intel/fs: Remove unused condition from opt_algebraic case
[mesa.git] / src / intel / compiler / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_eu.h"
33 #include "brw_fs.h"
34 #include "brw_nir.h"
35 #include "brw_vec4_gs_visitor.h"
36 #include "brw_cfg.h"
37 #include "brw_dead_control_flow.h"
38 #include "dev/gen_debug.h"
39 #include "compiler/glsl_types.h"
40 #include "compiler/nir/nir_builder.h"
41 #include "program/prog_parameter.h"
42 #include "util/u_math.h"
43
44 using namespace brw;
45
46 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
47 const fs_inst *inst);
48
49 void
50 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
51 const fs_reg *src, unsigned sources)
52 {
53 memset((void*)this, 0, sizeof(*this));
54
55 this->src = new fs_reg[MAX2(sources, 3)];
56 for (unsigned i = 0; i < sources; i++)
57 this->src[i] = src[i];
58
59 this->opcode = opcode;
60 this->dst = dst;
61 this->sources = sources;
62 this->exec_size = exec_size;
63 this->base_mrf = -1;
64
65 assert(dst.file != IMM && dst.file != UNIFORM);
66
67 assert(this->exec_size != 0);
68
69 this->conditional_mod = BRW_CONDITIONAL_NONE;
70
71 /* This will be the case for almost all instructions. */
72 switch (dst.file) {
73 case VGRF:
74 case ARF:
75 case FIXED_GRF:
76 case MRF:
77 case ATTR:
78 this->size_written = dst.component_size(exec_size);
79 break;
80 case BAD_FILE:
81 this->size_written = 0;
82 break;
83 case IMM:
84 case UNIFORM:
85 unreachable("Invalid destination register file");
86 }
87
88 this->writes_accumulator = false;
89 }
90
91 fs_inst::fs_inst()
92 {
93 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
94 }
95
96 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
97 {
98 init(opcode, exec_size, reg_undef, NULL, 0);
99 }
100
101 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
102 {
103 init(opcode, exec_size, dst, NULL, 0);
104 }
105
106 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
107 const fs_reg &src0)
108 {
109 const fs_reg src[1] = { src0 };
110 init(opcode, exec_size, dst, src, 1);
111 }
112
113 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
114 const fs_reg &src0, const fs_reg &src1)
115 {
116 const fs_reg src[2] = { src0, src1 };
117 init(opcode, exec_size, dst, src, 2);
118 }
119
120 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
121 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
122 {
123 const fs_reg src[3] = { src0, src1, src2 };
124 init(opcode, exec_size, dst, src, 3);
125 }
126
127 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
128 const fs_reg src[], unsigned sources)
129 {
130 init(opcode, exec_width, dst, src, sources);
131 }
132
133 fs_inst::fs_inst(const fs_inst &that)
134 {
135 memcpy((void*)this, &that, sizeof(that));
136
137 this->src = new fs_reg[MAX2(that.sources, 3)];
138
139 for (unsigned i = 0; i < that.sources; i++)
140 this->src[i] = that.src[i];
141 }
142
143 fs_inst::~fs_inst()
144 {
145 delete[] this->src;
146 }
147
148 void
149 fs_inst::resize_sources(uint8_t num_sources)
150 {
151 if (this->sources != num_sources) {
152 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
153
154 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
155 src[i] = this->src[i];
156
157 delete[] this->src;
158 this->src = src;
159 this->sources = num_sources;
160 }
161 }
162
163 void
164 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
165 const fs_reg &dst,
166 const fs_reg &surf_index,
167 const fs_reg &varying_offset,
168 uint32_t const_offset)
169 {
170 /* We have our constant surface use a pitch of 4 bytes, so our index can
171 * be any component of a vector, and then we load 4 contiguous
172 * components starting from that.
173 *
174 * We break down the const_offset to a portion added to the variable offset
175 * and a portion done using fs_reg::offset, which means that if you have
176 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
177 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
178 * later notice that those loads are all the same and eliminate the
179 * redundant ones.
180 */
181 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
182 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
183
184 /* The pull load message will load a vec4 (16 bytes). If we are loading
185 * a double this means we are only loading 2 elements worth of data.
186 * We also want to use a 32-bit data type for the dst of the load operation
187 * so other parts of the driver don't get confused about the size of the
188 * result.
189 */
190 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
191 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
192 vec4_result, surf_index, vec4_offset);
193 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
194
195 shuffle_from_32bit_read(bld, dst, vec4_result,
196 (const_offset & 0xf) / type_sz(dst.type), 1);
197 }
198
199 /**
200 * A helper for MOV generation for fixing up broken hardware SEND dependency
201 * handling.
202 */
203 void
204 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
205 {
206 /* The caller always wants uncompressed to emit the minimal extra
207 * dependencies, and to avoid having to deal with aligning its regs to 2.
208 */
209 const fs_builder ubld = bld.annotate("send dependency resolve")
210 .half(0);
211
212 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
213 }
214
215 bool
216 fs_inst::is_send_from_grf() const
217 {
218 switch (opcode) {
219 case SHADER_OPCODE_SEND:
220 case SHADER_OPCODE_SHADER_TIME_ADD:
221 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
222 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
223 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
224 case SHADER_OPCODE_URB_WRITE_SIMD8:
225 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
226 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
227 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
228 case SHADER_OPCODE_URB_READ_SIMD8:
229 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
230 return true;
231 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
232 return src[1].file == VGRF;
233 case FS_OPCODE_FB_WRITE:
234 case FS_OPCODE_FB_READ:
235 return src[0].file == VGRF;
236 default:
237 if (is_tex())
238 return src[0].file == VGRF;
239
240 return false;
241 }
242 }
243
244 bool
245 fs_inst::is_control_source(unsigned arg) const
246 {
247 switch (opcode) {
248 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
249 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
250 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
251 return arg == 0;
252
253 case SHADER_OPCODE_BROADCAST:
254 case SHADER_OPCODE_SHUFFLE:
255 case SHADER_OPCODE_QUAD_SWIZZLE:
256 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
257 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
258 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
259 case SHADER_OPCODE_GET_BUFFER_SIZE:
260 return arg == 1;
261
262 case SHADER_OPCODE_MOV_INDIRECT:
263 case SHADER_OPCODE_CLUSTER_BROADCAST:
264 case SHADER_OPCODE_TEX:
265 case FS_OPCODE_TXB:
266 case SHADER_OPCODE_TXD:
267 case SHADER_OPCODE_TXF:
268 case SHADER_OPCODE_TXF_LZ:
269 case SHADER_OPCODE_TXF_CMS:
270 case SHADER_OPCODE_TXF_CMS_W:
271 case SHADER_OPCODE_TXF_UMS:
272 case SHADER_OPCODE_TXF_MCS:
273 case SHADER_OPCODE_TXL:
274 case SHADER_OPCODE_TXL_LZ:
275 case SHADER_OPCODE_TXS:
276 case SHADER_OPCODE_LOD:
277 case SHADER_OPCODE_TG4:
278 case SHADER_OPCODE_TG4_OFFSET:
279 case SHADER_OPCODE_SAMPLEINFO:
280 return arg == 1 || arg == 2;
281
282 case SHADER_OPCODE_SEND:
283 return arg == 0 || arg == 1;
284
285 default:
286 return false;
287 }
288 }
289
290 /**
291 * Returns true if this instruction's sources and destinations cannot
292 * safely be the same register.
293 *
294 * In most cases, a register can be written over safely by the same
295 * instruction that is its last use. For a single instruction, the
296 * sources are dereferenced before writing of the destination starts
297 * (naturally).
298 *
299 * However, there are a few cases where this can be problematic:
300 *
301 * - Virtual opcodes that translate to multiple instructions in the
302 * code generator: if src == dst and one instruction writes the
303 * destination before a later instruction reads the source, then
304 * src will have been clobbered.
305 *
306 * - SIMD16 compressed instructions with certain regioning (see below).
307 *
308 * The register allocator uses this information to set up conflicts between
309 * GRF sources and the destination.
310 */
311 bool
312 fs_inst::has_source_and_destination_hazard() const
313 {
314 switch (opcode) {
315 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
316 /* Multiple partial writes to the destination */
317 return true;
318 case SHADER_OPCODE_SHUFFLE:
319 /* This instruction returns an arbitrary channel from the source and
320 * gets split into smaller instructions in the generator. It's possible
321 * that one of the instructions will read from a channel corresponding
322 * to an earlier instruction.
323 */
324 case SHADER_OPCODE_SEL_EXEC:
325 /* This is implemented as
326 *
327 * mov(16) g4<1>D 0D { align1 WE_all 1H };
328 * mov(16) g4<1>D g5<8,8,1>D { align1 1H }
329 *
330 * Because the source is only read in the second instruction, the first
331 * may stomp all over it.
332 */
333 return true;
334 case SHADER_OPCODE_QUAD_SWIZZLE:
335 switch (src[1].ud) {
336 case BRW_SWIZZLE_XXXX:
337 case BRW_SWIZZLE_YYYY:
338 case BRW_SWIZZLE_ZZZZ:
339 case BRW_SWIZZLE_WWWW:
340 case BRW_SWIZZLE_XXZZ:
341 case BRW_SWIZZLE_YYWW:
342 case BRW_SWIZZLE_XYXY:
343 case BRW_SWIZZLE_ZWZW:
344 /* These can be implemented as a single Align1 region on all
345 * platforms, so there's never a hazard between source and
346 * destination. C.f. fs_generator::generate_quad_swizzle().
347 */
348 return false;
349 default:
350 return !is_uniform(src[0]);
351 }
352 default:
353 /* The SIMD16 compressed instruction
354 *
355 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
356 *
357 * is actually decoded in hardware as:
358 *
359 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
360 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
361 *
362 * Which is safe. However, if we have uniform accesses
363 * happening, we get into trouble:
364 *
365 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
366 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
367 *
368 * Now our destination for the first instruction overwrote the
369 * second instruction's src0, and we get garbage for those 8
370 * pixels. There's a similar issue for the pre-gen6
371 * pixel_x/pixel_y, which are registers of 16-bit values and thus
372 * would get stomped by the first decode as well.
373 */
374 if (exec_size == 16) {
375 for (int i = 0; i < sources; i++) {
376 if (src[i].file == VGRF && (src[i].stride == 0 ||
377 src[i].type == BRW_REGISTER_TYPE_UW ||
378 src[i].type == BRW_REGISTER_TYPE_W ||
379 src[i].type == BRW_REGISTER_TYPE_UB ||
380 src[i].type == BRW_REGISTER_TYPE_B)) {
381 return true;
382 }
383 }
384 }
385 return false;
386 }
387 }
388
389 bool
390 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
391 {
392 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
393 return false;
394
395 fs_reg reg = this->src[0];
396 if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1)
397 return false;
398
399 if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
400 return false;
401
402 for (int i = 0; i < this->sources; i++) {
403 reg.type = this->src[i].type;
404 if (!this->src[i].equals(reg))
405 return false;
406
407 if (i < this->header_size) {
408 reg.offset += REG_SIZE;
409 } else {
410 reg = horiz_offset(reg, this->exec_size);
411 }
412 }
413
414 return true;
415 }
416
417 bool
418 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo) const
419 {
420 if (devinfo->gen == 6 && is_math())
421 return false;
422
423 if (is_send_from_grf())
424 return false;
425
426 if (!backend_instruction::can_do_source_mods())
427 return false;
428
429 return true;
430 }
431
432 bool
433 fs_inst::can_do_cmod()
434 {
435 if (!backend_instruction::can_do_cmod())
436 return false;
437
438 /* The accumulator result appears to get used for the conditional modifier
439 * generation. When negating a UD value, there is a 33rd bit generated for
440 * the sign in the accumulator value, so now you can't check, for example,
441 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
442 */
443 for (unsigned i = 0; i < sources; i++) {
444 if (type_is_unsigned_int(src[i].type) && src[i].negate)
445 return false;
446 }
447
448 return true;
449 }
450
451 bool
452 fs_inst::can_change_types() const
453 {
454 return dst.type == src[0].type &&
455 !src[0].abs && !src[0].negate && !saturate &&
456 (opcode == BRW_OPCODE_MOV ||
457 (opcode == BRW_OPCODE_SEL &&
458 dst.type == src[1].type &&
459 predicate != BRW_PREDICATE_NONE &&
460 !src[1].abs && !src[1].negate));
461 }
462
463 void
464 fs_reg::init()
465 {
466 memset((void*)this, 0, sizeof(*this));
467 type = BRW_REGISTER_TYPE_UD;
468 stride = 1;
469 }
470
471 /** Generic unset register constructor. */
472 fs_reg::fs_reg()
473 {
474 init();
475 this->file = BAD_FILE;
476 }
477
478 fs_reg::fs_reg(struct ::brw_reg reg) :
479 backend_reg(reg)
480 {
481 this->offset = 0;
482 this->stride = 1;
483 if (this->file == IMM &&
484 (this->type != BRW_REGISTER_TYPE_V &&
485 this->type != BRW_REGISTER_TYPE_UV &&
486 this->type != BRW_REGISTER_TYPE_VF)) {
487 this->stride = 0;
488 }
489 }
490
491 bool
492 fs_reg::equals(const fs_reg &r) const
493 {
494 return (this->backend_reg::equals(r) &&
495 stride == r.stride);
496 }
497
498 bool
499 fs_reg::negative_equals(const fs_reg &r) const
500 {
501 return (this->backend_reg::negative_equals(r) &&
502 stride == r.stride);
503 }
504
505 bool
506 fs_reg::is_contiguous() const
507 {
508 return stride == 1;
509 }
510
511 unsigned
512 fs_reg::component_size(unsigned width) const
513 {
514 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
515 hstride == 0 ? 0 :
516 1 << (hstride - 1));
517 return MAX2(width * stride, 1) * type_sz(type);
518 }
519
520 extern "C" int
521 type_size_scalar(const struct glsl_type *type, bool bindless)
522 {
523 unsigned int size, i;
524
525 switch (type->base_type) {
526 case GLSL_TYPE_UINT:
527 case GLSL_TYPE_INT:
528 case GLSL_TYPE_FLOAT:
529 case GLSL_TYPE_BOOL:
530 return type->components();
531 case GLSL_TYPE_UINT16:
532 case GLSL_TYPE_INT16:
533 case GLSL_TYPE_FLOAT16:
534 return DIV_ROUND_UP(type->components(), 2);
535 case GLSL_TYPE_UINT8:
536 case GLSL_TYPE_INT8:
537 return DIV_ROUND_UP(type->components(), 4);
538 case GLSL_TYPE_DOUBLE:
539 case GLSL_TYPE_UINT64:
540 case GLSL_TYPE_INT64:
541 return type->components() * 2;
542 case GLSL_TYPE_ARRAY:
543 return type_size_scalar(type->fields.array, bindless) * type->length;
544 case GLSL_TYPE_STRUCT:
545 case GLSL_TYPE_INTERFACE:
546 size = 0;
547 for (i = 0; i < type->length; i++) {
548 size += type_size_scalar(type->fields.structure[i].type, bindless);
549 }
550 return size;
551 case GLSL_TYPE_SAMPLER:
552 case GLSL_TYPE_IMAGE:
553 if (bindless)
554 return type->components() * 2;
555 case GLSL_TYPE_ATOMIC_UINT:
556 /* Samplers, atomics, and images take up no register space, since
557 * they're baked in at link time.
558 */
559 return 0;
560 case GLSL_TYPE_SUBROUTINE:
561 return 1;
562 case GLSL_TYPE_VOID:
563 case GLSL_TYPE_ERROR:
564 case GLSL_TYPE_FUNCTION:
565 unreachable("not reached");
566 }
567
568 return 0;
569 }
570
571 /**
572 * Create a MOV to read the timestamp register.
573 *
574 * The caller is responsible for emitting the MOV. The return value is
575 * the destination of the MOV, with extra parameters set.
576 */
577 fs_reg
578 fs_visitor::get_timestamp(const fs_builder &bld)
579 {
580 assert(devinfo->gen >= 7);
581
582 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
583 BRW_ARF_TIMESTAMP,
584 0),
585 BRW_REGISTER_TYPE_UD));
586
587 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
588
589 /* We want to read the 3 fields we care about even if it's not enabled in
590 * the dispatch.
591 */
592 bld.group(4, 0).exec_all().MOV(dst, ts);
593
594 return dst;
595 }
596
597 void
598 fs_visitor::emit_shader_time_begin()
599 {
600 /* We want only the low 32 bits of the timestamp. Since it's running
601 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
602 * which is plenty of time for our purposes. It is identical across the
603 * EUs, but since it's tracking GPU core speed it will increment at a
604 * varying rate as render P-states change.
605 */
606 shader_start_time = component(
607 get_timestamp(bld.annotate("shader time start")), 0);
608 }
609
610 void
611 fs_visitor::emit_shader_time_end()
612 {
613 /* Insert our code just before the final SEND with EOT. */
614 exec_node *end = this->instructions.get_tail();
615 assert(end && ((fs_inst *) end)->eot);
616 const fs_builder ibld = bld.annotate("shader time end")
617 .exec_all().at(NULL, end);
618 const fs_reg timestamp = get_timestamp(ibld);
619
620 /* We only use the low 32 bits of the timestamp - see
621 * emit_shader_time_begin()).
622 *
623 * We could also check if render P-states have changed (or anything
624 * else that might disrupt timing) by setting smear to 2 and checking if
625 * that field is != 0.
626 */
627 const fs_reg shader_end_time = component(timestamp, 0);
628
629 /* Check that there weren't any timestamp reset events (assuming these
630 * were the only two timestamp reads that happened).
631 */
632 const fs_reg reset = component(timestamp, 2);
633 set_condmod(BRW_CONDITIONAL_Z,
634 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
635 ibld.IF(BRW_PREDICATE_NORMAL);
636
637 fs_reg start = shader_start_time;
638 start.negate = true;
639 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
640 BRW_REGISTER_TYPE_UD),
641 0);
642 const fs_builder cbld = ibld.group(1, 0);
643 cbld.group(1, 0).ADD(diff, start, shader_end_time);
644
645 /* If there were no instructions between the two timestamp gets, the diff
646 * is 2 cycles. Remove that overhead, so I can forget about that when
647 * trying to determine the time taken for single instructions.
648 */
649 cbld.ADD(diff, diff, brw_imm_ud(-2u));
650 SHADER_TIME_ADD(cbld, 0, diff);
651 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
652 ibld.emit(BRW_OPCODE_ELSE);
653 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
654 ibld.emit(BRW_OPCODE_ENDIF);
655 }
656
657 void
658 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
659 int shader_time_subindex,
660 fs_reg value)
661 {
662 int index = shader_time_index * 3 + shader_time_subindex;
663 struct brw_reg offset = brw_imm_d(index * BRW_SHADER_TIME_STRIDE);
664
665 fs_reg payload;
666 if (dispatch_width == 8)
667 payload = vgrf(glsl_type::uvec2_type);
668 else
669 payload = vgrf(glsl_type::uint_type);
670
671 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
672 }
673
674 void
675 fs_visitor::vfail(const char *format, va_list va)
676 {
677 char *msg;
678
679 if (failed)
680 return;
681
682 failed = true;
683
684 msg = ralloc_vasprintf(mem_ctx, format, va);
685 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
686
687 this->fail_msg = msg;
688
689 if (debug_enabled) {
690 fprintf(stderr, "%s", msg);
691 }
692 }
693
694 void
695 fs_visitor::fail(const char *format, ...)
696 {
697 va_list va;
698
699 va_start(va, format);
700 vfail(format, va);
701 va_end(va);
702 }
703
704 /**
705 * Mark this program as impossible to compile with dispatch width greater
706 * than n.
707 *
708 * During the SIMD8 compile (which happens first), we can detect and flag
709 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
710 * SIMD16+ compile altogether.
711 *
712 * During a compile of dispatch width greater than n (if one happens anyway),
713 * this just calls fail().
714 */
715 void
716 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
717 {
718 if (dispatch_width > n) {
719 fail("%s", msg);
720 } else {
721 max_dispatch_width = n;
722 compiler->shader_perf_log(log_data,
723 "Shader dispatch width limited to SIMD%d: %s",
724 n, msg);
725 }
726 }
727
728 /**
729 * Returns true if the instruction has a flag that means it won't
730 * update an entire destination register.
731 *
732 * For example, dead code elimination and live variable analysis want to know
733 * when a write to a variable screens off any preceding values that were in
734 * it.
735 */
736 bool
737 fs_inst::is_partial_write() const
738 {
739 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
740 (this->exec_size * type_sz(this->dst.type)) < 32 ||
741 !this->dst.is_contiguous() ||
742 this->dst.offset % REG_SIZE != 0);
743 }
744
745 unsigned
746 fs_inst::components_read(unsigned i) const
747 {
748 /* Return zero if the source is not present. */
749 if (src[i].file == BAD_FILE)
750 return 0;
751
752 switch (opcode) {
753 case FS_OPCODE_LINTERP:
754 if (i == 0)
755 return 2;
756 else
757 return 1;
758
759 case FS_OPCODE_PIXEL_X:
760 case FS_OPCODE_PIXEL_Y:
761 assert(i == 0);
762 return 2;
763
764 case FS_OPCODE_FB_WRITE_LOGICAL:
765 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
766 /* First/second FB write color. */
767 if (i < 2)
768 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
769 else
770 return 1;
771
772 case SHADER_OPCODE_TEX_LOGICAL:
773 case SHADER_OPCODE_TXD_LOGICAL:
774 case SHADER_OPCODE_TXF_LOGICAL:
775 case SHADER_OPCODE_TXL_LOGICAL:
776 case SHADER_OPCODE_TXS_LOGICAL:
777 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
778 case FS_OPCODE_TXB_LOGICAL:
779 case SHADER_OPCODE_TXF_CMS_LOGICAL:
780 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
781 case SHADER_OPCODE_TXF_UMS_LOGICAL:
782 case SHADER_OPCODE_TXF_MCS_LOGICAL:
783 case SHADER_OPCODE_LOD_LOGICAL:
784 case SHADER_OPCODE_TG4_LOGICAL:
785 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
786 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
787 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
788 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
789 /* Texture coordinates. */
790 if (i == TEX_LOGICAL_SRC_COORDINATE)
791 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
792 /* Texture derivatives. */
793 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
794 opcode == SHADER_OPCODE_TXD_LOGICAL)
795 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
796 /* Texture offset. */
797 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
798 return 2;
799 /* MCS */
800 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
801 return 2;
802 else
803 return 1;
804
805 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
806 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
807 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM);
808 /* Surface coordinates. */
809 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
810 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
811 /* Surface operation source (ignored for reads). */
812 else if (i == SURFACE_LOGICAL_SRC_DATA)
813 return 0;
814 else
815 return 1;
816
817 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
818 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
819 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
820 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
821 /* Surface coordinates. */
822 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
823 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
824 /* Surface operation source. */
825 else if (i == SURFACE_LOGICAL_SRC_DATA)
826 return src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
827 else
828 return 1;
829
830 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
831 assert(src[2].file == IMM);
832 return 1;
833
834 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
835 assert(src[2].file == IMM);
836 return i == 1 ? src[2].ud : 1;
837
838 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
839 assert(src[2].file == IMM);
840 if (i == 1) {
841 /* Data source */
842 const unsigned op = src[2].ud;
843 switch (op) {
844 case BRW_AOP_INC:
845 case BRW_AOP_DEC:
846 case BRW_AOP_PREDEC:
847 return 0;
848 case BRW_AOP_CMPWR:
849 return 2;
850 default:
851 return 1;
852 }
853 } else {
854 return 1;
855 }
856
857 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
858 assert(src[2].file == IMM);
859 if (i == 1) {
860 /* Data source */
861 const unsigned op = src[2].ud;
862 return op == BRW_AOP_FCMPWR ? 2 : 1;
863 } else {
864 return 1;
865 }
866
867 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
868 /* Scattered logical opcodes use the following params:
869 * src[0] Surface coordinates
870 * src[1] Surface operation source (ignored for reads)
871 * src[2] Surface
872 * src[3] IMM with always 1 dimension.
873 * src[4] IMM with arg bitsize for scattered read/write 8, 16, 32
874 */
875 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
876 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
877 return i == SURFACE_LOGICAL_SRC_DATA ? 0 : 1;
878
879 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
880 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
881 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
882 return 1;
883
884 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
885 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
886 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
887 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
888 const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
889 /* Surface coordinates. */
890 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
891 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
892 /* Surface operation source. */
893 else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_CMPWR)
894 return 2;
895 else if (i == SURFACE_LOGICAL_SRC_DATA &&
896 (op == BRW_AOP_INC || op == BRW_AOP_DEC || op == BRW_AOP_PREDEC))
897 return 0;
898 else
899 return 1;
900 }
901 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
902 return (i == 0 ? 2 : 1);
903
904 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL: {
905 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
906 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
907 const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
908 /* Surface coordinates. */
909 if (i == SURFACE_LOGICAL_SRC_ADDRESS)
910 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
911 /* Surface operation source. */
912 else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_FCMPWR)
913 return 2;
914 else
915 return 1;
916 }
917
918 default:
919 return 1;
920 }
921 }
922
923 unsigned
924 fs_inst::size_read(int arg) const
925 {
926 switch (opcode) {
927 case SHADER_OPCODE_SEND:
928 if (arg == 2) {
929 return mlen * REG_SIZE;
930 } else if (arg == 3) {
931 return ex_mlen * REG_SIZE;
932 }
933 break;
934
935 case FS_OPCODE_FB_WRITE:
936 case FS_OPCODE_REP_FB_WRITE:
937 if (arg == 0) {
938 if (base_mrf >= 0)
939 return src[0].file == BAD_FILE ? 0 : 2 * REG_SIZE;
940 else
941 return mlen * REG_SIZE;
942 }
943 break;
944
945 case FS_OPCODE_FB_READ:
946 case SHADER_OPCODE_URB_WRITE_SIMD8:
947 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
948 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
949 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
950 case SHADER_OPCODE_URB_READ_SIMD8:
951 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
952 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
953 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
954 if (arg == 0)
955 return mlen * REG_SIZE;
956 break;
957
958 case FS_OPCODE_SET_SAMPLE_ID:
959 if (arg == 1)
960 return 1;
961 break;
962
963 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
964 /* The payload is actually stored in src1 */
965 if (arg == 1)
966 return mlen * REG_SIZE;
967 break;
968
969 case FS_OPCODE_LINTERP:
970 if (arg == 1)
971 return 16;
972 break;
973
974 case SHADER_OPCODE_LOAD_PAYLOAD:
975 if (arg < this->header_size)
976 return REG_SIZE;
977 break;
978
979 case CS_OPCODE_CS_TERMINATE:
980 case SHADER_OPCODE_BARRIER:
981 return REG_SIZE;
982
983 case SHADER_OPCODE_MOV_INDIRECT:
984 if (arg == 0) {
985 assert(src[2].file == IMM);
986 return src[2].ud;
987 }
988 break;
989
990 default:
991 if (is_tex() && arg == 0 && src[0].file == VGRF)
992 return mlen * REG_SIZE;
993 break;
994 }
995
996 switch (src[arg].file) {
997 case UNIFORM:
998 case IMM:
999 return components_read(arg) * type_sz(src[arg].type);
1000 case BAD_FILE:
1001 case ARF:
1002 case FIXED_GRF:
1003 case VGRF:
1004 case ATTR:
1005 return components_read(arg) * src[arg].component_size(exec_size);
1006 case MRF:
1007 unreachable("MRF registers are not allowed as sources");
1008 }
1009 return 0;
1010 }
1011
1012 namespace {
1013 /* Return the subset of flag registers that an instruction could
1014 * potentially read or write based on the execution controls and flag
1015 * subregister number of the instruction.
1016 */
1017 unsigned
1018 flag_mask(const fs_inst *inst)
1019 {
1020 const unsigned start = inst->flag_subreg * 16 + inst->group;
1021 const unsigned end = start + inst->exec_size;
1022 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
1023 }
1024
1025 unsigned
1026 bit_mask(unsigned n)
1027 {
1028 return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1);
1029 }
1030
1031 unsigned
1032 flag_mask(const fs_reg &r, unsigned sz)
1033 {
1034 if (r.file == ARF) {
1035 const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr;
1036 const unsigned end = start + sz;
1037 return bit_mask(end) & ~bit_mask(start);
1038 } else {
1039 return 0;
1040 }
1041 }
1042 }
1043
1044 unsigned
1045 fs_inst::flags_read(const gen_device_info *devinfo) const
1046 {
1047 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
1048 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
1049 /* The vertical predication modes combine corresponding bits from
1050 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
1051 */
1052 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
1053 return flag_mask(this) << shift | flag_mask(this);
1054 } else if (predicate) {
1055 return flag_mask(this);
1056 } else {
1057 unsigned mask = 0;
1058 for (int i = 0; i < sources; i++) {
1059 mask |= flag_mask(src[i], size_read(i));
1060 }
1061 return mask;
1062 }
1063 }
1064
1065 unsigned
1066 fs_inst::flags_written() const
1067 {
1068 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
1069 opcode != BRW_OPCODE_CSEL &&
1070 opcode != BRW_OPCODE_IF &&
1071 opcode != BRW_OPCODE_WHILE)) ||
1072 opcode == SHADER_OPCODE_FIND_LIVE_CHANNEL ||
1073 opcode == FS_OPCODE_FB_WRITE) {
1074 return flag_mask(this);
1075 } else {
1076 return flag_mask(dst, size_written);
1077 }
1078 }
1079
1080 /**
1081 * Returns how many MRFs an FS opcode will write over.
1082 *
1083 * Note that this is not the 0 or 1 implied writes in an actual gen
1084 * instruction -- the FS opcodes often generate MOVs in addition.
1085 */
1086 int
1087 fs_visitor::implied_mrf_writes(fs_inst *inst) const
1088 {
1089 if (inst->mlen == 0)
1090 return 0;
1091
1092 if (inst->base_mrf == -1)
1093 return 0;
1094
1095 switch (inst->opcode) {
1096 case SHADER_OPCODE_RCP:
1097 case SHADER_OPCODE_RSQ:
1098 case SHADER_OPCODE_SQRT:
1099 case SHADER_OPCODE_EXP2:
1100 case SHADER_OPCODE_LOG2:
1101 case SHADER_OPCODE_SIN:
1102 case SHADER_OPCODE_COS:
1103 return 1 * dispatch_width / 8;
1104 case SHADER_OPCODE_POW:
1105 case SHADER_OPCODE_INT_QUOTIENT:
1106 case SHADER_OPCODE_INT_REMAINDER:
1107 return 2 * dispatch_width / 8;
1108 case SHADER_OPCODE_TEX:
1109 case FS_OPCODE_TXB:
1110 case SHADER_OPCODE_TXD:
1111 case SHADER_OPCODE_TXF:
1112 case SHADER_OPCODE_TXF_CMS:
1113 case SHADER_OPCODE_TXF_MCS:
1114 case SHADER_OPCODE_TG4:
1115 case SHADER_OPCODE_TG4_OFFSET:
1116 case SHADER_OPCODE_TXL:
1117 case SHADER_OPCODE_TXS:
1118 case SHADER_OPCODE_LOD:
1119 case SHADER_OPCODE_SAMPLEINFO:
1120 return 1;
1121 case FS_OPCODE_FB_WRITE:
1122 case FS_OPCODE_REP_FB_WRITE:
1123 return inst->src[0].file == BAD_FILE ? 0 : 2;
1124 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
1125 case SHADER_OPCODE_GEN4_SCRATCH_READ:
1126 return 1;
1127 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
1128 return inst->mlen;
1129 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
1130 return inst->mlen;
1131 default:
1132 unreachable("not reached");
1133 }
1134 }
1135
1136 fs_reg
1137 fs_visitor::vgrf(const glsl_type *const type)
1138 {
1139 int reg_width = dispatch_width / 8;
1140 return fs_reg(VGRF,
1141 alloc.allocate(type_size_scalar(type, false) * reg_width),
1142 brw_type_for_base_type(type));
1143 }
1144
1145 fs_reg::fs_reg(enum brw_reg_file file, int nr)
1146 {
1147 init();
1148 this->file = file;
1149 this->nr = nr;
1150 this->type = BRW_REGISTER_TYPE_F;
1151 this->stride = (file == UNIFORM ? 0 : 1);
1152 }
1153
1154 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1155 {
1156 init();
1157 this->file = file;
1158 this->nr = nr;
1159 this->type = type;
1160 this->stride = (file == UNIFORM ? 0 : 1);
1161 }
1162
1163 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1164 * This brings in those uniform definitions
1165 */
1166 void
1167 fs_visitor::import_uniforms(fs_visitor *v)
1168 {
1169 this->push_constant_loc = v->push_constant_loc;
1170 this->pull_constant_loc = v->pull_constant_loc;
1171 this->uniforms = v->uniforms;
1172 this->subgroup_id = v->subgroup_id;
1173 }
1174
1175 void
1176 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1177 {
1178 assert(stage == MESA_SHADER_FRAGMENT);
1179
1180 /* gl_FragCoord.x */
1181 bld.MOV(wpos, this->pixel_x);
1182 wpos = offset(wpos, bld, 1);
1183
1184 /* gl_FragCoord.y */
1185 bld.MOV(wpos, this->pixel_y);
1186 wpos = offset(wpos, bld, 1);
1187
1188 /* gl_FragCoord.z */
1189 if (devinfo->gen >= 6) {
1190 bld.MOV(wpos, fetch_payload_reg(bld, payload.source_depth_reg));
1191 } else {
1192 bld.emit(FS_OPCODE_LINTERP, wpos,
1193 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1194 component(interp_reg(VARYING_SLOT_POS, 2), 0));
1195 }
1196 wpos = offset(wpos, bld, 1);
1197
1198 /* gl_FragCoord.w: Already set up in emit_interpolation */
1199 bld.MOV(wpos, this->wpos_w);
1200 }
1201
1202 enum brw_barycentric_mode
1203 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1204 {
1205 /* Barycentric modes don't make sense for flat inputs. */
1206 assert(mode != INTERP_MODE_FLAT);
1207
1208 unsigned bary;
1209 switch (op) {
1210 case nir_intrinsic_load_barycentric_pixel:
1211 case nir_intrinsic_load_barycentric_at_offset:
1212 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1213 break;
1214 case nir_intrinsic_load_barycentric_centroid:
1215 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1216 break;
1217 case nir_intrinsic_load_barycentric_sample:
1218 case nir_intrinsic_load_barycentric_at_sample:
1219 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1220 break;
1221 default:
1222 unreachable("invalid intrinsic");
1223 }
1224
1225 if (mode == INTERP_MODE_NOPERSPECTIVE)
1226 bary += 3;
1227
1228 return (enum brw_barycentric_mode) bary;
1229 }
1230
1231 /**
1232 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1233 */
1234 static enum brw_barycentric_mode
1235 centroid_to_pixel(enum brw_barycentric_mode bary)
1236 {
1237 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1238 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1239 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1240 }
1241
1242 fs_reg *
1243 fs_visitor::emit_frontfacing_interpolation()
1244 {
1245 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1246
1247 if (devinfo->gen >= 6) {
1248 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1249 * a boolean result from this (~0/true or 0/false).
1250 *
1251 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1252 * this task in only one instruction:
1253 * - a negation source modifier will flip the bit; and
1254 * - a W -> D type conversion will sign extend the bit into the high
1255 * word of the destination.
1256 *
1257 * An ASR 15 fills the low word of the destination.
1258 */
1259 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1260 g0.negate = true;
1261
1262 bld.ASR(*reg, g0, brw_imm_d(15));
1263 } else {
1264 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1265 * a boolean result from this (1/true or 0/false).
1266 *
1267 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1268 * the negation source modifier to flip it. Unfortunately the SHR
1269 * instruction only operates on UD (or D with an abs source modifier)
1270 * sources without negation.
1271 *
1272 * Instead, use ASR (which will give ~0/true or 0/false).
1273 */
1274 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1275 g1_6.negate = true;
1276
1277 bld.ASR(*reg, g1_6, brw_imm_d(31));
1278 }
1279
1280 return reg;
1281 }
1282
1283 void
1284 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1285 {
1286 assert(stage == MESA_SHADER_FRAGMENT);
1287 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1288 assert(dst.type == BRW_REGISTER_TYPE_F);
1289
1290 if (wm_prog_data->persample_dispatch) {
1291 /* Convert int_sample_pos to floating point */
1292 bld.MOV(dst, int_sample_pos);
1293 /* Scale to the range [0, 1] */
1294 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1295 }
1296 else {
1297 /* From ARB_sample_shading specification:
1298 * "When rendering to a non-multisample buffer, or if multisample
1299 * rasterization is disabled, gl_SamplePosition will always be
1300 * (0.5, 0.5).
1301 */
1302 bld.MOV(dst, brw_imm_f(0.5f));
1303 }
1304 }
1305
1306 fs_reg *
1307 fs_visitor::emit_samplepos_setup()
1308 {
1309 assert(devinfo->gen >= 6);
1310
1311 const fs_builder abld = bld.annotate("compute sample position");
1312 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1313 fs_reg pos = *reg;
1314 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1315 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1316
1317 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1318 * mode will be enabled.
1319 *
1320 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1321 * R31.1:0 Position Offset X/Y for Slot[3:0]
1322 * R31.3:2 Position Offset X/Y for Slot[7:4]
1323 * .....
1324 *
1325 * The X, Y sample positions come in as bytes in thread payload. So, read
1326 * the positions using vstride=16, width=8, hstride=2.
1327 */
1328 const fs_reg sample_pos_reg =
1329 fetch_payload_reg(abld, payload.sample_pos_reg, BRW_REGISTER_TYPE_W);
1330
1331 /* Compute gl_SamplePosition.x */
1332 abld.MOV(int_sample_x, subscript(sample_pos_reg, BRW_REGISTER_TYPE_B, 0));
1333 compute_sample_position(offset(pos, abld, 0), int_sample_x);
1334
1335 /* Compute gl_SamplePosition.y */
1336 abld.MOV(int_sample_y, subscript(sample_pos_reg, BRW_REGISTER_TYPE_B, 1));
1337 compute_sample_position(offset(pos, abld, 1), int_sample_y);
1338 return reg;
1339 }
1340
1341 fs_reg *
1342 fs_visitor::emit_sampleid_setup()
1343 {
1344 assert(stage == MESA_SHADER_FRAGMENT);
1345 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1346 assert(devinfo->gen >= 6);
1347
1348 const fs_builder abld = bld.annotate("compute sample id");
1349 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uint_type));
1350
1351 if (!key->multisample_fbo) {
1352 /* As per GL_ARB_sample_shading specification:
1353 * "When rendering to a non-multisample buffer, or if multisample
1354 * rasterization is disabled, gl_SampleID will always be zero."
1355 */
1356 abld.MOV(*reg, brw_imm_d(0));
1357 } else if (devinfo->gen >= 8) {
1358 /* Sample ID comes in as 4-bit numbers in g1.0:
1359 *
1360 * 15:12 Slot 3 SampleID (only used in SIMD16)
1361 * 11:8 Slot 2 SampleID (only used in SIMD16)
1362 * 7:4 Slot 1 SampleID
1363 * 3:0 Slot 0 SampleID
1364 *
1365 * Each slot corresponds to four channels, so we want to replicate each
1366 * half-byte value to 4 channels in a row:
1367 *
1368 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1369 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1370 *
1371 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1372 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1373 *
1374 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1375 * channels to read the first byte (7:0), and the second group of 8
1376 * channels to read the second byte (15:8). Then, we shift right by
1377 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1378 * values into place. Finally, we AND with 0xf to keep the low nibble.
1379 *
1380 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1381 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1382 *
1383 * TODO: These payload bits exist on Gen7 too, but they appear to always
1384 * be zero, so this code fails to work. We should find out why.
1385 */
1386 const fs_reg tmp = abld.vgrf(BRW_REGISTER_TYPE_UW);
1387
1388 for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
1389 const fs_builder hbld = abld.group(MIN2(16, dispatch_width), i);
1390 hbld.SHR(offset(tmp, hbld, i),
1391 stride(retype(brw_vec1_grf(1 + i, 0), BRW_REGISTER_TYPE_UB),
1392 1, 8, 0),
1393 brw_imm_v(0x44440000));
1394 }
1395
1396 abld.AND(*reg, tmp, brw_imm_w(0xf));
1397 } else {
1398 const fs_reg t1 = component(abld.vgrf(BRW_REGISTER_TYPE_UD), 0);
1399 const fs_reg t2 = abld.vgrf(BRW_REGISTER_TYPE_UW);
1400
1401 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1402 * 8x multisampling, subspan 0 will represent sample N (where N
1403 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1404 * 7. We can find the value of N by looking at R0.0 bits 7:6
1405 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1406 * (since samples are always delivered in pairs). That is, we
1407 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1408 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1409 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1410 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1411 * populating a temporary variable with the sequence (0, 1, 2, 3),
1412 * and then reading from it using vstride=1, width=4, hstride=0.
1413 * These computations hold good for 4x multisampling as well.
1414 *
1415 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1416 * the first four slots are sample 0 of subspan 0; the next four
1417 * are sample 1 of subspan 0; the third group is sample 0 of
1418 * subspan 1, and finally sample 1 of subspan 1.
1419 */
1420
1421 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1422 * accomodate 16x MSAA.
1423 */
1424 abld.exec_all().group(1, 0)
1425 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
1426 brw_imm_ud(0xc0));
1427 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1428
1429 /* This works for SIMD8-SIMD16. It also works for SIMD32 but only if we
1430 * can assume 4x MSAA. Disallow it on IVB+
1431 *
1432 * FINISHME: One day, we could come up with a way to do this that
1433 * actually works on gen7.
1434 */
1435 if (devinfo->gen >= 7)
1436 limit_dispatch_width(16, "gl_SampleId is unsupported in SIMD32 on gen7");
1437 abld.exec_all().group(8, 0).MOV(t2, brw_imm_v(0x32103210));
1438
1439 /* This special instruction takes care of setting vstride=1,
1440 * width=4, hstride=0 of t2 during an ADD instruction.
1441 */
1442 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1443 }
1444
1445 return reg;
1446 }
1447
1448 fs_reg *
1449 fs_visitor::emit_samplemaskin_setup()
1450 {
1451 assert(stage == MESA_SHADER_FRAGMENT);
1452 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1453 assert(devinfo->gen >= 6);
1454
1455 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1456
1457 fs_reg coverage_mask =
1458 fetch_payload_reg(bld, payload.sample_mask_in_reg, BRW_REGISTER_TYPE_D);
1459
1460 if (wm_prog_data->persample_dispatch) {
1461 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1462 * and a mask representing which sample is being processed by the
1463 * current shader invocation.
1464 *
1465 * From the OES_sample_variables specification:
1466 * "When per-sample shading is active due to the use of a fragment input
1467 * qualified by "sample" or due to the use of the gl_SampleID or
1468 * gl_SamplePosition variables, only the bit for the current sample is
1469 * set in gl_SampleMaskIn."
1470 */
1471 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1472
1473 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1474 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1475
1476 fs_reg one = vgrf(glsl_type::int_type);
1477 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1478 abld.MOV(one, brw_imm_d(1));
1479 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1480 abld.AND(*reg, enabled_mask, coverage_mask);
1481 } else {
1482 /* In per-pixel mode, the coverage mask is sufficient. */
1483 *reg = coverage_mask;
1484 }
1485 return reg;
1486 }
1487
1488 fs_reg
1489 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1490 {
1491 if (!src.abs && !src.negate)
1492 return src;
1493
1494 fs_reg temp = bld.vgrf(src.type);
1495 bld.MOV(temp, src);
1496
1497 return temp;
1498 }
1499
1500 void
1501 fs_visitor::emit_discard_jump()
1502 {
1503 assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1504
1505 /* For performance, after a discard, jump to the end of the
1506 * shader if all relevant channels have been discarded.
1507 */
1508 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1509 discard_jump->flag_subreg = 1;
1510
1511 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1512 discard_jump->predicate_inverse = true;
1513 }
1514
1515 void
1516 fs_visitor::emit_gs_thread_end()
1517 {
1518 assert(stage == MESA_SHADER_GEOMETRY);
1519
1520 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1521
1522 if (gs_compile->control_data_header_size_bits > 0) {
1523 emit_gs_control_data_bits(this->final_gs_vertex_count);
1524 }
1525
1526 const fs_builder abld = bld.annotate("thread end");
1527 fs_inst *inst;
1528
1529 if (gs_prog_data->static_vertex_count != -1) {
1530 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1531 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1532 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1533 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1534 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1535 prev->eot = true;
1536
1537 /* Delete now dead instructions. */
1538 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1539 if (dead == prev)
1540 break;
1541 dead->remove();
1542 }
1543 return;
1544 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1545 break;
1546 }
1547 }
1548 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1549 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1550 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1551 inst->mlen = 1;
1552 } else {
1553 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1554 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1555 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1556 sources[1] = this->final_gs_vertex_count;
1557 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1558 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1559 inst->mlen = 2;
1560 }
1561 inst->eot = true;
1562 inst->offset = 0;
1563 }
1564
1565 void
1566 fs_visitor::assign_curb_setup()
1567 {
1568 unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
1569
1570 unsigned ubo_push_length = 0;
1571 unsigned ubo_push_start[4];
1572 for (int i = 0; i < 4; i++) {
1573 ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
1574 ubo_push_length += stage_prog_data->ubo_ranges[i].length;
1575 }
1576
1577 prog_data->curb_read_length = uniform_push_length + ubo_push_length;
1578
1579 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1580 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1581 for (unsigned int i = 0; i < inst->sources; i++) {
1582 if (inst->src[i].file == UNIFORM) {
1583 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1584 int constant_nr;
1585 if (inst->src[i].nr >= UBO_START) {
1586 /* constant_nr is in 32-bit units, the rest are in bytes */
1587 constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
1588 inst->src[i].offset / 4;
1589 } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1590 constant_nr = push_constant_loc[uniform_nr];
1591 } else {
1592 /* Section 5.11 of the OpenGL 4.1 spec says:
1593 * "Out-of-bounds reads return undefined values, which include
1594 * values from other variables of the active program or zero."
1595 * Just return the first push constant.
1596 */
1597 constant_nr = 0;
1598 }
1599
1600 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1601 constant_nr / 8,
1602 constant_nr % 8);
1603 brw_reg.abs = inst->src[i].abs;
1604 brw_reg.negate = inst->src[i].negate;
1605
1606 assert(inst->src[i].stride == 0);
1607 inst->src[i] = byte_offset(
1608 retype(brw_reg, inst->src[i].type),
1609 inst->src[i].offset % 4);
1610 }
1611 }
1612 }
1613
1614 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1615 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1616 }
1617
1618 void
1619 fs_visitor::calculate_urb_setup()
1620 {
1621 assert(stage == MESA_SHADER_FRAGMENT);
1622 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1623 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1624
1625 memset(prog_data->urb_setup, -1,
1626 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1627
1628 int urb_next = 0;
1629 /* Figure out where each of the incoming setup attributes lands. */
1630 if (devinfo->gen >= 6) {
1631 if (util_bitcount64(nir->info.inputs_read &
1632 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1633 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1634 * first 16 varying inputs, so we can put them wherever we want.
1635 * Just put them in order.
1636 *
1637 * This is useful because it means that (a) inputs not used by the
1638 * fragment shader won't take up valuable register space, and (b) we
1639 * won't have to recompile the fragment shader if it gets paired with
1640 * a different vertex (or geometry) shader.
1641 */
1642 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1643 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1644 BITFIELD64_BIT(i)) {
1645 prog_data->urb_setup[i] = urb_next++;
1646 }
1647 }
1648 } else {
1649 /* We have enough input varyings that the SF/SBE pipeline stage can't
1650 * arbitrarily rearrange them to suit our whim; we have to put them
1651 * in an order that matches the output of the previous pipeline stage
1652 * (geometry or vertex shader).
1653 */
1654 struct brw_vue_map prev_stage_vue_map;
1655 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1656 key->input_slots_valid,
1657 nir->info.separate_shader);
1658
1659 int first_slot =
1660 brw_compute_first_urb_slot_required(nir->info.inputs_read,
1661 &prev_stage_vue_map);
1662
1663 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1664 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1665 slot++) {
1666 int varying = prev_stage_vue_map.slot_to_varying[slot];
1667 if (varying != BRW_VARYING_SLOT_PAD &&
1668 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1669 BITFIELD64_BIT(varying))) {
1670 prog_data->urb_setup[varying] = slot - first_slot;
1671 }
1672 }
1673 urb_next = prev_stage_vue_map.num_slots - first_slot;
1674 }
1675 } else {
1676 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1677 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1678 /* Point size is packed into the header, not as a general attribute */
1679 if (i == VARYING_SLOT_PSIZ)
1680 continue;
1681
1682 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1683 /* The back color slot is skipped when the front color is
1684 * also written to. In addition, some slots can be
1685 * written in the vertex shader and not read in the
1686 * fragment shader. So the register number must always be
1687 * incremented, mapped or not.
1688 */
1689 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1690 prog_data->urb_setup[i] = urb_next;
1691 urb_next++;
1692 }
1693 }
1694
1695 /*
1696 * It's a FS only attribute, and we did interpolation for this attribute
1697 * in SF thread. So, count it here, too.
1698 *
1699 * See compile_sf_prog() for more info.
1700 */
1701 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1702 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1703 }
1704
1705 prog_data->num_varying_inputs = urb_next;
1706 }
1707
1708 void
1709 fs_visitor::assign_urb_setup()
1710 {
1711 assert(stage == MESA_SHADER_FRAGMENT);
1712 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1713
1714 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1715
1716 /* Offset all the urb_setup[] index by the actual position of the
1717 * setup regs, now that the location of the constants has been chosen.
1718 */
1719 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1720 for (int i = 0; i < inst->sources; i++) {
1721 if (inst->src[i].file == ATTR) {
1722 /* ATTR regs in the FS are in units of logical scalar inputs each
1723 * of which consumes half of a GRF register.
1724 */
1725 assert(inst->src[i].offset < REG_SIZE / 2);
1726 const unsigned grf = urb_start + inst->src[i].nr / 2;
1727 const unsigned offset = (inst->src[i].nr % 2) * (REG_SIZE / 2) +
1728 inst->src[i].offset;
1729 const unsigned width = inst->src[i].stride == 0 ?
1730 1 : MIN2(inst->exec_size, 8);
1731 struct brw_reg reg = stride(
1732 byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1733 offset),
1734 width * inst->src[i].stride,
1735 width, inst->src[i].stride);
1736 reg.abs = inst->src[i].abs;
1737 reg.negate = inst->src[i].negate;
1738 inst->src[i] = reg;
1739 }
1740 }
1741 }
1742
1743 /* Each attribute is 4 setup channels, each of which is half a reg. */
1744 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1745 }
1746
1747 void
1748 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1749 {
1750 for (int i = 0; i < inst->sources; i++) {
1751 if (inst->src[i].file == ATTR) {
1752 int grf = payload.num_regs +
1753 prog_data->curb_read_length +
1754 inst->src[i].nr +
1755 inst->src[i].offset / REG_SIZE;
1756
1757 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1758 *
1759 * VertStride must be used to cross GRF register boundaries. This
1760 * rule implies that elements within a 'Width' cannot cross GRF
1761 * boundaries.
1762 *
1763 * So, for registers that are large enough, we have to split the exec
1764 * size in two and trust the compression state to sort it out.
1765 */
1766 unsigned total_size = inst->exec_size *
1767 inst->src[i].stride *
1768 type_sz(inst->src[i].type);
1769
1770 assert(total_size <= 2 * REG_SIZE);
1771 const unsigned exec_size =
1772 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1773
1774 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1775 struct brw_reg reg =
1776 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1777 inst->src[i].offset % REG_SIZE),
1778 exec_size * inst->src[i].stride,
1779 width, inst->src[i].stride);
1780 reg.abs = inst->src[i].abs;
1781 reg.negate = inst->src[i].negate;
1782
1783 inst->src[i] = reg;
1784 }
1785 }
1786 }
1787
1788 void
1789 fs_visitor::assign_vs_urb_setup()
1790 {
1791 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1792
1793 assert(stage == MESA_SHADER_VERTEX);
1794
1795 /* Each attribute is 4 regs. */
1796 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1797
1798 assert(vs_prog_data->base.urb_read_length <= 15);
1799
1800 /* Rewrite all ATTR file references to the hw grf that they land in. */
1801 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1802 convert_attr_sources_to_hw_regs(inst);
1803 }
1804 }
1805
1806 void
1807 fs_visitor::assign_tcs_single_patch_urb_setup()
1808 {
1809 assert(stage == MESA_SHADER_TESS_CTRL);
1810
1811 /* Rewrite all ATTR file references to HW_REGs. */
1812 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1813 convert_attr_sources_to_hw_regs(inst);
1814 }
1815 }
1816
1817 void
1818 fs_visitor::assign_tes_urb_setup()
1819 {
1820 assert(stage == MESA_SHADER_TESS_EVAL);
1821
1822 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1823
1824 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1825
1826 /* Rewrite all ATTR file references to HW_REGs. */
1827 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1828 convert_attr_sources_to_hw_regs(inst);
1829 }
1830 }
1831
1832 void
1833 fs_visitor::assign_gs_urb_setup()
1834 {
1835 assert(stage == MESA_SHADER_GEOMETRY);
1836
1837 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1838
1839 first_non_payload_grf +=
1840 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1841
1842 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1843 /* Rewrite all ATTR file references to GRFs. */
1844 convert_attr_sources_to_hw_regs(inst);
1845 }
1846 }
1847
1848
1849 /**
1850 * Split large virtual GRFs into separate components if we can.
1851 *
1852 * This is mostly duplicated with what brw_fs_vector_splitting does,
1853 * but that's really conservative because it's afraid of doing
1854 * splitting that doesn't result in real progress after the rest of
1855 * the optimization phases, which would cause infinite looping in
1856 * optimization. We can do it once here, safely. This also has the
1857 * opportunity to split interpolated values, or maybe even uniforms,
1858 * which we don't have at the IR level.
1859 *
1860 * We want to split, because virtual GRFs are what we register
1861 * allocate and spill (due to contiguousness requirements for some
1862 * instructions), and they're what we naturally generate in the
1863 * codegen process, but most virtual GRFs don't actually need to be
1864 * contiguous sets of GRFs. If we split, we'll end up with reduced
1865 * live intervals and better dead code elimination and coalescing.
1866 */
1867 void
1868 fs_visitor::split_virtual_grfs()
1869 {
1870 /* Compact the register file so we eliminate dead vgrfs. This
1871 * only defines split points for live registers, so if we have
1872 * too large dead registers they will hit assertions later.
1873 */
1874 compact_virtual_grfs();
1875
1876 int num_vars = this->alloc.count;
1877
1878 /* Count the total number of registers */
1879 int reg_count = 0;
1880 int vgrf_to_reg[num_vars];
1881 for (int i = 0; i < num_vars; i++) {
1882 vgrf_to_reg[i] = reg_count;
1883 reg_count += alloc.sizes[i];
1884 }
1885
1886 /* An array of "split points". For each register slot, this indicates
1887 * if this slot can be separated from the previous slot. Every time an
1888 * instruction uses multiple elements of a register (as a source or
1889 * destination), we mark the used slots as inseparable. Then we go
1890 * through and split the registers into the smallest pieces we can.
1891 */
1892 bool split_points[reg_count];
1893 memset(split_points, 0, sizeof(split_points));
1894
1895 /* Mark all used registers as fully splittable */
1896 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1897 if (inst->dst.file == VGRF) {
1898 int reg = vgrf_to_reg[inst->dst.nr];
1899 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1900 split_points[reg + j] = true;
1901 }
1902
1903 for (int i = 0; i < inst->sources; i++) {
1904 if (inst->src[i].file == VGRF) {
1905 int reg = vgrf_to_reg[inst->src[i].nr];
1906 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1907 split_points[reg + j] = true;
1908 }
1909 }
1910 }
1911
1912 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1913 if (inst->dst.file == VGRF) {
1914 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1915 for (unsigned j = 1; j < regs_written(inst); j++)
1916 split_points[reg + j] = false;
1917 }
1918 for (int i = 0; i < inst->sources; i++) {
1919 if (inst->src[i].file == VGRF) {
1920 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1921 for (unsigned j = 1; j < regs_read(inst, i); j++)
1922 split_points[reg + j] = false;
1923 }
1924 }
1925 }
1926
1927 int new_virtual_grf[reg_count];
1928 int new_reg_offset[reg_count];
1929
1930 int reg = 0;
1931 for (int i = 0; i < num_vars; i++) {
1932 /* The first one should always be 0 as a quick sanity check. */
1933 assert(split_points[reg] == false);
1934
1935 /* j = 0 case */
1936 new_reg_offset[reg] = 0;
1937 reg++;
1938 int offset = 1;
1939
1940 /* j > 0 case */
1941 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1942 /* If this is a split point, reset the offset to 0 and allocate a
1943 * new virtual GRF for the previous offset many registers
1944 */
1945 if (split_points[reg]) {
1946 assert(offset <= MAX_VGRF_SIZE);
1947 int grf = alloc.allocate(offset);
1948 for (int k = reg - offset; k < reg; k++)
1949 new_virtual_grf[k] = grf;
1950 offset = 0;
1951 }
1952 new_reg_offset[reg] = offset;
1953 offset++;
1954 reg++;
1955 }
1956
1957 /* The last one gets the original register number */
1958 assert(offset <= MAX_VGRF_SIZE);
1959 alloc.sizes[i] = offset;
1960 for (int k = reg - offset; k < reg; k++)
1961 new_virtual_grf[k] = i;
1962 }
1963 assert(reg == reg_count);
1964
1965 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1966 if (inst->dst.file == VGRF) {
1967 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1968 inst->dst.nr = new_virtual_grf[reg];
1969 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
1970 inst->dst.offset % REG_SIZE;
1971 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1972 }
1973 for (int i = 0; i < inst->sources; i++) {
1974 if (inst->src[i].file == VGRF) {
1975 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1976 inst->src[i].nr = new_virtual_grf[reg];
1977 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
1978 inst->src[i].offset % REG_SIZE;
1979 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1980 }
1981 }
1982 }
1983 invalidate_live_intervals();
1984 }
1985
1986 /**
1987 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1988 *
1989 * During code generation, we create tons of temporary variables, many of
1990 * which get immediately killed and are never used again. Yet, in later
1991 * optimization and analysis passes, such as compute_live_intervals, we need
1992 * to loop over all the virtual GRFs. Compacting them can save a lot of
1993 * overhead.
1994 */
1995 bool
1996 fs_visitor::compact_virtual_grfs()
1997 {
1998 bool progress = false;
1999 int remap_table[this->alloc.count];
2000 memset(remap_table, -1, sizeof(remap_table));
2001
2002 /* Mark which virtual GRFs are used. */
2003 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
2004 if (inst->dst.file == VGRF)
2005 remap_table[inst->dst.nr] = 0;
2006
2007 for (int i = 0; i < inst->sources; i++) {
2008 if (inst->src[i].file == VGRF)
2009 remap_table[inst->src[i].nr] = 0;
2010 }
2011 }
2012
2013 /* Compact the GRF arrays. */
2014 int new_index = 0;
2015 for (unsigned i = 0; i < this->alloc.count; i++) {
2016 if (remap_table[i] == -1) {
2017 /* We just found an unused register. This means that we are
2018 * actually going to compact something.
2019 */
2020 progress = true;
2021 } else {
2022 remap_table[i] = new_index;
2023 alloc.sizes[new_index] = alloc.sizes[i];
2024 invalidate_live_intervals();
2025 ++new_index;
2026 }
2027 }
2028
2029 this->alloc.count = new_index;
2030
2031 /* Patch all the instructions to use the newly renumbered registers */
2032 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2033 if (inst->dst.file == VGRF)
2034 inst->dst.nr = remap_table[inst->dst.nr];
2035
2036 for (int i = 0; i < inst->sources; i++) {
2037 if (inst->src[i].file == VGRF)
2038 inst->src[i].nr = remap_table[inst->src[i].nr];
2039 }
2040 }
2041
2042 /* Patch all the references to delta_xy, since they're used in register
2043 * allocation. If they're unused, switch them to BAD_FILE so we don't
2044 * think some random VGRF is delta_xy.
2045 */
2046 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2047 if (delta_xy[i].file == VGRF) {
2048 if (remap_table[delta_xy[i].nr] != -1) {
2049 delta_xy[i].nr = remap_table[delta_xy[i].nr];
2050 } else {
2051 delta_xy[i].file = BAD_FILE;
2052 }
2053 }
2054 }
2055
2056 return progress;
2057 }
2058
2059 static int
2060 get_subgroup_id_param_index(const brw_stage_prog_data *prog_data)
2061 {
2062 if (prog_data->nr_params == 0)
2063 return -1;
2064
2065 /* The local thread id is always the last parameter in the list */
2066 uint32_t last_param = prog_data->param[prog_data->nr_params - 1];
2067 if (last_param == BRW_PARAM_BUILTIN_SUBGROUP_ID)
2068 return prog_data->nr_params - 1;
2069
2070 return -1;
2071 }
2072
2073 /**
2074 * Struct for handling complex alignments.
2075 *
2076 * A complex alignment is stored as multiplier and an offset. A value is
2077 * considered to be aligned if it is {offset} larger than a multiple of {mul}.
2078 * For instance, with an alignment of {8, 2}, cplx_align_apply would do the
2079 * following:
2080 *
2081 * N | cplx_align_apply({8, 2}, N)
2082 * ----+-----------------------------
2083 * 4 | 6
2084 * 6 | 6
2085 * 8 | 14
2086 * 10 | 14
2087 * 12 | 14
2088 * 14 | 14
2089 * 16 | 22
2090 */
2091 struct cplx_align {
2092 unsigned mul:4;
2093 unsigned offset:4;
2094 };
2095
2096 #define CPLX_ALIGN_MAX_MUL 8
2097
2098 static void
2099 cplx_align_assert_sane(struct cplx_align a)
2100 {
2101 assert(a.mul > 0 && util_is_power_of_two_nonzero(a.mul));
2102 assert(a.offset < a.mul);
2103 }
2104
2105 /**
2106 * Combines two alignments to produce a least multiple of sorts.
2107 *
2108 * The returned alignment is the smallest (in terms of multiplier) such that
2109 * anything aligned to both a and b will be aligned to the new alignment.
2110 * This function will assert-fail if a and b are not compatible, i.e. if the
2111 * offset parameters are such that no common alignment is possible.
2112 */
2113 static struct cplx_align
2114 cplx_align_combine(struct cplx_align a, struct cplx_align b)
2115 {
2116 cplx_align_assert_sane(a);
2117 cplx_align_assert_sane(b);
2118
2119 /* Assert that the alignments agree. */
2120 assert((a.offset & (b.mul - 1)) == (b.offset & (a.mul - 1)));
2121
2122 return a.mul > b.mul ? a : b;
2123 }
2124
2125 /**
2126 * Apply a complex alignment
2127 *
2128 * This function will return the smallest number greater than or equal to
2129 * offset that is aligned to align.
2130 */
2131 static unsigned
2132 cplx_align_apply(struct cplx_align align, unsigned offset)
2133 {
2134 return ALIGN(offset - align.offset, align.mul) + align.offset;
2135 }
2136
2137 #define UNIFORM_SLOT_SIZE 4
2138
2139 struct uniform_slot_info {
2140 /** True if the given uniform slot is live */
2141 unsigned is_live:1;
2142
2143 /** True if this slot and the next slot must remain contiguous */
2144 unsigned contiguous:1;
2145
2146 struct cplx_align align;
2147 };
2148
2149 static void
2150 mark_uniform_slots_read(struct uniform_slot_info *slots,
2151 unsigned num_slots, unsigned alignment)
2152 {
2153 assert(alignment > 0 && util_is_power_of_two_nonzero(alignment));
2154 assert(alignment <= CPLX_ALIGN_MAX_MUL);
2155
2156 /* We can't align a slot to anything less than the slot size */
2157 alignment = MAX2(alignment, UNIFORM_SLOT_SIZE);
2158
2159 struct cplx_align align = {alignment, 0};
2160 cplx_align_assert_sane(align);
2161
2162 for (unsigned i = 0; i < num_slots; i++) {
2163 slots[i].is_live = true;
2164 if (i < num_slots - 1)
2165 slots[i].contiguous = true;
2166
2167 align.offset = (i * UNIFORM_SLOT_SIZE) & (align.mul - 1);
2168 if (slots[i].align.mul == 0) {
2169 slots[i].align = align;
2170 } else {
2171 slots[i].align = cplx_align_combine(slots[i].align, align);
2172 }
2173 }
2174 }
2175
2176 /**
2177 * Assign UNIFORM file registers to either push constants or pull constants.
2178 *
2179 * We allow a fragment shader to have more than the specified minimum
2180 * maximum number of fragment shader uniform components (64). If
2181 * there are too many of these, they'd fill up all of register space.
2182 * So, this will push some of them out to the pull constant buffer and
2183 * update the program to load them.
2184 */
2185 void
2186 fs_visitor::assign_constant_locations()
2187 {
2188 /* Only the first compile gets to decide on locations. */
2189 if (push_constant_loc) {
2190 assert(pull_constant_loc);
2191 return;
2192 }
2193
2194 struct uniform_slot_info slots[uniforms];
2195 memset(slots, 0, sizeof(slots));
2196
2197 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2198 for (int i = 0 ; i < inst->sources; i++) {
2199 if (inst->src[i].file != UNIFORM)
2200 continue;
2201
2202 /* NIR tightly packs things so the uniform number might not be
2203 * aligned (if we have a double right after a float, for instance).
2204 * This is fine because the process of re-arranging them will ensure
2205 * that things are properly aligned. The offset into that uniform,
2206 * however, must be aligned.
2207 *
2208 * In Vulkan, we have explicit offsets but everything is crammed
2209 * into a single "variable" so inst->src[i].nr will always be 0.
2210 * Everything will be properly aligned relative to that one base.
2211 */
2212 assert(inst->src[i].offset % type_sz(inst->src[i].type) == 0);
2213
2214 unsigned u = inst->src[i].nr +
2215 inst->src[i].offset / UNIFORM_SLOT_SIZE;
2216
2217 if (u >= uniforms)
2218 continue;
2219
2220 unsigned slots_read;
2221 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
2222 slots_read = DIV_ROUND_UP(inst->src[2].ud, UNIFORM_SLOT_SIZE);
2223 } else {
2224 unsigned bytes_read = inst->components_read(i) *
2225 type_sz(inst->src[i].type);
2226 slots_read = DIV_ROUND_UP(bytes_read, UNIFORM_SLOT_SIZE);
2227 }
2228
2229 assert(u + slots_read <= uniforms);
2230 mark_uniform_slots_read(&slots[u], slots_read,
2231 type_sz(inst->src[i].type));
2232 }
2233 }
2234
2235 int subgroup_id_index = get_subgroup_id_param_index(stage_prog_data);
2236
2237 /* Only allow 16 registers (128 uniform components) as push constants.
2238 *
2239 * Just demote the end of the list. We could probably do better
2240 * here, demoting things that are rarely used in the program first.
2241 *
2242 * If changing this value, note the limitation about total_regs in
2243 * brw_curbe.c.
2244 */
2245 unsigned int max_push_components = 16 * 8;
2246 if (subgroup_id_index >= 0)
2247 max_push_components--; /* Save a slot for the thread ID */
2248
2249 /* We push small arrays, but no bigger than 16 floats. This is big enough
2250 * for a vec4 but hopefully not large enough to push out other stuff. We
2251 * should probably use a better heuristic at some point.
2252 */
2253 const unsigned int max_chunk_size = 16;
2254
2255 unsigned int num_push_constants = 0;
2256 unsigned int num_pull_constants = 0;
2257
2258 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2259 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2260
2261 /* Default to -1 meaning no location */
2262 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2263 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2264
2265 int chunk_start = -1;
2266 struct cplx_align align;
2267 for (unsigned u = 0; u < uniforms; u++) {
2268 if (!slots[u].is_live) {
2269 assert(chunk_start == -1);
2270 continue;
2271 }
2272
2273 /* Skip subgroup_id_index to put it in the last push register. */
2274 if (subgroup_id_index == (int)u)
2275 continue;
2276
2277 if (chunk_start == -1) {
2278 chunk_start = u;
2279 align = slots[u].align;
2280 } else {
2281 /* Offset into the chunk */
2282 unsigned chunk_offset = (u - chunk_start) * UNIFORM_SLOT_SIZE;
2283
2284 /* Shift the slot alignment down by the chunk offset so it is
2285 * comparable with the base chunk alignment.
2286 */
2287 struct cplx_align slot_align = slots[u].align;
2288 slot_align.offset =
2289 (slot_align.offset - chunk_offset) & (align.mul - 1);
2290
2291 align = cplx_align_combine(align, slot_align);
2292 }
2293
2294 /* Sanity check the alignment */
2295 cplx_align_assert_sane(align);
2296
2297 if (slots[u].contiguous)
2298 continue;
2299
2300 /* Adjust the alignment to be in terms of slots, not bytes */
2301 assert((align.mul & (UNIFORM_SLOT_SIZE - 1)) == 0);
2302 assert((align.offset & (UNIFORM_SLOT_SIZE - 1)) == 0);
2303 align.mul /= UNIFORM_SLOT_SIZE;
2304 align.offset /= UNIFORM_SLOT_SIZE;
2305
2306 unsigned push_start_align = cplx_align_apply(align, num_push_constants);
2307 unsigned chunk_size = u - chunk_start + 1;
2308 if ((!compiler->supports_pull_constants && u < UBO_START) ||
2309 (chunk_size < max_chunk_size &&
2310 push_start_align + chunk_size <= max_push_components)) {
2311 /* Align up the number of push constants */
2312 num_push_constants = push_start_align;
2313 for (unsigned i = 0; i < chunk_size; i++)
2314 push_constant_loc[chunk_start + i] = num_push_constants++;
2315 } else {
2316 /* We need to pull this one */
2317 num_pull_constants = cplx_align_apply(align, num_pull_constants);
2318 for (unsigned i = 0; i < chunk_size; i++)
2319 pull_constant_loc[chunk_start + i] = num_pull_constants++;
2320 }
2321
2322 /* Reset the chunk and start again */
2323 chunk_start = -1;
2324 }
2325
2326 /* Add the CS local thread ID uniform at the end of the push constants */
2327 if (subgroup_id_index >= 0)
2328 push_constant_loc[subgroup_id_index] = num_push_constants++;
2329
2330 /* As the uniforms are going to be reordered, stash the old array and
2331 * create two new arrays for push/pull params.
2332 */
2333 uint32_t *param = stage_prog_data->param;
2334 stage_prog_data->nr_params = num_push_constants;
2335 if (num_push_constants) {
2336 stage_prog_data->param = rzalloc_array(mem_ctx, uint32_t,
2337 num_push_constants);
2338 } else {
2339 stage_prog_data->param = NULL;
2340 }
2341 assert(stage_prog_data->nr_pull_params == 0);
2342 assert(stage_prog_data->pull_param == NULL);
2343 if (num_pull_constants > 0) {
2344 stage_prog_data->nr_pull_params = num_pull_constants;
2345 stage_prog_data->pull_param = rzalloc_array(mem_ctx, uint32_t,
2346 num_pull_constants);
2347 }
2348
2349 /* Now that we know how many regular uniforms we'll push, reduce the
2350 * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits.
2351 */
2352 unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
2353 for (int i = 0; i < 4; i++) {
2354 struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2355
2356 if (push_length + range->length > 64)
2357 range->length = 64 - push_length;
2358
2359 push_length += range->length;
2360 }
2361 assert(push_length <= 64);
2362
2363 /* Up until now, the param[] array has been indexed by reg + offset
2364 * of UNIFORM registers. Move pull constants into pull_param[] and
2365 * condense param[] to only contain the uniforms we chose to push.
2366 *
2367 * NOTE: Because we are condensing the params[] array, we know that
2368 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2369 * having to make a copy.
2370 */
2371 for (unsigned int i = 0; i < uniforms; i++) {
2372 uint32_t value = param[i];
2373 if (pull_constant_loc[i] != -1) {
2374 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2375 } else if (push_constant_loc[i] != -1) {
2376 stage_prog_data->param[push_constant_loc[i]] = value;
2377 }
2378 }
2379 ralloc_free(param);
2380 }
2381
2382 bool
2383 fs_visitor::get_pull_locs(const fs_reg &src,
2384 unsigned *out_surf_index,
2385 unsigned *out_pull_index)
2386 {
2387 assert(src.file == UNIFORM);
2388
2389 if (src.nr >= UBO_START) {
2390 const struct brw_ubo_range *range =
2391 &prog_data->ubo_ranges[src.nr - UBO_START];
2392
2393 /* If this access is in our (reduced) range, use the push data. */
2394 if (src.offset / 32 < range->length)
2395 return false;
2396
2397 *out_surf_index = prog_data->binding_table.ubo_start + range->block;
2398 *out_pull_index = (32 * range->start + src.offset) / 4;
2399 return true;
2400 }
2401
2402 const unsigned location = src.nr + src.offset / 4;
2403
2404 if (location < uniforms && pull_constant_loc[location] != -1) {
2405 /* A regular uniform push constant */
2406 *out_surf_index = stage_prog_data->binding_table.pull_constants_start;
2407 *out_pull_index = pull_constant_loc[location];
2408 return true;
2409 }
2410
2411 return false;
2412 }
2413
2414 /**
2415 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2416 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2417 */
2418 void
2419 fs_visitor::lower_constant_loads()
2420 {
2421 unsigned index, pull_index;
2422
2423 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2424 /* Set up the annotation tracking for new generated instructions. */
2425 const fs_builder ibld(this, block, inst);
2426
2427 for (int i = 0; i < inst->sources; i++) {
2428 if (inst->src[i].file != UNIFORM)
2429 continue;
2430
2431 /* We'll handle this case later */
2432 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2433 continue;
2434
2435 if (!get_pull_locs(inst->src[i], &index, &pull_index))
2436 continue;
2437
2438 assert(inst->src[i].stride == 0);
2439
2440 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2441 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2442 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2443 const unsigned base = pull_index * 4;
2444
2445 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2446 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2447
2448 /* Rewrite the instruction to use the temporary VGRF. */
2449 inst->src[i].file = VGRF;
2450 inst->src[i].nr = dst.nr;
2451 inst->src[i].offset = (base & (block_sz - 1)) +
2452 inst->src[i].offset % 4;
2453 }
2454
2455 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2456 inst->src[0].file == UNIFORM) {
2457
2458 if (!get_pull_locs(inst->src[0], &index, &pull_index))
2459 continue;
2460
2461 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2462 brw_imm_ud(index),
2463 inst->src[1],
2464 pull_index * 4);
2465 inst->remove(block);
2466 }
2467 }
2468 invalidate_live_intervals();
2469 }
2470
2471 bool
2472 fs_visitor::opt_algebraic()
2473 {
2474 bool progress = false;
2475
2476 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2477 switch (inst->opcode) {
2478 case BRW_OPCODE_MOV:
2479 if (!devinfo->has_64bit_types &&
2480 (inst->dst.type == BRW_REGISTER_TYPE_DF ||
2481 inst->dst.type == BRW_REGISTER_TYPE_UQ ||
2482 inst->dst.type == BRW_REGISTER_TYPE_Q)) {
2483 assert(inst->dst.type == inst->src[0].type);
2484 assert(!inst->saturate);
2485 assert(!inst->src[0].abs);
2486 assert(!inst->src[0].negate);
2487 const brw::fs_builder ibld(this, block, inst);
2488
2489 if (inst->src[0].file == IMM) {
2490 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2491 brw_imm_ud(inst->src[0].u64 >> 32));
2492 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2493 brw_imm_ud(inst->src[0].u64));
2494 } else {
2495 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2496 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1));
2497 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2498 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0));
2499 }
2500
2501 inst->remove(block);
2502 progress = true;
2503 }
2504
2505 if ((inst->conditional_mod == BRW_CONDITIONAL_Z ||
2506 inst->conditional_mod == BRW_CONDITIONAL_NZ) &&
2507 inst->dst.is_null() &&
2508 (inst->src[0].abs || inst->src[0].negate)) {
2509 inst->src[0].abs = false;
2510 inst->src[0].negate = false;
2511 progress = true;
2512 break;
2513 }
2514
2515 if (inst->src[0].file != IMM)
2516 break;
2517
2518 if (inst->saturate) {
2519 /* Full mixed-type saturates don't happen. However, we can end up
2520 * with things like:
2521 *
2522 * mov.sat(8) g21<1>DF -1F
2523 *
2524 * Other mixed-size-but-same-base-type cases may also be possible.
2525 */
2526 if (inst->dst.type != inst->src[0].type &&
2527 inst->dst.type != BRW_REGISTER_TYPE_DF &&
2528 inst->src[0].type != BRW_REGISTER_TYPE_F)
2529 assert(!"unimplemented: saturate mixed types");
2530
2531 if (brw_saturate_immediate(inst->src[0].type,
2532 &inst->src[0].as_brw_reg())) {
2533 inst->saturate = false;
2534 progress = true;
2535 }
2536 }
2537 break;
2538
2539 case BRW_OPCODE_MUL:
2540 if (inst->src[1].file != IMM)
2541 continue;
2542
2543 /* a * 1.0 = a */
2544 if (inst->src[1].is_one()) {
2545 inst->opcode = BRW_OPCODE_MOV;
2546 inst->src[1] = reg_undef;
2547 progress = true;
2548 break;
2549 }
2550
2551 /* a * -1.0 = -a */
2552 if (inst->src[1].is_negative_one()) {
2553 inst->opcode = BRW_OPCODE_MOV;
2554 inst->src[0].negate = !inst->src[0].negate;
2555 inst->src[1] = reg_undef;
2556 progress = true;
2557 break;
2558 }
2559
2560 /* a * 0.0 = 0.0 */
2561 if (inst->src[1].is_zero()) {
2562 inst->opcode = BRW_OPCODE_MOV;
2563 inst->src[0] = inst->src[1];
2564 inst->src[1] = reg_undef;
2565 progress = true;
2566 break;
2567 }
2568
2569 if (inst->src[0].file == IMM) {
2570 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2571 inst->opcode = BRW_OPCODE_MOV;
2572 inst->src[0].f *= inst->src[1].f;
2573 inst->src[1] = reg_undef;
2574 progress = true;
2575 break;
2576 }
2577 break;
2578 case BRW_OPCODE_ADD:
2579 if (inst->src[1].file != IMM)
2580 continue;
2581
2582 /* a + 0.0 = a */
2583 if (inst->src[1].is_zero()) {
2584 inst->opcode = BRW_OPCODE_MOV;
2585 inst->src[1] = reg_undef;
2586 progress = true;
2587 break;
2588 }
2589
2590 if (inst->src[0].file == IMM) {
2591 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2592 inst->opcode = BRW_OPCODE_MOV;
2593 inst->src[0].f += inst->src[1].f;
2594 inst->src[1] = reg_undef;
2595 progress = true;
2596 break;
2597 }
2598 break;
2599 case BRW_OPCODE_OR:
2600 if (inst->src[0].equals(inst->src[1]) ||
2601 inst->src[1].is_zero()) {
2602 /* On Gen8+, the OR instruction can have a source modifier that
2603 * performs logical not on the operand. Cases of 'OR r0, ~r1, 0'
2604 * or 'OR r0, ~r1, ~r1' should become a NOT instead of a MOV.
2605 */
2606 if (inst->src[0].negate) {
2607 inst->opcode = BRW_OPCODE_NOT;
2608 inst->src[0].negate = false;
2609 } else {
2610 inst->opcode = BRW_OPCODE_MOV;
2611 }
2612 inst->src[1] = reg_undef;
2613 progress = true;
2614 break;
2615 }
2616 break;
2617 case BRW_OPCODE_LRP:
2618 if (inst->src[1].equals(inst->src[2])) {
2619 inst->opcode = BRW_OPCODE_MOV;
2620 inst->src[0] = inst->src[1];
2621 inst->src[1] = reg_undef;
2622 inst->src[2] = reg_undef;
2623 progress = true;
2624 break;
2625 }
2626 break;
2627 case BRW_OPCODE_CMP:
2628 if ((inst->conditional_mod == BRW_CONDITIONAL_Z ||
2629 inst->conditional_mod == BRW_CONDITIONAL_NZ) &&
2630 inst->src[1].is_zero() &&
2631 (inst->src[0].abs || inst->src[0].negate)) {
2632 inst->src[0].abs = false;
2633 inst->src[0].negate = false;
2634 progress = true;
2635 break;
2636 }
2637 break;
2638 case BRW_OPCODE_SEL:
2639 if (!devinfo->has_64bit_types &&
2640 (inst->dst.type == BRW_REGISTER_TYPE_DF ||
2641 inst->dst.type == BRW_REGISTER_TYPE_UQ ||
2642 inst->dst.type == BRW_REGISTER_TYPE_Q)) {
2643 assert(inst->dst.type == inst->src[0].type);
2644 assert(!inst->saturate);
2645 assert(!inst->src[0].abs && !inst->src[0].negate);
2646 assert(!inst->src[1].abs && !inst->src[1].negate);
2647 const brw::fs_builder ibld(this, block, inst);
2648
2649 set_predicate(inst->predicate,
2650 ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2651 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
2652 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0)));
2653 set_predicate(inst->predicate,
2654 ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2655 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1),
2656 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 1)));
2657
2658 inst->remove(block);
2659 progress = true;
2660 }
2661 if (inst->src[0].equals(inst->src[1])) {
2662 inst->opcode = BRW_OPCODE_MOV;
2663 inst->src[1] = reg_undef;
2664 inst->predicate = BRW_PREDICATE_NONE;
2665 inst->predicate_inverse = false;
2666 progress = true;
2667 } else if (inst->saturate && inst->src[1].file == IMM) {
2668 switch (inst->conditional_mod) {
2669 case BRW_CONDITIONAL_LE:
2670 case BRW_CONDITIONAL_L:
2671 switch (inst->src[1].type) {
2672 case BRW_REGISTER_TYPE_F:
2673 if (inst->src[1].f >= 1.0f) {
2674 inst->opcode = BRW_OPCODE_MOV;
2675 inst->src[1] = reg_undef;
2676 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2677 progress = true;
2678 }
2679 break;
2680 default:
2681 break;
2682 }
2683 break;
2684 case BRW_CONDITIONAL_GE:
2685 case BRW_CONDITIONAL_G:
2686 switch (inst->src[1].type) {
2687 case BRW_REGISTER_TYPE_F:
2688 if (inst->src[1].f <= 0.0f) {
2689 inst->opcode = BRW_OPCODE_MOV;
2690 inst->src[1] = reg_undef;
2691 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2692 progress = true;
2693 }
2694 break;
2695 default:
2696 break;
2697 }
2698 default:
2699 break;
2700 }
2701 }
2702 break;
2703 case BRW_OPCODE_MAD:
2704 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2705 inst->opcode = BRW_OPCODE_MOV;
2706 inst->src[1] = reg_undef;
2707 inst->src[2] = reg_undef;
2708 progress = true;
2709 } else if (inst->src[0].is_zero()) {
2710 inst->opcode = BRW_OPCODE_MUL;
2711 inst->src[0] = inst->src[2];
2712 inst->src[2] = reg_undef;
2713 progress = true;
2714 } else if (inst->src[1].is_one()) {
2715 inst->opcode = BRW_OPCODE_ADD;
2716 inst->src[1] = inst->src[2];
2717 inst->src[2] = reg_undef;
2718 progress = true;
2719 } else if (inst->src[2].is_one()) {
2720 inst->opcode = BRW_OPCODE_ADD;
2721 inst->src[2] = reg_undef;
2722 progress = true;
2723 }
2724 break;
2725 case SHADER_OPCODE_BROADCAST:
2726 if (is_uniform(inst->src[0])) {
2727 inst->opcode = BRW_OPCODE_MOV;
2728 inst->sources = 1;
2729 inst->force_writemask_all = true;
2730 progress = true;
2731 } else if (inst->src[1].file == IMM) {
2732 inst->opcode = BRW_OPCODE_MOV;
2733 /* It's possible that the selected component will be too large and
2734 * overflow the register. This can happen if someone does a
2735 * readInvocation() from GLSL or SPIR-V and provides an OOB
2736 * invocationIndex. If this happens and we some how manage
2737 * to constant fold it in and get here, then component() may cause
2738 * us to start reading outside of the VGRF which will lead to an
2739 * assert later. Instead, just let it wrap around if it goes over
2740 * exec_size.
2741 */
2742 const unsigned comp = inst->src[1].ud & (inst->exec_size - 1);
2743 inst->src[0] = component(inst->src[0], comp);
2744 inst->sources = 1;
2745 inst->force_writemask_all = true;
2746 progress = true;
2747 }
2748 break;
2749
2750 case SHADER_OPCODE_SHUFFLE:
2751 if (is_uniform(inst->src[0])) {
2752 inst->opcode = BRW_OPCODE_MOV;
2753 inst->sources = 1;
2754 progress = true;
2755 } else if (inst->src[1].file == IMM) {
2756 inst->opcode = BRW_OPCODE_MOV;
2757 inst->src[0] = component(inst->src[0],
2758 inst->src[1].ud);
2759 inst->sources = 1;
2760 progress = true;
2761 }
2762 break;
2763
2764 default:
2765 break;
2766 }
2767
2768 /* Swap if src[0] is immediate. */
2769 if (progress && inst->is_commutative()) {
2770 if (inst->src[0].file == IMM) {
2771 fs_reg tmp = inst->src[1];
2772 inst->src[1] = inst->src[0];
2773 inst->src[0] = tmp;
2774 }
2775 }
2776 }
2777 return progress;
2778 }
2779
2780 /**
2781 * Optimize sample messages that have constant zero values for the trailing
2782 * texture coordinates. We can just reduce the message length for these
2783 * instructions instead of reserving a register for it. Trailing parameters
2784 * that aren't sent default to zero anyway. This will cause the dead code
2785 * eliminator to remove the MOV instruction that would otherwise be emitted to
2786 * set up the zero value.
2787 */
2788 bool
2789 fs_visitor::opt_zero_samples()
2790 {
2791 /* Gen4 infers the texturing opcode based on the message length so we can't
2792 * change it.
2793 */
2794 if (devinfo->gen < 5)
2795 return false;
2796
2797 bool progress = false;
2798
2799 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2800 if (!inst->is_tex())
2801 continue;
2802
2803 fs_inst *load_payload = (fs_inst *) inst->prev;
2804
2805 if (load_payload->is_head_sentinel() ||
2806 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2807 continue;
2808
2809 /* We don't want to remove the message header or the first parameter.
2810 * Removing the first parameter is not allowed, see the Haswell PRM
2811 * volume 7, page 149:
2812 *
2813 * "Parameter 0 is required except for the sampleinfo message, which
2814 * has no parameter 0"
2815 */
2816 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2817 load_payload->src[(inst->mlen - inst->header_size) /
2818 (inst->exec_size / 8) +
2819 inst->header_size - 1].is_zero()) {
2820 inst->mlen -= inst->exec_size / 8;
2821 progress = true;
2822 }
2823 }
2824
2825 if (progress)
2826 invalidate_live_intervals();
2827
2828 return progress;
2829 }
2830
2831 /**
2832 * Optimize sample messages which are followed by the final RT write.
2833 *
2834 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2835 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2836 * final texturing results copied to the framebuffer write payload and modify
2837 * them to write to the framebuffer directly.
2838 */
2839 bool
2840 fs_visitor::opt_sampler_eot()
2841 {
2842 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2843
2844 if (stage != MESA_SHADER_FRAGMENT || dispatch_width > 16)
2845 return false;
2846
2847 if (devinfo->gen != 9 && !devinfo->is_cherryview)
2848 return false;
2849
2850 /* FINISHME: It should be possible to implement this optimization when there
2851 * are multiple drawbuffers.
2852 */
2853 if (key->nr_color_regions != 1)
2854 return false;
2855
2856 /* Requires emitting a bunch of saturating MOV instructions during logical
2857 * send lowering to clamp the color payload, which the sampler unit isn't
2858 * going to do for us.
2859 */
2860 if (key->clamp_fragment_color)
2861 return false;
2862
2863 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2864 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2865 fs_inst *fb_write = (fs_inst *)block->end();
2866 assert(fb_write->eot);
2867 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2868
2869 /* There wasn't one; nothing to do. */
2870 if (unlikely(fb_write->prev->is_head_sentinel()))
2871 return false;
2872
2873 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2874
2875 /* 3D Sampler » Messages » Message Format
2876 *
2877 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2878 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2879 */
2880 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2881 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2882 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2883 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2884 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2885 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2886 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2887 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2888 return false;
2889
2890 /* XXX - This shouldn't be necessary. */
2891 if (tex_inst->prev->is_head_sentinel())
2892 return false;
2893
2894 /* Check that the FB write sources are fully initialized by the single
2895 * texturing instruction.
2896 */
2897 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2898 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2899 if (!fb_write->src[i].equals(tex_inst->dst) ||
2900 fb_write->size_read(i) != tex_inst->size_written)
2901 return false;
2902 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2903 if (fb_write->src[i].file != BAD_FILE)
2904 return false;
2905 }
2906 }
2907
2908 assert(!tex_inst->eot); /* We can't get here twice */
2909 assert((tex_inst->offset & (0xff << 24)) == 0);
2910
2911 const fs_builder ibld(this, block, tex_inst);
2912
2913 tex_inst->offset |= fb_write->target << 24;
2914 tex_inst->eot = true;
2915 tex_inst->dst = ibld.null_reg_ud();
2916 tex_inst->size_written = 0;
2917 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2918
2919 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2920 * flag and submit a header together with the sampler message as required
2921 * by the hardware.
2922 */
2923 invalidate_live_intervals();
2924 return true;
2925 }
2926
2927 bool
2928 fs_visitor::opt_register_renaming()
2929 {
2930 bool progress = false;
2931 int depth = 0;
2932
2933 unsigned remap[alloc.count];
2934 memset(remap, ~0u, sizeof(unsigned) * alloc.count);
2935
2936 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2937 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2938 depth++;
2939 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2940 inst->opcode == BRW_OPCODE_WHILE) {
2941 depth--;
2942 }
2943
2944 /* Rewrite instruction sources. */
2945 for (int i = 0; i < inst->sources; i++) {
2946 if (inst->src[i].file == VGRF &&
2947 remap[inst->src[i].nr] != ~0u &&
2948 remap[inst->src[i].nr] != inst->src[i].nr) {
2949 inst->src[i].nr = remap[inst->src[i].nr];
2950 progress = true;
2951 }
2952 }
2953
2954 const unsigned dst = inst->dst.nr;
2955
2956 if (depth == 0 &&
2957 inst->dst.file == VGRF &&
2958 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2959 !inst->is_partial_write()) {
2960 if (remap[dst] == ~0u) {
2961 remap[dst] = dst;
2962 } else {
2963 remap[dst] = alloc.allocate(regs_written(inst));
2964 inst->dst.nr = remap[dst];
2965 progress = true;
2966 }
2967 } else if (inst->dst.file == VGRF &&
2968 remap[dst] != ~0u &&
2969 remap[dst] != dst) {
2970 inst->dst.nr = remap[dst];
2971 progress = true;
2972 }
2973 }
2974
2975 if (progress) {
2976 invalidate_live_intervals();
2977
2978 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2979 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != ~0u) {
2980 delta_xy[i].nr = remap[delta_xy[i].nr];
2981 }
2982 }
2983 }
2984
2985 return progress;
2986 }
2987
2988 /**
2989 * Remove redundant or useless discard jumps.
2990 *
2991 * For example, we can eliminate jumps in the following sequence:
2992 *
2993 * discard-jump (redundant with the next jump)
2994 * discard-jump (useless; jumps to the next instruction)
2995 * placeholder-halt
2996 */
2997 bool
2998 fs_visitor::opt_redundant_discard_jumps()
2999 {
3000 bool progress = false;
3001
3002 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
3003
3004 fs_inst *placeholder_halt = NULL;
3005 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
3006 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
3007 placeholder_halt = inst;
3008 break;
3009 }
3010 }
3011
3012 if (!placeholder_halt)
3013 return false;
3014
3015 /* Delete any HALTs immediately before the placeholder halt. */
3016 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
3017 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
3018 prev = (fs_inst *) placeholder_halt->prev) {
3019 prev->remove(last_bblock);
3020 progress = true;
3021 }
3022
3023 if (progress)
3024 invalidate_live_intervals();
3025
3026 return progress;
3027 }
3028
3029 /**
3030 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
3031 * from \p r.offset which overlaps the region starting at \p s.offset and
3032 * spanning \p ds bytes.
3033 */
3034 static inline unsigned
3035 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
3036 {
3037 const int rel_offset = reg_offset(s) - reg_offset(r);
3038 const int shift = rel_offset / REG_SIZE;
3039 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
3040 assert(reg_space(r) == reg_space(s) &&
3041 shift >= 0 && shift < int(8 * sizeof(unsigned)));
3042 return ((1 << n) - 1) << shift;
3043 }
3044
3045 bool
3046 fs_visitor::opt_peephole_csel()
3047 {
3048 if (devinfo->gen < 8)
3049 return false;
3050
3051 bool progress = false;
3052
3053 foreach_block_reverse(block, cfg) {
3054 int ip = block->end_ip + 1;
3055
3056 foreach_inst_in_block_reverse_safe(fs_inst, inst, block) {
3057 ip--;
3058
3059 if (inst->opcode != BRW_OPCODE_SEL ||
3060 inst->predicate != BRW_PREDICATE_NORMAL ||
3061 (inst->dst.type != BRW_REGISTER_TYPE_F &&
3062 inst->dst.type != BRW_REGISTER_TYPE_D &&
3063 inst->dst.type != BRW_REGISTER_TYPE_UD))
3064 continue;
3065
3066 /* Because it is a 3-src instruction, CSEL cannot have an immediate
3067 * value as a source, but we can sometimes handle zero.
3068 */
3069 if ((inst->src[0].file != VGRF && inst->src[0].file != ATTR &&
3070 inst->src[0].file != UNIFORM) ||
3071 (inst->src[1].file != VGRF && inst->src[1].file != ATTR &&
3072 inst->src[1].file != UNIFORM && !inst->src[1].is_zero()))
3073 continue;
3074
3075 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3076 if (!scan_inst->flags_written())
3077 continue;
3078
3079 if ((scan_inst->opcode != BRW_OPCODE_CMP &&
3080 scan_inst->opcode != BRW_OPCODE_MOV) ||
3081 scan_inst->predicate != BRW_PREDICATE_NONE ||
3082 (scan_inst->src[0].file != VGRF &&
3083 scan_inst->src[0].file != ATTR &&
3084 scan_inst->src[0].file != UNIFORM) ||
3085 scan_inst->src[0].type != BRW_REGISTER_TYPE_F)
3086 break;
3087
3088 if (scan_inst->opcode == BRW_OPCODE_CMP && !scan_inst->src[1].is_zero())
3089 break;
3090
3091 const brw::fs_builder ibld(this, block, inst);
3092
3093 const enum brw_conditional_mod cond =
3094 inst->predicate_inverse
3095 ? brw_negate_cmod(scan_inst->conditional_mod)
3096 : scan_inst->conditional_mod;
3097
3098 fs_inst *csel_inst = NULL;
3099
3100 if (inst->src[1].file != IMM) {
3101 csel_inst = ibld.CSEL(inst->dst,
3102 inst->src[0],
3103 inst->src[1],
3104 scan_inst->src[0],
3105 cond);
3106 } else if (cond == BRW_CONDITIONAL_NZ) {
3107 /* Consider the sequence
3108 *
3109 * cmp.nz.f0 null<1>F g3<8,8,1>F 0F
3110 * (+f0) sel g124<1>UD g2<8,8,1>UD 0x00000000UD
3111 *
3112 * The sel will pick the immediate value 0 if r0 is ±0.0.
3113 * Therefore, this sequence is equivalent:
3114 *
3115 * cmp.nz.f0 null<1>F g3<8,8,1>F 0F
3116 * (+f0) sel g124<1>F g2<8,8,1>F (abs)g3<8,8,1>F
3117 *
3118 * The abs is ensures that the result is 0UD when g3 is -0.0F.
3119 * By normal cmp-sel merging, this is also equivalent:
3120 *
3121 * csel.nz g124<1>F g2<4,4,1>F (abs)g3<4,4,1>F g3<4,4,1>F
3122 */
3123 csel_inst = ibld.CSEL(inst->dst,
3124 inst->src[0],
3125 scan_inst->src[0],
3126 scan_inst->src[0],
3127 cond);
3128
3129 csel_inst->src[1].abs = true;
3130 }
3131
3132 if (csel_inst != NULL) {
3133 progress = true;
3134 csel_inst->saturate = inst->saturate;
3135 inst->remove(block);
3136 }
3137
3138 break;
3139 }
3140 }
3141 }
3142
3143 return progress;
3144 }
3145
3146 bool
3147 fs_visitor::compute_to_mrf()
3148 {
3149 bool progress = false;
3150 int next_ip = 0;
3151
3152 /* No MRFs on Gen >= 7. */
3153 if (devinfo->gen >= 7)
3154 return false;
3155
3156 calculate_live_intervals();
3157
3158 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3159 int ip = next_ip;
3160 next_ip++;
3161
3162 if (inst->opcode != BRW_OPCODE_MOV ||
3163 inst->is_partial_write() ||
3164 inst->dst.file != MRF || inst->src[0].file != VGRF ||
3165 inst->dst.type != inst->src[0].type ||
3166 inst->src[0].abs || inst->src[0].negate ||
3167 !inst->src[0].is_contiguous() ||
3168 inst->src[0].offset % REG_SIZE != 0)
3169 continue;
3170
3171 /* Can't compute-to-MRF this GRF if someone else was going to
3172 * read it later.
3173 */
3174 if (this->virtual_grf_end[inst->src[0].nr] > ip)
3175 continue;
3176
3177 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
3178 * things that computed the value of all GRFs of the source region. The
3179 * regs_left bitset keeps track of the registers we haven't yet found a
3180 * generating instruction for.
3181 */
3182 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
3183
3184 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3185 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3186 inst->src[0], inst->size_read(0))) {
3187 /* Found the last thing to write our reg we want to turn
3188 * into a compute-to-MRF.
3189 */
3190
3191 /* If this one instruction didn't populate all the
3192 * channels, bail. We might be able to rewrite everything
3193 * that writes that reg, but it would require smarter
3194 * tracking.
3195 */
3196 if (scan_inst->is_partial_write())
3197 break;
3198
3199 /* Handling things not fully contained in the source of the copy
3200 * would need us to understand coalescing out more than one MOV at
3201 * a time.
3202 */
3203 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
3204 inst->src[0], inst->size_read(0)))
3205 break;
3206
3207 /* SEND instructions can't have MRF as a destination. */
3208 if (scan_inst->mlen)
3209 break;
3210
3211 if (devinfo->gen == 6) {
3212 /* gen6 math instructions must have the destination be
3213 * GRF, so no compute-to-MRF for them.
3214 */
3215 if (scan_inst->is_math()) {
3216 break;
3217 }
3218 }
3219
3220 /* Clear the bits for any registers this instruction overwrites. */
3221 regs_left &= ~mask_relative_to(
3222 inst->src[0], scan_inst->dst, scan_inst->size_written);
3223 if (!regs_left)
3224 break;
3225 }
3226
3227 /* We don't handle control flow here. Most computation of
3228 * values that end up in MRFs are shortly before the MRF
3229 * write anyway.
3230 */
3231 if (block->start() == scan_inst)
3232 break;
3233
3234 /* You can't read from an MRF, so if someone else reads our
3235 * MRF's source GRF that we wanted to rewrite, that stops us.
3236 */
3237 bool interfered = false;
3238 for (int i = 0; i < scan_inst->sources; i++) {
3239 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
3240 inst->src[0], inst->size_read(0))) {
3241 interfered = true;
3242 }
3243 }
3244 if (interfered)
3245 break;
3246
3247 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3248 inst->dst, inst->size_written)) {
3249 /* If somebody else writes our MRF here, we can't
3250 * compute-to-MRF before that.
3251 */
3252 break;
3253 }
3254
3255 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
3256 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
3257 inst->dst, inst->size_written)) {
3258 /* Found a SEND instruction, which means that there are
3259 * live values in MRFs from base_mrf to base_mrf +
3260 * scan_inst->mlen - 1. Don't go pushing our MRF write up
3261 * above it.
3262 */
3263 break;
3264 }
3265 }
3266
3267 if (regs_left)
3268 continue;
3269
3270 /* Found all generating instructions of our MRF's source value, so it
3271 * should be safe to rewrite them to point to the MRF directly.
3272 */
3273 regs_left = (1 << regs_read(inst, 0)) - 1;
3274
3275 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3276 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3277 inst->src[0], inst->size_read(0))) {
3278 /* Clear the bits for any registers this instruction overwrites. */
3279 regs_left &= ~mask_relative_to(
3280 inst->src[0], scan_inst->dst, scan_inst->size_written);
3281
3282 const unsigned rel_offset = reg_offset(scan_inst->dst) -
3283 reg_offset(inst->src[0]);
3284
3285 if (inst->dst.nr & BRW_MRF_COMPR4) {
3286 /* Apply the same address transformation done by the hardware
3287 * for COMPR4 MRF writes.
3288 */
3289 assert(rel_offset < 2 * REG_SIZE);
3290 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
3291
3292 /* Clear the COMPR4 bit if the generating instruction is not
3293 * compressed.
3294 */
3295 if (scan_inst->size_written < 2 * REG_SIZE)
3296 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
3297
3298 } else {
3299 /* Calculate the MRF number the result of this instruction is
3300 * ultimately written to.
3301 */
3302 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
3303 }
3304
3305 scan_inst->dst.file = MRF;
3306 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
3307 scan_inst->saturate |= inst->saturate;
3308 if (!regs_left)
3309 break;
3310 }
3311 }
3312
3313 assert(!regs_left);
3314 inst->remove(block);
3315 progress = true;
3316 }
3317
3318 if (progress)
3319 invalidate_live_intervals();
3320
3321 return progress;
3322 }
3323
3324 /**
3325 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
3326 * flow. We could probably do better here with some form of divergence
3327 * analysis.
3328 */
3329 bool
3330 fs_visitor::eliminate_find_live_channel()
3331 {
3332 bool progress = false;
3333 unsigned depth = 0;
3334
3335 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
3336 /* The optimization below assumes that channel zero is live on thread
3337 * dispatch, which may not be the case if the fixed function dispatches
3338 * threads sparsely.
3339 */
3340 return false;
3341 }
3342
3343 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3344 switch (inst->opcode) {
3345 case BRW_OPCODE_IF:
3346 case BRW_OPCODE_DO:
3347 depth++;
3348 break;
3349
3350 case BRW_OPCODE_ENDIF:
3351 case BRW_OPCODE_WHILE:
3352 depth--;
3353 break;
3354
3355 case FS_OPCODE_DISCARD_JUMP:
3356 /* This can potentially make control flow non-uniform until the end
3357 * of the program.
3358 */
3359 return progress;
3360
3361 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
3362 if (depth == 0) {
3363 inst->opcode = BRW_OPCODE_MOV;
3364 inst->src[0] = brw_imm_ud(0u);
3365 inst->sources = 1;
3366 inst->force_writemask_all = true;
3367 progress = true;
3368 }
3369 break;
3370
3371 default:
3372 break;
3373 }
3374 }
3375
3376 return progress;
3377 }
3378
3379 /**
3380 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
3381 * instructions to FS_OPCODE_REP_FB_WRITE.
3382 */
3383 void
3384 fs_visitor::emit_repclear_shader()
3385 {
3386 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3387 int base_mrf = 0;
3388 int color_mrf = base_mrf + 2;
3389 fs_inst *mov;
3390
3391 if (uniforms > 0) {
3392 mov = bld.exec_all().group(4, 0)
3393 .MOV(brw_message_reg(color_mrf),
3394 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
3395 } else {
3396 struct brw_reg reg =
3397 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
3398 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
3399 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
3400
3401 mov = bld.exec_all().group(4, 0)
3402 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
3403 }
3404
3405 fs_inst *write = NULL;
3406 if (key->nr_color_regions == 1) {
3407 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3408 write->saturate = key->clamp_fragment_color;
3409 write->base_mrf = color_mrf;
3410 write->target = 0;
3411 write->header_size = 0;
3412 write->mlen = 1;
3413 } else {
3414 assume(key->nr_color_regions > 0);
3415
3416 struct brw_reg header =
3417 retype(brw_message_reg(base_mrf), BRW_REGISTER_TYPE_UD);
3418 bld.exec_all().group(16, 0)
3419 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3420
3421 for (int i = 0; i < key->nr_color_regions; ++i) {
3422 if (i > 0) {
3423 bld.exec_all().group(1, 0)
3424 .MOV(component(header, 2), brw_imm_ud(i));
3425 }
3426
3427 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3428 write->saturate = key->clamp_fragment_color;
3429 write->base_mrf = base_mrf;
3430 write->target = i;
3431 write->header_size = 2;
3432 write->mlen = 3;
3433 }
3434 }
3435 write->eot = true;
3436 write->last_rt = true;
3437
3438 calculate_cfg();
3439
3440 assign_constant_locations();
3441 assign_curb_setup();
3442
3443 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
3444 if (uniforms > 0) {
3445 assert(mov->src[0].file == FIXED_GRF);
3446 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
3447 }
3448 }
3449
3450 /**
3451 * Walks through basic blocks, looking for repeated MRF writes and
3452 * removing the later ones.
3453 */
3454 bool
3455 fs_visitor::remove_duplicate_mrf_writes()
3456 {
3457 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
3458 bool progress = false;
3459
3460 /* Need to update the MRF tracking for compressed instructions. */
3461 if (dispatch_width >= 16)
3462 return false;
3463
3464 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3465
3466 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3467 if (inst->is_control_flow()) {
3468 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3469 }
3470
3471 if (inst->opcode == BRW_OPCODE_MOV &&
3472 inst->dst.file == MRF) {
3473 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3474 if (prev_inst && prev_inst->opcode == BRW_OPCODE_MOV &&
3475 inst->dst.equals(prev_inst->dst) &&
3476 inst->src[0].equals(prev_inst->src[0]) &&
3477 inst->saturate == prev_inst->saturate &&
3478 inst->predicate == prev_inst->predicate &&
3479 inst->conditional_mod == prev_inst->conditional_mod &&
3480 inst->exec_size == prev_inst->exec_size) {
3481 inst->remove(block);
3482 progress = true;
3483 continue;
3484 }
3485 }
3486
3487 /* Clear out the last-write records for MRFs that were overwritten. */
3488 if (inst->dst.file == MRF) {
3489 last_mrf_move[inst->dst.nr] = NULL;
3490 }
3491
3492 if (inst->mlen > 0 && inst->base_mrf != -1) {
3493 /* Found a SEND instruction, which will include two or fewer
3494 * implied MRF writes. We could do better here.
3495 */
3496 for (int i = 0; i < implied_mrf_writes(inst); i++) {
3497 last_mrf_move[inst->base_mrf + i] = NULL;
3498 }
3499 }
3500
3501 /* Clear out any MRF move records whose sources got overwritten. */
3502 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3503 if (last_mrf_move[i] &&
3504 regions_overlap(inst->dst, inst->size_written,
3505 last_mrf_move[i]->src[0],
3506 last_mrf_move[i]->size_read(0))) {
3507 last_mrf_move[i] = NULL;
3508 }
3509 }
3510
3511 if (inst->opcode == BRW_OPCODE_MOV &&
3512 inst->dst.file == MRF &&
3513 inst->src[0].file != ARF &&
3514 !inst->is_partial_write()) {
3515 last_mrf_move[inst->dst.nr] = inst;
3516 }
3517 }
3518
3519 if (progress)
3520 invalidate_live_intervals();
3521
3522 return progress;
3523 }
3524
3525 /**
3526 * Rounding modes for conversion instructions are included for each
3527 * conversion, but right now it is a state. So once it is set,
3528 * we don't need to call it again for subsequent calls.
3529 *
3530 * This is useful for vector/matrices conversions, as setting the
3531 * mode once is enough for the full vector/matrix
3532 */
3533 bool
3534 fs_visitor::remove_extra_rounding_modes()
3535 {
3536 bool progress = false;
3537
3538 foreach_block (block, cfg) {
3539 brw_rnd_mode prev_mode = BRW_RND_MODE_UNSPECIFIED;
3540
3541 foreach_inst_in_block_safe (fs_inst, inst, block) {
3542 if (inst->opcode == SHADER_OPCODE_RND_MODE) {
3543 assert(inst->src[0].file == BRW_IMMEDIATE_VALUE);
3544 const brw_rnd_mode mode = (brw_rnd_mode) inst->src[0].d;
3545 if (mode == prev_mode) {
3546 inst->remove(block);
3547 progress = true;
3548 } else {
3549 prev_mode = mode;
3550 }
3551 }
3552 }
3553 }
3554
3555 if (progress)
3556 invalidate_live_intervals();
3557
3558 return progress;
3559 }
3560
3561 static void
3562 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3563 {
3564 /* Clear the flag for registers that actually got read (as expected). */
3565 for (int i = 0; i < inst->sources; i++) {
3566 int grf;
3567 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3568 grf = inst->src[i].nr;
3569 } else {
3570 continue;
3571 }
3572
3573 if (grf >= first_grf &&
3574 grf < first_grf + grf_len) {
3575 deps[grf - first_grf] = false;
3576 if (inst->exec_size == 16)
3577 deps[grf - first_grf + 1] = false;
3578 }
3579 }
3580 }
3581
3582 /**
3583 * Implements this workaround for the original 965:
3584 *
3585 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3586 * check for post destination dependencies on this instruction, software
3587 * must ensure that there is no destination hazard for the case of ‘write
3588 * followed by a posted write’ shown in the following example.
3589 *
3590 * 1. mov r3 0
3591 * 2. send r3.xy <rest of send instruction>
3592 * 3. mov r2 r3
3593 *
3594 * Due to no post-destination dependency check on the ‘send’, the above
3595 * code sequence could have two instructions (1 and 2) in flight at the
3596 * same time that both consider ‘r3’ as the target of their final writes.
3597 */
3598 void
3599 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3600 fs_inst *inst)
3601 {
3602 int write_len = regs_written(inst);
3603 int first_write_grf = inst->dst.nr;
3604 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3605 assert(write_len < (int)sizeof(needs_dep) - 1);
3606
3607 memset(needs_dep, false, sizeof(needs_dep));
3608 memset(needs_dep, true, write_len);
3609
3610 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3611
3612 /* Walk backwards looking for writes to registers we're writing which
3613 * aren't read since being written. If we hit the start of the program,
3614 * we assume that there are no outstanding dependencies on entry to the
3615 * program.
3616 */
3617 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3618 /* If we hit control flow, assume that there *are* outstanding
3619 * dependencies, and force their cleanup before our instruction.
3620 */
3621 if (block->start() == scan_inst && block->num != 0) {
3622 for (int i = 0; i < write_len; i++) {
3623 if (needs_dep[i])
3624 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3625 first_write_grf + i);
3626 }
3627 return;
3628 }
3629
3630 /* We insert our reads as late as possible on the assumption that any
3631 * instruction but a MOV that might have left us an outstanding
3632 * dependency has more latency than a MOV.
3633 */
3634 if (scan_inst->dst.file == VGRF) {
3635 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3636 int reg = scan_inst->dst.nr + i;
3637
3638 if (reg >= first_write_grf &&
3639 reg < first_write_grf + write_len &&
3640 needs_dep[reg - first_write_grf]) {
3641 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3642 needs_dep[reg - first_write_grf] = false;
3643 if (scan_inst->exec_size == 16)
3644 needs_dep[reg - first_write_grf + 1] = false;
3645 }
3646 }
3647 }
3648
3649 /* Clear the flag for registers that actually got read (as expected). */
3650 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3651
3652 /* Continue the loop only if we haven't resolved all the dependencies */
3653 int i;
3654 for (i = 0; i < write_len; i++) {
3655 if (needs_dep[i])
3656 break;
3657 }
3658 if (i == write_len)
3659 return;
3660 }
3661 }
3662
3663 /**
3664 * Implements this workaround for the original 965:
3665 *
3666 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3667 * used as a destination register until after it has been sourced by an
3668 * instruction with a different destination register.
3669 */
3670 void
3671 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3672 {
3673 int write_len = regs_written(inst);
3674 unsigned first_write_grf = inst->dst.nr;
3675 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3676 assert(write_len < (int)sizeof(needs_dep) - 1);
3677
3678 memset(needs_dep, false, sizeof(needs_dep));
3679 memset(needs_dep, true, write_len);
3680 /* Walk forwards looking for writes to registers we're writing which aren't
3681 * read before being written.
3682 */
3683 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3684 /* If we hit control flow, force resolve all remaining dependencies. */
3685 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3686 for (int i = 0; i < write_len; i++) {
3687 if (needs_dep[i])
3688 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3689 first_write_grf + i);
3690 }
3691 return;
3692 }
3693
3694 /* Clear the flag for registers that actually got read (as expected). */
3695 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3696
3697 /* We insert our reads as late as possible since they're reading the
3698 * result of a SEND, which has massive latency.
3699 */
3700 if (scan_inst->dst.file == VGRF &&
3701 scan_inst->dst.nr >= first_write_grf &&
3702 scan_inst->dst.nr < first_write_grf + write_len &&
3703 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3704 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3705 scan_inst->dst.nr);
3706 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3707 }
3708
3709 /* Continue the loop only if we haven't resolved all the dependencies */
3710 int i;
3711 for (i = 0; i < write_len; i++) {
3712 if (needs_dep[i])
3713 break;
3714 }
3715 if (i == write_len)
3716 return;
3717 }
3718 }
3719
3720 void
3721 fs_visitor::insert_gen4_send_dependency_workarounds()
3722 {
3723 if (devinfo->gen != 4 || devinfo->is_g4x)
3724 return;
3725
3726 bool progress = false;
3727
3728 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3729 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3730 insert_gen4_pre_send_dependency_workarounds(block, inst);
3731 insert_gen4_post_send_dependency_workarounds(block, inst);
3732 progress = true;
3733 }
3734 }
3735
3736 if (progress)
3737 invalidate_live_intervals();
3738 }
3739
3740 /**
3741 * Turns the generic expression-style uniform pull constant load instruction
3742 * into a hardware-specific series of instructions for loading a pull
3743 * constant.
3744 *
3745 * The expression style allows the CSE pass before this to optimize out
3746 * repeated loads from the same offset, and gives the pre-register-allocation
3747 * scheduling full flexibility, while the conversion to native instructions
3748 * allows the post-register-allocation scheduler the best information
3749 * possible.
3750 *
3751 * Note that execution masking for setting up pull constant loads is special:
3752 * the channels that need to be written are unrelated to the current execution
3753 * mask, since a later instruction will use one of the result channels as a
3754 * source operand for all 8 or 16 of its channels.
3755 */
3756 void
3757 fs_visitor::lower_uniform_pull_constant_loads()
3758 {
3759 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3760 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3761 continue;
3762
3763 if (devinfo->gen >= 7) {
3764 const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3765 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3766
3767 ubld.group(8, 0).MOV(payload,
3768 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3769 ubld.group(1, 0).MOV(component(payload, 2),
3770 brw_imm_ud(inst->src[1].ud / 16));
3771
3772 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3773 inst->src[1] = payload;
3774 inst->header_size = 1;
3775 inst->mlen = 1;
3776
3777 invalidate_live_intervals();
3778 } else {
3779 /* Before register allocation, we didn't tell the scheduler about the
3780 * MRF we use. We know it's safe to use this MRF because nothing
3781 * else does except for register spill/unspill, which generates and
3782 * uses its MRF within a single IR instruction.
3783 */
3784 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3785 inst->mlen = 1;
3786 }
3787 }
3788 }
3789
3790 bool
3791 fs_visitor::lower_load_payload()
3792 {
3793 bool progress = false;
3794
3795 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3796 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3797 continue;
3798
3799 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3800 assert(inst->saturate == false);
3801 fs_reg dst = inst->dst;
3802
3803 /* Get rid of COMPR4. We'll add it back in if we need it */
3804 if (dst.file == MRF)
3805 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3806
3807 const fs_builder ibld(this, block, inst);
3808 const fs_builder hbld = ibld.exec_all().group(8, 0);
3809
3810 for (uint8_t i = 0; i < inst->header_size; i++) {
3811 if (inst->src[i].file != BAD_FILE) {
3812 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3813 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3814 hbld.MOV(mov_dst, mov_src);
3815 }
3816 dst = offset(dst, hbld, 1);
3817 }
3818
3819 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3820 inst->exec_size > 8) {
3821 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3822 * a straightforward copy. Instead, the result of the
3823 * LOAD_PAYLOAD is treated as interleaved and the first four
3824 * non-header sources are unpacked as:
3825 *
3826 * m + 0: r0
3827 * m + 1: g0
3828 * m + 2: b0
3829 * m + 3: a0
3830 * m + 4: r1
3831 * m + 5: g1
3832 * m + 6: b1
3833 * m + 7: a1
3834 *
3835 * This is used for gen <= 5 fb writes.
3836 */
3837 assert(inst->exec_size == 16);
3838 assert(inst->header_size + 4 <= inst->sources);
3839 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3840 if (inst->src[i].file != BAD_FILE) {
3841 if (devinfo->has_compr4) {
3842 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3843 compr4_dst.nr |= BRW_MRF_COMPR4;
3844 ibld.MOV(compr4_dst, inst->src[i]);
3845 } else {
3846 /* Platform doesn't have COMPR4. We have to fake it */
3847 fs_reg mov_dst = retype(dst, inst->src[i].type);
3848 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3849 mov_dst.nr += 4;
3850 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3851 }
3852 }
3853
3854 dst.nr++;
3855 }
3856
3857 /* The loop above only ever incremented us through the first set
3858 * of 4 registers. However, thanks to the magic of COMPR4, we
3859 * actually wrote to the first 8 registers, so we need to take
3860 * that into account now.
3861 */
3862 dst.nr += 4;
3863
3864 /* The COMPR4 code took care of the first 4 sources. We'll let
3865 * the regular path handle any remaining sources. Yes, we are
3866 * modifying the instruction but we're about to delete it so
3867 * this really doesn't hurt anything.
3868 */
3869 inst->header_size += 4;
3870 }
3871
3872 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3873 if (inst->src[i].file != BAD_FILE) {
3874 dst.type = inst->src[i].type;
3875 ibld.MOV(dst, inst->src[i]);
3876 } else {
3877 dst.type = BRW_REGISTER_TYPE_UD;
3878 }
3879 dst = offset(dst, ibld, 1);
3880 }
3881
3882 inst->remove(block);
3883 progress = true;
3884 }
3885
3886 if (progress)
3887 invalidate_live_intervals();
3888
3889 return progress;
3890 }
3891
3892 bool
3893 fs_visitor::lower_integer_multiplication()
3894 {
3895 bool progress = false;
3896
3897 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3898 const fs_builder ibld(this, block, inst);
3899
3900 if (inst->opcode == BRW_OPCODE_MUL) {
3901 if (inst->dst.is_accumulator() ||
3902 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3903 inst->dst.type != BRW_REGISTER_TYPE_UD))
3904 continue;
3905
3906 if (devinfo->has_integer_dword_mul)
3907 continue;
3908
3909 if (inst->src[1].file == IMM &&
3910 inst->src[1].ud < (1 << 16)) {
3911 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3912 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3913 * src1 are used.
3914 *
3915 * If multiplying by an immediate value that fits in 16-bits, do a
3916 * single MUL instruction with that value in the proper location.
3917 */
3918 if (devinfo->gen < 7) {
3919 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3920 inst->dst.type);
3921 ibld.MOV(imm, inst->src[1]);
3922 ibld.MUL(inst->dst, imm, inst->src[0]);
3923 } else {
3924 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3925 ibld.MUL(inst->dst, inst->src[0],
3926 ud ? brw_imm_uw(inst->src[1].ud)
3927 : brw_imm_w(inst->src[1].d));
3928 }
3929 } else {
3930 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3931 * do 32-bit integer multiplication in one instruction, but instead
3932 * must do a sequence (which actually calculates a 64-bit result):
3933 *
3934 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3935 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3936 * mov(8) g2<1>D acc0<8,8,1>D
3937 *
3938 * But on Gen > 6, the ability to use second accumulator register
3939 * (acc1) for non-float data types was removed, preventing a simple
3940 * implementation in SIMD16. A 16-channel result can be calculated by
3941 * executing the three instructions twice in SIMD8, once with quarter
3942 * control of 1Q for the first eight channels and again with 2Q for
3943 * the second eight channels.
3944 *
3945 * Which accumulator register is implicitly accessed (by AccWrEnable
3946 * for instance) is determined by the quarter control. Unfortunately
3947 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3948 * implicit accumulator access by an instruction with 2Q will access
3949 * acc1 regardless of whether the data type is usable in acc1.
3950 *
3951 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3952 * integer data types.
3953 *
3954 * Since we only want the low 32-bits of the result, we can do two
3955 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3956 * adjust the high result and add them (like the mach is doing):
3957 *
3958 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3959 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3960 * shl(8) g9<1>D g8<8,8,1>D 16D
3961 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3962 *
3963 * We avoid the shl instruction by realizing that we only want to add
3964 * the low 16-bits of the "high" result to the high 16-bits of the
3965 * "low" result and using proper regioning on the add:
3966 *
3967 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3968 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3969 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3970 *
3971 * Since it does not use the (single) accumulator register, we can
3972 * schedule multi-component multiplications much better.
3973 */
3974
3975 bool needs_mov = false;
3976 fs_reg orig_dst = inst->dst;
3977
3978 /* Get a new VGRF for the "low" 32x16-bit multiplication result if
3979 * reusing the original destination is impossible due to hardware
3980 * restrictions, source/destination overlap, or it being the null
3981 * register.
3982 */
3983 fs_reg low = inst->dst;
3984 if (orig_dst.is_null() || orig_dst.file == MRF ||
3985 regions_overlap(inst->dst, inst->size_written,
3986 inst->src[0], inst->size_read(0)) ||
3987 regions_overlap(inst->dst, inst->size_written,
3988 inst->src[1], inst->size_read(1)) ||
3989 inst->dst.stride >= 4) {
3990 needs_mov = true;
3991 low = fs_reg(VGRF, alloc.allocate(regs_written(inst)),
3992 inst->dst.type);
3993 }
3994
3995 /* Get a new VGRF but keep the same stride as inst->dst */
3996 fs_reg high(VGRF, alloc.allocate(regs_written(inst)),
3997 inst->dst.type);
3998 high.stride = inst->dst.stride;
3999 high.offset = inst->dst.offset % REG_SIZE;
4000
4001 if (devinfo->gen >= 7) {
4002 if (inst->src[1].abs)
4003 lower_src_modifiers(this, block, inst, 1);
4004
4005 if (inst->src[1].file == IMM) {
4006 ibld.MUL(low, inst->src[0],
4007 brw_imm_uw(inst->src[1].ud & 0xffff));
4008 ibld.MUL(high, inst->src[0],
4009 brw_imm_uw(inst->src[1].ud >> 16));
4010 } else {
4011 ibld.MUL(low, inst->src[0],
4012 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
4013 ibld.MUL(high, inst->src[0],
4014 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
4015 }
4016 } else {
4017 if (inst->src[0].abs)
4018 lower_src_modifiers(this, block, inst, 0);
4019
4020 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
4021 inst->src[1]);
4022 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
4023 inst->src[1]);
4024 }
4025
4026 ibld.ADD(subscript(low, BRW_REGISTER_TYPE_UW, 1),
4027 subscript(low, BRW_REGISTER_TYPE_UW, 1),
4028 subscript(high, BRW_REGISTER_TYPE_UW, 0));
4029
4030 if (needs_mov || inst->conditional_mod) {
4031 set_condmod(inst->conditional_mod,
4032 ibld.MOV(orig_dst, low));
4033 }
4034 }
4035
4036 } else if (inst->opcode == SHADER_OPCODE_MULH) {
4037 /* According to the BDW+ BSpec page for the "Multiply Accumulate
4038 * High" instruction:
4039 *
4040 * "An added preliminary mov is required for source modification on
4041 * src1:
4042 * mov (8) r3.0<1>:d -r3<8;8,1>:d
4043 * mul (8) acc0:d r2.0<8;8,1>:d r3.0<16;8,2>:uw
4044 * mach (8) r5.0<1>:d r2.0<8;8,1>:d r3.0<8;8,1>:d"
4045 */
4046 if (devinfo->gen >= 8 && (inst->src[1].negate || inst->src[1].abs))
4047 lower_src_modifiers(this, block, inst, 1);
4048
4049 /* Should have been lowered to 8-wide. */
4050 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
4051 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
4052 inst->dst.type);
4053 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
4054 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
4055
4056 if (devinfo->gen >= 8) {
4057 /* Until Gen8, integer multiplies read 32-bits from one source,
4058 * and 16-bits from the other, and relying on the MACH instruction
4059 * to generate the high bits of the result.
4060 *
4061 * On Gen8, the multiply instruction does a full 32x32-bit
4062 * multiply, but in order to do a 64-bit multiply we can simulate
4063 * the previous behavior and then use a MACH instruction.
4064 */
4065 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
4066 mul->src[1].type == BRW_REGISTER_TYPE_UD);
4067 mul->src[1].type = BRW_REGISTER_TYPE_UW;
4068 mul->src[1].stride *= 2;
4069
4070 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
4071 inst->group > 0) {
4072 /* Among other things the quarter control bits influence which
4073 * accumulator register is used by the hardware for instructions
4074 * that access the accumulator implicitly (e.g. MACH). A
4075 * second-half instruction would normally map to acc1, which
4076 * doesn't exist on Gen7 and up (the hardware does emulate it for
4077 * floating-point instructions *only* by taking advantage of the
4078 * extra precision of acc0 not normally used for floating point
4079 * arithmetic).
4080 *
4081 * HSW and up are careful enough not to try to access an
4082 * accumulator register that doesn't exist, but on earlier Gen7
4083 * hardware we need to make sure that the quarter control bits are
4084 * zero to avoid non-deterministic behaviour and emit an extra MOV
4085 * to get the result masked correctly according to the current
4086 * channel enables.
4087 */
4088 mach->group = 0;
4089 mach->force_writemask_all = true;
4090 mach->dst = ibld.vgrf(inst->dst.type);
4091 ibld.MOV(inst->dst, mach->dst);
4092 }
4093 } else {
4094 continue;
4095 }
4096
4097 inst->remove(block);
4098 progress = true;
4099 }
4100
4101 if (progress)
4102 invalidate_live_intervals();
4103
4104 return progress;
4105 }
4106
4107 bool
4108 fs_visitor::lower_minmax()
4109 {
4110 assert(devinfo->gen < 6);
4111
4112 bool progress = false;
4113
4114 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4115 const fs_builder ibld(this, block, inst);
4116
4117 if (inst->opcode == BRW_OPCODE_SEL &&
4118 inst->predicate == BRW_PREDICATE_NONE) {
4119 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
4120 * the original SEL.L/GE instruction
4121 */
4122 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
4123 inst->conditional_mod);
4124 inst->predicate = BRW_PREDICATE_NORMAL;
4125 inst->conditional_mod = BRW_CONDITIONAL_NONE;
4126
4127 progress = true;
4128 }
4129 }
4130
4131 if (progress)
4132 invalidate_live_intervals();
4133
4134 return progress;
4135 }
4136
4137 static void
4138 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
4139 fs_reg *dst, fs_reg color, unsigned components)
4140 {
4141 if (key->clamp_fragment_color) {
4142 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
4143 assert(color.type == BRW_REGISTER_TYPE_F);
4144
4145 for (unsigned i = 0; i < components; i++)
4146 set_saturate(true,
4147 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
4148
4149 color = tmp;
4150 }
4151
4152 for (unsigned i = 0; i < components; i++)
4153 dst[i] = offset(color, bld, i);
4154 }
4155
4156 static void
4157 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
4158 const struct brw_wm_prog_data *prog_data,
4159 const brw_wm_prog_key *key,
4160 const fs_visitor::thread_payload &payload)
4161 {
4162 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
4163 const gen_device_info *devinfo = bld.shader->devinfo;
4164 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
4165 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
4166 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
4167 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
4168 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
4169 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
4170 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
4171 const unsigned components =
4172 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
4173
4174 /* We can potentially have a message length of up to 15, so we have to set
4175 * base_mrf to either 0 or 1 in order to fit in m0..m15.
4176 */
4177 fs_reg sources[15];
4178 int header_size = 2, payload_header_size;
4179 unsigned length = 0;
4180
4181 if (devinfo->gen < 6) {
4182 /* TODO: Support SIMD32 on gen4-5 */
4183 assert(bld.group() < 16);
4184
4185 /* For gen4-5, we always have a header consisting of g0 and g1. We have
4186 * an implied MOV from g0,g1 to the start of the message. The MOV from
4187 * g0 is handled by the hardware and the MOV from g1 is provided by the
4188 * generator. This is required because, on gen4-5, the generator may
4189 * generate two write messages with different message lengths in order
4190 * to handle AA data properly.
4191 *
4192 * Also, since the pixel mask goes in the g0 portion of the message and
4193 * since render target writes are the last thing in the shader, we write
4194 * the pixel mask directly into g0 and it will get copied as part of the
4195 * implied write.
4196 */
4197 if (prog_data->uses_kill) {
4198 bld.exec_all().group(1, 0)
4199 .MOV(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW),
4200 brw_flag_reg(0, 1));
4201 }
4202
4203 assert(length == 0);
4204 length = 2;
4205 } else if ((devinfo->gen <= 7 && !devinfo->is_haswell &&
4206 prog_data->uses_kill) ||
4207 color1.file != BAD_FILE ||
4208 key->nr_color_regions > 1) {
4209 /* From the Sandy Bridge PRM, volume 4, page 198:
4210 *
4211 * "Dispatched Pixel Enables. One bit per pixel indicating
4212 * which pixels were originally enabled when the thread was
4213 * dispatched. This field is only required for the end-of-
4214 * thread message and on all dual-source messages."
4215 */
4216 const fs_builder ubld = bld.exec_all().group(8, 0);
4217
4218 fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4219 if (bld.group() < 16) {
4220 /* The header starts off as g0 and g1 for the first half */
4221 ubld.group(16, 0).MOV(header, retype(brw_vec8_grf(0, 0),
4222 BRW_REGISTER_TYPE_UD));
4223 } else {
4224 /* The header starts off as g0 and g2 for the second half */
4225 assert(bld.group() < 32);
4226 const fs_reg header_sources[2] = {
4227 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD),
4228 retype(brw_vec8_grf(2, 0), BRW_REGISTER_TYPE_UD),
4229 };
4230 ubld.LOAD_PAYLOAD(header, header_sources, 2, 0);
4231 }
4232
4233 uint32_t g00_bits = 0;
4234
4235 /* Set "Source0 Alpha Present to RenderTarget" bit in message
4236 * header.
4237 */
4238 if (inst->target > 0 && prog_data->replicate_alpha)
4239 g00_bits |= 1 << 11;
4240
4241 /* Set computes stencil to render target */
4242 if (prog_data->computed_stencil)
4243 g00_bits |= 1 << 14;
4244
4245 if (g00_bits) {
4246 /* OR extra bits into g0.0 */
4247 ubld.group(1, 0).OR(component(header, 0),
4248 retype(brw_vec1_grf(0, 0),
4249 BRW_REGISTER_TYPE_UD),
4250 brw_imm_ud(g00_bits));
4251 }
4252
4253 /* Set the render target index for choosing BLEND_STATE. */
4254 if (inst->target > 0) {
4255 ubld.group(1, 0).MOV(component(header, 2), brw_imm_ud(inst->target));
4256 }
4257
4258 if (prog_data->uses_kill) {
4259 assert(bld.group() < 16);
4260 ubld.group(1, 0).MOV(retype(component(header, 15),
4261 BRW_REGISTER_TYPE_UW),
4262 brw_flag_reg(0, 1));
4263 }
4264
4265 assert(length == 0);
4266 sources[0] = header;
4267 sources[1] = horiz_offset(header, 8);
4268 length = 2;
4269 }
4270 assert(length == 0 || length == 2);
4271 header_size = length;
4272
4273 if (payload.aa_dest_stencil_reg[0]) {
4274 assert(inst->group < 16);
4275 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
4276 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
4277 .MOV(sources[length],
4278 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg[0], 0)));
4279 length++;
4280 }
4281
4282 if (src0_alpha.file != BAD_FILE) {
4283 for (unsigned i = 0; i < bld.dispatch_width() / 8; i++) {
4284 const fs_builder &ubld = bld.exec_all().group(8, i)
4285 .annotate("FB write src0 alpha");
4286 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_F);
4287 ubld.MOV(tmp, horiz_offset(src0_alpha, i * 8));
4288 setup_color_payload(ubld, key, &sources[length], tmp, 1);
4289 length++;
4290 }
4291 } else if (prog_data->replicate_alpha && inst->target != 0) {
4292 /* Handle the case when fragment shader doesn't write to draw buffer
4293 * zero. No need to call setup_color_payload() for src0_alpha because
4294 * alpha value will be undefined.
4295 */
4296 length += bld.dispatch_width() / 8;
4297 }
4298
4299 if (sample_mask.file != BAD_FILE) {
4300 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
4301 BRW_REGISTER_TYPE_UD);
4302
4303 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
4304 * relevant. Since it's unsigned single words one vgrf is always
4305 * 16-wide, but only the lower or higher 8 channels will be used by the
4306 * hardware when doing a SIMD8 write depending on whether we have
4307 * selected the subspans for the first or second half respectively.
4308 */
4309 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
4310 sample_mask.type = BRW_REGISTER_TYPE_UW;
4311 sample_mask.stride *= 2;
4312
4313 bld.exec_all().annotate("FB write oMask")
4314 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
4315 inst->group % 16),
4316 sample_mask);
4317 length++;
4318 }
4319
4320 payload_header_size = length;
4321
4322 setup_color_payload(bld, key, &sources[length], color0, components);
4323 length += 4;
4324
4325 if (color1.file != BAD_FILE) {
4326 setup_color_payload(bld, key, &sources[length], color1, components);
4327 length += 4;
4328 }
4329
4330 if (src_depth.file != BAD_FILE) {
4331 sources[length] = src_depth;
4332 length++;
4333 }
4334
4335 if (dst_depth.file != BAD_FILE) {
4336 sources[length] = dst_depth;
4337 length++;
4338 }
4339
4340 if (src_stencil.file != BAD_FILE) {
4341 assert(devinfo->gen >= 9);
4342 assert(bld.dispatch_width() == 8);
4343
4344 /* XXX: src_stencil is only available on gen9+. dst_depth is never
4345 * available on gen9+. As such it's impossible to have both enabled at the
4346 * same time and therefore length cannot overrun the array.
4347 */
4348 assert(length < 15);
4349
4350 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4351 bld.exec_all().annotate("FB write OS")
4352 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
4353 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
4354 length++;
4355 }
4356
4357 fs_inst *load;
4358 if (devinfo->gen >= 7) {
4359 /* Send from the GRF */
4360 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
4361 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
4362 payload.nr = bld.shader->alloc.allocate(regs_written(load));
4363 load->dst = payload;
4364
4365 inst->src[0] = payload;
4366 inst->resize_sources(1);
4367 } else {
4368 /* Send from the MRF */
4369 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
4370 sources, length, payload_header_size);
4371
4372 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
4373 * will do this for us if we just give it a COMPR4 destination.
4374 */
4375 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
4376 load->dst.nr |= BRW_MRF_COMPR4;
4377
4378 if (devinfo->gen < 6) {
4379 /* Set up src[0] for the implied MOV from grf0-1 */
4380 inst->resize_sources(1);
4381 inst->src[0] = brw_vec8_grf(0, 0);
4382 } else {
4383 inst->resize_sources(0);
4384 }
4385 inst->base_mrf = 1;
4386 }
4387
4388 inst->opcode = FS_OPCODE_FB_WRITE;
4389 inst->mlen = regs_written(load);
4390 inst->header_size = header_size;
4391 }
4392
4393 static void
4394 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
4395 {
4396 const fs_builder &ubld = bld.exec_all().group(8, 0);
4397 const unsigned length = 2;
4398 const fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD, length);
4399
4400 if (bld.group() < 16) {
4401 ubld.group(16, 0).MOV(header, retype(brw_vec8_grf(0, 0),
4402 BRW_REGISTER_TYPE_UD));
4403 } else {
4404 assert(bld.group() < 32);
4405 const fs_reg header_sources[] = {
4406 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD),
4407 retype(brw_vec8_grf(2, 0), BRW_REGISTER_TYPE_UD)
4408 };
4409 ubld.LOAD_PAYLOAD(header, header_sources, ARRAY_SIZE(header_sources), 0);
4410 }
4411
4412 inst->resize_sources(1);
4413 inst->src[0] = header;
4414 inst->opcode = FS_OPCODE_FB_READ;
4415 inst->mlen = length;
4416 inst->header_size = length;
4417 }
4418
4419 static void
4420 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
4421 const fs_reg &coordinate,
4422 const fs_reg &shadow_c,
4423 const fs_reg &lod, const fs_reg &lod2,
4424 const fs_reg &surface,
4425 const fs_reg &sampler,
4426 unsigned coord_components,
4427 unsigned grad_components)
4428 {
4429 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
4430 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
4431 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
4432 fs_reg msg_end = msg_begin;
4433
4434 /* g0 header. */
4435 msg_end = offset(msg_end, bld.group(8, 0), 1);
4436
4437 for (unsigned i = 0; i < coord_components; i++)
4438 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
4439 offset(coordinate, bld, i));
4440
4441 msg_end = offset(msg_end, bld, coord_components);
4442
4443 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
4444 * require all three components to be present and zero if they are unused.
4445 */
4446 if (coord_components > 0 &&
4447 (has_lod || shadow_c.file != BAD_FILE ||
4448 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
4449 for (unsigned i = coord_components; i < 3; i++)
4450 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
4451
4452 msg_end = offset(msg_end, bld, 3 - coord_components);
4453 }
4454
4455 if (op == SHADER_OPCODE_TXD) {
4456 /* TXD unsupported in SIMD16 mode. */
4457 assert(bld.dispatch_width() == 8);
4458
4459 /* the slots for u and v are always present, but r is optional */
4460 if (coord_components < 2)
4461 msg_end = offset(msg_end, bld, 2 - coord_components);
4462
4463 /* P = u, v, r
4464 * dPdx = dudx, dvdx, drdx
4465 * dPdy = dudy, dvdy, drdy
4466 *
4467 * 1-arg: Does not exist.
4468 *
4469 * 2-arg: dudx dvdx dudy dvdy
4470 * dPdx.x dPdx.y dPdy.x dPdy.y
4471 * m4 m5 m6 m7
4472 *
4473 * 3-arg: dudx dvdx drdx dudy dvdy drdy
4474 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
4475 * m5 m6 m7 m8 m9 m10
4476 */
4477 for (unsigned i = 0; i < grad_components; i++)
4478 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
4479
4480 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4481
4482 for (unsigned i = 0; i < grad_components; i++)
4483 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
4484
4485 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4486 }
4487
4488 if (has_lod) {
4489 /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
4490 * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
4491 */
4492 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
4493 bld.dispatch_width() == 16);
4494
4495 const brw_reg_type type =
4496 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
4497 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
4498 bld.MOV(retype(msg_end, type), lod);
4499 msg_end = offset(msg_end, bld, 1);
4500 }
4501
4502 if (shadow_c.file != BAD_FILE) {
4503 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
4504 /* There's no plain shadow compare message, so we use shadow
4505 * compare with a bias of 0.0.
4506 */
4507 bld.MOV(msg_end, brw_imm_f(0.0f));
4508 msg_end = offset(msg_end, bld, 1);
4509 }
4510
4511 bld.MOV(msg_end, shadow_c);
4512 msg_end = offset(msg_end, bld, 1);
4513 }
4514
4515 inst->opcode = op;
4516 inst->src[0] = reg_undef;
4517 inst->src[1] = surface;
4518 inst->src[2] = sampler;
4519 inst->resize_sources(3);
4520 inst->base_mrf = msg_begin.nr;
4521 inst->mlen = msg_end.nr - msg_begin.nr;
4522 inst->header_size = 1;
4523 }
4524
4525 static void
4526 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
4527 const fs_reg &coordinate,
4528 const fs_reg &shadow_c,
4529 const fs_reg &lod, const fs_reg &lod2,
4530 const fs_reg &sample_index,
4531 const fs_reg &surface,
4532 const fs_reg &sampler,
4533 unsigned coord_components,
4534 unsigned grad_components)
4535 {
4536 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
4537 fs_reg msg_coords = message;
4538 unsigned header_size = 0;
4539
4540 if (inst->offset != 0) {
4541 /* The offsets set up by the visitor are in the m1 header, so we can't
4542 * go headerless.
4543 */
4544 header_size = 1;
4545 message.nr--;
4546 }
4547
4548 for (unsigned i = 0; i < coord_components; i++)
4549 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
4550 offset(coordinate, bld, i));
4551
4552 fs_reg msg_end = offset(msg_coords, bld, coord_components);
4553 fs_reg msg_lod = offset(msg_coords, bld, 4);
4554
4555 if (shadow_c.file != BAD_FILE) {
4556 fs_reg msg_shadow = msg_lod;
4557 bld.MOV(msg_shadow, shadow_c);
4558 msg_lod = offset(msg_shadow, bld, 1);
4559 msg_end = msg_lod;
4560 }
4561
4562 switch (op) {
4563 case SHADER_OPCODE_TXL:
4564 case FS_OPCODE_TXB:
4565 bld.MOV(msg_lod, lod);
4566 msg_end = offset(msg_lod, bld, 1);
4567 break;
4568 case SHADER_OPCODE_TXD:
4569 /**
4570 * P = u, v, r
4571 * dPdx = dudx, dvdx, drdx
4572 * dPdy = dudy, dvdy, drdy
4573 *
4574 * Load up these values:
4575 * - dudx dudy dvdx dvdy drdx drdy
4576 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
4577 */
4578 msg_end = msg_lod;
4579 for (unsigned i = 0; i < grad_components; i++) {
4580 bld.MOV(msg_end, offset(lod, bld, i));
4581 msg_end = offset(msg_end, bld, 1);
4582
4583 bld.MOV(msg_end, offset(lod2, bld, i));
4584 msg_end = offset(msg_end, bld, 1);
4585 }
4586 break;
4587 case SHADER_OPCODE_TXS:
4588 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
4589 bld.MOV(msg_lod, lod);
4590 msg_end = offset(msg_lod, bld, 1);
4591 break;
4592 case SHADER_OPCODE_TXF:
4593 msg_lod = offset(msg_coords, bld, 3);
4594 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
4595 msg_end = offset(msg_lod, bld, 1);
4596 break;
4597 case SHADER_OPCODE_TXF_CMS:
4598 msg_lod = offset(msg_coords, bld, 3);
4599 /* lod */
4600 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
4601 /* sample index */
4602 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
4603 msg_end = offset(msg_lod, bld, 2);
4604 break;
4605 default:
4606 break;
4607 }
4608
4609 inst->opcode = op;
4610 inst->src[0] = reg_undef;
4611 inst->src[1] = surface;
4612 inst->src[2] = sampler;
4613 inst->resize_sources(3);
4614 inst->base_mrf = message.nr;
4615 inst->mlen = msg_end.nr - message.nr;
4616 inst->header_size = header_size;
4617
4618 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4619 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4620 }
4621
4622 static bool
4623 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
4624 {
4625 if (devinfo->gen < 8 && !devinfo->is_haswell)
4626 return false;
4627
4628 return sampler.file != IMM || sampler.ud >= 16;
4629 }
4630
4631 static unsigned
4632 sampler_msg_type(const gen_device_info *devinfo,
4633 opcode opcode, bool shadow_compare)
4634 {
4635 assert(devinfo->gen >= 5);
4636 switch (opcode) {
4637 case SHADER_OPCODE_TEX:
4638 return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE :
4639 GEN5_SAMPLER_MESSAGE_SAMPLE;
4640 case FS_OPCODE_TXB:
4641 return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE :
4642 GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
4643 case SHADER_OPCODE_TXL:
4644 return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE :
4645 GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
4646 case SHADER_OPCODE_TXL_LZ:
4647 return shadow_compare ? GEN9_SAMPLER_MESSAGE_SAMPLE_C_LZ :
4648 GEN9_SAMPLER_MESSAGE_SAMPLE_LZ;
4649 case SHADER_OPCODE_TXS:
4650 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
4651 return GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
4652 case SHADER_OPCODE_TXD:
4653 assert(!shadow_compare || devinfo->gen >= 8 || devinfo->is_haswell);
4654 return shadow_compare ? HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE :
4655 GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
4656 case SHADER_OPCODE_TXF:
4657 return GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
4658 case SHADER_OPCODE_TXF_LZ:
4659 assert(devinfo->gen >= 9);
4660 return GEN9_SAMPLER_MESSAGE_SAMPLE_LD_LZ;
4661 case SHADER_OPCODE_TXF_CMS_W:
4662 assert(devinfo->gen >= 9);
4663 return GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W;
4664 case SHADER_OPCODE_TXF_CMS:
4665 return devinfo->gen >= 7 ? GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS :
4666 GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
4667 case SHADER_OPCODE_TXF_UMS:
4668 assert(devinfo->gen >= 7);
4669 return GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS;
4670 case SHADER_OPCODE_TXF_MCS:
4671 assert(devinfo->gen >= 7);
4672 return GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
4673 case SHADER_OPCODE_LOD:
4674 return GEN5_SAMPLER_MESSAGE_LOD;
4675 case SHADER_OPCODE_TG4:
4676 assert(devinfo->gen >= 7);
4677 return shadow_compare ? GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C :
4678 GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
4679 break;
4680 case SHADER_OPCODE_TG4_OFFSET:
4681 assert(devinfo->gen >= 7);
4682 return shadow_compare ? GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C :
4683 GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
4684 case SHADER_OPCODE_SAMPLEINFO:
4685 return GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
4686 default:
4687 unreachable("not reached");
4688 }
4689 }
4690
4691 static void
4692 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
4693 const fs_reg &coordinate,
4694 const fs_reg &shadow_c,
4695 fs_reg lod, const fs_reg &lod2,
4696 const fs_reg &min_lod,
4697 const fs_reg &sample_index,
4698 const fs_reg &mcs,
4699 const fs_reg &surface,
4700 const fs_reg &sampler,
4701 const fs_reg &tg4_offset,
4702 unsigned coord_components,
4703 unsigned grad_components)
4704 {
4705 const gen_device_info *devinfo = bld.shader->devinfo;
4706 const brw_stage_prog_data *prog_data = bld.shader->stage_prog_data;
4707 unsigned reg_width = bld.dispatch_width() / 8;
4708 unsigned header_size = 0, length = 0;
4709 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
4710 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
4711 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
4712
4713 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4714 inst->offset != 0 || inst->eot ||
4715 op == SHADER_OPCODE_SAMPLEINFO ||
4716 is_high_sampler(devinfo, sampler)) {
4717 /* For general texture offsets (no txf workaround), we need a header to
4718 * put them in.
4719 *
4720 * TG4 needs to place its channel select in the header, for interaction
4721 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4722 * larger sampler numbers we need to offset the Sampler State Pointer in
4723 * the header.
4724 */
4725 fs_reg header = retype(sources[0], BRW_REGISTER_TYPE_UD);
4726 header_size = 1;
4727 length++;
4728
4729 /* If we're requesting fewer than four channels worth of response,
4730 * and we have an explicit header, we need to set up the sampler
4731 * writemask. It's reversed from normal: 1 means "don't write".
4732 */
4733 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4734 assert(regs_written(inst) % reg_width == 0);
4735 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4736 inst->offset |= mask << 12;
4737 }
4738
4739 /* Build the actual header */
4740 const fs_builder ubld = bld.exec_all().group(8, 0);
4741 const fs_builder ubld1 = ubld.group(1, 0);
4742 ubld.MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
4743 if (inst->offset) {
4744 ubld1.MOV(component(header, 2), brw_imm_ud(inst->offset));
4745 } else if (bld.shader->stage != MESA_SHADER_VERTEX &&
4746 bld.shader->stage != MESA_SHADER_FRAGMENT) {
4747 /* The vertex and fragment stages have g0.2 set to 0, so
4748 * header0.2 is 0 when g0 is copied. Other stages may not, so we
4749 * must set it to 0 to avoid setting undesirable bits in the
4750 * message.
4751 */
4752 ubld1.MOV(component(header, 2), brw_imm_ud(0));
4753 }
4754
4755 if (is_high_sampler(devinfo, sampler)) {
4756 if (sampler.file == BRW_IMMEDIATE_VALUE) {
4757 assert(sampler.ud >= 16);
4758 const int sampler_state_size = 16; /* 16 bytes */
4759
4760 ubld1.ADD(component(header, 3),
4761 retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD),
4762 brw_imm_ud(16 * (sampler.ud / 16) * sampler_state_size));
4763 } else {
4764 fs_reg tmp = ubld1.vgrf(BRW_REGISTER_TYPE_UD);
4765 ubld1.AND(tmp, sampler, brw_imm_ud(0x0f0));
4766 ubld1.SHL(tmp, tmp, brw_imm_ud(4));
4767 ubld1.ADD(component(header, 3),
4768 retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD),
4769 tmp);
4770 }
4771 }
4772 }
4773
4774 if (shadow_c.file != BAD_FILE) {
4775 bld.MOV(sources[length], shadow_c);
4776 length++;
4777 }
4778
4779 bool coordinate_done = false;
4780
4781 /* Set up the LOD info */
4782 switch (op) {
4783 case FS_OPCODE_TXB:
4784 case SHADER_OPCODE_TXL:
4785 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4786 op = SHADER_OPCODE_TXL_LZ;
4787 break;
4788 }
4789 bld.MOV(sources[length], lod);
4790 length++;
4791 break;
4792 case SHADER_OPCODE_TXD:
4793 /* TXD should have been lowered in SIMD16 mode. */
4794 assert(bld.dispatch_width() == 8);
4795
4796 /* Load dPdx and the coordinate together:
4797 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4798 */
4799 for (unsigned i = 0; i < coord_components; i++) {
4800 bld.MOV(sources[length++], offset(coordinate, bld, i));
4801
4802 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4803 * only derivatives for (u, v, r).
4804 */
4805 if (i < grad_components) {
4806 bld.MOV(sources[length++], offset(lod, bld, i));
4807 bld.MOV(sources[length++], offset(lod2, bld, i));
4808 }
4809 }
4810
4811 coordinate_done = true;
4812 break;
4813 case SHADER_OPCODE_TXS:
4814 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4815 length++;
4816 break;
4817 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
4818 /* We need an LOD; just use 0 */
4819 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), brw_imm_ud(0));
4820 length++;
4821 break;
4822 case SHADER_OPCODE_TXF:
4823 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4824 * On Gen9 they are u, v, lod, r
4825 */
4826 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4827
4828 if (devinfo->gen >= 9) {
4829 if (coord_components >= 2) {
4830 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4831 offset(coordinate, bld, 1));
4832 } else {
4833 sources[length] = brw_imm_d(0);
4834 }
4835 length++;
4836 }
4837
4838 if (devinfo->gen >= 9 && lod.is_zero()) {
4839 op = SHADER_OPCODE_TXF_LZ;
4840 } else {
4841 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4842 length++;
4843 }
4844
4845 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4846 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4847 offset(coordinate, bld, i));
4848
4849 coordinate_done = true;
4850 break;
4851
4852 case SHADER_OPCODE_TXF_CMS:
4853 case SHADER_OPCODE_TXF_CMS_W:
4854 case SHADER_OPCODE_TXF_UMS:
4855 case SHADER_OPCODE_TXF_MCS:
4856 if (op == SHADER_OPCODE_TXF_UMS ||
4857 op == SHADER_OPCODE_TXF_CMS ||
4858 op == SHADER_OPCODE_TXF_CMS_W) {
4859 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4860 length++;
4861 }
4862
4863 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4864 /* Data from the multisample control surface. */
4865 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4866 length++;
4867
4868 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4869 * the MCS data.
4870 */
4871 if (op == SHADER_OPCODE_TXF_CMS_W) {
4872 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4873 mcs.file == IMM ?
4874 mcs :
4875 offset(mcs, bld, 1));
4876 length++;
4877 }
4878 }
4879
4880 /* There is no offsetting for this message; just copy in the integer
4881 * texture coordinates.
4882 */
4883 for (unsigned i = 0; i < coord_components; i++)
4884 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4885 offset(coordinate, bld, i));
4886
4887 coordinate_done = true;
4888 break;
4889 case SHADER_OPCODE_TG4_OFFSET:
4890 /* More crazy intermixing */
4891 for (unsigned i = 0; i < 2; i++) /* u, v */
4892 bld.MOV(sources[length++], offset(coordinate, bld, i));
4893
4894 for (unsigned i = 0; i < 2; i++) /* offu, offv */
4895 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4896 offset(tg4_offset, bld, i));
4897
4898 if (coord_components == 3) /* r if present */
4899 bld.MOV(sources[length++], offset(coordinate, bld, 2));
4900
4901 coordinate_done = true;
4902 break;
4903 default:
4904 break;
4905 }
4906
4907 /* Set up the coordinate (except for cases where it was done above) */
4908 if (!coordinate_done) {
4909 for (unsigned i = 0; i < coord_components; i++)
4910 bld.MOV(sources[length++], offset(coordinate, bld, i));
4911 }
4912
4913 if (min_lod.file != BAD_FILE) {
4914 /* Account for all of the missing coordinate sources */
4915 length += 4 - coord_components;
4916 if (op == SHADER_OPCODE_TXD)
4917 length += (3 - grad_components) * 2;
4918
4919 bld.MOV(sources[length++], min_lod);
4920 }
4921
4922 unsigned mlen;
4923 if (reg_width == 2)
4924 mlen = length * reg_width - header_size;
4925 else
4926 mlen = length * reg_width;
4927
4928 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4929 BRW_REGISTER_TYPE_F);
4930 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4931
4932 /* Generate the SEND. */
4933 inst->opcode = SHADER_OPCODE_SEND;
4934 inst->mlen = mlen;
4935 inst->header_size = header_size;
4936
4937 const unsigned msg_type =
4938 sampler_msg_type(devinfo, op, inst->shadow_compare);
4939 const unsigned simd_mode =
4940 inst->exec_size <= 8 ? BRW_SAMPLER_SIMD_MODE_SIMD8 :
4941 BRW_SAMPLER_SIMD_MODE_SIMD16;
4942
4943 uint32_t base_binding_table_index;
4944 switch (op) {
4945 case SHADER_OPCODE_TG4:
4946 case SHADER_OPCODE_TG4_OFFSET:
4947 base_binding_table_index = prog_data->binding_table.gather_texture_start;
4948 break;
4949 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
4950 base_binding_table_index = prog_data->binding_table.image_start;
4951 break;
4952 default:
4953 base_binding_table_index = prog_data->binding_table.texture_start;
4954 break;
4955 }
4956
4957 inst->sfid = BRW_SFID_SAMPLER;
4958 if (surface.file == IMM && sampler.file == IMM) {
4959 inst->desc = brw_sampler_desc(devinfo,
4960 surface.ud + base_binding_table_index,
4961 sampler.ud % 16,
4962 msg_type,
4963 simd_mode,
4964 0 /* return_format unused on gen7+ */);
4965 inst->src[0] = brw_imm_ud(0);
4966 } else {
4967 /* Immediate portion of the descriptor */
4968 inst->desc = brw_sampler_desc(devinfo,
4969 0, /* surface */
4970 0, /* sampler */
4971 msg_type,
4972 simd_mode,
4973 0 /* return_format unused on gen7+ */);
4974 const fs_builder ubld = bld.group(1, 0).exec_all();
4975 fs_reg desc = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4976 if (surface.equals(sampler)) {
4977 /* This case is common in GL */
4978 ubld.MUL(desc, surface, brw_imm_ud(0x101));
4979 } else {
4980 if (sampler.file == IMM) {
4981 ubld.OR(desc, surface, brw_imm_ud(sampler.ud << 8));
4982 } else {
4983 ubld.SHL(desc, sampler, brw_imm_ud(8));
4984 ubld.OR(desc, desc, surface);
4985 }
4986 }
4987 if (base_binding_table_index)
4988 ubld.ADD(desc, desc, brw_imm_ud(base_binding_table_index));
4989 ubld.AND(desc, desc, brw_imm_ud(0xfff));
4990
4991 inst->src[0] = component(desc, 0);
4992 }
4993 inst->src[1] = brw_imm_ud(0); /* ex_desc */
4994
4995 inst->src[2] = src_payload;
4996 inst->resize_sources(3);
4997
4998 if (inst->eot) {
4999 /* EOT sampler messages don't make sense to split because it would
5000 * involve ending half of the thread early.
5001 */
5002 assert(inst->group == 0);
5003 /* We need to use SENDC for EOT sampler messages */
5004 inst->check_tdr = true;
5005 inst->send_has_side_effects = true;
5006 }
5007
5008 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
5009 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
5010 }
5011
5012 static void
5013 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
5014 {
5015 const gen_device_info *devinfo = bld.shader->devinfo;
5016 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
5017 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
5018 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
5019 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
5020 const fs_reg &min_lod = inst->src[TEX_LOGICAL_SRC_MIN_LOD];
5021 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
5022 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
5023 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
5024 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
5025 const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
5026 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
5027 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
5028 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
5029 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
5030
5031 if (devinfo->gen >= 7) {
5032 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
5033 shadow_c, lod, lod2, min_lod,
5034 sample_index,
5035 mcs, surface, sampler, tg4_offset,
5036 coord_components, grad_components);
5037 } else if (devinfo->gen >= 5) {
5038 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
5039 shadow_c, lod, lod2, sample_index,
5040 surface, sampler,
5041 coord_components, grad_components);
5042 } else {
5043 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
5044 shadow_c, lod, lod2,
5045 surface, sampler,
5046 coord_components, grad_components);
5047 }
5048 }
5049
5050 /**
5051 * Initialize the header present in some typed and untyped surface
5052 * messages.
5053 */
5054 static fs_reg
5055 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
5056 {
5057 fs_builder ubld = bld.exec_all().group(8, 0);
5058 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5059 ubld.MOV(dst, brw_imm_d(0));
5060 ubld.group(1, 0).MOV(component(dst, 7), sample_mask);
5061 return dst;
5062 }
5063
5064 static void
5065 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst)
5066 {
5067 const gen_device_info *devinfo = bld.shader->devinfo;
5068
5069 /* Get the logical send arguments. */
5070 const fs_reg &addr = inst->src[SURFACE_LOGICAL_SRC_ADDRESS];
5071 const fs_reg &src = inst->src[SURFACE_LOGICAL_SRC_DATA];
5072 const fs_reg &surface = inst->src[SURFACE_LOGICAL_SRC_SURFACE];
5073 const UNUSED fs_reg &dims = inst->src[SURFACE_LOGICAL_SRC_IMM_DIMS];
5074 const fs_reg &arg = inst->src[SURFACE_LOGICAL_SRC_IMM_ARG];
5075 assert(arg.file == IMM);
5076
5077 /* Calculate the total number of components of the payload. */
5078 const unsigned addr_sz = inst->components_read(SURFACE_LOGICAL_SRC_ADDRESS);
5079 const unsigned src_sz = inst->components_read(SURFACE_LOGICAL_SRC_DATA);
5080
5081 const bool is_typed_access =
5082 inst->opcode == SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL ||
5083 inst->opcode == SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL ||
5084 inst->opcode == SHADER_OPCODE_TYPED_ATOMIC_LOGICAL;
5085
5086 /* From the BDW PRM Volume 7, page 147:
5087 *
5088 * "For the Data Cache Data Port*, the header must be present for the
5089 * following message types: [...] Typed read/write/atomics"
5090 *
5091 * Earlier generations have a similar wording. Because of this restriction
5092 * we don't attempt to implement sample masks via predication for such
5093 * messages prior to Gen9, since we have to provide a header anyway. On
5094 * Gen11+ the header has been removed so we can only use predication.
5095 */
5096 const unsigned header_sz = devinfo->gen < 9 && is_typed_access ? 1 : 0;
5097
5098 const bool has_side_effects = inst->has_side_effects();
5099 fs_reg sample_mask = has_side_effects ? bld.sample_mask_reg() :
5100 fs_reg(brw_imm_d(0xffff));
5101
5102 fs_reg payload, payload2;
5103 unsigned mlen, ex_mlen = 0;
5104 if (devinfo->gen >= 9) {
5105 /* We have split sends on gen9 and above */
5106 assert(header_sz == 0);
5107 payload = bld.move_to_vgrf(addr, addr_sz);
5108 payload2 = bld.move_to_vgrf(src, src_sz);
5109 mlen = addr_sz * (inst->exec_size / 8);
5110 ex_mlen = src_sz * (inst->exec_size / 8);
5111 } else {
5112 /* Allocate space for the payload. */
5113 const unsigned sz = header_sz + addr_sz + src_sz;
5114 payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
5115 fs_reg *const components = new fs_reg[sz];
5116 unsigned n = 0;
5117
5118 /* Construct the payload. */
5119 if (header_sz)
5120 components[n++] = emit_surface_header(bld, sample_mask);
5121
5122 for (unsigned i = 0; i < addr_sz; i++)
5123 components[n++] = offset(addr, bld, i);
5124
5125 for (unsigned i = 0; i < src_sz; i++)
5126 components[n++] = offset(src, bld, i);
5127
5128 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
5129 mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
5130
5131 delete[] components;
5132 }
5133
5134 /* Predicate the instruction on the sample mask if no header is
5135 * provided.
5136 */
5137 if (!header_sz && sample_mask.file != BAD_FILE &&
5138 sample_mask.file != IMM) {
5139 const fs_builder ubld = bld.group(1, 0).exec_all();
5140 if (inst->predicate) {
5141 assert(inst->predicate == BRW_PREDICATE_NORMAL);
5142 assert(!inst->predicate_inverse);
5143 assert(inst->flag_subreg < 2);
5144 /* Combine the sample mask with the existing predicate by using a
5145 * vertical predication mode.
5146 */
5147 inst->predicate = BRW_PREDICATE_ALIGN1_ALLV;
5148 ubld.MOV(retype(brw_flag_subreg(inst->flag_subreg + 2),
5149 sample_mask.type),
5150 sample_mask);
5151 } else {
5152 inst->flag_subreg = 2;
5153 inst->predicate = BRW_PREDICATE_NORMAL;
5154 inst->predicate_inverse = false;
5155 ubld.MOV(retype(brw_flag_subreg(inst->flag_subreg), sample_mask.type),
5156 sample_mask);
5157 }
5158 }
5159
5160 uint32_t sfid;
5161 switch (inst->opcode) {
5162 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5163 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5164 /* Byte scattered opcodes go through the normal data cache */
5165 sfid = GEN7_SFID_DATAPORT_DATA_CACHE;
5166 break;
5167
5168 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5169 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5170 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5171 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5172 /* Untyped Surface messages go through the data cache but the SFID value
5173 * changed on Haswell.
5174 */
5175 sfid = (devinfo->gen >= 8 || devinfo->is_haswell ?
5176 HSW_SFID_DATAPORT_DATA_CACHE_1 :
5177 GEN7_SFID_DATAPORT_DATA_CACHE);
5178 break;
5179
5180 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5181 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5182 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5183 /* Typed surface messages go through the render cache on IVB and the
5184 * data cache on HSW+.
5185 */
5186 sfid = (devinfo->gen >= 8 || devinfo->is_haswell ?
5187 HSW_SFID_DATAPORT_DATA_CACHE_1 :
5188 GEN6_SFID_DATAPORT_RENDER_CACHE);
5189 break;
5190
5191 default:
5192 unreachable("Unsupported surface opcode");
5193 }
5194
5195 uint32_t desc;
5196 switch (inst->opcode) {
5197 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5198 desc = brw_dp_untyped_surface_rw_desc(devinfo, inst->exec_size,
5199 arg.ud, /* num_channels */
5200 false /* write */);
5201 break;
5202
5203 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5204 desc = brw_dp_untyped_surface_rw_desc(devinfo, inst->exec_size,
5205 arg.ud, /* num_channels */
5206 true /* write */);
5207 break;
5208
5209 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5210 desc = brw_dp_byte_scattered_rw_desc(devinfo, inst->exec_size,
5211 arg.ud, /* bit_size */
5212 false /* write */);
5213 break;
5214
5215 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5216 desc = brw_dp_byte_scattered_rw_desc(devinfo, inst->exec_size,
5217 arg.ud, /* bit_size */
5218 true /* write */);
5219 break;
5220
5221 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5222 desc = brw_dp_untyped_atomic_desc(devinfo, inst->exec_size,
5223 arg.ud, /* atomic_op */
5224 !inst->dst.is_null());
5225 break;
5226
5227 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5228 desc = brw_dp_untyped_atomic_float_desc(devinfo, inst->exec_size,
5229 arg.ud, /* atomic_op */
5230 !inst->dst.is_null());
5231 break;
5232
5233 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5234 desc = brw_dp_typed_surface_rw_desc(devinfo, inst->exec_size, inst->group,
5235 arg.ud, /* num_channels */
5236 false /* write */);
5237 break;
5238
5239 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5240 desc = brw_dp_typed_surface_rw_desc(devinfo, inst->exec_size, inst->group,
5241 arg.ud, /* num_channels */
5242 true /* write */);
5243 break;
5244
5245 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5246 desc = brw_dp_typed_atomic_desc(devinfo, inst->exec_size, inst->group,
5247 arg.ud, /* atomic_op */
5248 !inst->dst.is_null());
5249 break;
5250
5251 default:
5252 unreachable("Unknown surface logical instruction");
5253 }
5254
5255 /* Update the original instruction. */
5256 inst->opcode = SHADER_OPCODE_SEND;
5257 inst->mlen = mlen;
5258 inst->ex_mlen = ex_mlen;
5259 inst->header_size = header_sz;
5260 inst->send_has_side_effects = has_side_effects;
5261 inst->send_is_volatile = !has_side_effects;
5262
5263 /* Set up SFID and descriptors */
5264 inst->sfid = sfid;
5265 inst->desc = desc;
5266 if (surface.file == IMM) {
5267 inst->desc |= surface.ud & 0xff;
5268 inst->src[0] = brw_imm_ud(0);
5269 } else {
5270 const fs_builder ubld = bld.exec_all().group(1, 0);
5271 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5272 ubld.AND(tmp, surface, brw_imm_ud(0xff));
5273 inst->src[0] = component(tmp, 0);
5274 }
5275 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5276
5277 /* Finally, the payload */
5278 inst->src[2] = payload;
5279 inst->src[3] = payload2;
5280
5281 inst->resize_sources(4);
5282 }
5283
5284 static void
5285 lower_a64_logical_send(const fs_builder &bld, fs_inst *inst)
5286 {
5287 const gen_device_info *devinfo = bld.shader->devinfo;
5288
5289 const fs_reg &addr = inst->src[0];
5290 const fs_reg &src = inst->src[1];
5291 const unsigned src_comps = inst->components_read(1);
5292 assert(inst->src[2].file == IMM);
5293 const unsigned arg = inst->src[2].ud;
5294 const bool has_side_effects = inst->has_side_effects();
5295
5296 /* If the surface message has side effects and we're a fragment shader, we
5297 * have to predicate with the sample mask to avoid helper invocations.
5298 */
5299 if (has_side_effects && bld.shader->stage == MESA_SHADER_FRAGMENT) {
5300 inst->flag_subreg = 2;
5301 inst->predicate = BRW_PREDICATE_NORMAL;
5302 inst->predicate_inverse = false;
5303
5304 fs_reg sample_mask = bld.sample_mask_reg();
5305 const fs_builder ubld = bld.group(1, 0).exec_all();
5306 ubld.MOV(retype(brw_flag_subreg(inst->flag_subreg), sample_mask.type),
5307 sample_mask);
5308 }
5309
5310 fs_reg payload, payload2;
5311 unsigned mlen, ex_mlen = 0;
5312 if (devinfo->gen >= 9) {
5313 /* On Skylake and above, we have SENDS */
5314 mlen = 2 * (inst->exec_size / 8);
5315 ex_mlen = src_comps * (inst->exec_size / 8);
5316 payload = retype(bld.move_to_vgrf(addr, 1), BRW_REGISTER_TYPE_UD);
5317 payload2 = retype(bld.move_to_vgrf(src, src_comps),
5318 BRW_REGISTER_TYPE_UD);
5319 } else {
5320 /* Add two because the address is 64-bit */
5321 const unsigned dwords = 2 + src_comps;
5322 mlen = dwords * (inst->exec_size / 8);
5323
5324 fs_reg sources[5];
5325
5326 sources[0] = addr;
5327
5328 for (unsigned i = 0; i < src_comps; i++)
5329 sources[1 + i] = offset(src, bld, i);
5330
5331 payload = bld.vgrf(BRW_REGISTER_TYPE_UD, dwords);
5332 bld.LOAD_PAYLOAD(payload, sources, 1 + src_comps, 0);
5333 }
5334
5335 uint32_t desc;
5336 switch (inst->opcode) {
5337 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
5338 desc = brw_dp_a64_untyped_surface_rw_desc(devinfo, inst->exec_size,
5339 arg, /* num_channels */
5340 false /* write */);
5341 break;
5342
5343 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
5344 desc = brw_dp_a64_untyped_surface_rw_desc(devinfo, inst->exec_size,
5345 arg, /* num_channels */
5346 true /* write */);
5347 break;
5348
5349 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
5350 desc = brw_dp_a64_byte_scattered_rw_desc(devinfo, inst->exec_size,
5351 arg, /* bit_size */
5352 false /* write */);
5353 break;
5354
5355 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
5356 desc = brw_dp_a64_byte_scattered_rw_desc(devinfo, inst->exec_size,
5357 arg, /* bit_size */
5358 true /* write */);
5359 break;
5360
5361 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
5362 desc = brw_dp_a64_untyped_atomic_desc(devinfo, inst->exec_size, 32,
5363 arg, /* atomic_op */
5364 !inst->dst.is_null());
5365 break;
5366
5367 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5368 desc = brw_dp_a64_untyped_atomic_float_desc(devinfo, inst->exec_size,
5369 arg, /* atomic_op */
5370 !inst->dst.is_null());
5371 break;
5372
5373 default:
5374 unreachable("Unknown A64 logical instruction");
5375 }
5376
5377 /* Update the original instruction. */
5378 inst->opcode = SHADER_OPCODE_SEND;
5379 inst->mlen = mlen;
5380 inst->ex_mlen = ex_mlen;
5381 inst->header_size = 0;
5382 inst->send_has_side_effects = has_side_effects;
5383 inst->send_is_volatile = !has_side_effects;
5384
5385 /* Set up SFID and descriptors */
5386 inst->sfid = HSW_SFID_DATAPORT_DATA_CACHE_1;
5387 inst->desc = desc;
5388 inst->resize_sources(4);
5389 inst->src[0] = brw_imm_ud(0); /* desc */
5390 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5391 inst->src[2] = payload;
5392 inst->src[3] = payload2;
5393 }
5394
5395 static void
5396 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
5397 {
5398 const gen_device_info *devinfo = bld.shader->devinfo;
5399
5400 if (devinfo->gen >= 7) {
5401 fs_reg index = inst->src[0];
5402 /* We are switching the instruction from an ALU-like instruction to a
5403 * send-from-grf instruction. Since sends can't handle strides or
5404 * source modifiers, we have to make a copy of the offset source.
5405 */
5406 fs_reg offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
5407 bld.MOV(offset, inst->src[1]);
5408
5409 const unsigned simd_mode =
5410 inst->exec_size <= 8 ? BRW_SAMPLER_SIMD_MODE_SIMD8 :
5411 BRW_SAMPLER_SIMD_MODE_SIMD16;
5412
5413 inst->opcode = SHADER_OPCODE_SEND;
5414 inst->mlen = inst->exec_size / 8;
5415 inst->resize_sources(3);
5416
5417 inst->sfid = BRW_SFID_SAMPLER;
5418 inst->desc = brw_sampler_desc(devinfo, 0, 0,
5419 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
5420 simd_mode, 0);
5421 if (index.file == IMM) {
5422 inst->desc |= index.ud & 0xff;
5423 inst->src[0] = brw_imm_ud(0);
5424 } else {
5425 const fs_builder ubld = bld.exec_all().group(1, 0);
5426 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5427 ubld.AND(tmp, index, brw_imm_ud(0xff));
5428 inst->src[0] = component(tmp, 0);
5429 }
5430 inst->src[1] = brw_imm_ud(0); /* ex_desc */
5431 inst->src[2] = offset; /* payload */
5432 } else {
5433 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
5434 BRW_REGISTER_TYPE_UD);
5435
5436 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
5437
5438 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
5439 inst->resize_sources(1);
5440 inst->base_mrf = payload.nr;
5441 inst->header_size = 1;
5442 inst->mlen = 1 + inst->exec_size / 8;
5443 }
5444 }
5445
5446 static void
5447 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
5448 {
5449 assert(bld.shader->devinfo->gen < 6);
5450
5451 inst->base_mrf = 2;
5452 inst->mlen = inst->sources * inst->exec_size / 8;
5453
5454 if (inst->sources > 1) {
5455 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
5456 * "Message Payload":
5457 *
5458 * "Operand0[7]. For the INT DIV functions, this operand is the
5459 * denominator."
5460 * ...
5461 * "Operand1[7]. For the INT DIV functions, this operand is the
5462 * numerator."
5463 */
5464 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
5465 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
5466 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
5467
5468 inst->resize_sources(1);
5469 inst->src[0] = src0;
5470
5471 assert(inst->exec_size == 8);
5472 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
5473 }
5474 }
5475
5476 bool
5477 fs_visitor::lower_logical_sends()
5478 {
5479 bool progress = false;
5480
5481 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5482 const fs_builder ibld(this, block, inst);
5483
5484 switch (inst->opcode) {
5485 case FS_OPCODE_FB_WRITE_LOGICAL:
5486 assert(stage == MESA_SHADER_FRAGMENT);
5487 lower_fb_write_logical_send(ibld, inst,
5488 brw_wm_prog_data(prog_data),
5489 (const brw_wm_prog_key *)key,
5490 payload);
5491 break;
5492
5493 case FS_OPCODE_FB_READ_LOGICAL:
5494 lower_fb_read_logical_send(ibld, inst);
5495 break;
5496
5497 case SHADER_OPCODE_TEX_LOGICAL:
5498 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
5499 break;
5500
5501 case SHADER_OPCODE_TXD_LOGICAL:
5502 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
5503 break;
5504
5505 case SHADER_OPCODE_TXF_LOGICAL:
5506 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
5507 break;
5508
5509 case SHADER_OPCODE_TXL_LOGICAL:
5510 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
5511 break;
5512
5513 case SHADER_OPCODE_TXS_LOGICAL:
5514 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
5515 break;
5516
5517 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
5518 lower_sampler_logical_send(ibld, inst,
5519 SHADER_OPCODE_IMAGE_SIZE_LOGICAL);
5520 break;
5521
5522 case FS_OPCODE_TXB_LOGICAL:
5523 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
5524 break;
5525
5526 case SHADER_OPCODE_TXF_CMS_LOGICAL:
5527 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
5528 break;
5529
5530 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
5531 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
5532 break;
5533
5534 case SHADER_OPCODE_TXF_UMS_LOGICAL:
5535 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
5536 break;
5537
5538 case SHADER_OPCODE_TXF_MCS_LOGICAL:
5539 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
5540 break;
5541
5542 case SHADER_OPCODE_LOD_LOGICAL:
5543 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
5544 break;
5545
5546 case SHADER_OPCODE_TG4_LOGICAL:
5547 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
5548 break;
5549
5550 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
5551 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
5552 break;
5553
5554 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
5555 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
5556 break;
5557
5558 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5559 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5560 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5561 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5562 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5563 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5564 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5565 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5566 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5567 lower_surface_logical_send(ibld, inst);
5568 break;
5569
5570 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
5571 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
5572 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
5573 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
5574 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
5575 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5576 lower_a64_logical_send(ibld, inst);
5577 break;
5578
5579 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
5580 lower_varying_pull_constant_logical_send(ibld, inst);
5581 break;
5582
5583 case SHADER_OPCODE_RCP:
5584 case SHADER_OPCODE_RSQ:
5585 case SHADER_OPCODE_SQRT:
5586 case SHADER_OPCODE_EXP2:
5587 case SHADER_OPCODE_LOG2:
5588 case SHADER_OPCODE_SIN:
5589 case SHADER_OPCODE_COS:
5590 case SHADER_OPCODE_POW:
5591 case SHADER_OPCODE_INT_QUOTIENT:
5592 case SHADER_OPCODE_INT_REMAINDER:
5593 /* The math opcodes are overloaded for the send-like and
5594 * expression-like instructions which seems kind of icky. Gen6+ has
5595 * a native (but rather quirky) MATH instruction so we don't need to
5596 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
5597 * logical instructions (which we can easily recognize because they
5598 * have mlen = 0) into send-like virtual instructions.
5599 */
5600 if (devinfo->gen < 6 && inst->mlen == 0) {
5601 lower_math_logical_send(ibld, inst);
5602 break;
5603
5604 } else {
5605 continue;
5606 }
5607
5608 default:
5609 continue;
5610 }
5611
5612 progress = true;
5613 }
5614
5615 if (progress)
5616 invalidate_live_intervals();
5617
5618 return progress;
5619 }
5620
5621 /**
5622 * Get the closest allowed SIMD width for instruction \p inst accounting for
5623 * some common regioning and execution control restrictions that apply to FPU
5624 * instructions. These restrictions don't necessarily have any relevance to
5625 * instructions not executed by the FPU pipeline like extended math, control
5626 * flow or send message instructions.
5627 *
5628 * For virtual opcodes it's really up to the instruction -- In some cases
5629 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
5630 * instructions) it may simplify virtual instruction lowering if we can
5631 * enforce FPU-like regioning restrictions already on the virtual instruction,
5632 * in other cases (e.g. virtual send-like instructions) this may be
5633 * excessively restrictive.
5634 */
5635 static unsigned
5636 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
5637 const fs_inst *inst)
5638 {
5639 /* Maximum execution size representable in the instruction controls. */
5640 unsigned max_width = MIN2(32, inst->exec_size);
5641
5642 /* According to the PRMs:
5643 * "A. In Direct Addressing mode, a source cannot span more than 2
5644 * adjacent GRF registers.
5645 * B. A destination cannot span more than 2 adjacent GRF registers."
5646 *
5647 * Look for the source or destination with the largest register region
5648 * which is the one that is going to limit the overall execution size of
5649 * the instruction due to this rule.
5650 */
5651 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
5652
5653 for (unsigned i = 0; i < inst->sources; i++)
5654 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
5655
5656 /* Calculate the maximum execution size of the instruction based on the
5657 * factor by which it goes over the hardware limit of 2 GRFs.
5658 */
5659 if (reg_count > 2)
5660 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
5661
5662 /* According to the IVB PRMs:
5663 * "When destination spans two registers, the source MUST span two
5664 * registers. The exception to the above rule:
5665 *
5666 * - When source is scalar, the source registers are not incremented.
5667 * - When source is packed integer Word and destination is packed
5668 * integer DWord, the source register is not incremented but the
5669 * source sub register is incremented."
5670 *
5671 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
5672 * restrictions. The code below intentionally doesn't check whether the
5673 * destination type is integer because empirically the hardware doesn't
5674 * seem to care what the actual type is as long as it's dword-aligned.
5675 */
5676 if (devinfo->gen < 8) {
5677 for (unsigned i = 0; i < inst->sources; i++) {
5678 /* IVB implements DF scalars as <0;2,1> regions. */
5679 const bool is_scalar_exception = is_uniform(inst->src[i]) &&
5680 (devinfo->is_haswell || type_sz(inst->src[i].type) != 8);
5681 const bool is_packed_word_exception =
5682 type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
5683 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
5684
5685 /* We check size_read(i) against size_written instead of REG_SIZE
5686 * because we want to properly handle SIMD32. In SIMD32, you can end
5687 * up with writes to 4 registers and a source that reads 2 registers
5688 * and we may still need to lower all the way to SIMD8 in that case.
5689 */
5690 if (inst->size_written > REG_SIZE &&
5691 inst->size_read(i) != 0 &&
5692 inst->size_read(i) < inst->size_written &&
5693 !is_scalar_exception && !is_packed_word_exception) {
5694 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
5695 max_width = MIN2(max_width, inst->exec_size / reg_count);
5696 }
5697 }
5698 }
5699
5700 if (devinfo->gen < 6) {
5701 /* From the G45 PRM, Volume 4 Page 361:
5702 *
5703 * "Operand Alignment Rule: With the exceptions listed below, a
5704 * source/destination operand in general should be aligned to even
5705 * 256-bit physical register with a region size equal to two 256-bit
5706 * physical registers."
5707 *
5708 * Normally we enforce this by allocating virtual registers to the
5709 * even-aligned class. But we need to handle payload registers.
5710 */
5711 for (unsigned i = 0; i < inst->sources; i++) {
5712 if (inst->src[i].file == FIXED_GRF && (inst->src[i].nr & 1) &&
5713 inst->size_read(i) > REG_SIZE) {
5714 max_width = MIN2(max_width, 8);
5715 }
5716 }
5717 }
5718
5719 /* From the IVB PRMs:
5720 * "When an instruction is SIMD32, the low 16 bits of the execution mask
5721 * are applied for both halves of the SIMD32 instruction. If different
5722 * execution mask channels are required, split the instruction into two
5723 * SIMD16 instructions."
5724 *
5725 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
5726 * 32-wide control flow support in hardware and will behave similarly.
5727 */
5728 if (devinfo->gen < 8 && !inst->force_writemask_all)
5729 max_width = MIN2(max_width, 16);
5730
5731 /* From the IVB PRMs (applies to HSW too):
5732 * "Instructions with condition modifiers must not use SIMD32."
5733 *
5734 * From the BDW PRMs (applies to later hardware too):
5735 * "Ternary instruction with condition modifiers must not use SIMD32."
5736 */
5737 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
5738 max_width = MIN2(max_width, 16);
5739
5740 /* From the IVB PRMs (applies to other devices that don't have the
5741 * gen_device_info::supports_simd16_3src flag set):
5742 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
5743 * SIMD8 is not allowed for DF operations."
5744 */
5745 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
5746 max_width = MIN2(max_width, inst->exec_size / reg_count);
5747
5748 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
5749 * the 8-bit quarter of the execution mask signals specified in the
5750 * instruction control fields) for the second compressed half of any
5751 * single-precision instruction (for double-precision instructions
5752 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
5753 * the EU will apply the wrong execution controls for the second
5754 * sequential GRF write if the number of channels per GRF is not exactly
5755 * eight in single-precision mode (or four in double-float mode).
5756 *
5757 * In this situation we calculate the maximum size of the split
5758 * instructions so they only ever write to a single register.
5759 */
5760 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
5761 !inst->force_writemask_all) {
5762 const unsigned channels_per_grf = inst->exec_size /
5763 DIV_ROUND_UP(inst->size_written, REG_SIZE);
5764 const unsigned exec_type_size = get_exec_type_size(inst);
5765 assert(exec_type_size);
5766
5767 /* The hardware shifts exactly 8 channels per compressed half of the
5768 * instruction in single-precision mode and exactly 4 in double-precision.
5769 */
5770 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
5771 max_width = MIN2(max_width, channels_per_grf);
5772
5773 /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
5774 * because HW applies the same channel enable signals to both halves of
5775 * the compressed instruction which will be just wrong under
5776 * non-uniform control flow.
5777 */
5778 if (devinfo->gen == 7 && !devinfo->is_haswell &&
5779 (exec_type_size == 8 || type_sz(inst->dst.type) == 8))
5780 max_width = MIN2(max_width, 4);
5781 }
5782
5783 /* Only power-of-two execution sizes are representable in the instruction
5784 * control fields.
5785 */
5786 return 1 << _mesa_logbase2(max_width);
5787 }
5788
5789 /**
5790 * Get the maximum allowed SIMD width for instruction \p inst accounting for
5791 * various payload size restrictions that apply to sampler message
5792 * instructions.
5793 *
5794 * This is only intended to provide a maximum theoretical bound for the
5795 * execution size of the message based on the number of argument components
5796 * alone, which in most cases will determine whether the SIMD8 or SIMD16
5797 * variant of the message can be used, though some messages may have
5798 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
5799 * the message length to determine the exact SIMD width and argument count,
5800 * which makes a number of sampler message combinations impossible to
5801 * represent).
5802 */
5803 static unsigned
5804 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
5805 const fs_inst *inst)
5806 {
5807 /* If we have a min_lod parameter on anything other than a simple sample
5808 * message, it will push it over 5 arguments and we have to fall back to
5809 * SIMD8.
5810 */
5811 if (inst->opcode != SHADER_OPCODE_TEX &&
5812 inst->components_read(TEX_LOGICAL_SRC_MIN_LOD))
5813 return 8;
5814
5815 /* Calculate the number of coordinate components that have to be present
5816 * assuming that additional arguments follow the texel coordinates in the
5817 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
5818 * need to pad to four or three components depending on the message,
5819 * pre-ILK we need to pad to at most three components.
5820 */
5821 const unsigned req_coord_components =
5822 (devinfo->gen >= 7 ||
5823 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
5824 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
5825 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
5826 3;
5827
5828 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
5829 * variant of the TXL or TXF message.
5830 */
5831 const bool implicit_lod = devinfo->gen >= 9 &&
5832 (inst->opcode == SHADER_OPCODE_TXL ||
5833 inst->opcode == SHADER_OPCODE_TXF) &&
5834 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
5835
5836 /* Calculate the total number of argument components that need to be passed
5837 * to the sampler unit.
5838 */
5839 const unsigned num_payload_components =
5840 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
5841 req_coord_components) +
5842 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
5843 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
5844 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
5845 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
5846 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
5847 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
5848 inst->components_read(TEX_LOGICAL_SRC_MCS);
5849
5850 /* SIMD16 messages with more than five arguments exceed the maximum message
5851 * size supported by the sampler, regardless of whether a header is
5852 * provided or not.
5853 */
5854 return MIN2(inst->exec_size,
5855 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
5856 }
5857
5858 /**
5859 * Get the closest native SIMD width supported by the hardware for instruction
5860 * \p inst. The instruction will be left untouched by
5861 * fs_visitor::lower_simd_width() if the returned value is equal to the
5862 * original execution size.
5863 */
5864 static unsigned
5865 get_lowered_simd_width(const struct gen_device_info *devinfo,
5866 const fs_inst *inst)
5867 {
5868 switch (inst->opcode) {
5869 case BRW_OPCODE_MOV:
5870 case BRW_OPCODE_SEL:
5871 case BRW_OPCODE_NOT:
5872 case BRW_OPCODE_AND:
5873 case BRW_OPCODE_OR:
5874 case BRW_OPCODE_XOR:
5875 case BRW_OPCODE_SHR:
5876 case BRW_OPCODE_SHL:
5877 case BRW_OPCODE_ASR:
5878 case BRW_OPCODE_CMPN:
5879 case BRW_OPCODE_CSEL:
5880 case BRW_OPCODE_F32TO16:
5881 case BRW_OPCODE_F16TO32:
5882 case BRW_OPCODE_BFREV:
5883 case BRW_OPCODE_BFE:
5884 case BRW_OPCODE_ADD:
5885 case BRW_OPCODE_MUL:
5886 case BRW_OPCODE_AVG:
5887 case BRW_OPCODE_FRC:
5888 case BRW_OPCODE_RNDU:
5889 case BRW_OPCODE_RNDD:
5890 case BRW_OPCODE_RNDE:
5891 case BRW_OPCODE_RNDZ:
5892 case BRW_OPCODE_LZD:
5893 case BRW_OPCODE_FBH:
5894 case BRW_OPCODE_FBL:
5895 case BRW_OPCODE_CBIT:
5896 case BRW_OPCODE_SAD2:
5897 case BRW_OPCODE_MAD:
5898 case BRW_OPCODE_LRP:
5899 case FS_OPCODE_PACK:
5900 case SHADER_OPCODE_SEL_EXEC:
5901 case SHADER_OPCODE_CLUSTER_BROADCAST:
5902 return get_fpu_lowered_simd_width(devinfo, inst);
5903
5904 case BRW_OPCODE_CMP: {
5905 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
5906 * when the destination is a GRF the dependency-clear bit on the flag
5907 * register is cleared early.
5908 *
5909 * Suggested workarounds are to disable coissuing CMP instructions
5910 * or to split CMP(16) instructions into two CMP(8) instructions.
5911 *
5912 * We choose to split into CMP(8) instructions since disabling
5913 * coissuing would affect CMP instructions not otherwise affected by
5914 * the errata.
5915 */
5916 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
5917 !inst->dst.is_null() ? 8 : ~0);
5918 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
5919 }
5920 case BRW_OPCODE_BFI1:
5921 case BRW_OPCODE_BFI2:
5922 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
5923 * should
5924 * "Force BFI instructions to be executed always in SIMD8."
5925 */
5926 return MIN2(devinfo->is_haswell ? 8 : ~0u,
5927 get_fpu_lowered_simd_width(devinfo, inst));
5928
5929 case BRW_OPCODE_IF:
5930 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
5931 return inst->exec_size;
5932
5933 case SHADER_OPCODE_RCP:
5934 case SHADER_OPCODE_RSQ:
5935 case SHADER_OPCODE_SQRT:
5936 case SHADER_OPCODE_EXP2:
5937 case SHADER_OPCODE_LOG2:
5938 case SHADER_OPCODE_SIN:
5939 case SHADER_OPCODE_COS:
5940 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
5941 * Gen6.
5942 */
5943 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
5944 devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
5945 MIN2(8, inst->exec_size));
5946
5947 case SHADER_OPCODE_POW:
5948 /* SIMD16 is only allowed on Gen7+. */
5949 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
5950 MIN2(8, inst->exec_size));
5951
5952 case SHADER_OPCODE_INT_QUOTIENT:
5953 case SHADER_OPCODE_INT_REMAINDER:
5954 /* Integer division is limited to SIMD8 on all generations. */
5955 return MIN2(8, inst->exec_size);
5956
5957 case FS_OPCODE_LINTERP:
5958 case SHADER_OPCODE_GET_BUFFER_SIZE:
5959 case FS_OPCODE_DDX_COARSE:
5960 case FS_OPCODE_DDX_FINE:
5961 case FS_OPCODE_DDY_COARSE:
5962 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
5963 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
5964 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
5965 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
5966 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
5967 return MIN2(16, inst->exec_size);
5968
5969 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
5970 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
5971 * message used to implement varying pull constant loads, so expand it
5972 * to SIMD16. An alternative with longer message payload length but
5973 * shorter return payload would be to use the SIMD8 sampler message that
5974 * takes (header, u, v, r) as parameters instead of (header, u).
5975 */
5976 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
5977
5978 case FS_OPCODE_DDY_FINE:
5979 /* The implementation of this virtual opcode may require emitting
5980 * compressed Align16 instructions, which are severely limited on some
5981 * generations.
5982 *
5983 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
5984 * Region Restrictions):
5985 *
5986 * "In Align16 access mode, SIMD16 is not allowed for DW operations
5987 * and SIMD8 is not allowed for DF operations."
5988 *
5989 * In this context, "DW operations" means "operations acting on 32-bit
5990 * values", so it includes operations on floats.
5991 *
5992 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
5993 * (Instruction Compression -> Rules and Restrictions):
5994 *
5995 * "A compressed instruction must be in Align1 access mode. Align16
5996 * mode instructions cannot be compressed."
5997 *
5998 * Similar text exists in the g45 PRM.
5999 *
6000 * Empirically, compressed align16 instructions using odd register
6001 * numbers don't appear to work on Sandybridge either.
6002 */
6003 return (devinfo->gen == 4 || devinfo->gen == 6 ||
6004 (devinfo->gen == 7 && !devinfo->is_haswell) ?
6005 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
6006
6007 case SHADER_OPCODE_MULH:
6008 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
6009 * is 8-wide on Gen7+.
6010 */
6011 return (devinfo->gen >= 7 ? 8 :
6012 get_fpu_lowered_simd_width(devinfo, inst));
6013
6014 case FS_OPCODE_FB_WRITE_LOGICAL:
6015 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
6016 * here.
6017 */
6018 assert(devinfo->gen != 6 ||
6019 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
6020 inst->exec_size == 8);
6021 /* Dual-source FB writes are unsupported in SIMD16 mode. */
6022 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
6023 8 : MIN2(16, inst->exec_size));
6024
6025 case FS_OPCODE_FB_READ_LOGICAL:
6026 return MIN2(16, inst->exec_size);
6027
6028 case SHADER_OPCODE_TEX_LOGICAL:
6029 case SHADER_OPCODE_TXF_CMS_LOGICAL:
6030 case SHADER_OPCODE_TXF_UMS_LOGICAL:
6031 case SHADER_OPCODE_TXF_MCS_LOGICAL:
6032 case SHADER_OPCODE_LOD_LOGICAL:
6033 case SHADER_OPCODE_TG4_LOGICAL:
6034 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
6035 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
6036 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
6037 return get_sampler_lowered_simd_width(devinfo, inst);
6038
6039 case SHADER_OPCODE_TXD_LOGICAL:
6040 /* TXD is unsupported in SIMD16 mode. */
6041 return 8;
6042
6043 case SHADER_OPCODE_TXL_LOGICAL:
6044 case FS_OPCODE_TXB_LOGICAL:
6045 /* Only one execution size is representable pre-ILK depending on whether
6046 * the shadow reference argument is present.
6047 */
6048 if (devinfo->gen == 4)
6049 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
6050 else
6051 return get_sampler_lowered_simd_width(devinfo, inst);
6052
6053 case SHADER_OPCODE_TXF_LOGICAL:
6054 case SHADER_OPCODE_TXS_LOGICAL:
6055 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
6056 * messages. Use SIMD16 instead.
6057 */
6058 if (devinfo->gen == 4)
6059 return 16;
6060 else
6061 return get_sampler_lowered_simd_width(devinfo, inst);
6062
6063 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
6064 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
6065 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
6066 return 8;
6067
6068 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
6069 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
6070 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
6071 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
6072 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
6073 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
6074 return MIN2(16, inst->exec_size);
6075
6076 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
6077 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
6078 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
6079 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
6080 return devinfo->gen <= 8 ? 8 : MIN2(16, inst->exec_size);
6081
6082 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
6083 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
6084 return 8;
6085
6086 case SHADER_OPCODE_URB_READ_SIMD8:
6087 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
6088 case SHADER_OPCODE_URB_WRITE_SIMD8:
6089 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
6090 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
6091 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
6092 return MIN2(8, inst->exec_size);
6093
6094 case SHADER_OPCODE_QUAD_SWIZZLE: {
6095 const unsigned swiz = inst->src[1].ud;
6096 return (is_uniform(inst->src[0]) ?
6097 get_fpu_lowered_simd_width(devinfo, inst) :
6098 devinfo->gen < 11 && type_sz(inst->src[0].type) == 4 ? 8 :
6099 swiz == BRW_SWIZZLE_XYXY || swiz == BRW_SWIZZLE_ZWZW ? 4 :
6100 get_fpu_lowered_simd_width(devinfo, inst));
6101 }
6102 case SHADER_OPCODE_MOV_INDIRECT: {
6103 /* From IVB and HSW PRMs:
6104 *
6105 * "2.When the destination requires two registers and the sources are
6106 * indirect, the sources must use 1x1 regioning mode.
6107 *
6108 * In case of DF instructions in HSW/IVB, the exec_size is limited by
6109 * the EU decompression logic not handling VxH indirect addressing
6110 * correctly.
6111 */
6112 const unsigned max_size = (devinfo->gen >= 8 ? 2 : 1) * REG_SIZE;
6113 /* Prior to Broadwell, we only have 8 address subregisters. */
6114 return MIN3(devinfo->gen >= 8 ? 16 : 8,
6115 max_size / (inst->dst.stride * type_sz(inst->dst.type)),
6116 inst->exec_size);
6117 }
6118
6119 case SHADER_OPCODE_LOAD_PAYLOAD: {
6120 const unsigned reg_count =
6121 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
6122
6123 if (reg_count > 2) {
6124 /* Only LOAD_PAYLOAD instructions with per-channel destination region
6125 * can be easily lowered (which excludes headers and heterogeneous
6126 * types).
6127 */
6128 assert(!inst->header_size);
6129 for (unsigned i = 0; i < inst->sources; i++)
6130 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
6131 inst->src[i].file == BAD_FILE);
6132
6133 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
6134 } else {
6135 return inst->exec_size;
6136 }
6137 }
6138 default:
6139 return inst->exec_size;
6140 }
6141 }
6142
6143 /**
6144 * Return true if splitting out the group of channels of instruction \p inst
6145 * given by lbld.group() requires allocating a temporary for the i-th source
6146 * of the lowered instruction.
6147 */
6148 static inline bool
6149 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
6150 {
6151 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
6152 (inst->components_read(i) == 1 &&
6153 lbld.dispatch_width() <= inst->exec_size)) ||
6154 (inst->flags_written() &
6155 flag_mask(inst->src[i], type_sz(inst->src[i].type)));
6156 }
6157
6158 /**
6159 * Extract the data that would be consumed by the channel group given by
6160 * lbld.group() from the i-th source region of instruction \p inst and return
6161 * it as result in packed form.
6162 */
6163 static fs_reg
6164 emit_unzip(const fs_builder &lbld, fs_inst *inst, unsigned i)
6165 {
6166 assert(lbld.group() >= inst->group);
6167
6168 /* Specified channel group from the source region. */
6169 const fs_reg src = horiz_offset(inst->src[i], lbld.group() - inst->group);
6170
6171 if (needs_src_copy(lbld, inst, i)) {
6172 /* Builder of the right width to perform the copy avoiding uninitialized
6173 * data if the lowered execution size is greater than the original
6174 * execution size of the instruction.
6175 */
6176 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
6177 inst->exec_size), 0);
6178 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
6179
6180 for (unsigned k = 0; k < inst->components_read(i); ++k)
6181 cbld.MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
6182
6183 return tmp;
6184
6185 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
6186 /* The source is invariant for all dispatch_width-wide groups of the
6187 * original region.
6188 */
6189 return inst->src[i];
6190
6191 } else {
6192 /* We can just point the lowered instruction at the right channel group
6193 * from the original region.
6194 */
6195 return src;
6196 }
6197 }
6198
6199 /**
6200 * Return true if splitting out the group of channels of instruction \p inst
6201 * given by lbld.group() requires allocating a temporary for the destination
6202 * of the lowered instruction and copying the data back to the original
6203 * destination region.
6204 */
6205 static inline bool
6206 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
6207 {
6208 /* If the instruction writes more than one component we'll have to shuffle
6209 * the results of multiple lowered instructions in order to make sure that
6210 * they end up arranged correctly in the original destination region.
6211 */
6212 if (inst->size_written > inst->dst.component_size(inst->exec_size))
6213 return true;
6214
6215 /* If the lowered execution size is larger than the original the result of
6216 * the instruction won't fit in the original destination, so we'll have to
6217 * allocate a temporary in any case.
6218 */
6219 if (lbld.dispatch_width() > inst->exec_size)
6220 return true;
6221
6222 for (unsigned i = 0; i < inst->sources; i++) {
6223 /* If we already made a copy of the source for other reasons there won't
6224 * be any overlap with the destination.
6225 */
6226 if (needs_src_copy(lbld, inst, i))
6227 continue;
6228
6229 /* In order to keep the logic simple we emit a copy whenever the
6230 * destination region doesn't exactly match an overlapping source, which
6231 * may point at the source and destination not being aligned group by
6232 * group which could cause one of the lowered instructions to overwrite
6233 * the data read from the same source by other lowered instructions.
6234 */
6235 if (regions_overlap(inst->dst, inst->size_written,
6236 inst->src[i], inst->size_read(i)) &&
6237 !inst->dst.equals(inst->src[i]))
6238 return true;
6239 }
6240
6241 return false;
6242 }
6243
6244 /**
6245 * Insert data from a packed temporary into the channel group given by
6246 * lbld.group() of the destination region of instruction \p inst and return
6247 * the temporary as result. Any copy instructions that are required for
6248 * unzipping the previous value (in the case of partial writes) will be
6249 * inserted using \p lbld_before and any copy instructions required for
6250 * zipping up the destination of \p inst will be inserted using \p lbld_after.
6251 */
6252 static fs_reg
6253 emit_zip(const fs_builder &lbld_before, const fs_builder &lbld_after,
6254 fs_inst *inst)
6255 {
6256 assert(lbld_before.dispatch_width() == lbld_after.dispatch_width());
6257 assert(lbld_before.group() == lbld_after.group());
6258 assert(lbld_after.group() >= inst->group);
6259
6260 /* Specified channel group from the destination region. */
6261 const fs_reg dst = horiz_offset(inst->dst, lbld_after.group() - inst->group);
6262 const unsigned dst_size = inst->size_written /
6263 inst->dst.component_size(inst->exec_size);
6264
6265 if (needs_dst_copy(lbld_after, inst)) {
6266 const fs_reg tmp = lbld_after.vgrf(inst->dst.type, dst_size);
6267
6268 if (inst->predicate) {
6269 /* Handle predication by copying the original contents of
6270 * the destination into the temporary before emitting the
6271 * lowered instruction.
6272 */
6273 const fs_builder gbld_before =
6274 lbld_before.group(MIN2(lbld_before.dispatch_width(),
6275 inst->exec_size), 0);
6276 for (unsigned k = 0; k < dst_size; ++k) {
6277 gbld_before.MOV(offset(tmp, lbld_before, k),
6278 offset(dst, inst->exec_size, k));
6279 }
6280 }
6281
6282 const fs_builder gbld_after =
6283 lbld_after.group(MIN2(lbld_after.dispatch_width(),
6284 inst->exec_size), 0);
6285 for (unsigned k = 0; k < dst_size; ++k) {
6286 /* Use a builder of the right width to perform the copy avoiding
6287 * uninitialized data if the lowered execution size is greater than
6288 * the original execution size of the instruction.
6289 */
6290 gbld_after.MOV(offset(dst, inst->exec_size, k),
6291 offset(tmp, lbld_after, k));
6292 }
6293
6294 return tmp;
6295
6296 } else {
6297 /* No need to allocate a temporary for the lowered instruction, just
6298 * take the right group of channels from the original region.
6299 */
6300 return dst;
6301 }
6302 }
6303
6304 bool
6305 fs_visitor::lower_simd_width()
6306 {
6307 bool progress = false;
6308
6309 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
6310 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
6311
6312 if (lower_width != inst->exec_size) {
6313 /* Builder matching the original instruction. We may also need to
6314 * emit an instruction of width larger than the original, set the
6315 * execution size of the builder to the highest of both for now so
6316 * we're sure that both cases can be handled.
6317 */
6318 const unsigned max_width = MAX2(inst->exec_size, lower_width);
6319 const fs_builder ibld = bld.at(block, inst)
6320 .exec_all(inst->force_writemask_all)
6321 .group(max_width, inst->group / max_width);
6322
6323 /* Split the copies in chunks of the execution width of either the
6324 * original or the lowered instruction, whichever is lower.
6325 */
6326 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
6327 const unsigned dst_size = inst->size_written /
6328 inst->dst.component_size(inst->exec_size);
6329
6330 assert(!inst->writes_accumulator && !inst->mlen);
6331
6332 /* Inserting the zip, unzip, and duplicated instructions in all of
6333 * the right spots is somewhat tricky. All of the unzip and any
6334 * instructions from the zip which unzip the destination prior to
6335 * writing need to happen before all of the per-group instructions
6336 * and the zip instructions need to happen after. In order to sort
6337 * this all out, we insert the unzip instructions before \p inst,
6338 * insert the per-group instructions after \p inst (i.e. before
6339 * inst->next), and insert the zip instructions before the
6340 * instruction after \p inst. Since we are inserting instructions
6341 * after \p inst, inst->next is a moving target and we need to save
6342 * it off here so that we insert the zip instructions in the right
6343 * place.
6344 *
6345 * Since we're inserting split instructions after after_inst, the
6346 * instructions will end up in the reverse order that we insert them.
6347 * However, certain render target writes require that the low group
6348 * instructions come before the high group. From the Ivy Bridge PRM
6349 * Vol. 4, Pt. 1, Section 3.9.11:
6350 *
6351 * "If multiple SIMD8 Dual Source messages are delivered by the
6352 * pixel shader thread, each SIMD8_DUALSRC_LO message must be
6353 * issued before the SIMD8_DUALSRC_HI message with the same Slot
6354 * Group Select setting."
6355 *
6356 * And, from Section 3.9.11.1 of the same PRM:
6357 *
6358 * "When SIMD32 or SIMD16 PS threads send render target writes
6359 * with multiple SIMD8 and SIMD16 messages, the following must
6360 * hold:
6361 *
6362 * All the slots (as described above) must have a corresponding
6363 * render target write irrespective of the slot's validity. A slot
6364 * is considered valid when at least one sample is enabled. For
6365 * example, a SIMD16 PS thread must send two SIMD8 render target
6366 * writes to cover all the slots.
6367 *
6368 * PS thread must send SIMD render target write messages with
6369 * increasing slot numbers. For example, SIMD16 thread has
6370 * Slot[15:0] and if two SIMD8 render target writes are used, the
6371 * first SIMD8 render target write must send Slot[7:0] and the
6372 * next one must send Slot[15:8]."
6373 *
6374 * In order to make low group instructions come before high group
6375 * instructions (this is required for some render target writes), we
6376 * split from the highest group to lowest.
6377 */
6378 exec_node *const after_inst = inst->next;
6379 for (int i = n - 1; i >= 0; i--) {
6380 /* Emit a copy of the original instruction with the lowered width.
6381 * If the EOT flag was set throw it away except for the last
6382 * instruction to avoid killing the thread prematurely.
6383 */
6384 fs_inst split_inst = *inst;
6385 split_inst.exec_size = lower_width;
6386 split_inst.eot = inst->eot && i == int(n - 1);
6387
6388 /* Select the correct channel enables for the i-th group, then
6389 * transform the sources and destination and emit the lowered
6390 * instruction.
6391 */
6392 const fs_builder lbld = ibld.group(lower_width, i);
6393
6394 for (unsigned j = 0; j < inst->sources; j++)
6395 split_inst.src[j] = emit_unzip(lbld.at(block, inst), inst, j);
6396
6397 split_inst.dst = emit_zip(lbld.at(block, inst),
6398 lbld.at(block, after_inst), inst);
6399 split_inst.size_written =
6400 split_inst.dst.component_size(lower_width) * dst_size;
6401
6402 lbld.at(block, inst->next).emit(split_inst);
6403 }
6404
6405 inst->remove(block);
6406 progress = true;
6407 }
6408 }
6409
6410 if (progress)
6411 invalidate_live_intervals();
6412
6413 return progress;
6414 }
6415
6416 void
6417 fs_visitor::dump_instructions()
6418 {
6419 dump_instructions(NULL);
6420 }
6421
6422 void
6423 fs_visitor::dump_instructions(const char *name)
6424 {
6425 FILE *file = stderr;
6426 if (name && geteuid() != 0) {
6427 file = fopen(name, "w");
6428 if (!file)
6429 file = stderr;
6430 }
6431
6432 if (cfg) {
6433 calculate_register_pressure();
6434 int ip = 0, max_pressure = 0;
6435 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
6436 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
6437 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
6438 dump_instruction(inst, file);
6439 ip++;
6440 }
6441 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
6442 } else {
6443 int ip = 0;
6444 foreach_in_list(backend_instruction, inst, &instructions) {
6445 fprintf(file, "%4d: ", ip++);
6446 dump_instruction(inst, file);
6447 }
6448 }
6449
6450 if (file != stderr) {
6451 fclose(file);
6452 }
6453 }
6454
6455 void
6456 fs_visitor::dump_instruction(backend_instruction *be_inst)
6457 {
6458 dump_instruction(be_inst, stderr);
6459 }
6460
6461 void
6462 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
6463 {
6464 fs_inst *inst = (fs_inst *)be_inst;
6465
6466 if (inst->predicate) {
6467 fprintf(file, "(%cf%d.%d) ",
6468 inst->predicate_inverse ? '-' : '+',
6469 inst->flag_subreg / 2,
6470 inst->flag_subreg % 2);
6471 }
6472
6473 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
6474 if (inst->saturate)
6475 fprintf(file, ".sat");
6476 if (inst->conditional_mod) {
6477 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
6478 if (!inst->predicate &&
6479 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
6480 inst->opcode != BRW_OPCODE_CSEL &&
6481 inst->opcode != BRW_OPCODE_IF &&
6482 inst->opcode != BRW_OPCODE_WHILE))) {
6483 fprintf(file, ".f%d.%d", inst->flag_subreg / 2,
6484 inst->flag_subreg % 2);
6485 }
6486 }
6487 fprintf(file, "(%d) ", inst->exec_size);
6488
6489 if (inst->mlen) {
6490 fprintf(file, "(mlen: %d) ", inst->mlen);
6491 }
6492
6493 if (inst->ex_mlen) {
6494 fprintf(file, "(ex_mlen: %d) ", inst->ex_mlen);
6495 }
6496
6497 if (inst->eot) {
6498 fprintf(file, "(EOT) ");
6499 }
6500
6501 switch (inst->dst.file) {
6502 case VGRF:
6503 fprintf(file, "vgrf%d", inst->dst.nr);
6504 break;
6505 case FIXED_GRF:
6506 fprintf(file, "g%d", inst->dst.nr);
6507 break;
6508 case MRF:
6509 fprintf(file, "m%d", inst->dst.nr);
6510 break;
6511 case BAD_FILE:
6512 fprintf(file, "(null)");
6513 break;
6514 case UNIFORM:
6515 fprintf(file, "***u%d***", inst->dst.nr);
6516 break;
6517 case ATTR:
6518 fprintf(file, "***attr%d***", inst->dst.nr);
6519 break;
6520 case ARF:
6521 switch (inst->dst.nr) {
6522 case BRW_ARF_NULL:
6523 fprintf(file, "null");
6524 break;
6525 case BRW_ARF_ADDRESS:
6526 fprintf(file, "a0.%d", inst->dst.subnr);
6527 break;
6528 case BRW_ARF_ACCUMULATOR:
6529 fprintf(file, "acc%d", inst->dst.subnr);
6530 break;
6531 case BRW_ARF_FLAG:
6532 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
6533 break;
6534 default:
6535 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
6536 break;
6537 }
6538 break;
6539 case IMM:
6540 unreachable("not reached");
6541 }
6542
6543 if (inst->dst.offset ||
6544 (inst->dst.file == VGRF &&
6545 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
6546 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
6547 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
6548 inst->dst.offset % reg_size);
6549 }
6550
6551 if (inst->dst.stride != 1)
6552 fprintf(file, "<%u>", inst->dst.stride);
6553 fprintf(file, ":%s, ", brw_reg_type_to_letters(inst->dst.type));
6554
6555 for (int i = 0; i < inst->sources; i++) {
6556 if (inst->src[i].negate)
6557 fprintf(file, "-");
6558 if (inst->src[i].abs)
6559 fprintf(file, "|");
6560 switch (inst->src[i].file) {
6561 case VGRF:
6562 fprintf(file, "vgrf%d", inst->src[i].nr);
6563 break;
6564 case FIXED_GRF:
6565 fprintf(file, "g%d", inst->src[i].nr);
6566 break;
6567 case MRF:
6568 fprintf(file, "***m%d***", inst->src[i].nr);
6569 break;
6570 case ATTR:
6571 fprintf(file, "attr%d", inst->src[i].nr);
6572 break;
6573 case UNIFORM:
6574 fprintf(file, "u%d", inst->src[i].nr);
6575 break;
6576 case BAD_FILE:
6577 fprintf(file, "(null)");
6578 break;
6579 case IMM:
6580 switch (inst->src[i].type) {
6581 case BRW_REGISTER_TYPE_F:
6582 fprintf(file, "%-gf", inst->src[i].f);
6583 break;
6584 case BRW_REGISTER_TYPE_DF:
6585 fprintf(file, "%fdf", inst->src[i].df);
6586 break;
6587 case BRW_REGISTER_TYPE_W:
6588 case BRW_REGISTER_TYPE_D:
6589 fprintf(file, "%dd", inst->src[i].d);
6590 break;
6591 case BRW_REGISTER_TYPE_UW:
6592 case BRW_REGISTER_TYPE_UD:
6593 fprintf(file, "%uu", inst->src[i].ud);
6594 break;
6595 case BRW_REGISTER_TYPE_Q:
6596 fprintf(file, "%" PRId64 "q", inst->src[i].d64);
6597 break;
6598 case BRW_REGISTER_TYPE_UQ:
6599 fprintf(file, "%" PRIu64 "uq", inst->src[i].u64);
6600 break;
6601 case BRW_REGISTER_TYPE_VF:
6602 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
6603 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
6604 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
6605 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
6606 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
6607 break;
6608 case BRW_REGISTER_TYPE_V:
6609 case BRW_REGISTER_TYPE_UV:
6610 fprintf(file, "%08x%s", inst->src[i].ud,
6611 inst->src[i].type == BRW_REGISTER_TYPE_V ? "V" : "UV");
6612 break;
6613 default:
6614 fprintf(file, "???");
6615 break;
6616 }
6617 break;
6618 case ARF:
6619 switch (inst->src[i].nr) {
6620 case BRW_ARF_NULL:
6621 fprintf(file, "null");
6622 break;
6623 case BRW_ARF_ADDRESS:
6624 fprintf(file, "a0.%d", inst->src[i].subnr);
6625 break;
6626 case BRW_ARF_ACCUMULATOR:
6627 fprintf(file, "acc%d", inst->src[i].subnr);
6628 break;
6629 case BRW_ARF_FLAG:
6630 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
6631 break;
6632 default:
6633 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
6634 break;
6635 }
6636 break;
6637 }
6638
6639 if (inst->src[i].offset ||
6640 (inst->src[i].file == VGRF &&
6641 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
6642 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
6643 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
6644 inst->src[i].offset % reg_size);
6645 }
6646
6647 if (inst->src[i].abs)
6648 fprintf(file, "|");
6649
6650 if (inst->src[i].file != IMM) {
6651 unsigned stride;
6652 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
6653 unsigned hstride = inst->src[i].hstride;
6654 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
6655 } else {
6656 stride = inst->src[i].stride;
6657 }
6658 if (stride != 1)
6659 fprintf(file, "<%u>", stride);
6660
6661 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
6662 }
6663
6664 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
6665 fprintf(file, ", ");
6666 }
6667
6668 fprintf(file, " ");
6669
6670 if (inst->force_writemask_all)
6671 fprintf(file, "NoMask ");
6672
6673 if (inst->exec_size != dispatch_width)
6674 fprintf(file, "group%d ", inst->group);
6675
6676 fprintf(file, "\n");
6677 }
6678
6679 void
6680 fs_visitor::setup_fs_payload_gen6()
6681 {
6682 assert(stage == MESA_SHADER_FRAGMENT);
6683 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
6684 const unsigned payload_width = MIN2(16, dispatch_width);
6685 assert(dispatch_width % payload_width == 0);
6686 assert(devinfo->gen >= 6);
6687
6688 prog_data->uses_src_depth = prog_data->uses_src_w =
6689 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
6690
6691 prog_data->uses_sample_mask =
6692 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
6693
6694 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
6695 *
6696 * "MSDISPMODE_PERSAMPLE is required in order to select
6697 * POSOFFSET_SAMPLE"
6698 *
6699 * So we can only really get sample positions if we are doing real
6700 * per-sample dispatch. If we need gl_SamplePosition and we don't have
6701 * persample dispatch, we hard-code it to 0.5.
6702 */
6703 prog_data->uses_pos_offset = prog_data->persample_dispatch &&
6704 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS);
6705
6706 /* R0: PS thread payload header. */
6707 payload.num_regs++;
6708
6709 for (unsigned j = 0; j < dispatch_width / payload_width; j++) {
6710 /* R1: masks, pixel X/Y coordinates. */
6711 payload.subspan_coord_reg[j] = payload.num_regs++;
6712 }
6713
6714 for (unsigned j = 0; j < dispatch_width / payload_width; j++) {
6715 /* R3-26: barycentric interpolation coordinates. These appear in the
6716 * same order that they appear in the brw_barycentric_mode enum. Each
6717 * set of coordinates occupies 2 registers if dispatch width == 8 and 4
6718 * registers if dispatch width == 16. Coordinates only appear if they
6719 * were enabled using the "Barycentric Interpolation Mode" bits in
6720 * WM_STATE.
6721 */
6722 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
6723 if (prog_data->barycentric_interp_modes & (1 << i)) {
6724 payload.barycentric_coord_reg[i][j] = payload.num_regs;
6725 payload.num_regs += payload_width / 4;
6726 }
6727 }
6728
6729 /* R27-28: interpolated depth if uses source depth */
6730 if (prog_data->uses_src_depth) {
6731 payload.source_depth_reg[j] = payload.num_regs;
6732 payload.num_regs += payload_width / 8;
6733 }
6734
6735 /* R29-30: interpolated W set if GEN6_WM_USES_SOURCE_W. */
6736 if (prog_data->uses_src_w) {
6737 payload.source_w_reg[j] = payload.num_regs;
6738 payload.num_regs += payload_width / 8;
6739 }
6740
6741 /* R31: MSAA position offsets. */
6742 if (prog_data->uses_pos_offset) {
6743 payload.sample_pos_reg[j] = payload.num_regs;
6744 payload.num_regs++;
6745 }
6746
6747 /* R32-33: MSAA input coverage mask */
6748 if (prog_data->uses_sample_mask) {
6749 assert(devinfo->gen >= 7);
6750 payload.sample_mask_in_reg[j] = payload.num_regs;
6751 payload.num_regs += payload_width / 8;
6752 }
6753 }
6754
6755 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6756 source_depth_to_render_target = true;
6757 }
6758 }
6759
6760 void
6761 fs_visitor::setup_vs_payload()
6762 {
6763 /* R0: thread header, R1: urb handles */
6764 payload.num_regs = 2;
6765 }
6766
6767 void
6768 fs_visitor::setup_gs_payload()
6769 {
6770 assert(stage == MESA_SHADER_GEOMETRY);
6771
6772 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
6773 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
6774
6775 /* R0: thread header, R1: output URB handles */
6776 payload.num_regs = 2;
6777
6778 if (gs_prog_data->include_primitive_id) {
6779 /* R2: Primitive ID 0..7 */
6780 payload.num_regs++;
6781 }
6782
6783 /* Always enable VUE handles so we can safely use pull model if needed.
6784 *
6785 * The push model for a GS uses a ton of register space even for trivial
6786 * scenarios with just a few inputs, so just make things easier and a bit
6787 * safer by always having pull model available.
6788 */
6789 gs_prog_data->base.include_vue_handles = true;
6790
6791 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
6792 payload.num_regs += nir->info.gs.vertices_in;
6793
6794 /* Use a maximum of 24 registers for push-model inputs. */
6795 const unsigned max_push_components = 24;
6796
6797 /* If pushing our inputs would take too many registers, reduce the URB read
6798 * length (which is in HWords, or 8 registers), and resort to pulling.
6799 *
6800 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
6801 * have to multiply by VerticesIn to obtain the total storage requirement.
6802 */
6803 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
6804 max_push_components) {
6805 vue_prog_data->urb_read_length =
6806 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
6807 }
6808 }
6809
6810 void
6811 fs_visitor::setup_cs_payload()
6812 {
6813 assert(devinfo->gen >= 7);
6814 payload.num_regs = 1;
6815 }
6816
6817 void
6818 fs_visitor::calculate_register_pressure()
6819 {
6820 invalidate_live_intervals();
6821 calculate_live_intervals();
6822
6823 unsigned num_instructions = 0;
6824 foreach_block(block, cfg)
6825 num_instructions += block->instructions.length();
6826
6827 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
6828
6829 for (unsigned reg = 0; reg < alloc.count; reg++) {
6830 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
6831 regs_live_at_ip[ip] += alloc.sizes[reg];
6832 }
6833 }
6834
6835 void
6836 fs_visitor::optimize()
6837 {
6838 /* Start by validating the shader we currently have. */
6839 validate();
6840
6841 /* bld is the common builder object pointing at the end of the program we
6842 * used to translate it into i965 IR. For the optimization and lowering
6843 * passes coming next, any code added after the end of the program without
6844 * having explicitly called fs_builder::at() clearly points at a mistake.
6845 * Ideally optimization passes wouldn't be part of the visitor so they
6846 * wouldn't have access to bld at all, but they do, so just in case some
6847 * pass forgets to ask for a location explicitly set it to NULL here to
6848 * make it trip. The dispatch width is initialized to a bogus value to
6849 * make sure that optimizations set the execution controls explicitly to
6850 * match the code they are manipulating instead of relying on the defaults.
6851 */
6852 bld = fs_builder(this, 64);
6853
6854 assign_constant_locations();
6855 lower_constant_loads();
6856
6857 validate();
6858
6859 split_virtual_grfs();
6860 validate();
6861
6862 #define OPT(pass, args...) ({ \
6863 pass_num++; \
6864 bool this_progress = pass(args); \
6865 \
6866 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
6867 char filename[64]; \
6868 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
6869 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
6870 \
6871 backend_shader::dump_instructions(filename); \
6872 } \
6873 \
6874 validate(); \
6875 \
6876 progress = progress || this_progress; \
6877 this_progress; \
6878 })
6879
6880 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
6881 char filename[64];
6882 snprintf(filename, 64, "%s%d-%s-00-00-start",
6883 stage_abbrev, dispatch_width, nir->info.name);
6884
6885 backend_shader::dump_instructions(filename);
6886 }
6887
6888 bool progress = false;
6889 int iteration = 0;
6890 int pass_num = 0;
6891
6892 OPT(remove_extra_rounding_modes);
6893
6894 do {
6895 progress = false;
6896 pass_num = 0;
6897 iteration++;
6898
6899 OPT(remove_duplicate_mrf_writes);
6900
6901 OPT(opt_algebraic);
6902 OPT(opt_cse);
6903 OPT(opt_copy_propagation);
6904 OPT(opt_predicated_break, this);
6905 OPT(opt_cmod_propagation);
6906 OPT(dead_code_eliminate);
6907 OPT(opt_peephole_sel);
6908 OPT(dead_control_flow_eliminate, this);
6909 OPT(opt_register_renaming);
6910 OPT(opt_saturate_propagation);
6911 OPT(register_coalesce);
6912 OPT(compute_to_mrf);
6913 OPT(eliminate_find_live_channel);
6914
6915 OPT(compact_virtual_grfs);
6916 } while (progress);
6917
6918 /* Do this after cmod propagation has had every possible opportunity to
6919 * propagate results into SEL instructions.
6920 */
6921 if (OPT(opt_peephole_csel))
6922 OPT(dead_code_eliminate);
6923
6924 progress = false;
6925 pass_num = 0;
6926
6927 if (OPT(lower_pack)) {
6928 OPT(register_coalesce);
6929 OPT(dead_code_eliminate);
6930 }
6931
6932 OPT(lower_simd_width);
6933
6934 /* After SIMD lowering just in case we had to unroll the EOT send. */
6935 OPT(opt_sampler_eot);
6936
6937 OPT(lower_logical_sends);
6938
6939 if (progress) {
6940 OPT(opt_copy_propagation);
6941 /* Only run after logical send lowering because it's easier to implement
6942 * in terms of physical sends.
6943 */
6944 if (OPT(opt_zero_samples))
6945 OPT(opt_copy_propagation);
6946 /* Run after logical send lowering to give it a chance to CSE the
6947 * LOAD_PAYLOAD instructions created to construct the payloads of
6948 * e.g. texturing messages in cases where it wasn't possible to CSE the
6949 * whole logical instruction.
6950 */
6951 OPT(opt_cse);
6952 OPT(register_coalesce);
6953 OPT(compute_to_mrf);
6954 OPT(dead_code_eliminate);
6955 OPT(remove_duplicate_mrf_writes);
6956 OPT(opt_peephole_sel);
6957 }
6958
6959 OPT(opt_redundant_discard_jumps);
6960
6961 if (OPT(lower_load_payload)) {
6962 split_virtual_grfs();
6963 OPT(register_coalesce);
6964 OPT(lower_simd_width);
6965 OPT(compute_to_mrf);
6966 OPT(dead_code_eliminate);
6967 }
6968
6969 OPT(opt_combine_constants);
6970 OPT(lower_integer_multiplication);
6971
6972 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
6973 OPT(opt_cmod_propagation);
6974 OPT(opt_cse);
6975 OPT(opt_copy_propagation);
6976 OPT(dead_code_eliminate);
6977 }
6978
6979 if (OPT(lower_regioning)) {
6980 OPT(opt_copy_propagation);
6981 OPT(dead_code_eliminate);
6982 OPT(lower_simd_width);
6983 }
6984
6985 OPT(fixup_sends_duplicate_payload);
6986
6987 lower_uniform_pull_constant_loads();
6988
6989 validate();
6990 }
6991
6992 /**
6993 * From the Skylake PRM Vol. 2a docs for sends:
6994 *
6995 * "It is required that the second block of GRFs does not overlap with the
6996 * first block."
6997 *
6998 * There are plenty of cases where we may accidentally violate this due to
6999 * having, for instance, both sources be the constant 0. This little pass
7000 * just adds a new vgrf for the second payload and copies it over.
7001 */
7002 bool
7003 fs_visitor::fixup_sends_duplicate_payload()
7004 {
7005 bool progress = false;
7006
7007 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
7008 if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 &&
7009 regions_overlap(inst->src[2], inst->mlen * REG_SIZE,
7010 inst->src[3], inst->ex_mlen * REG_SIZE)) {
7011 fs_reg tmp = fs_reg(VGRF, alloc.allocate(inst->ex_mlen),
7012 BRW_REGISTER_TYPE_UD);
7013 /* Sadly, we've lost all notion of channels and bit sizes at this
7014 * point. Just WE_all it.
7015 */
7016 const fs_builder ibld = bld.at(block, inst).exec_all().group(16, 0);
7017 fs_reg copy_src = retype(inst->src[3], BRW_REGISTER_TYPE_UD);
7018 fs_reg copy_dst = tmp;
7019 for (unsigned i = 0; i < inst->ex_mlen; i += 2) {
7020 if (inst->ex_mlen == i + 1) {
7021 /* Only one register left; do SIMD8 */
7022 ibld.group(8, 0).MOV(copy_dst, copy_src);
7023 } else {
7024 ibld.MOV(copy_dst, copy_src);
7025 }
7026 copy_src = offset(copy_src, ibld, 1);
7027 copy_dst = offset(copy_dst, ibld, 1);
7028 }
7029 inst->src[3] = tmp;
7030 progress = true;
7031 }
7032 }
7033
7034 if (progress)
7035 invalidate_live_intervals();
7036
7037 return progress;
7038 }
7039
7040 /**
7041 * Three source instruction must have a GRF/MRF destination register.
7042 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
7043 */
7044 void
7045 fs_visitor::fixup_3src_null_dest()
7046 {
7047 bool progress = false;
7048
7049 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
7050 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
7051 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
7052 inst->dst.type);
7053 progress = true;
7054 }
7055 }
7056
7057 if (progress)
7058 invalidate_live_intervals();
7059 }
7060
7061 void
7062 fs_visitor::allocate_registers(unsigned min_dispatch_width, bool allow_spilling)
7063 {
7064 bool allocated_without_spills;
7065
7066 static const enum instruction_scheduler_mode pre_modes[] = {
7067 SCHEDULE_PRE,
7068 SCHEDULE_PRE_NON_LIFO,
7069 SCHEDULE_PRE_LIFO,
7070 };
7071
7072 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
7073
7074 /* Try each scheduling heuristic to see if it can successfully register
7075 * allocate without spilling. They should be ordered by decreasing
7076 * performance but increasing likelihood of allocating.
7077 */
7078 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
7079 schedule_instructions(pre_modes[i]);
7080
7081 if (0) {
7082 assign_regs_trivial();
7083 allocated_without_spills = true;
7084 } else {
7085 allocated_without_spills = assign_regs(false, spill_all);
7086 }
7087 if (allocated_without_spills)
7088 break;
7089 }
7090
7091 if (!allocated_without_spills) {
7092 if (!allow_spilling)
7093 fail("Failure to register allocate and spilling is not allowed.");
7094
7095 /* We assume that any spilling is worse than just dropping back to
7096 * SIMD8. There's probably actually some intermediate point where
7097 * SIMD16 with a couple of spills is still better.
7098 */
7099 if (dispatch_width > min_dispatch_width) {
7100 fail("Failure to register allocate. Reduce number of "
7101 "live scalar values to avoid this.");
7102 } else {
7103 compiler->shader_perf_log(log_data,
7104 "%s shader triggered register spilling. "
7105 "Try reducing the number of live scalar "
7106 "values to improve performance.\n",
7107 stage_name);
7108 }
7109
7110 /* Since we're out of heuristics, just go spill registers until we
7111 * get an allocation.
7112 */
7113 while (!assign_regs(true, spill_all)) {
7114 if (failed)
7115 break;
7116 }
7117 }
7118
7119 /* This must come after all optimization and register allocation, since
7120 * it inserts dead code that happens to have side effects, and it does
7121 * so based on the actual physical registers in use.
7122 */
7123 insert_gen4_send_dependency_workarounds();
7124
7125 if (failed)
7126 return;
7127
7128 opt_bank_conflicts();
7129
7130 schedule_instructions(SCHEDULE_POST);
7131
7132 if (last_scratch > 0) {
7133 MAYBE_UNUSED unsigned max_scratch_size = 2 * 1024 * 1024;
7134
7135 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
7136
7137 if (stage == MESA_SHADER_COMPUTE) {
7138 if (devinfo->is_haswell) {
7139 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
7140 * field documentation, Haswell supports a minimum of 2kB of
7141 * scratch space for compute shaders, unlike every other stage
7142 * and platform.
7143 */
7144 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
7145 } else if (devinfo->gen <= 7) {
7146 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
7147 * field documentation, platforms prior to Haswell measure scratch
7148 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
7149 */
7150 prog_data->total_scratch = ALIGN(last_scratch, 1024);
7151 max_scratch_size = 12 * 1024;
7152 }
7153 }
7154
7155 /* We currently only support up to 2MB of scratch space. If we
7156 * need to support more eventually, the documentation suggests
7157 * that we could allocate a larger buffer, and partition it out
7158 * ourselves. We'd just have to undo the hardware's address
7159 * calculation by subtracting (FFTID * Per Thread Scratch Space)
7160 * and then add FFTID * (Larger Per Thread Scratch Space).
7161 *
7162 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
7163 * Thread Group Tracking > Local Memory/Scratch Space.
7164 */
7165 assert(prog_data->total_scratch < max_scratch_size);
7166 }
7167 }
7168
7169 bool
7170 fs_visitor::run_vs()
7171 {
7172 assert(stage == MESA_SHADER_VERTEX);
7173
7174 setup_vs_payload();
7175
7176 if (shader_time_index >= 0)
7177 emit_shader_time_begin();
7178
7179 emit_nir_code();
7180
7181 if (failed)
7182 return false;
7183
7184 compute_clip_distance();
7185
7186 emit_urb_writes();
7187
7188 if (shader_time_index >= 0)
7189 emit_shader_time_end();
7190
7191 calculate_cfg();
7192
7193 optimize();
7194
7195 assign_curb_setup();
7196 assign_vs_urb_setup();
7197
7198 fixup_3src_null_dest();
7199 allocate_registers(8, true);
7200
7201 return !failed;
7202 }
7203
7204 bool
7205 fs_visitor::run_tcs_single_patch()
7206 {
7207 assert(stage == MESA_SHADER_TESS_CTRL);
7208
7209 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
7210
7211 /* r1-r4 contain the ICP handles. */
7212 payload.num_regs = 5;
7213
7214 if (shader_time_index >= 0)
7215 emit_shader_time_begin();
7216
7217 /* Initialize gl_InvocationID */
7218 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
7219 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
7220 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
7221 bld.MOV(channels_ud, channels_uw);
7222
7223 if (tcs_prog_data->instances == 1) {
7224 invocation_id = channels_ud;
7225 } else {
7226 const unsigned invocation_id_mask = devinfo->gen >= 11 ?
7227 INTEL_MASK(22, 16) : INTEL_MASK(23, 17);
7228 const unsigned invocation_id_shift = devinfo->gen >= 11 ? 16 : 17;
7229
7230 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
7231
7232 /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
7233 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
7234 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
7235 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
7236 brw_imm_ud(invocation_id_mask));
7237 bld.SHR(instance_times_8, t, brw_imm_ud(invocation_id_shift - 3));
7238
7239 bld.ADD(invocation_id, instance_times_8, channels_ud);
7240 }
7241
7242 /* Fix the disptach mask */
7243 if (nir->info.tess.tcs_vertices_out % 8) {
7244 bld.CMP(bld.null_reg_ud(), invocation_id,
7245 brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
7246 bld.IF(BRW_PREDICATE_NORMAL);
7247 }
7248
7249 emit_nir_code();
7250
7251 if (nir->info.tess.tcs_vertices_out % 8) {
7252 bld.emit(BRW_OPCODE_ENDIF);
7253 }
7254
7255 /* Emit EOT write; set TR DS Cache bit */
7256 fs_reg srcs[3] = {
7257 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
7258 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
7259 fs_reg(brw_imm_ud(0)),
7260 };
7261 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
7262 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
7263
7264 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
7265 bld.null_reg_ud(), payload);
7266 inst->mlen = 3;
7267 inst->eot = true;
7268
7269 if (shader_time_index >= 0)
7270 emit_shader_time_end();
7271
7272 if (failed)
7273 return false;
7274
7275 calculate_cfg();
7276
7277 optimize();
7278
7279 assign_curb_setup();
7280 assign_tcs_single_patch_urb_setup();
7281
7282 fixup_3src_null_dest();
7283 allocate_registers(8, true);
7284
7285 return !failed;
7286 }
7287
7288 bool
7289 fs_visitor::run_tes()
7290 {
7291 assert(stage == MESA_SHADER_TESS_EVAL);
7292
7293 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
7294 payload.num_regs = 5;
7295
7296 if (shader_time_index >= 0)
7297 emit_shader_time_begin();
7298
7299 emit_nir_code();
7300
7301 if (failed)
7302 return false;
7303
7304 emit_urb_writes();
7305
7306 if (shader_time_index >= 0)
7307 emit_shader_time_end();
7308
7309 calculate_cfg();
7310
7311 optimize();
7312
7313 assign_curb_setup();
7314 assign_tes_urb_setup();
7315
7316 fixup_3src_null_dest();
7317 allocate_registers(8, true);
7318
7319 return !failed;
7320 }
7321
7322 bool
7323 fs_visitor::run_gs()
7324 {
7325 assert(stage == MESA_SHADER_GEOMETRY);
7326
7327 setup_gs_payload();
7328
7329 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
7330
7331 if (gs_compile->control_data_header_size_bits > 0) {
7332 /* Create a VGRF to store accumulated control data bits. */
7333 this->control_data_bits = vgrf(glsl_type::uint_type);
7334
7335 /* If we're outputting more than 32 control data bits, then EmitVertex()
7336 * will set control_data_bits to 0 after emitting the first vertex.
7337 * Otherwise, we need to initialize it to 0 here.
7338 */
7339 if (gs_compile->control_data_header_size_bits <= 32) {
7340 const fs_builder abld = bld.annotate("initialize control data bits");
7341 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
7342 }
7343 }
7344
7345 if (shader_time_index >= 0)
7346 emit_shader_time_begin();
7347
7348 emit_nir_code();
7349
7350 emit_gs_thread_end();
7351
7352 if (shader_time_index >= 0)
7353 emit_shader_time_end();
7354
7355 if (failed)
7356 return false;
7357
7358 calculate_cfg();
7359
7360 optimize();
7361
7362 assign_curb_setup();
7363 assign_gs_urb_setup();
7364
7365 fixup_3src_null_dest();
7366 allocate_registers(8, true);
7367
7368 return !failed;
7369 }
7370
7371 /* From the SKL PRM, Volume 16, Workarounds:
7372 *
7373 * 0877 3D Pixel Shader Hang possible when pixel shader dispatched with
7374 * only header phases (R0-R2)
7375 *
7376 * WA: Enable a non-header phase (e.g. push constant) when dispatch would
7377 * have been header only.
7378 *
7379 * Instead of enabling push constants one can alternatively enable one of the
7380 * inputs. Here one simply chooses "layer" which shouldn't impose much
7381 * overhead.
7382 */
7383 static void
7384 gen9_ps_header_only_workaround(struct brw_wm_prog_data *wm_prog_data)
7385 {
7386 if (wm_prog_data->num_varying_inputs)
7387 return;
7388
7389 if (wm_prog_data->base.curb_read_length)
7390 return;
7391
7392 wm_prog_data->urb_setup[VARYING_SLOT_LAYER] = 0;
7393 wm_prog_data->num_varying_inputs = 1;
7394 }
7395
7396 bool
7397 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
7398 {
7399 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
7400 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
7401
7402 assert(stage == MESA_SHADER_FRAGMENT);
7403
7404 if (devinfo->gen >= 6)
7405 setup_fs_payload_gen6();
7406 else
7407 setup_fs_payload_gen4();
7408
7409 if (0) {
7410 emit_dummy_fs();
7411 } else if (do_rep_send) {
7412 assert(dispatch_width == 16);
7413 emit_repclear_shader();
7414 } else {
7415 if (shader_time_index >= 0)
7416 emit_shader_time_begin();
7417
7418 calculate_urb_setup();
7419 if (nir->info.inputs_read > 0 ||
7420 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
7421 if (devinfo->gen < 6)
7422 emit_interpolation_setup_gen4();
7423 else
7424 emit_interpolation_setup_gen6();
7425 }
7426
7427 /* We handle discards by keeping track of the still-live pixels in f0.1.
7428 * Initialize it with the dispatched pixels.
7429 */
7430 if (wm_prog_data->uses_kill) {
7431 const fs_reg dispatch_mask =
7432 devinfo->gen >= 6 ? brw_vec1_grf(1, 7) : brw_vec1_grf(0, 0);
7433 bld.exec_all().group(1, 0)
7434 .MOV(retype(brw_flag_reg(0, 1), BRW_REGISTER_TYPE_UW),
7435 retype(dispatch_mask, BRW_REGISTER_TYPE_UW));
7436 }
7437
7438 emit_nir_code();
7439
7440 if (failed)
7441 return false;
7442
7443 if (wm_prog_data->uses_kill)
7444 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
7445
7446 if (wm_key->alpha_test_func)
7447 emit_alpha_test();
7448
7449 emit_fb_writes();
7450
7451 if (shader_time_index >= 0)
7452 emit_shader_time_end();
7453
7454 calculate_cfg();
7455
7456 optimize();
7457
7458 assign_curb_setup();
7459
7460 if (devinfo->gen >= 9)
7461 gen9_ps_header_only_workaround(wm_prog_data);
7462
7463 assign_urb_setup();
7464
7465 fixup_3src_null_dest();
7466 allocate_registers(8, allow_spilling);
7467
7468 if (failed)
7469 return false;
7470 }
7471
7472 return !failed;
7473 }
7474
7475 bool
7476 fs_visitor::run_cs(unsigned min_dispatch_width)
7477 {
7478 assert(stage == MESA_SHADER_COMPUTE);
7479 assert(dispatch_width >= min_dispatch_width);
7480
7481 setup_cs_payload();
7482
7483 if (shader_time_index >= 0)
7484 emit_shader_time_begin();
7485
7486 if (devinfo->is_haswell && prog_data->total_shared > 0) {
7487 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
7488 const fs_builder abld = bld.exec_all().group(1, 0);
7489 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
7490 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
7491 }
7492
7493 emit_nir_code();
7494
7495 if (failed)
7496 return false;
7497
7498 emit_cs_terminate();
7499
7500 if (shader_time_index >= 0)
7501 emit_shader_time_end();
7502
7503 calculate_cfg();
7504
7505 optimize();
7506
7507 assign_curb_setup();
7508
7509 fixup_3src_null_dest();
7510 allocate_registers(min_dispatch_width, true);
7511
7512 if (failed)
7513 return false;
7514
7515 return !failed;
7516 }
7517
7518 /**
7519 * Return a bitfield where bit n is set if barycentric interpolation mode n
7520 * (see enum brw_barycentric_mode) is needed by the fragment shader.
7521 *
7522 * We examine the load_barycentric intrinsics rather than looking at input
7523 * variables so that we catch interpolateAtCentroid() messages too, which
7524 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
7525 */
7526 static unsigned
7527 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
7528 const nir_shader *shader)
7529 {
7530 unsigned barycentric_interp_modes = 0;
7531
7532 nir_foreach_function(f, shader) {
7533 if (!f->impl)
7534 continue;
7535
7536 nir_foreach_block(block, f->impl) {
7537 nir_foreach_instr(instr, block) {
7538 if (instr->type != nir_instr_type_intrinsic)
7539 continue;
7540
7541 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
7542 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
7543 continue;
7544
7545 /* Ignore WPOS; it doesn't require interpolation. */
7546 if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
7547 continue;
7548
7549 intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
7550 enum glsl_interp_mode interp = (enum glsl_interp_mode)
7551 nir_intrinsic_interp_mode(intrin);
7552 nir_intrinsic_op bary_op = intrin->intrinsic;
7553 enum brw_barycentric_mode bary =
7554 brw_barycentric_mode(interp, bary_op);
7555
7556 barycentric_interp_modes |= 1 << bary;
7557
7558 if (devinfo->needs_unlit_centroid_workaround &&
7559 bary_op == nir_intrinsic_load_barycentric_centroid)
7560 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
7561 }
7562 }
7563 }
7564
7565 return barycentric_interp_modes;
7566 }
7567
7568 static void
7569 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
7570 const nir_shader *shader)
7571 {
7572 prog_data->flat_inputs = 0;
7573
7574 nir_foreach_variable(var, &shader->inputs) {
7575 unsigned slots = glsl_count_attribute_slots(var->type, false);
7576 for (unsigned s = 0; s < slots; s++) {
7577 int input_index = prog_data->urb_setup[var->data.location + s];
7578
7579 if (input_index < 0)
7580 continue;
7581
7582 /* flat shading */
7583 if (var->data.interpolation == INTERP_MODE_FLAT)
7584 prog_data->flat_inputs |= 1 << input_index;
7585 }
7586 }
7587 }
7588
7589 static uint8_t
7590 computed_depth_mode(const nir_shader *shader)
7591 {
7592 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
7593 switch (shader->info.fs.depth_layout) {
7594 case FRAG_DEPTH_LAYOUT_NONE:
7595 case FRAG_DEPTH_LAYOUT_ANY:
7596 return BRW_PSCDEPTH_ON;
7597 case FRAG_DEPTH_LAYOUT_GREATER:
7598 return BRW_PSCDEPTH_ON_GE;
7599 case FRAG_DEPTH_LAYOUT_LESS:
7600 return BRW_PSCDEPTH_ON_LE;
7601 case FRAG_DEPTH_LAYOUT_UNCHANGED:
7602 return BRW_PSCDEPTH_OFF;
7603 }
7604 }
7605 return BRW_PSCDEPTH_OFF;
7606 }
7607
7608 /**
7609 * Move load_interpolated_input with simple (payload-based) barycentric modes
7610 * to the top of the program so we don't emit multiple PLNs for the same input.
7611 *
7612 * This works around CSE not being able to handle non-dominating cases
7613 * such as:
7614 *
7615 * if (...) {
7616 * interpolate input
7617 * } else {
7618 * interpolate the same exact input
7619 * }
7620 *
7621 * This should be replaced by global value numbering someday.
7622 */
7623 static bool
7624 move_interpolation_to_top(nir_shader *nir)
7625 {
7626 bool progress = false;
7627
7628 nir_foreach_function(f, nir) {
7629 if (!f->impl)
7630 continue;
7631
7632 nir_block *top = nir_start_block(f->impl);
7633 exec_node *cursor_node = NULL;
7634
7635 nir_foreach_block(block, f->impl) {
7636 if (block == top)
7637 continue;
7638
7639 nir_foreach_instr_safe(instr, block) {
7640 if (instr->type != nir_instr_type_intrinsic)
7641 continue;
7642
7643 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
7644 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
7645 continue;
7646 nir_intrinsic_instr *bary_intrinsic =
7647 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
7648 nir_intrinsic_op op = bary_intrinsic->intrinsic;
7649
7650 /* Leave interpolateAtSample/Offset() where they are. */
7651 if (op == nir_intrinsic_load_barycentric_at_sample ||
7652 op == nir_intrinsic_load_barycentric_at_offset)
7653 continue;
7654
7655 nir_instr *move[3] = {
7656 &bary_intrinsic->instr,
7657 intrin->src[1].ssa->parent_instr,
7658 instr
7659 };
7660
7661 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
7662 if (move[i]->block != top) {
7663 move[i]->block = top;
7664 exec_node_remove(&move[i]->node);
7665 if (cursor_node) {
7666 exec_node_insert_after(cursor_node, &move[i]->node);
7667 } else {
7668 exec_list_push_head(&top->instr_list, &move[i]->node);
7669 }
7670 cursor_node = &move[i]->node;
7671 progress = true;
7672 }
7673 }
7674 }
7675 }
7676 nir_metadata_preserve(f->impl, (nir_metadata)
7677 ((unsigned) nir_metadata_block_index |
7678 (unsigned) nir_metadata_dominance));
7679 }
7680
7681 return progress;
7682 }
7683
7684 /**
7685 * Demote per-sample barycentric intrinsics to centroid.
7686 *
7687 * Useful when rendering to a non-multisampled buffer.
7688 */
7689 static bool
7690 demote_sample_qualifiers(nir_shader *nir)
7691 {
7692 bool progress = true;
7693
7694 nir_foreach_function(f, nir) {
7695 if (!f->impl)
7696 continue;
7697
7698 nir_builder b;
7699 nir_builder_init(&b, f->impl);
7700
7701 nir_foreach_block(block, f->impl) {
7702 nir_foreach_instr_safe(instr, block) {
7703 if (instr->type != nir_instr_type_intrinsic)
7704 continue;
7705
7706 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
7707 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
7708 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
7709 continue;
7710
7711 b.cursor = nir_before_instr(instr);
7712 nir_ssa_def *centroid =
7713 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
7714 nir_intrinsic_interp_mode(intrin));
7715 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
7716 nir_src_for_ssa(centroid));
7717 nir_instr_remove(instr);
7718 progress = true;
7719 }
7720 }
7721
7722 nir_metadata_preserve(f->impl, (nir_metadata)
7723 ((unsigned) nir_metadata_block_index |
7724 (unsigned) nir_metadata_dominance));
7725 }
7726
7727 return progress;
7728 }
7729
7730 /**
7731 * Pre-gen6, the register file of the EUs was shared between threads,
7732 * and each thread used some subset allocated on a 16-register block
7733 * granularity. The unit states wanted these block counts.
7734 */
7735 static inline int
7736 brw_register_blocks(int reg_count)
7737 {
7738 return ALIGN(reg_count, 16) / 16 - 1;
7739 }
7740
7741 const unsigned *
7742 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
7743 void *mem_ctx,
7744 const struct brw_wm_prog_key *key,
7745 struct brw_wm_prog_data *prog_data,
7746 nir_shader *shader,
7747 struct gl_program *prog,
7748 int shader_time_index8, int shader_time_index16,
7749 int shader_time_index32, bool allow_spilling,
7750 bool use_rep_send, struct brw_vue_map *vue_map,
7751 char **error_str)
7752 {
7753 const struct gen_device_info *devinfo = compiler->devinfo;
7754
7755 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
7756 brw_nir_lower_fs_inputs(shader, devinfo, key);
7757 brw_nir_lower_fs_outputs(shader);
7758
7759 if (devinfo->gen < 6)
7760 brw_setup_vue_interpolation(vue_map, shader, prog_data);
7761
7762 if (!key->multisample_fbo)
7763 NIR_PASS_V(shader, demote_sample_qualifiers);
7764 NIR_PASS_V(shader, move_interpolation_to_top);
7765 shader = brw_postprocess_nir(shader, compiler, true);
7766
7767 /* key->alpha_test_func means simulating alpha testing via discards,
7768 * so the shader definitely kills pixels.
7769 */
7770 prog_data->uses_kill = shader->info.fs.uses_discard ||
7771 key->alpha_test_func;
7772 prog_data->uses_omask = key->multisample_fbo &&
7773 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
7774 prog_data->computed_depth_mode = computed_depth_mode(shader);
7775 prog_data->computed_stencil =
7776 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
7777
7778 prog_data->persample_dispatch =
7779 key->multisample_fbo &&
7780 (key->persample_interp ||
7781 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
7782 SYSTEM_BIT_SAMPLE_POS)) ||
7783 shader->info.fs.uses_sample_qualifier ||
7784 shader->info.outputs_read);
7785
7786 prog_data->has_render_target_reads = shader->info.outputs_read != 0ull;
7787
7788 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
7789 prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
7790 prog_data->inner_coverage = shader->info.fs.inner_coverage;
7791
7792 prog_data->barycentric_interp_modes =
7793 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
7794
7795 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL, *simd32_cfg = NULL;
7796
7797 fs_visitor v8(compiler, log_data, mem_ctx, key,
7798 &prog_data->base, prog, shader, 8,
7799 shader_time_index8);
7800 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
7801 if (error_str)
7802 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
7803
7804 return NULL;
7805 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
7806 simd8_cfg = v8.cfg;
7807 prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs;
7808 prog_data->reg_blocks_8 = brw_register_blocks(v8.grf_used);
7809 }
7810
7811 if (v8.max_dispatch_width >= 16 &&
7812 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
7813 /* Try a SIMD16 compile */
7814 fs_visitor v16(compiler, log_data, mem_ctx, key,
7815 &prog_data->base, prog, shader, 16,
7816 shader_time_index16);
7817 v16.import_uniforms(&v8);
7818 if (!v16.run_fs(allow_spilling, use_rep_send)) {
7819 compiler->shader_perf_log(log_data,
7820 "SIMD16 shader failed to compile: %s",
7821 v16.fail_msg);
7822 } else {
7823 simd16_cfg = v16.cfg;
7824 prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs;
7825 prog_data->reg_blocks_16 = brw_register_blocks(v16.grf_used);
7826 }
7827 }
7828
7829 /* Currently, the compiler only supports SIMD32 on SNB+ */
7830 if (v8.max_dispatch_width >= 32 && !use_rep_send &&
7831 compiler->devinfo->gen >= 6 &&
7832 unlikely(INTEL_DEBUG & DEBUG_DO32)) {
7833 /* Try a SIMD32 compile */
7834 fs_visitor v32(compiler, log_data, mem_ctx, key,
7835 &prog_data->base, prog, shader, 32,
7836 shader_time_index32);
7837 v32.import_uniforms(&v8);
7838 if (!v32.run_fs(allow_spilling, false)) {
7839 compiler->shader_perf_log(log_data,
7840 "SIMD32 shader failed to compile: %s",
7841 v32.fail_msg);
7842 } else {
7843 simd32_cfg = v32.cfg;
7844 prog_data->dispatch_grf_start_reg_32 = v32.payload.num_regs;
7845 prog_data->reg_blocks_32 = brw_register_blocks(v32.grf_used);
7846 }
7847 }
7848
7849 /* When the caller requests a repclear shader, they want SIMD16-only */
7850 if (use_rep_send)
7851 simd8_cfg = NULL;
7852
7853 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
7854 * at the top to select the shader. We've never implemented that.
7855 * Instead, we just give them exactly one shader and we pick the widest one
7856 * available.
7857 */
7858 if (compiler->devinfo->gen < 5) {
7859 if (simd32_cfg || simd16_cfg)
7860 simd8_cfg = NULL;
7861 if (simd32_cfg)
7862 simd16_cfg = NULL;
7863 }
7864
7865 /* If computed depth is enabled SNB only allows SIMD8. */
7866 if (compiler->devinfo->gen == 6 &&
7867 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF)
7868 assert(simd16_cfg == NULL && simd32_cfg == NULL);
7869
7870 if (compiler->devinfo->gen <= 5 && !simd8_cfg) {
7871 /* Iron lake and earlier only have one Dispatch GRF start field. Make
7872 * the data available in the base prog data struct for convenience.
7873 */
7874 if (simd16_cfg) {
7875 prog_data->base.dispatch_grf_start_reg =
7876 prog_data->dispatch_grf_start_reg_16;
7877 } else if (simd32_cfg) {
7878 prog_data->base.dispatch_grf_start_reg =
7879 prog_data->dispatch_grf_start_reg_32;
7880 }
7881 }
7882
7883 if (prog_data->persample_dispatch) {
7884 /* Starting with SandyBridge (where we first get MSAA), the different
7885 * pixel dispatch combinations are grouped into classifications A
7886 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
7887 * generations, the only configurations supporting persample dispatch
7888 * are are this in which only one dispatch width is enabled.
7889 */
7890 if (simd32_cfg || simd16_cfg)
7891 simd8_cfg = NULL;
7892 if (simd32_cfg)
7893 simd16_cfg = NULL;
7894 }
7895
7896 /* We have to compute the flat inputs after the visitor is finished running
7897 * because it relies on prog_data->urb_setup which is computed in
7898 * fs_visitor::calculate_urb_setup().
7899 */
7900 brw_compute_flat_inputs(prog_data, shader);
7901
7902 fs_generator g(compiler, log_data, mem_ctx, &prog_data->base,
7903 v8.promoted_constants, v8.runtime_check_aads_emit,
7904 MESA_SHADER_FRAGMENT);
7905
7906 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
7907 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
7908 shader->info.label ?
7909 shader->info.label : "unnamed",
7910 shader->info.name));
7911 }
7912
7913 if (simd8_cfg) {
7914 prog_data->dispatch_8 = true;
7915 g.generate_code(simd8_cfg, 8);
7916 }
7917
7918 if (simd16_cfg) {
7919 prog_data->dispatch_16 = true;
7920 prog_data->prog_offset_16 = g.generate_code(simd16_cfg, 16);
7921 }
7922
7923 if (simd32_cfg) {
7924 prog_data->dispatch_32 = true;
7925 prog_data->prog_offset_32 = g.generate_code(simd32_cfg, 32);
7926 }
7927
7928 return g.get_assembly();
7929 }
7930
7931 fs_reg *
7932 fs_visitor::emit_cs_work_group_id_setup()
7933 {
7934 assert(stage == MESA_SHADER_COMPUTE);
7935
7936 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
7937
7938 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
7939 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
7940 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
7941
7942 bld.MOV(*reg, r0_1);
7943 bld.MOV(offset(*reg, bld, 1), r0_6);
7944 bld.MOV(offset(*reg, bld, 2), r0_7);
7945
7946 return reg;
7947 }
7948
7949 static void
7950 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
7951 {
7952 block->dwords = dwords;
7953 block->regs = DIV_ROUND_UP(dwords, 8);
7954 block->size = block->regs * 32;
7955 }
7956
7957 static void
7958 cs_fill_push_const_info(const struct gen_device_info *devinfo,
7959 struct brw_cs_prog_data *cs_prog_data)
7960 {
7961 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
7962 int subgroup_id_index = get_subgroup_id_param_index(prog_data);
7963 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
7964
7965 /* The thread ID should be stored in the last param dword */
7966 assert(subgroup_id_index == -1 ||
7967 subgroup_id_index == (int)prog_data->nr_params - 1);
7968
7969 unsigned cross_thread_dwords, per_thread_dwords;
7970 if (!cross_thread_supported) {
7971 cross_thread_dwords = 0u;
7972 per_thread_dwords = prog_data->nr_params;
7973 } else if (subgroup_id_index >= 0) {
7974 /* Fill all but the last register with cross-thread payload */
7975 cross_thread_dwords = 8 * (subgroup_id_index / 8);
7976 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
7977 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
7978 } else {
7979 /* Fill all data using cross-thread payload */
7980 cross_thread_dwords = prog_data->nr_params;
7981 per_thread_dwords = 0u;
7982 }
7983
7984 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
7985 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
7986
7987 unsigned total_dwords =
7988 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
7989 cs_prog_data->push.cross_thread.size) / 4;
7990 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
7991
7992 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
7993 cs_prog_data->push.per_thread.size == 0);
7994 assert(cs_prog_data->push.cross_thread.dwords +
7995 cs_prog_data->push.per_thread.dwords ==
7996 prog_data->nr_params);
7997 }
7998
7999 static void
8000 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
8001 {
8002 cs_prog_data->simd_size = size;
8003 unsigned group_size = cs_prog_data->local_size[0] *
8004 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
8005 cs_prog_data->threads = (group_size + size - 1) / size;
8006 }
8007
8008 static nir_shader *
8009 compile_cs_to_nir(const struct brw_compiler *compiler,
8010 void *mem_ctx,
8011 const struct brw_cs_prog_key *key,
8012 const nir_shader *src_shader,
8013 unsigned dispatch_width)
8014 {
8015 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
8016 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true);
8017
8018 NIR_PASS_V(shader, brw_nir_lower_cs_intrinsics, dispatch_width);
8019
8020 /* Clean up after the local index and ID calculations. */
8021 NIR_PASS_V(shader, nir_opt_constant_folding);
8022 NIR_PASS_V(shader, nir_opt_dce);
8023
8024 return brw_postprocess_nir(shader, compiler, true);
8025 }
8026
8027 const unsigned *
8028 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
8029 void *mem_ctx,
8030 const struct brw_cs_prog_key *key,
8031 struct brw_cs_prog_data *prog_data,
8032 const nir_shader *src_shader,
8033 int shader_time_index,
8034 char **error_str)
8035 {
8036 prog_data->local_size[0] = src_shader->info.cs.local_size[0];
8037 prog_data->local_size[1] = src_shader->info.cs.local_size[1];
8038 prog_data->local_size[2] = src_shader->info.cs.local_size[2];
8039 unsigned local_workgroup_size =
8040 src_shader->info.cs.local_size[0] * src_shader->info.cs.local_size[1] *
8041 src_shader->info.cs.local_size[2];
8042
8043 unsigned min_dispatch_width =
8044 DIV_ROUND_UP(local_workgroup_size, compiler->devinfo->max_cs_threads);
8045 min_dispatch_width = MAX2(8, min_dispatch_width);
8046 min_dispatch_width = util_next_power_of_two(min_dispatch_width);
8047 assert(min_dispatch_width <= 32);
8048
8049 fs_visitor *v8 = NULL, *v16 = NULL, *v32 = NULL;
8050 cfg_t *cfg = NULL;
8051 const char *fail_msg = NULL;
8052 unsigned promoted_constants = 0;
8053
8054 /* Now the main event: Visit the shader IR and generate our CS IR for it.
8055 */
8056 if (min_dispatch_width <= 8) {
8057 nir_shader *nir8 = compile_cs_to_nir(compiler, mem_ctx, key,
8058 src_shader, 8);
8059 v8 = new fs_visitor(compiler, log_data, mem_ctx, key, &prog_data->base,
8060 NULL, /* Never used in core profile */
8061 nir8, 8, shader_time_index);
8062 if (!v8->run_cs(min_dispatch_width)) {
8063 fail_msg = v8->fail_msg;
8064 } else {
8065 /* We should always be able to do SIMD32 for compute shaders */
8066 assert(v8->max_dispatch_width >= 32);
8067
8068 cfg = v8->cfg;
8069 cs_set_simd_size(prog_data, 8);
8070 cs_fill_push_const_info(compiler->devinfo, prog_data);
8071 promoted_constants = v8->promoted_constants;
8072 }
8073 }
8074
8075 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
8076 !fail_msg && min_dispatch_width <= 16) {
8077 /* Try a SIMD16 compile */
8078 nir_shader *nir16 = compile_cs_to_nir(compiler, mem_ctx, key,
8079 src_shader, 16);
8080 v16 = new fs_visitor(compiler, log_data, mem_ctx, key, &prog_data->base,
8081 NULL, /* Never used in core profile */
8082 nir16, 16, shader_time_index);
8083 if (v8)
8084 v16->import_uniforms(v8);
8085
8086 if (!v16->run_cs(min_dispatch_width)) {
8087 compiler->shader_perf_log(log_data,
8088 "SIMD16 shader failed to compile: %s",
8089 v16->fail_msg);
8090 if (!cfg) {
8091 fail_msg =
8092 "Couldn't generate SIMD16 program and not "
8093 "enough threads for SIMD8";
8094 }
8095 } else {
8096 /* We should always be able to do SIMD32 for compute shaders */
8097 assert(v16->max_dispatch_width >= 32);
8098
8099 cfg = v16->cfg;
8100 cs_set_simd_size(prog_data, 16);
8101 cs_fill_push_const_info(compiler->devinfo, prog_data);
8102 promoted_constants = v16->promoted_constants;
8103 }
8104 }
8105
8106 /* We should always be able to do SIMD32 for compute shaders */
8107 assert(!v16 || v16->max_dispatch_width >= 32);
8108
8109 if (!fail_msg && (min_dispatch_width > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
8110 /* Try a SIMD32 compile */
8111 nir_shader *nir32 = compile_cs_to_nir(compiler, mem_ctx, key,
8112 src_shader, 32);
8113 v32 = new fs_visitor(compiler, log_data, mem_ctx, key, &prog_data->base,
8114 NULL, /* Never used in core profile */
8115 nir32, 32, shader_time_index);
8116 if (v8)
8117 v32->import_uniforms(v8);
8118 else if (v16)
8119 v32->import_uniforms(v16);
8120
8121 if (!v32->run_cs(min_dispatch_width)) {
8122 compiler->shader_perf_log(log_data,
8123 "SIMD32 shader failed to compile: %s",
8124 v16->fail_msg);
8125 if (!cfg) {
8126 fail_msg =
8127 "Couldn't generate SIMD32 program and not "
8128 "enough threads for SIMD16";
8129 }
8130 } else {
8131 cfg = v32->cfg;
8132 cs_set_simd_size(prog_data, 32);
8133 cs_fill_push_const_info(compiler->devinfo, prog_data);
8134 promoted_constants = v32->promoted_constants;
8135 }
8136 }
8137
8138 const unsigned *ret = NULL;
8139 if (unlikely(cfg == NULL)) {
8140 assert(fail_msg);
8141 if (error_str)
8142 *error_str = ralloc_strdup(mem_ctx, fail_msg);
8143 } else {
8144 fs_generator g(compiler, log_data, mem_ctx, &prog_data->base,
8145 promoted_constants, false, MESA_SHADER_COMPUTE);
8146 if (INTEL_DEBUG & DEBUG_CS) {
8147 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
8148 src_shader->info.label ?
8149 src_shader->info.label : "unnamed",
8150 src_shader->info.name);
8151 g.enable_debug(name);
8152 }
8153
8154 g.generate_code(cfg, prog_data->simd_size);
8155
8156 ret = g.get_assembly();
8157 }
8158
8159 delete v8;
8160 delete v16;
8161 delete v32;
8162
8163 return ret;
8164 }
8165
8166 /**
8167 * Test the dispatch mask packing assumptions of
8168 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
8169 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
8170 * executed with an unexpected dispatch mask.
8171 */
8172 static UNUSED void
8173 brw_fs_test_dispatch_packing(const fs_builder &bld)
8174 {
8175 const gl_shader_stage stage = bld.shader->stage;
8176
8177 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
8178 bld.shader->stage_prog_data)) {
8179 const fs_builder ubld = bld.exec_all().group(1, 0);
8180 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
8181 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
8182 brw_dmask_reg());
8183
8184 ubld.ADD(tmp, mask, brw_imm_ud(1));
8185 ubld.AND(tmp, mask, tmp);
8186
8187 /* This will loop forever if the dispatch mask doesn't have the expected
8188 * form '2^n-1', in which case tmp will be non-zero.
8189 */
8190 bld.emit(BRW_OPCODE_DO);
8191 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
8192 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
8193 }
8194 }