 * - dst is the MRF containing the message header.
648 *
649 * - src.x is the channel mask, as prepared by
650 * GS_OPCODE_PREPARE_CHANNEL_MASKS. DWORDs 0 and 4 are OR'ed together to
651 * form the final channel mask.
652 */
653 GS_OPCODE_SET_CHANNEL_MASKS,
654
655 /**
656 * Get the "Instance ID" fields from the payload.
657 *
658 * - dst is the GRF for gl_InvocationID.
659 */
660 GS_OPCODE_GET_INSTANCE_ID,
661
662 /**
663 * Send a FF_SYNC message to allocate initial URB handles (gen6).
664 *
665 * - dst will be used as the writeback register for the FF_SYNC operation.
666 *
667 * - src0 is the number of primitives written.
668 *
669 * - src1 is the value to hold in M0.0: number of SO vertices to write
670 * and number of SO primitives needed. Its value will be overwritten
671 * with the SVBI values if transform feedback is enabled.
672 *
673 * Note: This opcode uses an implicit MRF register for the ff_sync message
674 * header, so the caller is expected to set inst->base_mrf and initialize
675 * that MRF register to r0. This opcode will also write to this MRF register
676 * to include the allocated URB handle so it can then be reused directly as
677 * the header in the URB write operation we are allocating the handle for.
678 */
679 GS_OPCODE_FF_SYNC,
680
681 /**
682 * Move r0.1 (which holds PrimitiveID information in gen6) to a separate
683 * register.
684 *
685 * - dst is the GRF where PrimitiveID information will be moved.
686 */
687 GS_OPCODE_SET_PRIMITIVE_ID,
688
689 /**
690 * Write transform feedback data to the SVB by sending a SVB WRITE message.
691 * Used in gen6.
692 *
693 * - dst is the MRF register containing the message header.
694 *
695 * - src0 is the register where the vertex data is going to be copied from.
696 *
697 * - src1 is the destination register when write commit occurs.
698 */
699 GS_OPCODE_SVB_WRITE,
700
701 /**
702 * Set destination index in the SVB write message payload (M0.5). Used
703 * in gen6 for transform feedback.
704 *
705 * - dst is the header to save the destination indices for SVB WRITE.
706 * - src is the register that holds the destination indices value.
707 */
708 GS_OPCODE_SVB_SET_DST_INDEX,
709
710 /**
711 * Prepare Mx.0 subregister for being used in the FF_SYNC message header.
712 * Used in gen6 for transform feedback.
713 *
714 * - dst will hold the register with the final Mx.0 value.
715 *
716 * - src0 has the number of vertices emitted in SO (NumSOVertsToWrite)
717 *
718 * - src1 has the number of needed primitives for SO (NumSOPrimsNeeded)
719 *
720 * - src2 is the value to hold in M0: number of SO vertices to write
721 * and number of SO primitives needed.
722 */
723 GS_OPCODE_FF_SYNC_SET_PRIMITIVES,
724
725 /**
726 * Terminate the compute shader.
727 */
728 CS_OPCODE_CS_TERMINATE,
729
730 /**
731 * GLSL barrier()
732 */
733 SHADER_OPCODE_BARRIER,
734
735 /**
736 * Calculate the high 32-bits of a 32x32 multiply.
737 */
738 SHADER_OPCODE_MULH,
739
740 /**
741 * A MOV that uses VxH indirect addressing.
742 *
743 * Source 0: A register to start from (HW_REG).
744 * Source 1: An indirect offset (in bytes, UD GRF).
745 * Source 2: The length of the region that could be accessed (in bytes,
746 * UD immediate).
747 */
748 SHADER_OPCODE_MOV_INDIRECT,
749
750 VEC4_OPCODE_URB_READ,
751 TCS_OPCODE_GET_INSTANCE_ID,
752 TCS_OPCODE_URB_WRITE,
753 TCS_OPCODE_SET_INPUT_URB_OFFSETS,
754 TCS_OPCODE_SET_OUTPUT_URB_OFFSETS,
755 TCS_OPCODE_GET_PRIMITIVE_ID,
756 TCS_OPCODE_CREATE_BARRIER_HEADER,
757 TCS_OPCODE_SRC0_010_IS_ZERO,
758 TCS_OPCODE_RELEASE_INPUT,
759 TCS_OPCODE_THREAD_END,
760
761 TES_OPCODE_GET_PRIMITIVE_ID,
762 TES_OPCODE_CREATE_INPUT_READ_HEADER,
763 TES_OPCODE_ADD_INDIRECT_URB_OFFSET,
764 };
765
766 enum brw_urb_write_flags {
767 BRW_URB_WRITE_NO_FLAGS = 0,
768
769 /**
770 * Causes a new URB entry to be allocated, and its address stored in the
771 * destination register (gen < 7).
772 */
773 BRW_URB_WRITE_ALLOCATE = 0x1,
774
775 /**
776 * Causes the current URB entry to be deallocated (gen < 7).
777 */
778 BRW_URB_WRITE_UNUSED = 0x2,
779
780 /**
781 * Causes the thread to terminate.
782 */
783 BRW_URB_WRITE_EOT = 0x4,
784
785 /**
786 * Indicates that the given URB entry is complete, and may be sent further
787 * down the 3D pipeline (gen < 7).
788 */
789 BRW_URB_WRITE_COMPLETE = 0x8,
790
791 /**
792 * Indicates that an additional offset (which may be different for the two
793 * vec4 slots) is stored in the message header (gen == 7).
794 */
795 BRW_URB_WRITE_PER_SLOT_OFFSET = 0x10,
796
797 /**
798 * Indicates that the channel masks in the URB_WRITE message header should
799 * not be overridden to 0xff (gen == 7).
800 */
801 BRW_URB_WRITE_USE_CHANNEL_MASKS = 0x20,
802
803 /**
804 * Indicates that the data should be sent to the URB using the
805 * URB_WRITE_OWORD message rather than URB_WRITE_HWORD (gen == 7). This
806 * causes offsets to be interpreted as multiples of an OWORD instead of an
807 * HWORD, and only allows one OWORD to be written.
808 */
809 BRW_URB_WRITE_OWORD = 0x40,
810
811 /**
812 * Convenient combination of flags: end the thread while simultaneously
813 * marking the given URB entry as complete.
814 */
815 BRW_URB_WRITE_EOT_COMPLETE = BRW_URB_WRITE_EOT | BRW_URB_WRITE_COMPLETE,
816
817 /**
818 * Convenient combination of flags: mark the given URB entry as complete
819 * and simultaneously allocate a new one.
820 */
821 BRW_URB_WRITE_ALLOCATE_COMPLETE =
822 BRW_URB_WRITE_ALLOCATE | BRW_URB_WRITE_COMPLETE,
823 };
824
825 enum fb_write_logical_srcs {
826 FB_WRITE_LOGICAL_SRC_COLOR0, /* REQUIRED */
827 FB_WRITE_LOGICAL_SRC_COLOR1, /* for dual source blend messages */
828 FB_WRITE_LOGICAL_SRC_SRC0_ALPHA,
829 FB_WRITE_LOGICAL_SRC_SRC_DEPTH, /* gl_FragDepth */
830 FB_WRITE_LOGICAL_SRC_DST_DEPTH, /* GEN4-5: passthrough from thread */
831 FB_WRITE_LOGICAL_SRC_SRC_STENCIL, /* gl_FragStencilRefARB */
832 FB_WRITE_LOGICAL_SRC_OMASK, /* Sample Mask (gl_SampleMask) */
833 FB_WRITE_LOGICAL_SRC_COMPONENTS, /* REQUIRED */
834 FB_WRITE_LOGICAL_NUM_SRCS
835 };
836
837 enum tex_logical_srcs {
838 /** Texture coordinates */
839 TEX_LOGICAL_SRC_COORDINATE,
840 /** Shadow comparator */
841 TEX_LOGICAL_SRC_SHADOW_C,
842 /** dPdx if the operation takes explicit derivatives, otherwise LOD value */
843 TEX_LOGICAL_SRC_LOD,
844 /** dPdy if the operation takes explicit derivatives */
845 TEX_LOGICAL_SRC_LOD2,
846 /** Min LOD */
847 TEX_LOGICAL_SRC_MIN_LOD,
848 /** Sample index */
849 TEX_LOGICAL_SRC_SAMPLE_INDEX,
850 /** MCS data */
851 TEX_LOGICAL_SRC_MCS,
852 /** REQUIRED: Texture surface index */
853 TEX_LOGICAL_SRC_SURFACE,
854 /** Texture sampler index */
855 TEX_LOGICAL_SRC_SAMPLER,
856 /** Texture surface bindless handle */
857 TEX_LOGICAL_SRC_SURFACE_HANDLE,
858 /** Texture sampler bindless handle */
859 TEX_LOGICAL_SRC_SAMPLER_HANDLE,
860 /** Texel offset for gathers */
861 TEX_LOGICAL_SRC_TG4_OFFSET,
862 /** REQUIRED: Number of coordinate components (as UD immediate) */
863 TEX_LOGICAL_SRC_COORD_COMPONENTS,
864 /** REQUIRED: Number of derivative components (as UD immediate) */
865 TEX_LOGICAL_SRC_GRAD_COMPONENTS,
866
867 TEX_LOGICAL_NUM_SRCS,
868 };
869
870 enum surface_logical_srcs {
871 /** Surface binding table index */
872 SURFACE_LOGICAL_SRC_SURFACE,
873 /** Surface bindless handle */
874 SURFACE_LOGICAL_SRC_SURFACE_HANDLE,
875 /** Surface address; could be multi-dimensional for typed opcodes */
876 SURFACE_LOGICAL_SRC_ADDRESS,
877 /** Data to be written or used in an atomic op */
878 SURFACE_LOGICAL_SRC_DATA,
879 /** Surface number of dimensions. Affects the size of ADDRESS */
880 SURFACE_LOGICAL_SRC_IMM_DIMS,
881 /** Per-opcode immediate argument. For atomics, this is the atomic opcode */
882 SURFACE_LOGICAL_SRC_IMM_ARG,
883
884 SURFACE_LOGICAL_NUM_SRCS
885 };
886
887 #ifdef __cplusplus
888 /**
889 * Allow brw_urb_write_flags enums to be ORed together.
890 */
891 inline brw_urb_write_flags
892 operator|(brw_urb_write_flags x, brw_urb_write_flags y)
893 {
894 return static_cast<brw_urb_write_flags>(static_cast<int>(x) |
895 static_cast<int>(y));
896 }
897 #endif
898
899 enum PACKED brw_predicate {
900 BRW_PREDICATE_NONE = 0,
901 BRW_PREDICATE_NORMAL = 1,
902 BRW_PREDICATE_ALIGN1_ANYV = 2,
903 BRW_PREDICATE_ALIGN1_ALLV = 3,
904 BRW_PREDICATE_ALIGN1_ANY2H = 4,
905 BRW_PREDICATE_ALIGN1_ALL2H = 5,
906 BRW_PREDICATE_ALIGN1_ANY4H = 6,
907 BRW_PREDICATE_ALIGN1_ALL4H = 7,
908 BRW_PREDICATE_ALIGN1_ANY8H = 8,
909 BRW_PREDICATE_ALIGN1_ALL8H = 9,
910 BRW_PREDICATE_ALIGN1_ANY16H = 10,
911 BRW_PREDICATE_ALIGN1_ALL16H = 11,
912 BRW_PREDICATE_ALIGN1_ANY32H = 12,
913 BRW_PREDICATE_ALIGN1_ALL32H = 13,
914 BRW_PREDICATE_ALIGN16_REPLICATE_X = 2,
915 BRW_PREDICATE_ALIGN16_REPLICATE_Y = 3,
916 BRW_PREDICATE_ALIGN16_REPLICATE_Z = 4,
917 BRW_PREDICATE_ALIGN16_REPLICATE_W = 5,
918 BRW_PREDICATE_ALIGN16_ANY4H = 6,
919 BRW_PREDICATE_ALIGN16_ALL4H = 7,
920 };
921
922 enum PACKED brw_reg_file {
923 BRW_ARCHITECTURE_REGISTER_FILE = 0,
924 BRW_GENERAL_REGISTER_FILE = 1,
925 BRW_MESSAGE_REGISTER_FILE = 2,
926 BRW_IMMEDIATE_VALUE = 3,
927
928 ARF = BRW_ARCHITECTURE_REGISTER_FILE,
929 FIXED_GRF = BRW_GENERAL_REGISTER_FILE,
930 MRF = BRW_MESSAGE_REGISTER_FILE,
931 IMM = BRW_IMMEDIATE_VALUE,
932
933 /* These are not hardware values */
934 VGRF,
935 ATTR,
936 UNIFORM, /* prog_data->params[reg] */
937 BAD_FILE,
938 };
939
940 enum PACKED gen10_align1_3src_reg_file {
941 BRW_ALIGN1_3SRC_GENERAL_REGISTER_FILE = 0,
942 BRW_ALIGN1_3SRC_IMMEDIATE_VALUE = 1, /* src0, src2 */
943 BRW_ALIGN1_3SRC_ACCUMULATOR = 1, /* dest, src1 */
944 };
945
946 /* CNL adds Align1 support for 3-src instructions. Bit 35 of the instruction
947 * word is "Execution Datatype" which controls whether the instruction operates
948 * on float or integer types. The register arguments have fields that offer
949 * more fine control their respective types.
950 */
951 enum PACKED gen10_align1_3src_exec_type {
952 BRW_ALIGN1_3SRC_EXEC_TYPE_INT = 0,
953 BRW_ALIGN1_3SRC_EXEC_TYPE_FLOAT = 1,
954 };
955
956 #define BRW_ARF_NULL 0x00
957 #define BRW_ARF_ADDRESS 0x10
958 #define BRW_ARF_ACCUMULATOR 0x20
959 #define BRW_ARF_FLAG 0x30
960 #define BRW_ARF_MASK 0x40
961 #define BRW_ARF_MASK_STACK 0x50
962 #define BRW_ARF_MASK_STACK_DEPTH 0x60
963 #define BRW_ARF_STATE 0x70
964 #define BRW_ARF_CONTROL 0x80
965 #define BRW_ARF_NOTIFICATION_COUNT 0x90
966 #define BRW_ARF_IP 0xA0
967 #define BRW_ARF_TDR 0xB0
968 #define BRW_ARF_TIMESTAMP 0xC0
969
970 #define BRW_MRF_COMPR4 (1 << 7)
971
972 #define BRW_AMASK 0
973 #define BRW_IMASK 1
974 #define BRW_LMASK 2
975 #define BRW_CMASK 3
976
977
978
979 #define BRW_THREAD_NORMAL 0
980 #define BRW_THREAD_ATOMIC 1
981 #define BRW_THREAD_SWITCH 2
982
983 enum PACKED brw_vertical_stride {
984 BRW_VERTICAL_STRIDE_0 = 0,
985 BRW_VERTICAL_STRIDE_1 = 1,
986 BRW_VERTICAL_STRIDE_2 = 2,
987 BRW_VERTICAL_STRIDE_4 = 3,
988 BRW_VERTICAL_STRIDE_8 = 4,
989 BRW_VERTICAL_STRIDE_16 = 5,
990 BRW_VERTICAL_STRIDE_32 = 6,
991 BRW_VERTICAL_STRIDE_ONE_DIMENSIONAL = 0xF,
992 };
993
994 enum PACKED gen10_align1_3src_vertical_stride {
995 BRW_ALIGN1_3SRC_VERTICAL_STRIDE_0 = 0,
996 BRW_ALIGN1_3SRC_VERTICAL_STRIDE_1 = 1,
997 BRW_ALIGN1_3SRC_VERTICAL_STRIDE_2 = 1,
998 BRW_ALIGN1_3SRC_VERTICAL_STRIDE_4 = 2,
999 BRW_ALIGN1_3SRC_VERTICAL_STRIDE_8 = 3,
1000 };
1001
1002 enum PACKED brw_width {
1003 BRW_WIDTH_1 = 0,
1004 BRW_WIDTH_2 = 1,
1005 BRW_WIDTH_4 = 2,
1006 BRW_WIDTH_8 = 3,
1007 BRW_WIDTH_16 = 4,
1008 };
1009
1010 /**
1011 * Gen12+ SWSB SBID synchronization mode.
1012 *
1013 * This is represented as a bitmask including any required SBID token
1014 * synchronization modes, used to synchronize out-of-order instructions. Only
1015 * the strongest mode of the mask will be provided to the hardware in the SWSB
1016 * field of an actual hardware instruction, but virtual instructions may be
1017 * able to take into account multiple of them.
1018 */
1019 enum tgl_sbid_mode {
1020 TGL_SBID_NULL = 0,
1021 TGL_SBID_SRC = 1,
1022 TGL_SBID_DST = 2,
1023 TGL_SBID_SET = 4
1024 };
1025
1026 #ifdef __cplusplus
1027 /**
1028 * Allow bitwise arithmetic of tgl_sbid_mode enums.
1029 */
1030 inline tgl_sbid_mode
1031 operator|(tgl_sbid_mode x, tgl_sbid_mode y)
1032 {
1033 return tgl_sbid_mode(unsigned(x) | unsigned(y));
1034 }
1035
1036 inline tgl_sbid_mode
1037 operator&(tgl_sbid_mode x, tgl_sbid_mode y)
1038 {
1039 return tgl_sbid_mode(unsigned(x) & unsigned(y));
1040 }
1041
1042 inline tgl_sbid_mode &
1043 operator|=(tgl_sbid_mode &x, tgl_sbid_mode y)
1044 {
1045 return x = x | y;
1046 }
1047
1048 #endif
1049
1050 /**
1051 * Logical representation of the SWSB scheduling information of a hardware
1052 * instruction. The binary representation is slightly more compact.
1053 */
1054 struct tgl_swsb {
1055 unsigned regdist : 3;
1056 unsigned sbid : 4;
1057 enum tgl_sbid_mode mode : 3;
1058 };
1059
1060 /**
1061 * Construct a scheduling annotation with a single RegDist dependency. This
1062 * synchronizes with the completion of the d-th previous in-order instruction.
1063 * The index is one-based, zero causes a no-op tgl_swsb to be constructed.
1064 */
1065 static inline struct tgl_swsb
1066 tgl_swsb_regdist(unsigned d)
1067 {
1068 const struct tgl_swsb swsb = { d };
1069 assert(swsb.regdist == d);
1070 return swsb;
1071 }
1072
1073 /**
1074 * Construct a scheduling annotation that synchronizes with the specified SBID
1075 * token.
1076 */
1077 static inline struct tgl_swsb
1078 tgl_swsb_sbid(enum tgl_sbid_mode mode, unsigned sbid)
1079 {
1080 const struct tgl_swsb swsb = { 0, sbid, mode };
1081 assert(swsb.sbid == sbid);
1082 return swsb;
1083 }
1084
1085 /**
1086 * Construct a no-op scheduling annotation.
1087 */
1088 static inline struct tgl_swsb
1089 tgl_swsb_null(void)
1090 {
1091 return tgl_swsb_regdist(0);
1092 }
1093
1094 /**
1095 * Return a scheduling annotation that allocates the same SBID synchronization
1096 * token as \p swsb. In addition it will synchronize against a previous
1097 * in-order instruction if \p regdist is non-zero.
1098 */
1099 static inline struct tgl_swsb
1100 tgl_swsb_dst_dep(struct tgl_swsb swsb, unsigned regdist)
1101 {
1102 swsb.regdist = regdist;
1103 swsb.mode = swsb.mode & TGL_SBID_SET;
1104 return swsb;
1105 }
1106
1107 /**
1108 * Return a scheduling annotation that synchronizes against the same SBID and
1109 * RegDist dependencies as \p swsb, but doesn't allocate any SBID token.
1110 */
1111 static inline struct tgl_swsb
1112 tgl_swsb_src_dep(struct tgl_swsb swsb)
1113 {
1114 swsb.mode = swsb.mode & (TGL_SBID_SRC | TGL_SBID_DST);
1115 return swsb;
1116 }
1117
1118 /**
1119 * Convert the provided tgl_swsb to the hardware's binary representation of an
1120 * SWSB annotation.
1121 */
1122 static inline uint8_t
1123 tgl_swsb_encode(struct tgl_swsb swsb)
1124 {
1125 if (!swsb.mode) {
1126 return swsb.regdist;
1127 } else if (swsb.regdist) {
1128 return 0x80 | swsb.regdist << 4 | swsb.sbid;
1129 } else {
1130 return swsb.sbid | (swsb.mode & TGL_SBID_SET ? 0x40 :
1131 swsb.mode & TGL_SBID_DST ? 0x20 : 0x30);
1132 }
1133 }
1134
1135 /**
1136 * Convert the provided binary representation of an SWSB annotation to a
1137 * tgl_swsb.
1138 */
1139 static inline struct tgl_swsb
1140 tgl_swsb_decode(uint8_t x)
1141 {
1142 if (x & 0x80) {
1143 const struct tgl_swsb swsb = { (x & 0x70u) >> 4, x & 0xfu,
1144 TGL_SBID_DST | TGL_SBID_SET };
1145 return swsb;
1146 } else if ((x & 0x70) == 0x20) {
1147 return tgl_swsb_sbid(TGL_SBID_DST, x & 0xfu);
1148 } else if ((x & 0x70) == 0x30) {
1149 return tgl_swsb_sbid(TGL_SBID_SRC, x & 0xfu);
1150 } else if ((x & 0x70) == 0x40) {
1151 return tgl_swsb_sbid(TGL_SBID_SET, x & 0xfu);
1152 } else {
1153 return tgl_swsb_regdist(x & 0x7u);
1154 }
1155 }
1156
1157 enum tgl_sync_function {
1158 TGL_SYNC_NOP = 0x0,
1159 TGL_SYNC_ALLRD = 0x2,
1160 TGL_SYNC_ALLWR = 0x3,
1161 TGL_SYNC_BAR = 0xe,
1162 TGL_SYNC_HOST = 0xf
1163 };
1164
1165 /**
1166 * Message target: Shared Function ID for where to SEND a message.
1167 *
1168 * These are enumerated in the ISA reference under "send - Send Message".
1169 * In particular, see the following tables:
1170 * - G45 PRM, Volume 4, Table 14-15 "Message Descriptor Definition"
1171 * - Sandybridge PRM, Volume 4 Part 2, Table 8-16 "Extended Message Descriptor"
1172 * - Ivybridge PRM, Volume 1 Part 1, section 3.2.7 "GPE Function IDs"
1173 */
1174 enum brw_message_target {
1175 BRW_SFID_NULL = 0,
1176 BRW_SFID_MATH = 1, /* Only valid on Gen4-5 */
1177 BRW_SFID_SAMPLER = 2,
1178 BRW_SFID_MESSAGE_GATEWAY = 3,
1179 BRW_SFID_DATAPORT_READ = 4,
1180 BRW_SFID_DATAPORT_WRITE = 5,
1181 BRW_SFID_URB = 6,
1182 BRW_SFID_THREAD_SPAWNER = 7,
1183 BRW_SFID_VME = 8,
1184
1185 GEN6_SFID_DATAPORT_SAMPLER_CACHE = 4,
1186 GEN6_SFID_DATAPORT_RENDER_CACHE = 5,
1187 GEN6_SFID_DATAPORT_CONSTANT_CACHE = 9,
1188
1189 GEN7_SFID_DATAPORT_DATA_CACHE = 10,
1190 GEN7_SFID_PIXEL_INTERPOLATOR = 11,
1191 HSW_SFID_DATAPORT_DATA_CACHE_1 = 12,
1192 HSW_SFID_CRE = 13,
1193 };
1194
1195 #define GEN7_MESSAGE_TARGET_DP_DATA_CACHE 10
1196
1197 #define BRW_SAMPLER_RETURN_FORMAT_FLOAT32 0
1198 #define BRW_SAMPLER_RETURN_FORMAT_UINT32 2
1199 #define BRW_SAMPLER_RETURN_FORMAT_SINT32 3
1200
1201 #define BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE 0
1202 #define BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE 0
1203 #define BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS 0
1204 #define BRW_SAMPLER_MESSAGE_SIMD8_KILLPIX 1
1205 #define BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_LOD 1
1206 #define BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD 1
1207 #define BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_GRADIENTS 2
1208 #define BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS 2
1209 #define BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_COMPARE 0
1210 #define BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE 2
1211 #define BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE 0
1212 #define BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_LOD_COMPARE 1
1213 #define BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE 1
1214 #define BRW_SAMPLER_MESSAGE_SIMD4X2_RESINFO 2
1215 #define BRW_SAMPLER_MESSAGE_SIMD16_RESINFO 2
1216 #define BRW_SAMPLER_MESSAGE_SIMD4X2_LD 3
1217 #define BRW_SAMPLER_MESSAGE_SIMD8_LD 3
1218 #define BRW_SAMPLER_MESSAGE_SIMD16_LD 3
1219
1220 #define GEN5_SAMPLER_MESSAGE_SAMPLE 0
1221 #define GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS 1
1222 #define GEN5_SAMPLER_MESSAGE_SAMPLE_LOD 2
1223 #define GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE 3
1224 #define GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS 4
1225 #define GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE 5
1226 #define GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE 6
1227 #define GEN5_SAMPLER_MESSAGE_SAMPLE_LD 7
1228 #define GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4 8
1229 #define GEN5_SAMPLER_MESSAGE_LOD 9
1230 #define GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO 10
1231 #define GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO 11
1232 #define GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C 16
1233 #define GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO 17
1234 #define GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C 18
1235 #define HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE 20
1236 #define GEN9_SAMPLER_MESSAGE_SAMPLE_LZ 24
1237 #define GEN9_SAMPLER_MESSAGE_SAMPLE_C_LZ 25
1238 #define GEN9_SAMPLER_MESSAGE_SAMPLE_LD_LZ 26
1239 #define GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W 28
1240 #define GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS 29
1241 #define GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS 30
1242 #define GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS 31
1243
1244 /* for GEN5 only */
1245 #define BRW_SAMPLER_SIMD_MODE_SIMD4X2 0
1246 #define BRW_SAMPLER_SIMD_MODE_SIMD8 1
1247 #define BRW_SAMPLER_SIMD_MODE_SIMD16 2
1248 #define BRW_SAMPLER_SIMD_MODE_SIMD32_64 3
1249
1250 /* GEN9 changes SIMD mode 0 to mean SIMD8D, but lets us get the SIMD4x2
1251 * behavior by setting bit 22 of dword 2 in the message header. */
1252 #define GEN9_SAMPLER_SIMD_MODE_SIMD8D 0
1253 #define GEN9_SAMPLER_SIMD_MODE_EXTENSION_SIMD4X2 (1 << 22)
1254
1255 #define BRW_DATAPORT_OWORD_BLOCK_1_OWORDLOW 0
1256 #define BRW_DATAPORT_OWORD_BLOCK_1_OWORDHIGH 1
1257 #define BRW_DATAPORT_OWORD_BLOCK_2_OWORDS 2
1258 #define BRW_DATAPORT_OWORD_BLOCK_4_OWORDS 3
1259 #define BRW_DATAPORT_OWORD_BLOCK_8_OWORDS 4
1260 #define BRW_DATAPORT_OWORD_BLOCK_DWORDS(n) \
1261 ((n) == 4 ? BRW_DATAPORT_OWORD_BLOCK_1_OWORDLOW : \
1262 (n) == 8 ? BRW_DATAPORT_OWORD_BLOCK_2_OWORDS : \
1263 (n) == 16 ? BRW_DATAPORT_OWORD_BLOCK_4_OWORDS : \
1264 (n) == 32 ? BRW_DATAPORT_OWORD_BLOCK_8_OWORDS : \
1265 (abort(), ~0))
1266
1267 #define BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD 0
1268 #define BRW_DATAPORT_OWORD_DUAL_BLOCK_4OWORDS 2
1269
1270 #define BRW_DATAPORT_DWORD_SCATTERED_BLOCK_8DWORDS 2
1271 #define BRW_DATAPORT_DWORD_SCATTERED_BLOCK_16DWORDS 3
1272
1273 /* This one stays the same across generations. */
1274 #define BRW_DATAPORT_READ_MESSAGE_OWORD_BLOCK_READ 0
1275 /* GEN4 */
1276 #define BRW_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ 1
1277 #define BRW_DATAPORT_READ_MESSAGE_MEDIA_BLOCK_READ 2
1278 #define BRW_DATAPORT_READ_MESSAGE_DWORD_SCATTERED_READ 3
1279 /* G45, GEN5 */
1280 #define G45_DATAPORT_READ_MESSAGE_RENDER_UNORM_READ 1
1281 #define G45_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ 2
1282 #define G45_DATAPORT_READ_MESSAGE_AVC_LOOP_FILTER_READ 3
1283 #define G45_DATAPORT_READ_MESSAGE_MEDIA_BLOCK_READ 4
1284 #define G45_DATAPORT_READ_MESSAGE_DWORD_SCATTERED_READ 6
1285 /* GEN6 */
1286 #define GEN6_DATAPORT_READ_MESSAGE_RENDER_UNORM_READ 1
1287 #define GEN6_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ 2
1288 #define GEN6_DATAPORT_READ_MESSAGE_MEDIA_BLOCK_READ 4
1289 #define GEN6_DATAPORT_READ_MESSAGE_OWORD_UNALIGN_BLOCK_READ 5
1290 #define GEN6_DATAPORT_READ_MESSAGE_DWORD_SCATTERED_READ 6
1291
1292 #define BRW_DATAPORT_READ_TARGET_DATA_CACHE 0
1293 #define BRW_DATAPORT_READ_TARGET_RENDER_CACHE 1
1294 #define BRW_DATAPORT_READ_TARGET_SAMPLER_CACHE 2
1295
1296 #define BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE 0
1297 #define BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED 1
1298 #define BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01 2
1299 #define BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23 3
1300 #define BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01 4
1301
1302 #define BRW_DATAPORT_WRITE_MESSAGE_OWORD_BLOCK_WRITE 0
1303 #define BRW_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE 1
1304 #define BRW_DATAPORT_WRITE_MESSAGE_MEDIA_BLOCK_WRITE 2
1305 #define BRW_DATAPORT_WRITE_MESSAGE_DWORD_SCATTERED_WRITE 3
1306 #define BRW_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_WRITE 4
1307 #define BRW_DATAPORT_WRITE_MESSAGE_STREAMED_VERTEX_BUFFER_WRITE 5
1308 #define BRW_DATAPORT_WRITE_MESSAGE_FLUSH_RENDER_CACHE 7
1309
1310 /* GEN6 */
1311 #define GEN6_DATAPORT_WRITE_MESSAGE_DWORD_ATOMIC_WRITE 7
1312 #define GEN6_DATAPORT_WRITE_MESSAGE_OWORD_BLOCK_WRITE 8
1313 #define GEN6_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE 9
1314 #define GEN6_DATAPORT_WRITE_MESSAGE_MEDIA_BLOCK_WRITE 10
1315 #define GEN6_DATAPORT_WRITE_MESSAGE_DWORD_SCATTERED_WRITE 11
1316 #define GEN6_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_WRITE 12
1317 #define GEN6_DATAPORT_WRITE_MESSAGE_STREAMED_VB_WRITE 13
1318 #define GEN6_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_UNORM_WRITE 14
1319
1320 /* GEN7 */
1321 #define GEN7_DATAPORT_RC_MEDIA_BLOCK_READ 4
1322 #define GEN7_DATAPORT_RC_TYPED_SURFACE_READ 5
1323 #define GEN7_DATAPORT_RC_TYPED_ATOMIC_OP 6
1324 #define GEN7_DATAPORT_RC_MEMORY_FENCE 7
1325 #define GEN7_DATAPORT_RC_MEDIA_BLOCK_WRITE 10
1326 #define GEN7_DATAPORT_RC_RENDER_TARGET_WRITE 12
1327 #define GEN7_DATAPORT_RC_TYPED_SURFACE_WRITE 13
1328 #define GEN7_DATAPORT_DC_OWORD_BLOCK_READ 0
1329 #define GEN7_DATAPORT_DC_UNALIGNED_OWORD_BLOCK_READ 1
1330 #define GEN7_DATAPORT_DC_OWORD_DUAL_BLOCK_READ 2
1331 #define GEN7_DATAPORT_DC_DWORD_SCATTERED_READ 3
1332 #define GEN7_DATAPORT_DC_BYTE_SCATTERED_READ 4
1333 #define GEN7_DATAPORT_DC_UNTYPED_SURFACE_READ 5
1334 #define GEN7_DATAPORT_DC_UNTYPED_ATOMIC_OP 6
1335 #define GEN7_DATAPORT_DC_MEMORY_FENCE 7
1336 #define GEN7_DATAPORT_DC_OWORD_BLOCK_WRITE 8
1337 #define GEN7_DATAPORT_DC_OWORD_DUAL_BLOCK_WRITE 10
1338 #define GEN7_DATAPORT_DC_DWORD_SCATTERED_WRITE 11
1339 #define GEN7_DATAPORT_DC_BYTE_SCATTERED_WRITE 12
1340 #define GEN7_DATAPORT_DC_UNTYPED_SURFACE_WRITE 13
1341
1342 #define GEN7_DATAPORT_SCRATCH_READ ((1 << 18) | \
1343 (0 << 17))
1344 #define GEN7_DATAPORT_SCRATCH_WRITE ((1 << 18) | \
1345 (1 << 17))
1346 #define GEN7_DATAPORT_SCRATCH_NUM_REGS_SHIFT 12
1347
1348 #define GEN7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET 0
1349 #define GEN7_PIXEL_INTERPOLATOR_LOC_SAMPLE 1
1350 #define GEN7_PIXEL_INTERPOLATOR_LOC_CENTROID 2
1351 #define GEN7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET 3
1352
1353 /* HSW */
1354 #define HSW_DATAPORT_DC_PORT0_OWORD_BLOCK_READ 0
1355 #define HSW_DATAPORT_DC_PORT0_UNALIGNED_OWORD_BLOCK_READ 1
1356 #define HSW_DATAPORT_DC_PORT0_OWORD_DUAL_BLOCK_READ 2
1357 #define HSW_DATAPORT_DC_PORT0_DWORD_SCATTERED_READ 3
1358 #define HSW_DATAPORT_DC_PORT0_BYTE_SCATTERED_READ 4
1359 #define HSW_DATAPORT_DC_PORT0_MEMORY_FENCE 7
1360 #define HSW_DATAPORT_DC_PORT0_OWORD_BLOCK_WRITE 8
1361 #define HSW_DATAPORT_DC_PORT0_OWORD_DUAL_BLOCK_WRITE 10
1362 #define HSW_DATAPORT_DC_PORT0_DWORD_SCATTERED_WRITE 11
1363 #define HSW_DATAPORT_DC_PORT0_BYTE_SCATTERED_WRITE 12
1364
1365 #define HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_READ 1
1366 #define HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP 2
1367 #define HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP_SIMD4X2 3
1368 #define HSW_DATAPORT_DC_PORT1_MEDIA_BLOCK_READ 4
1369 #define HSW_DATAPORT_DC_PORT1_TYPED_SURFACE_READ 5
1370 #define HSW_DATAPORT_DC_PORT1_TYPED_ATOMIC_OP 6
1371 #define HSW_DATAPORT_DC_PORT1_TYPED_ATOMIC_OP_SIMD4X2 7
1372 #define HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_WRITE 9
1373 #define HSW_DATAPORT_DC_PORT1_MEDIA_BLOCK_WRITE 10
1374 #define HSW_DATAPORT_DC_PORT1_ATOMIC_COUNTER_OP 11
1375 #define HSW_DATAPORT_DC_PORT1_ATOMIC_COUNTER_OP_SIMD4X2 12
1376 #define HSW_DATAPORT_DC_PORT1_TYPED_SURFACE_WRITE 13
1377 #define GEN9_DATAPORT_DC_PORT1_A64_SCATTERED_READ 0x10
1378 #define GEN8_DATAPORT_DC_PORT1_A64_UNTYPED_SURFACE_READ 0x11
1379 #define GEN8_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_OP 0x12
1380 #define GEN8_DATAPORT_DC_PORT1_A64_UNTYPED_SURFACE_WRITE 0x19
1381 #define GEN8_DATAPORT_DC_PORT1_A64_SCATTERED_WRITE 0x1a
1382 #define GEN9_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_FLOAT_OP 0x1b
1383 #define GEN9_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_FLOAT_OP 0x1d
1384
1385 /* GEN9 */
1386 #define GEN9_DATAPORT_RC_RENDER_TARGET_WRITE 12
1387 #define GEN9_DATAPORT_RC_RENDER_TARGET_READ 13
1388
1389 /* A64 scattered message subtype */
1390 #define GEN8_A64_SCATTERED_SUBTYPE_BYTE 0
1391 #define GEN8_A64_SCATTERED_SUBTYPE_DWORD 1
1392 #define GEN8_A64_SCATTERED_SUBTYPE_QWORD 2
1393 #define GEN8_A64_SCATTERED_SUBTYPE_HWORD 3
1394
1395 /* Dataport special binding table indices: */
1396 #define BRW_BTI_STATELESS 255
1397 #define GEN7_BTI_SLM 254
1398 /* Note that on Gen8+ BTI 255 was redefined to be IA-coherent according to the
1399 * hardware spec, however because the DRM sets bit 4 of HDC_CHICKEN0 on BDW,
1400 * CHV and at least some pre-production steppings of SKL due to
1401 * WaForceEnableNonCoherent, HDC memory access may have been overridden by the
1402 * kernel to be non-coherent (matching the behavior of the same BTI on
1403 * pre-Gen8 hardware) and BTI 255 may actually be an alias for BTI 253.
1404 */
1405 #define GEN8_BTI_STATELESS_IA_COHERENT 255
1406 #define GEN8_BTI_STATELESS_NON_COHERENT 253
1407 #define GEN9_BTI_BINDLESS 252
1408
1409 /* Dataport atomic operations for Untyped Atomic Integer Operation message
1410 * (and others).
1411 */
1412 #define BRW_AOP_AND 1
1413 #define BRW_AOP_OR 2
1414 #define BRW_AOP_XOR 3
1415 #define BRW_AOP_MOV 4
1416 #define BRW_AOP_INC 5
1417 #define BRW_AOP_DEC 6
1418 #define BRW_AOP_ADD 7
1419 #define BRW_AOP_SUB 8
1420 #define BRW_AOP_REVSUB 9
1421 #define BRW_AOP_IMAX 10
1422 #define BRW_AOP_IMIN 11
1423 #define BRW_AOP_UMAX 12
1424 #define BRW_AOP_UMIN 13
1425 #define BRW_AOP_CMPWR 14
1426 #define BRW_AOP_PREDEC 15
1427
1428 /* Dataport atomic operations for Untyped Atomic Float Operation message. */
1429 #define BRW_AOP_FMAX 1
1430 #define BRW_AOP_FMIN 2
1431 #define BRW_AOP_FCMPWR 3
1432
1433 #define BRW_MATH_FUNCTION_INV 1
1434 #define BRW_MATH_FUNCTION_LOG 2
1435 #define BRW_MATH_FUNCTION_EXP 3
1436 #define BRW_MATH_FUNCTION_SQRT 4
1437 #define BRW_MATH_FUNCTION_RSQ 5
1438 #define BRW_MATH_FUNCTION_SIN 6
1439 #define BRW_MATH_FUNCTION_COS 7
1440 #define BRW_MATH_FUNCTION_SINCOS 8 /* gen4, gen5 */
1441 #define BRW_MATH_FUNCTION_FDIV 9 /* gen6+ */
1442 #define BRW_MATH_FUNCTION_POW 10
1443 #define BRW_MATH_FUNCTION_INT_DIV_QUOTIENT_AND_REMAINDER 11
1444 #define BRW_MATH_FUNCTION_INT_DIV_QUOTIENT 12
1445 #define BRW_MATH_FUNCTION_INT_DIV_REMAINDER 13
1446 #define GEN8_MATH_FUNCTION_INVM 14
1447 #define GEN8_MATH_FUNCTION_RSQRTM 15
1448
1449 #define BRW_MATH_INTEGER_UNSIGNED 0
1450 #define BRW_MATH_INTEGER_SIGNED 1
1451
1452 #define BRW_MATH_PRECISION_FULL 0
1453 #define BRW_MATH_PRECISION_PARTIAL 1
1454
1455 #define BRW_MATH_SATURATE_NONE 0
1456 #define BRW_MATH_SATURATE_SATURATE 1
1457
1458 #define BRW_MATH_DATA_VECTOR 0
1459 #define BRW_MATH_DATA_SCALAR 1
1460
1461 #define BRW_URB_OPCODE_WRITE_HWORD 0
1462 #define BRW_URB_OPCODE_WRITE_OWORD 1
1463 #define BRW_URB_OPCODE_READ_HWORD 2
1464 #define BRW_URB_OPCODE_READ_OWORD 3
1465 #define GEN7_URB_OPCODE_ATOMIC_MOV 4
1466 #define GEN7_URB_OPCODE_ATOMIC_INC 5
1467 #define GEN8_URB_OPCODE_ATOMIC_ADD 6
1468 #define GEN8_URB_OPCODE_SIMD8_WRITE 7
1469 #define GEN8_URB_OPCODE_SIMD8_READ 8
1470
1471 #define BRW_URB_SWIZZLE_NONE 0
1472 #define BRW_URB_SWIZZLE_INTERLEAVE 1
1473 #define BRW_URB_SWIZZLE_TRANSPOSE 2
1474
1475 #define BRW_SCRATCH_SPACE_SIZE_1K 0
1476 #define BRW_SCRATCH_SPACE_SIZE_2K 1
1477 #define BRW_SCRATCH_SPACE_SIZE_4K 2
1478 #define BRW_SCRATCH_SPACE_SIZE_8K 3
1479 #define BRW_SCRATCH_SPACE_SIZE_16K 4
1480 #define BRW_SCRATCH_SPACE_SIZE_32K 5
1481 #define BRW_SCRATCH_SPACE_SIZE_64K 6
1482 #define BRW_SCRATCH_SPACE_SIZE_128K 7
1483 #define BRW_SCRATCH_SPACE_SIZE_256K 8
1484 #define BRW_SCRATCH_SPACE_SIZE_512K 9
1485 #define BRW_SCRATCH_SPACE_SIZE_1M 10
1486 #define BRW_SCRATCH_SPACE_SIZE_2M 11
1487
1488 #define BRW_MESSAGE_GATEWAY_SFID_OPEN_GATEWAY 0
1489 #define BRW_MESSAGE_GATEWAY_SFID_CLOSE_GATEWAY 1
1490 #define BRW_MESSAGE_GATEWAY_SFID_FORWARD_MSG 2
1491 #define BRW_MESSAGE_GATEWAY_SFID_GET_TIMESTAMP 3
1492 #define BRW_MESSAGE_GATEWAY_SFID_BARRIER_MSG 4
1493 #define BRW_MESSAGE_GATEWAY_SFID_UPDATE_GATEWAY_STATE 5
1494 #define BRW_MESSAGE_GATEWAY_SFID_MMIO_READ_WRITE 6
1495
1496
1497 /* Gen7 "GS URB Entry Allocation Size" is a U9-1 field, so the maximum gs_size
1498 * is 2^9, or 512. It's counted in multiples of 64 bytes.
1499 *
1500 * Identical for VS, DS, and HS.
1501 */
1502 #define GEN7_MAX_GS_URB_ENTRY_SIZE_BYTES (512*64)
1503 #define GEN7_MAX_DS_URB_ENTRY_SIZE_BYTES (512*64)
1504 #define GEN7_MAX_HS_URB_ENTRY_SIZE_BYTES (512*64)
1505 #define GEN7_MAX_VS_URB_ENTRY_SIZE_BYTES (512*64)
1506
1507 /* Gen6 "GS URB Entry Allocation Size" is defined as a number of 1024-bit
1508 * (128 bytes) URB rows and the maximum allowed value is 5 rows.
1509 */
1510 #define GEN6_MAX_GS_URB_ENTRY_SIZE_BYTES (5*128)
1511
1512 /* GS Thread Payload
1513 */
1514
1515 /* 3DSTATE_GS "Output Vertex Size" has an effective maximum of 62. It's
1516 * counted in multiples of 16 bytes.
1517 */
1518 #define GEN7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES (62*16)
1519
1520
1521 /* R0 */
1522 # define GEN7_GS_PAYLOAD_INSTANCE_ID_SHIFT 27
1523
1524 /* CR0.0[5:4] Floating-Point Rounding Modes
1525 * Skylake PRM, Volume 7 Part 1, "Control Register", page 756
1526 */
1527
1528 #define BRW_CR0_RND_MODE_MASK 0x30
1529 #define BRW_CR0_RND_MODE_SHIFT 4
1530
1531 enum PACKED brw_rnd_mode {
1532 BRW_RND_MODE_RTNE = 0, /* Round to Nearest or Even */
1533 BRW_RND_MODE_RU = 1, /* Round Up, toward +inf */
1534 BRW_RND_MODE_RD = 2, /* Round Down, toward -inf */
1535 BRW_RND_MODE_RTZ = 3, /* Round Toward Zero */
1536 BRW_RND_MODE_UNSPECIFIED, /* Unspecified rounding mode */
1537 };
1538
1539 #define BRW_CR0_FP64_DENORM_PRESERVE (1 << 6)
1540 #define BRW_CR0_FP32_DENORM_PRESERVE (1 << 7)
1541 #define BRW_CR0_FP16_DENORM_PRESERVE (1 << 10)
1542
1543 #define BRW_CR0_FP_MODE_MASK (BRW_CR0_FP64_DENORM_PRESERVE | \
1544 BRW_CR0_FP32_DENORM_PRESERVE | \
1545 BRW_CR0_FP16_DENORM_PRESERVE | \
1546 BRW_CR0_RND_MODE_MASK)
1547
1548 /* MDC_DS - Data Size Message Descriptor Control Field
1549 * Skylake PRM, Volume 2d, page 129
1550 *
1551 * Specifies the number of Bytes to be read or written per Dword used at
1552 * byte_scattered read/write and byte_scaled read/write messages.
1553 */
1554 #define GEN7_BYTE_SCATTERED_DATA_ELEMENT_BYTE 0
1555 #define GEN7_BYTE_SCATTERED_DATA_ELEMENT_WORD 1
1556 #define GEN7_BYTE_SCATTERED_DATA_ELEMENT_DWORD 2
1557
1558 #endif /* BRW_EU_DEFINES_H */