intel: compiler: remove duplicated code
[mesa.git] / src / intel / compiler / brw_eu_validate.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_eu_validate.c
25 *
26 * This file implements a pass that validates shader assembly.
27 */
28
29 #include "brw_eu.h"
30
31 /* We're going to do lots of string concatenation, so this should help. */
32 struct string {
33 char *str;
34 size_t len;
35 };
36
37 static void
38 cat(struct string *dest, const struct string src)
39 {
40 dest->str = realloc(dest->str, dest->len + src.len + 1);
41 memcpy(dest->str + dest->len, src.str, src.len);
42 dest->str[dest->len + src.len] = '\0';
43 dest->len = dest->len + src.len;
44 }
45 #define CAT(dest, src) cat(&dest, (struct string){src, strlen(src)})
46
47 #define error(str) "\tERROR: " str "\n"
48 #define ERROR_INDENT "\t "
49
50 #define ERROR(msg) ERROR_IF(true, msg)
51 #define ERROR_IF(cond, msg) \
52 do { \
53 if (cond) { \
54 CAT(error_msg, error(msg)); \
55 } \
56 } while(0)
57
58 #define CHECK(func, args...) \
59 do { \
60 struct string __msg = func(devinfo, inst, ##args); \
61 if (__msg.str) { \
62 cat(&error_msg, __msg); \
63 free(__msg.str); \
64 } \
65 } while (0)
66
67 static bool
68 inst_is_send(const struct gen_device_info *devinfo, const brw_inst *inst)
69 {
70 switch (brw_inst_opcode(devinfo, inst)) {
71 case BRW_OPCODE_SEND:
72 case BRW_OPCODE_SENDC:
73 case BRW_OPCODE_SENDS:
74 case BRW_OPCODE_SENDSC:
75 return true;
76 default:
77 return false;
78 }
79 }
80
81 static unsigned
82 signed_type(unsigned type)
83 {
84 switch (type) {
85 case BRW_HW_REG_TYPE_UD: return BRW_HW_REG_TYPE_D;
86 case BRW_HW_REG_TYPE_UW: return BRW_HW_REG_TYPE_W;
87 case BRW_HW_REG_NON_IMM_TYPE_UB: return BRW_HW_REG_NON_IMM_TYPE_B;
88 case GEN8_HW_REG_TYPE_UQ: return GEN8_HW_REG_TYPE_Q;
89 default: return type;
90 }
91 }
92
93 static bool
94 inst_is_raw_move(const struct gen_device_info *devinfo, const brw_inst *inst)
95 {
96 unsigned dst_type = signed_type(brw_inst_dst_reg_type(devinfo, inst));
97 unsigned src_type = signed_type(brw_inst_src0_reg_type(devinfo, inst));
98
99 if (brw_inst_src0_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
100 (brw_inst_src0_negate(devinfo, inst) ||
101 brw_inst_src0_abs(devinfo, inst)))
102 return false;
103
104 return brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MOV &&
105 brw_inst_saturate(devinfo, inst) == 0 &&
106 dst_type == src_type;
107 }
108
109 static bool
110 dst_is_null(const struct gen_device_info *devinfo, const brw_inst *inst)
111 {
112 return brw_inst_dst_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
113 brw_inst_dst_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
114 }
115
116 static bool
117 src0_is_null(const struct gen_device_info *devinfo, const brw_inst *inst)
118 {
119 return brw_inst_src0_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
120 brw_inst_src0_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
121 }
122
123 static bool
124 src1_is_null(const struct gen_device_info *devinfo, const brw_inst *inst)
125 {
126 return brw_inst_src1_reg_file(devinfo, inst) == BRW_ARCHITECTURE_REGISTER_FILE &&
127 brw_inst_src1_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
128 }
129
130 static bool
131 src0_is_grf(const struct gen_device_info *devinfo, const brw_inst *inst)
132 {
133 return brw_inst_src0_reg_file(devinfo, inst) == BRW_GENERAL_REGISTER_FILE;
134 }
135
136 static bool
137 src0_has_scalar_region(const struct gen_device_info *devinfo, const brw_inst *inst)
138 {
139 return brw_inst_src0_vstride(devinfo, inst) == BRW_VERTICAL_STRIDE_0 &&
140 brw_inst_src0_width(devinfo, inst) == BRW_WIDTH_1 &&
141 brw_inst_src0_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0;
142 }
143
144 static bool
145 src1_has_scalar_region(const struct gen_device_info *devinfo, const brw_inst *inst)
146 {
147 return brw_inst_src1_vstride(devinfo, inst) == BRW_VERTICAL_STRIDE_0 &&
148 brw_inst_src1_width(devinfo, inst) == BRW_WIDTH_1 &&
149 brw_inst_src1_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0;
150 }
151
152 static unsigned
153 num_sources_from_inst(const struct gen_device_info *devinfo,
154 const brw_inst *inst)
155 {
156 const struct opcode_desc *desc =
157 brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst));
158 unsigned math_function;
159
160 if (brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MATH) {
161 math_function = brw_inst_math_function(devinfo, inst);
162 } else if (devinfo->gen < 6 &&
163 brw_inst_opcode(devinfo, inst) == BRW_OPCODE_SEND) {
164 if (brw_inst_sfid(devinfo, inst) == BRW_SFID_MATH) {
165 /* src1 must be a descriptor (including the information to determine
166 * that the SEND is doing an extended math operation), but src0 can
167 * actually be null since it serves as the source of the implicit GRF
168 * to MRF move.
169 *
170 * If we stop using that functionality, we'll have to revisit this.
171 */
172 return 2;
173 } else {
174 /* Send instructions are allowed to have null sources since they use
175 * the base_mrf field to specify which message register source.
176 */
177 return 0;
178 }
179 } else {
180 assert(desc->nsrc < 4);
181 return desc->nsrc;
182 }
183
184 switch (math_function) {
185 case BRW_MATH_FUNCTION_INV:
186 case BRW_MATH_FUNCTION_LOG:
187 case BRW_MATH_FUNCTION_EXP:
188 case BRW_MATH_FUNCTION_SQRT:
189 case BRW_MATH_FUNCTION_RSQ:
190 case BRW_MATH_FUNCTION_SIN:
191 case BRW_MATH_FUNCTION_COS:
192 case BRW_MATH_FUNCTION_SINCOS:
193 case GEN8_MATH_FUNCTION_INVM:
194 case GEN8_MATH_FUNCTION_RSQRTM:
195 return 1;
196 case BRW_MATH_FUNCTION_FDIV:
197 case BRW_MATH_FUNCTION_POW:
198 case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT_AND_REMAINDER:
199 case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT:
200 case BRW_MATH_FUNCTION_INT_DIV_REMAINDER:
201 return 2;
202 default:
203 unreachable("not reached");
204 }
205 }
206
207 static struct string
208 sources_not_null(const struct gen_device_info *devinfo,
209 const brw_inst *inst)
210 {
211 unsigned num_sources = num_sources_from_inst(devinfo, inst);
212 struct string error_msg = { .str = NULL, .len = 0 };
213
214 /* Nothing to test. 3-src instructions can only have GRF sources, and
215 * there's no bit to control the file.
216 */
217 if (num_sources == 3)
218 return (struct string){};
219
220 if (num_sources >= 1)
221 ERROR_IF(src0_is_null(devinfo, inst), "src0 is null");
222
223 if (num_sources == 2)
224 ERROR_IF(src1_is_null(devinfo, inst), "src1 is null");
225
226 return error_msg;
227 }
228
229 static struct string
230 send_restrictions(const struct gen_device_info *devinfo,
231 const brw_inst *inst)
232 {
233 struct string error_msg = { .str = NULL, .len = 0 };
234
235 if (brw_inst_opcode(devinfo, inst) == BRW_OPCODE_SEND) {
236 ERROR_IF(brw_inst_src0_address_mode(devinfo, inst) != BRW_ADDRESS_DIRECT,
237 "send must use direct addressing");
238
239 if (devinfo->gen >= 7) {
240 ERROR_IF(!src0_is_grf(devinfo, inst), "send from non-GRF");
241 ERROR_IF(brw_inst_eot(devinfo, inst) &&
242 brw_inst_src0_da_reg_nr(devinfo, inst) < 112,
243 "send with EOT must use g112-g127");
244 }
245 }
246
247 return error_msg;
248 }
249
250 static bool
251 is_unsupported_inst(const struct gen_device_info *devinfo,
252 const brw_inst *inst)
253 {
254 return brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst)) == NULL;
255 }
256
257 static unsigned
258 execution_type_for_type(unsigned type, bool is_immediate)
259 {
260 /* The meaning of the type bits is dependent on whether the operand is an
261 * immediate, so normalize them first.
262 */
263 if (is_immediate) {
264 switch (type) {
265 case BRW_HW_REG_IMM_TYPE_UV:
266 case BRW_HW_REG_IMM_TYPE_V:
267 type = BRW_HW_REG_TYPE_W;
268 break;
269 case BRW_HW_REG_IMM_TYPE_VF:
270 type = BRW_HW_REG_TYPE_F;
271 break;
272 case GEN8_HW_REG_IMM_TYPE_DF:
273 type = GEN7_HW_REG_NON_IMM_TYPE_DF;
274 break;
275 case GEN8_HW_REG_IMM_TYPE_HF:
276 type = GEN8_HW_REG_NON_IMM_TYPE_HF;
277 break;
278 default:
279 break;
280 }
281 }
282
283 switch (type) {
284 case BRW_HW_REG_TYPE_UD:
285 case BRW_HW_REG_TYPE_D:
286 return BRW_HW_REG_TYPE_D;
287 case BRW_HW_REG_TYPE_UW:
288 case BRW_HW_REG_TYPE_W:
289 case BRW_HW_REG_NON_IMM_TYPE_UB:
290 case BRW_HW_REG_NON_IMM_TYPE_B:
291 return BRW_HW_REG_TYPE_W;
292 case GEN8_HW_REG_TYPE_UQ:
293 case GEN8_HW_REG_TYPE_Q:
294 return GEN8_HW_REG_TYPE_Q;
295 case BRW_HW_REG_TYPE_F:
296 case GEN7_HW_REG_NON_IMM_TYPE_DF:
297 case GEN8_HW_REG_NON_IMM_TYPE_HF:
298 return type;
299 default:
300 unreachable("not reached");
301 }
302 }
303
304 /**
305 * Returns the execution type of an instruction \p inst
306 */
307 static unsigned
308 execution_type(const struct gen_device_info *devinfo, const brw_inst *inst)
309 {
310 unsigned num_sources = num_sources_from_inst(devinfo, inst);
311 unsigned src0_exec_type, src1_exec_type;
312 unsigned src0_type = brw_inst_src0_reg_type(devinfo, inst);
313 unsigned src1_type = brw_inst_src1_reg_type(devinfo, inst);
314
315 bool src0_is_immediate =
316 brw_inst_src0_reg_file(devinfo, inst) == BRW_IMMEDIATE_VALUE;
317 bool src1_is_immediate =
318 brw_inst_src1_reg_file(devinfo, inst) == BRW_IMMEDIATE_VALUE;
319
320 /* Execution data type is independent of destination data type, except in
321 * mixed F/HF instructions on CHV and SKL+.
322 */
323 unsigned dst_exec_type = brw_inst_dst_reg_type(devinfo, inst);
324
325 src0_exec_type = execution_type_for_type(src0_type, src0_is_immediate);
326 if (num_sources == 1) {
327 if ((devinfo->gen >= 9 || devinfo->is_cherryview) &&
328 src0_exec_type == GEN8_HW_REG_NON_IMM_TYPE_HF) {
329 return dst_exec_type;
330 }
331 return src0_exec_type;
332 }
333
334 src1_exec_type = execution_type_for_type(src1_type, src1_is_immediate);
335 if (src0_exec_type == src1_exec_type)
336 return src0_exec_type;
337
338 /* Mixed operand types where one is float is float on Gen < 6
339 * (and not allowed on later platforms)
340 */
341 if (devinfo->gen < 6 &&
342 (src0_exec_type == BRW_HW_REG_TYPE_F ||
343 src1_exec_type == BRW_HW_REG_TYPE_F))
344 return BRW_HW_REG_TYPE_F;
345
346 if (src0_exec_type == GEN8_HW_REG_TYPE_Q ||
347 src1_exec_type == GEN8_HW_REG_TYPE_Q)
348 return GEN8_HW_REG_TYPE_Q;
349
350 if (src0_exec_type == BRW_HW_REG_TYPE_D ||
351 src1_exec_type == BRW_HW_REG_TYPE_D)
352 return BRW_HW_REG_TYPE_D;
353
354 if (src0_exec_type == BRW_HW_REG_TYPE_W ||
355 src1_exec_type == BRW_HW_REG_TYPE_W)
356 return BRW_HW_REG_TYPE_W;
357
358 if (src0_exec_type == GEN7_HW_REG_NON_IMM_TYPE_DF ||
359 src1_exec_type == GEN7_HW_REG_NON_IMM_TYPE_DF)
360 return GEN7_HW_REG_NON_IMM_TYPE_DF;
361
362 if (devinfo->gen >= 9 || devinfo->is_cherryview) {
363 if (dst_exec_type == BRW_HW_REG_TYPE_F ||
364 src0_exec_type == BRW_HW_REG_TYPE_F ||
365 src1_exec_type == BRW_HW_REG_TYPE_F) {
366 return BRW_HW_REG_TYPE_F;
367 } else {
368 return GEN8_HW_REG_NON_IMM_TYPE_HF;
369 }
370 }
371
372 assert(src0_exec_type == BRW_HW_REG_TYPE_F);
373 return BRW_HW_REG_TYPE_F;
374 }
375
376 /**
377 * Returns whether a region is packed
378 *
379 * A region is packed if its elements are adjacent in memory, with no
380 * intervening space, no overlap, and no replicated values.
381 */
382 static bool
383 is_packed(unsigned vstride, unsigned width, unsigned hstride)
384 {
385 if (vstride == width) {
386 if (vstride == 1) {
387 return hstride == 0;
388 } else {
389 return hstride == 1;
390 }
391 }
392
393 return false;
394 }
395
396 /**
397 * Checks restrictions listed in "General Restrictions Based on Operand Types"
398 * in the "Register Region Restrictions" section.
399 */
400 static struct string
401 general_restrictions_based_on_operand_types(const struct gen_device_info *devinfo,
402 const brw_inst *inst)
403 {
404 const struct opcode_desc *desc =
405 brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst));
406 unsigned num_sources = num_sources_from_inst(devinfo, inst);
407 unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
408 struct string error_msg = { .str = NULL, .len = 0 };
409
410 if (num_sources == 3)
411 return (struct string){};
412
413 if (inst_is_send(devinfo, inst))
414 return (struct string){};
415
416 if (exec_size == 1)
417 return (struct string){};
418
419 if (desc->ndst == 0)
420 return (struct string){};
421
422 /* The PRMs say:
423 *
424 * Where n is the largest element size in bytes for any source or
425 * destination operand type, ExecSize * n must be <= 64.
426 *
427 * But we do not attempt to enforce it, because it is implied by other
428 * rules:
429 *
430 * - that the destination stride must match the execution data type
431 * - sources may not span more than two adjacent GRF registers
432 * - destination may not span more than two adjacent GRF registers
433 *
434 * In fact, checking it would weaken testing of the other rules.
435 */
436
437 unsigned dst_stride = 1 << (brw_inst_dst_hstride(devinfo, inst) - 1);
438 bool dst_type_is_byte =
439 brw_inst_dst_reg_type(devinfo, inst) == BRW_HW_REG_NON_IMM_TYPE_B ||
440 brw_inst_dst_reg_type(devinfo, inst) == BRW_HW_REG_NON_IMM_TYPE_UB;
441
442 if (dst_type_is_byte) {
443 if (is_packed(exec_size * dst_stride, exec_size, dst_stride)) {
444 if (!inst_is_raw_move(devinfo, inst)) {
445 ERROR("Only raw MOV supports a packed-byte destination");
446 return error_msg;
447 } else {
448 return (struct string){};
449 }
450 }
451 }
452
453 unsigned exec_type = execution_type(devinfo, inst);
454 unsigned exec_type_size =
455 brw_hw_reg_type_to_size(devinfo, exec_type, BRW_GENERAL_REGISTER_FILE);
456 unsigned dst_type_size = brw_element_size(devinfo, inst, dst);
457
458 /* On IVB/BYT, region parameters and execution size for DF are in terms of
459 * 32-bit elements, so they are doubled. For evaluating the validity of an
460 * instruction, we halve them.
461 */
462 if (devinfo->gen == 7 && !devinfo->is_haswell &&
463 exec_type_size == 8 && dst_type_size == 4)
464 dst_type_size = 8;
465
466 if (exec_type_size > dst_type_size) {
467 ERROR_IF(dst_stride * dst_type_size != exec_type_size,
468 "Destination stride must be equal to the ratio of the sizes of "
469 "the execution data type to the destination type");
470
471 unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
472
473 if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1 &&
474 brw_inst_dst_address_mode(devinfo, inst) == BRW_ADDRESS_DIRECT) {
475 /* The i965 PRM says:
476 *
477 * Implementation Restriction: The relaxed alignment rule for byte
478 * destination (#10.5) is not supported.
479 */
480 if ((devinfo->gen > 4 || devinfo->is_g4x) && dst_type_is_byte) {
481 ERROR_IF(subreg % exec_type_size != 0 &&
482 subreg % exec_type_size != 1,
483 "Destination subreg must be aligned to the size of the "
484 "execution data type (or to the next lowest byte for byte "
485 "destinations)");
486 } else {
487 ERROR_IF(subreg % exec_type_size != 0,
488 "Destination subreg must be aligned to the size of the "
489 "execution data type");
490 }
491 }
492 }
493
494 return error_msg;
495 }
496
497 /**
498 * Checks restrictions listed in "General Restrictions on Regioning Parameters"
499 * in the "Register Region Restrictions" section.
500 */
501 static struct string
502 general_restrictions_on_region_parameters(const struct gen_device_info *devinfo,
503 const brw_inst *inst)
504 {
505 const struct opcode_desc *desc =
506 brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst));
507 unsigned num_sources = num_sources_from_inst(devinfo, inst);
508 unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
509 struct string error_msg = { .str = NULL, .len = 0 };
510
511 if (num_sources == 3)
512 return (struct string){};
513
514 if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16) {
515 if (desc->ndst != 0 && !dst_is_null(devinfo, inst))
516 ERROR_IF(brw_inst_dst_hstride(devinfo, inst) != BRW_HORIZONTAL_STRIDE_1,
517 "Destination Horizontal Stride must be 1");
518
519 if (num_sources >= 1) {
520 if (devinfo->is_haswell || devinfo->gen >= 8) {
521 ERROR_IF(brw_inst_src0_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
522 brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
523 brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_2 &&
524 brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
525 "In Align16 mode, only VertStride of 0, 2, or 4 is allowed");
526 } else {
527 ERROR_IF(brw_inst_src0_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
528 brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
529 brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
530 "In Align16 mode, only VertStride of 0 or 4 is allowed");
531 }
532 }
533
534 if (num_sources == 2) {
535 if (devinfo->is_haswell || devinfo->gen >= 8) {
536 ERROR_IF(brw_inst_src1_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
537 brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
538 brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_2 &&
539 brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
540 "In Align16 mode, only VertStride of 0, 2, or 4 is allowed");
541 } else {
542 ERROR_IF(brw_inst_src1_reg_file(devinfo, inst) != BRW_IMMEDIATE_VALUE &&
543 brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
544 brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
545 "In Align16 mode, only VertStride of 0 or 4 is allowed");
546 }
547 }
548
549 return error_msg;
550 }
551
552 for (unsigned i = 0; i < num_sources; i++) {
553 unsigned vstride, width, hstride, element_size, subreg;
554
555 #define DO_SRC(n) \
556 if (brw_inst_src ## n ## _reg_file(devinfo, inst) == \
557 BRW_IMMEDIATE_VALUE) \
558 continue; \
559 \
560 vstride = brw_inst_src ## n ## _vstride(devinfo, inst) ? \
561 (1 << (brw_inst_src ## n ## _vstride(devinfo, inst) - 1)) : 0; \
562 width = 1 << brw_inst_src ## n ## _width(devinfo, inst); \
563 hstride = brw_inst_src ## n ## _hstride(devinfo, inst) ? \
564 (1 << (brw_inst_src ## n ## _hstride(devinfo, inst) - 1)) : 0; \
565 element_size = brw_element_size(devinfo, inst, src ## n); \
566 subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst)
567
568 if (i == 0) {
569 DO_SRC(0);
570 } else if (i == 1) {
571 DO_SRC(1);
572 }
573 #undef DO_SRC
574
575 /* On IVB/BYT, region parameters and execution size for DF are in terms of
576 * 32-bit elements, so they are doubled. For evaluating the validity of an
577 * instruction, we halve them.
578 */
579 if (devinfo->gen == 7 && !devinfo->is_haswell &&
580 element_size == 8)
581 element_size = 4;
582
583 /* ExecSize must be greater than or equal to Width. */
584 ERROR_IF(exec_size < width, "ExecSize must be greater than or equal "
585 "to Width");
586
587 /* If ExecSize = Width and HorzStride ≠ 0,
588 * VertStride must be set to Width * HorzStride.
589 */
590 if (exec_size == width && hstride != 0) {
591 ERROR_IF(vstride != width * hstride,
592 "If ExecSize = Width and HorzStride ≠ 0, "
593 "VertStride must be set to Width * HorzStride");
594 }
595
596 /* If Width = 1, HorzStride must be 0 regardless of the values of
597 * ExecSize and VertStride.
598 */
599 if (width == 1) {
600 ERROR_IF(hstride != 0,
601 "If Width = 1, HorzStride must be 0 regardless "
602 "of the values of ExecSize and VertStride");
603 }
604
605 /* If ExecSize = Width = 1, both VertStride and HorzStride must be 0. */
606 if (exec_size == 1 && width == 1) {
607 ERROR_IF(vstride != 0 || hstride != 0,
608 "If ExecSize = Width = 1, both VertStride "
609 "and HorzStride must be 0");
610 }
611
612 /* If VertStride = HorzStride = 0, Width must be 1 regardless of the
613 * value of ExecSize.
614 */
615 if (vstride == 0 && hstride == 0) {
616 ERROR_IF(width != 1,
617 "If VertStride = HorzStride = 0, Width must be "
618 "1 regardless of the value of ExecSize");
619 }
620
621 /* VertStride must be used to cross GRF register boundaries. This rule
622 * implies that elements within a 'Width' cannot cross GRF boundaries.
623 */
624 const uint64_t mask = (1 << element_size) - 1;
625 unsigned rowbase = subreg;
626
627 for (int y = 0; y < exec_size / width; y++) {
628 uint64_t access_mask = 0;
629 unsigned offset = rowbase;
630
631 for (int x = 0; x < width; x++) {
632 access_mask |= mask << offset;
633 offset += hstride * element_size;
634 }
635
636 rowbase += vstride * element_size;
637
638 if ((uint32_t)access_mask != 0 && (access_mask >> 32) != 0) {
639 ERROR("VertStride must be used to cross GRF register boundaries");
640 break;
641 }
642 }
643 }
644
645 /* Dst.HorzStride must not be 0. */
646 if (desc->ndst != 0 && !dst_is_null(devinfo, inst)) {
647 ERROR_IF(brw_inst_dst_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0,
648 "Destination Horizontal Stride must not be 0");
649 }
650
651 return error_msg;
652 }
653
654 /**
655 * Creates an \p access_mask for an \p exec_size, \p element_size, and a region
656 *
657 * An \p access_mask is a 32-element array of uint64_t, where each uint64_t is
658 * a bitmask of bytes accessed by the region.
659 *
660 * For instance the access mask of the source gX.1<4,2,2>F in an exec_size = 4
661 * instruction would be
662 *
663 * access_mask[0] = 0x00000000000000F0
664 * access_mask[1] = 0x000000000000F000
665 * access_mask[2] = 0x0000000000F00000
666 * access_mask[3] = 0x00000000F0000000
667 * access_mask[4-31] = 0
668 *
669 * because the first execution channel accesses bytes 7-4 and the second
670 * execution channel accesses bytes 15-12, etc.
671 */
672 static void
673 align1_access_mask(uint64_t access_mask[static 32],
674 unsigned exec_size, unsigned element_size, unsigned subreg,
675 unsigned vstride, unsigned width, unsigned hstride)
676 {
677 const uint64_t mask = (1 << element_size) - 1;
678 unsigned rowbase = subreg;
679 unsigned element = 0;
680
681 for (int y = 0; y < exec_size / width; y++) {
682 unsigned offset = rowbase;
683
684 for (int x = 0; x < width; x++) {
685 access_mask[element++] = mask << offset;
686 offset += hstride * element_size;
687 }
688
689 rowbase += vstride * element_size;
690 }
691
692 assert(element == 0 || element == exec_size);
693 }
694
695 /**
696 * Returns the number of registers accessed according to the \p access_mask
697 */
698 static int
699 registers_read(const uint64_t access_mask[static 32])
700 {
701 int regs_read = 0;
702
703 for (unsigned i = 0; i < 32; i++) {
704 if (access_mask[i] > 0xFFFFFFFF) {
705 return 2;
706 } else if (access_mask[i]) {
707 regs_read = 1;
708 }
709 }
710
711 return regs_read;
712 }
713
714 /**
715 * Checks restrictions listed in "Region Alignment Rules" in the "Register
716 * Region Restrictions" section.
717 */
718 static struct string
719 region_alignment_rules(const struct gen_device_info *devinfo,
720 const brw_inst *inst)
721 {
722 const struct opcode_desc *desc =
723 brw_opcode_desc(devinfo, brw_inst_opcode(devinfo, inst));
724 unsigned num_sources = num_sources_from_inst(devinfo, inst);
725 unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
726 uint64_t dst_access_mask[32], src0_access_mask[32], src1_access_mask[32];
727 struct string error_msg = { .str = NULL, .len = 0 };
728
729 if (num_sources == 3)
730 return (struct string){};
731
732 if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16)
733 return (struct string){};
734
735 if (inst_is_send(devinfo, inst))
736 return (struct string){};
737
738 memset(dst_access_mask, 0, sizeof(dst_access_mask));
739 memset(src0_access_mask, 0, sizeof(src0_access_mask));
740 memset(src1_access_mask, 0, sizeof(src1_access_mask));
741
742 for (unsigned i = 0; i < num_sources; i++) {
743 unsigned vstride, width, hstride, element_size, subreg;
744
745 /* In Direct Addressing mode, a source cannot span more than 2 adjacent
746 * GRF registers.
747 */
748
749 #define DO_SRC(n) \
750 if (brw_inst_src ## n ## _address_mode(devinfo, inst) != \
751 BRW_ADDRESS_DIRECT) \
752 continue; \
753 \
754 if (brw_inst_src ## n ## _reg_file(devinfo, inst) == \
755 BRW_IMMEDIATE_VALUE) \
756 continue; \
757 \
758 vstride = brw_inst_src ## n ## _vstride(devinfo, inst) ? \
759 (1 << (brw_inst_src ## n ## _vstride(devinfo, inst) - 1)) : 0; \
760 width = 1 << brw_inst_src ## n ## _width(devinfo, inst); \
761 hstride = brw_inst_src ## n ## _hstride(devinfo, inst) ? \
762 (1 << (brw_inst_src ## n ## _hstride(devinfo, inst) - 1)) : 0; \
763 element_size = brw_element_size(devinfo, inst, src ## n); \
764 subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst); \
765 align1_access_mask(src ## n ## _access_mask, \
766 exec_size, element_size, subreg, \
767 vstride, width, hstride)
768
769 if (i == 0) {
770 DO_SRC(0);
771 } else if (i == 1) {
772 DO_SRC(1);
773 }
774 #undef DO_SRC
775
776 unsigned num_vstride = exec_size / width;
777 unsigned num_hstride = width;
778 unsigned vstride_elements = (num_vstride - 1) * vstride;
779 unsigned hstride_elements = (num_hstride - 1) * hstride;
780 unsigned offset = (vstride_elements + hstride_elements) * element_size +
781 subreg;
782 ERROR_IF(offset >= 64,
783 "A source cannot span more than 2 adjacent GRF registers");
784 }
785
786 if (desc->ndst == 0 || dst_is_null(devinfo, inst))
787 return error_msg;
788
789 unsigned stride = 1 << (brw_inst_dst_hstride(devinfo, inst) - 1);
790 unsigned element_size = brw_element_size(devinfo, inst, dst);
791 unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
792 unsigned offset = ((exec_size - 1) * stride * element_size) + subreg;
793 ERROR_IF(offset >= 64,
794 "A destination cannot span more than 2 adjacent GRF registers");
795
796 if (error_msg.str)
797 return error_msg;
798
799 /* On IVB/BYT, region parameters and execution size for DF are in terms of
800 * 32-bit elements, so they are doubled. For evaluating the validity of an
801 * instruction, we halve them.
802 */
803 if (devinfo->gen == 7 && !devinfo->is_haswell &&
804 element_size == 8)
805 element_size = 4;
806
807 align1_access_mask(dst_access_mask, exec_size, element_size, subreg,
808 exec_size == 1 ? 0 : exec_size * stride,
809 exec_size == 1 ? 1 : exec_size,
810 exec_size == 1 ? 0 : stride);
811
812 unsigned dst_regs = registers_read(dst_access_mask);
813 unsigned src0_regs = registers_read(src0_access_mask);
814 unsigned src1_regs = registers_read(src1_access_mask);
815
816 /* The SNB, IVB, HSW, BDW, and CHV PRMs say:
817 *
818 * When an instruction has a source region spanning two registers and a
819 * destination region contained in one register, the number of elements
820 * must be the same between two sources and one of the following must be
821 * true:
822 *
823 * 1. The destination region is entirely contained in the lower OWord
824 * of a register.
825 * 2. The destination region is entirely contained in the upper OWord
826 * of a register.
827 * 3. The destination elements are evenly split between the two OWords
828 * of a register.
829 */
830 if (devinfo->gen <= 8) {
831 if (dst_regs == 1 && (src0_regs == 2 || src1_regs == 2)) {
832 unsigned upper_oword_writes = 0, lower_oword_writes = 0;
833
834 for (unsigned i = 0; i < exec_size; i++) {
835 if (dst_access_mask[i] > 0x0000FFFF) {
836 upper_oword_writes++;
837 } else {
838 assert(dst_access_mask[i] != 0);
839 lower_oword_writes++;
840 }
841 }
842
843 ERROR_IF(lower_oword_writes != 0 &&
844 upper_oword_writes != 0 &&
845 upper_oword_writes != lower_oword_writes,
846 "Writes must be to only one OWord or "
847 "evenly split between OWords");
848 }
849 }
850
851 /* The IVB and HSW PRMs say:
852 *
853 * When an instruction has a source region that spans two registers and
854 * the destination spans two registers, the destination elements must be
855 * evenly split between the two registers [...]
856 *
857 * The SNB PRM contains similar wording (but written in a much more
858 * confusing manner).
859 *
860 * The BDW PRM says:
861 *
862 * When destination spans two registers, the source may be one or two
863 * registers. The destination elements must be evenly split between the
864 * two registers.
865 *
866 * The SKL PRM says:
867 *
868 * When destination of MATH instruction spans two registers, the
869 * destination elements must be evenly split between the two registers.
870 *
871 * It is not known whether this restriction applies to KBL other Gens after
872 * SKL.
873 */
874 if (devinfo->gen <= 8 ||
875 brw_inst_opcode(devinfo, inst) == BRW_OPCODE_MATH) {
876
877 /* Nothing explicitly states that on Gen < 8 elements must be evenly
878 * split between two destination registers in the two exceptional
879 * source-region-spans-one-register cases, but since Broadwell requires
880 * evenly split writes regardless of source region, we assume that it was
881 * an oversight and require it.
882 */
883 if (dst_regs == 2) {
884 unsigned upper_reg_writes = 0, lower_reg_writes = 0;
885
886 for (unsigned i = 0; i < exec_size; i++) {
887 if (dst_access_mask[i] > 0xFFFFFFFF) {
888 upper_reg_writes++;
889 } else {
890 assert(dst_access_mask[i] != 0);
891 lower_reg_writes++;
892 }
893 }
894
895 ERROR_IF(upper_reg_writes != lower_reg_writes,
896 "Writes must be evenly split between the two "
897 "destination registers");
898 }
899 }
900
901 /* The IVB and HSW PRMs say:
902 *
903 * When an instruction has a source region that spans two registers and
904 * the destination spans two registers, the destination elements must be
905 * evenly split between the two registers and each destination register
906 * must be entirely derived from one source register.
907 *
908 * Note: In such cases, the regioning parameters must ensure that the
909 * offset from the two source registers is the same.
910 *
911 * The SNB PRM contains similar wording (but written in a much more
912 * confusing manner).
913 *
914 * There are effectively three rules stated here:
915 *
916 * For an instruction with a source and a destination spanning two
917 * registers,
918 *
919 * (1) destination elements must be evenly split between the two
920 * registers
921 * (2) all destination elements in a register must be derived
922 * from one source register
923 * (3) the offset (i.e. the starting location in each of the two
924 * registers spanned by a region) must be the same in the two
925 * registers spanned by a region
926 *
927 * It is impossible to violate rule (1) without violating (2) or (3), so we
928 * do not attempt to validate it.
929 */
930 if (devinfo->gen <= 7 && dst_regs == 2) {
931 for (unsigned i = 0; i < num_sources; i++) {
932 #define DO_SRC(n) \
933 if (src ## n ## _regs <= 1) \
934 continue; \
935 \
936 for (unsigned i = 0; i < exec_size; i++) { \
937 if ((dst_access_mask[i] > 0xFFFFFFFF) != \
938 (src ## n ## _access_mask[i] > 0xFFFFFFFF)) { \
939 ERROR("Each destination register must be entirely derived " \
940 "from one source register"); \
941 break; \
942 } \
943 } \
944 \
945 unsigned offset_0 = \
946 brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst); \
947 unsigned offset_1 = offset_0; \
948 \
949 for (unsigned i = 0; i < exec_size; i++) { \
950 if (src ## n ## _access_mask[i] > 0xFFFFFFFF) { \
951 offset_1 = __builtin_ctzll(src ## n ## _access_mask[i]) - 32; \
952 break; \
953 } \
954 } \
955 \
956 ERROR_IF(offset_0 != offset_1, \
957 "The offset from the two source registers " \
958 "must be the same")
959
960 if (i == 0) {
961 DO_SRC(0);
962 } else if (i == 1) {
963 DO_SRC(1);
964 }
965 #undef DO_SRC
966 }
967 }
968
969 /* The IVB and HSW PRMs say:
970 *
971 * When destination spans two registers, the source MUST span two
972 * registers. The exception to the above rule:
973 * 1. When source is scalar, the source registers are not
974 * incremented.
975 * 2. When source is packed integer Word and destination is packed
976 * integer DWord, the source register is not incremented by the
977 * source sub register is incremented.
978 *
979 * The SNB PRM does not contain this rule, but the internal documentation
980 * indicates that it applies to SNB as well. We assume that the rule applies
981 * to Gen <= 5 although their PRMs do not state it.
982 *
983 * While the documentation explicitly says in exception (2) that the
984 * destination must be an integer DWord, the hardware allows at least a
985 * float destination type as well. We emit such instructions from
986 *
987 * fs_visitor::emit_interpolation_setup_gen6
988 * fs_visitor::emit_fragcoord_interpolation
989 *
990 * and have for years with no ill effects.
991 *
992 * Additionally the simulator source code indicates that the real condition
993 * is that the size of the destination type is 4 bytes.
994 */
995 if (devinfo->gen <= 7 && dst_regs == 2) {
996 bool dst_is_packed_dword =
997 is_packed(exec_size * stride, exec_size, stride) &&
998 brw_element_size(devinfo, inst, dst) == 4;
999
1000 for (unsigned i = 0; i < num_sources; i++) {
1001 #define DO_SRC(n) \
1002 unsigned vstride, width, hstride; \
1003 vstride = brw_inst_src ## n ## _vstride(devinfo, inst) ? \
1004 (1 << (brw_inst_src ## n ## _vstride(devinfo, inst) - 1)) : 0; \
1005 width = 1 << brw_inst_src ## n ## _width(devinfo, inst); \
1006 hstride = brw_inst_src ## n ## _hstride(devinfo, inst) ? \
1007 (1 << (brw_inst_src ## n ## _hstride(devinfo, inst) - 1)) : 0; \
1008 bool src ## n ## _is_packed_word = \
1009 is_packed(vstride, width, hstride) && \
1010 (brw_inst_src ## n ## _reg_type(devinfo, inst) == BRW_HW_REG_TYPE_W || \
1011 brw_inst_src ## n ## _reg_type(devinfo, inst) == BRW_HW_REG_TYPE_UW); \
1012 \
1013 ERROR_IF(src ## n ## _regs == 1 && \
1014 !src ## n ## _has_scalar_region(devinfo, inst) && \
1015 !(dst_is_packed_dword && src ## n ## _is_packed_word), \
1016 "When the destination spans two registers, the source must " \
1017 "span two registers\n" ERROR_INDENT "(exceptions for scalar " \
1018 "source and packed-word to packed-dword expansion)")
1019
1020 if (i == 0) {
1021 DO_SRC(0);
1022 } else if (i == 1) {
1023 DO_SRC(1);
1024 }
1025 #undef DO_SRC
1026 }
1027 }
1028
1029 return error_msg;
1030 }
1031
1032 bool
1033 brw_validate_instructions(const struct brw_codegen *p, int start_offset,
1034 struct annotation_info *annotation)
1035 {
1036 const struct gen_device_info *devinfo = p->devinfo;
1037 const void *store = p->store;
1038 bool valid = true;
1039
1040 for (int src_offset = start_offset; src_offset < p->next_insn_offset;
1041 src_offset += sizeof(brw_inst)) {
1042 struct string error_msg = { .str = NULL, .len = 0 };
1043 const brw_inst *inst = store + src_offset;
1044
1045 if (is_unsupported_inst(devinfo, inst)) {
1046 ERROR("Instruction not supported on this Gen");
1047 } else {
1048 CHECK(sources_not_null);
1049 CHECK(send_restrictions);
1050 CHECK(general_restrictions_based_on_operand_types);
1051 CHECK(general_restrictions_on_region_parameters);
1052 CHECK(region_alignment_rules);
1053 }
1054
1055 if (error_msg.str && annotation) {
1056 annotation_insert_error(annotation, src_offset, error_msg.str);
1057 }
1058 valid = valid && error_msg.len == 0;
1059 free(error_msg.str);
1060 }
1061
1062 return valid;
1063 }