intel/eu/gen12: Codegen pathological SEND source and destination regions.
[mesa.git] / src / intel / compiler / brw_fs_generator.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_generator.cpp
25 *
26 * This file supports generating code from the FS LIR to the actual
27 * native instructions.
28 */
29
30 #include "brw_eu.h"
31 #include "brw_fs.h"
32 #include "brw_cfg.h"
33 #include "util/mesa-sha1.h"
34
35 static enum brw_reg_file
36 brw_file_from_reg(fs_reg *reg)
37 {
38 switch (reg->file) {
39 case ARF:
40 return BRW_ARCHITECTURE_REGISTER_FILE;
41 case FIXED_GRF:
42 case VGRF:
43 return BRW_GENERAL_REGISTER_FILE;
44 case MRF:
45 return BRW_MESSAGE_REGISTER_FILE;
46 case IMM:
47 return BRW_IMMEDIATE_VALUE;
48 case BAD_FILE:
49 case ATTR:
50 case UNIFORM:
51 unreachable("not reached");
52 }
53 return BRW_ARCHITECTURE_REGISTER_FILE;
54 }
55
56 static struct brw_reg
57 brw_reg_from_fs_reg(const struct gen_device_info *devinfo, fs_inst *inst,
58 fs_reg *reg, bool compressed)
59 {
60 struct brw_reg brw_reg;
61
62 switch (reg->file) {
63 case MRF:
64 assert((reg->nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
65 /* Fallthrough */
66 case VGRF:
67 if (reg->stride == 0) {
68 brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->nr, 0);
69 } else {
70 /* From the Haswell PRM:
71 *
72 * "VertStride must be used to cross GRF register boundaries. This
73 * rule implies that elements within a 'Width' cannot cross GRF
74 * boundaries."
75 *
76 * The maximum width value that could satisfy this restriction is:
77 */
78 const unsigned reg_width = REG_SIZE / (reg->stride * type_sz(reg->type));
79
80 /* Because the hardware can only split source regions at a whole
81 * multiple of width during decompression (i.e. vertically), clamp
82 * the value obtained above to the physical execution size of a
83 * single decompressed chunk of the instruction:
84 */
85 const unsigned phys_width = compressed ? inst->exec_size / 2 :
86 inst->exec_size;
87
88 const unsigned max_hw_width = 16;
89
90 /* XXX - The equation above is strictly speaking not correct on
91 * hardware that supports unbalanced GRF writes -- On Gen9+
92 * each decompressed chunk of the instruction may have a
93 * different execution size when the number of components
94 * written to each destination GRF is not the same.
95 */
96 if (reg->stride > 4) {
97 assert(reg != &inst->dst);
98 assert(reg->stride * type_sz(reg->type) <= REG_SIZE);
99 brw_reg = brw_vecn_reg(1, brw_file_from_reg(reg), reg->nr, 0);
100 brw_reg = stride(brw_reg, reg->stride, 1, 0);
101 } else {
102 const unsigned width = MIN3(reg_width, phys_width, max_hw_width);
103 brw_reg = brw_vecn_reg(width, brw_file_from_reg(reg), reg->nr, 0);
104 brw_reg = stride(brw_reg, width * reg->stride, width, reg->stride);
105 }
106
107 if (devinfo->gen == 7 && !devinfo->is_haswell) {
108 /* From the IvyBridge PRM (EU Changes by Processor Generation, page 13):
109 * "Each DF (Double Float) operand uses an element size of 4 rather
110 * than 8 and all regioning parameters are twice what the values
111 * would be based on the true element size: ExecSize, Width,
112 * HorzStride, and VertStride. Each DF operand uses a pair of
113 * channels and all masking and swizzing should be adjusted
114 * appropriately."
115 *
116 * From the IvyBridge PRM (Special Requirements for Handling Double
117 * Precision Data Types, page 71):
118 * "In Align1 mode, all regioning parameters like stride, execution
119 * size, and width must use the syntax of a pair of packed
120 * floats. The offsets for these data types must be 64-bit
121 * aligned. The execution size and regioning parameters are in terms
122 * of floats."
123 *
124 * Summarized: when handling DF-typed arguments, ExecSize,
125 * VertStride, and Width must be doubled.
126 *
127 * It applies to BayTrail too.
128 */
129 if (type_sz(reg->type) == 8) {
130 brw_reg.width++;
131 if (brw_reg.vstride > 0)
132 brw_reg.vstride++;
133 assert(brw_reg.hstride == BRW_HORIZONTAL_STRIDE_1);
134 }
135
136 /* When converting from DF->F, we set the destination stride to 2
137 * because each d2f conversion implicitly writes 2 floats, being
138 * the first one the converted value. IVB/BYT actually writes two
139 * F components per SIMD channel, and every other component is
140 * filled with garbage.
141 */
142 if (reg == &inst->dst && get_exec_type_size(inst) == 8 &&
143 type_sz(inst->dst.type) < 8) {
144 assert(brw_reg.hstride > BRW_HORIZONTAL_STRIDE_1);
145 brw_reg.hstride--;
146 }
147 }
148 }
149
150 brw_reg = retype(brw_reg, reg->type);
151 brw_reg = byte_offset(brw_reg, reg->offset);
152 brw_reg.abs = reg->abs;
153 brw_reg.negate = reg->negate;
154 break;
155 case ARF:
156 case FIXED_GRF:
157 case IMM:
158 assert(reg->offset == 0);
159 brw_reg = reg->as_brw_reg();
160 break;
161 case BAD_FILE:
162 /* Probably unused. */
163 brw_reg = brw_null_reg();
164 break;
165 case ATTR:
166 case UNIFORM:
167 unreachable("not reached");
168 }
169
170 /* On HSW+, scalar DF sources can be accessed using the normal <0,1,0>
171 * region, but on IVB and BYT DF regions must be programmed in terms of
172 * floats. A <0,2,1> region accomplishes this.
173 */
174 if (devinfo->gen == 7 && !devinfo->is_haswell &&
175 type_sz(reg->type) == 8 &&
176 brw_reg.vstride == BRW_VERTICAL_STRIDE_0 &&
177 brw_reg.width == BRW_WIDTH_1 &&
178 brw_reg.hstride == BRW_HORIZONTAL_STRIDE_0) {
179 brw_reg.width = BRW_WIDTH_2;
180 brw_reg.hstride = BRW_HORIZONTAL_STRIDE_1;
181 }
182
183 return brw_reg;
184 }
185
186 fs_generator::fs_generator(const struct brw_compiler *compiler, void *log_data,
187 void *mem_ctx,
188 struct brw_stage_prog_data *prog_data,
189 struct shader_stats shader_stats,
190 bool runtime_check_aads_emit,
191 gl_shader_stage stage)
192
193 : compiler(compiler), log_data(log_data),
194 devinfo(compiler->devinfo),
195 prog_data(prog_data),
196 shader_stats(shader_stats),
197 runtime_check_aads_emit(runtime_check_aads_emit), debug_flag(false),
198 stage(stage), mem_ctx(mem_ctx)
199 {
200 p = rzalloc(mem_ctx, struct brw_codegen);
201 brw_init_codegen(devinfo, p, mem_ctx);
202
203 /* In the FS code generator, we are very careful to ensure that we always
204 * set the right execution size so we don't need the EU code to "help" us
205 * by trying to infer it. Sometimes, it infers the wrong thing.
206 */
207 p->automatic_exec_sizes = false;
208 }
209
210 fs_generator::~fs_generator()
211 {
212 }
213
214 class ip_record : public exec_node {
215 public:
216 DECLARE_RALLOC_CXX_OPERATORS(ip_record)
217
218 ip_record(int ip)
219 {
220 this->ip = ip;
221 }
222
223 int ip;
224 };
225
226 bool
227 fs_generator::patch_discard_jumps_to_fb_writes()
228 {
229 if (devinfo->gen < 6 || this->discard_halt_patches.is_empty())
230 return false;
231
232 int scale = brw_jump_scale(p->devinfo);
233
234 /* There is a somewhat strange undocumented requirement of using
235 * HALT, according to the simulator. If some channel has HALTed to
236 * a particular UIP, then by the end of the program, every channel
237 * must have HALTed to that UIP. Furthermore, the tracking is a
238 * stack, so you can't do the final halt of a UIP after starting
239 * halting to a new UIP.
240 *
241 * Symptoms of not emitting this instruction on actual hardware
242 * included GPU hangs and sparkly rendering on the piglit discard
243 * tests.
244 */
245 brw_inst *last_halt = gen6_HALT(p);
246 brw_inst_set_uip(p->devinfo, last_halt, 1 * scale);
247 brw_inst_set_jip(p->devinfo, last_halt, 1 * scale);
248
249 int ip = p->nr_insn;
250
251 foreach_in_list(ip_record, patch_ip, &discard_halt_patches) {
252 brw_inst *patch = &p->store[patch_ip->ip];
253
254 assert(brw_inst_opcode(p->devinfo, patch) == BRW_OPCODE_HALT);
255 /* HALT takes a half-instruction distance from the pre-incremented IP. */
256 brw_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale);
257 }
258
259 this->discard_halt_patches.make_empty();
260 return true;
261 }
262
263 void
264 fs_generator::generate_send(fs_inst *inst,
265 struct brw_reg dst,
266 struct brw_reg desc,
267 struct brw_reg ex_desc,
268 struct brw_reg payload,
269 struct brw_reg payload2)
270 {
271 const bool dst_is_null = dst.file == BRW_ARCHITECTURE_REGISTER_FILE &&
272 dst.nr == BRW_ARF_NULL;
273 const unsigned rlen = dst_is_null ? 0 : inst->size_written / REG_SIZE;
274
275 uint32_t desc_imm = inst->desc |
276 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size);
277
278 uint32_t ex_desc_imm = brw_message_ex_desc(devinfo, inst->ex_mlen);
279
280 if (ex_desc.file != BRW_IMMEDIATE_VALUE || ex_desc.ud || ex_desc_imm) {
281 /* If we have any sort of extended descriptor, then we need SENDS. This
282 * also covers the dual-payload case because ex_mlen goes in ex_desc.
283 */
284 brw_send_indirect_split_message(p, inst->sfid, dst, payload, payload2,
285 desc, desc_imm, ex_desc, ex_desc_imm,
286 inst->eot);
287 if (inst->check_tdr)
288 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDSC);
289 } else {
290 brw_send_indirect_message(p, inst->sfid, dst, payload, desc, desc_imm,
291 inst->eot);
292 if (inst->check_tdr)
293 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDC);
294 }
295 }
296
297 void
298 fs_generator::fire_fb_write(fs_inst *inst,
299 struct brw_reg payload,
300 struct brw_reg implied_header,
301 GLuint nr)
302 {
303 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
304
305 if (devinfo->gen < 6) {
306 brw_push_insn_state(p);
307 brw_set_default_exec_size(p, BRW_EXECUTE_8);
308 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
309 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
310 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
311 brw_MOV(p, offset(retype(payload, BRW_REGISTER_TYPE_UD), 1),
312 offset(retype(implied_header, BRW_REGISTER_TYPE_UD), 1));
313 brw_pop_insn_state(p);
314 }
315
316 uint32_t msg_control = brw_fb_write_msg_control(inst, prog_data);
317
318 /* We assume render targets start at 0, because headerless FB write
319 * messages set "Render Target Index" to 0. Using a different binding
320 * table index would make it impossible to use headerless messages.
321 */
322 const uint32_t surf_index = inst->target;
323
324 brw_inst *insn = brw_fb_WRITE(p,
325 payload,
326 retype(implied_header, BRW_REGISTER_TYPE_UW),
327 msg_control,
328 surf_index,
329 nr,
330 0,
331 inst->eot,
332 inst->last_rt,
333 inst->header_size != 0);
334
335 if (devinfo->gen >= 6)
336 brw_inst_set_rt_slot_group(devinfo, insn, inst->group / 16);
337 }
338
339 void
340 fs_generator::generate_fb_write(fs_inst *inst, struct brw_reg payload)
341 {
342 if (devinfo->gen < 8 && !devinfo->is_haswell) {
343 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
344 brw_set_default_flag_reg(p, 0, 0);
345 }
346
347 const struct brw_reg implied_header =
348 devinfo->gen < 6 ? payload : brw_null_reg();
349
350 if (inst->base_mrf >= 0)
351 payload = brw_message_reg(inst->base_mrf);
352
353 if (!runtime_check_aads_emit) {
354 fire_fb_write(inst, payload, implied_header, inst->mlen);
355 } else {
356 /* This can only happen in gen < 6 */
357 assert(devinfo->gen < 6);
358
359 struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
360
361 /* Check runtime bit to detect if we have to send AA data or not */
362 brw_push_insn_state(p);
363 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
364 brw_set_default_exec_size(p, BRW_EXECUTE_1);
365 brw_AND(p,
366 v1_null_ud,
367 retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD),
368 brw_imm_ud(1<<26));
369 brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
370
371 int jmp = brw_JMPI(p, brw_imm_ud(0), BRW_PREDICATE_NORMAL) - p->store;
372 brw_pop_insn_state(p);
373 {
374 /* Don't send AA data */
375 fire_fb_write(inst, offset(payload, 1), implied_header, inst->mlen-1);
376 }
377 brw_land_fwd_jump(p, jmp);
378 fire_fb_write(inst, payload, implied_header, inst->mlen);
379 }
380 }
381
382 void
383 fs_generator::generate_fb_read(fs_inst *inst, struct brw_reg dst,
384 struct brw_reg payload)
385 {
386 assert(inst->size_written % REG_SIZE == 0);
387 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
388 /* We assume that render targets start at binding table index 0. */
389 const unsigned surf_index = inst->target;
390
391 gen9_fb_READ(p, dst, payload, surf_index,
392 inst->header_size, inst->size_written / REG_SIZE,
393 prog_data->persample_dispatch);
394 }
395
396 void
397 fs_generator::generate_mov_indirect(fs_inst *inst,
398 struct brw_reg dst,
399 struct brw_reg reg,
400 struct brw_reg indirect_byte_offset)
401 {
402 assert(indirect_byte_offset.type == BRW_REGISTER_TYPE_UD);
403 assert(indirect_byte_offset.file == BRW_GENERAL_REGISTER_FILE);
404 assert(!reg.abs && !reg.negate);
405 assert(reg.type == dst.type);
406
407 unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr;
408
409 if (indirect_byte_offset.file == BRW_IMMEDIATE_VALUE) {
410 imm_byte_offset += indirect_byte_offset.ud;
411
412 reg.nr = imm_byte_offset / REG_SIZE;
413 reg.subnr = imm_byte_offset % REG_SIZE;
414 brw_MOV(p, dst, reg);
415 } else {
416 /* Prior to Broadwell, there are only 8 address registers. */
417 assert(inst->exec_size <= 8 || devinfo->gen >= 8);
418
419 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
420 struct brw_reg addr = vec8(brw_address_reg(0));
421
422 /* The destination stride of an instruction (in bytes) must be greater
423 * than or equal to the size of the rest of the instruction. Since the
424 * address register is of type UW, we can't use a D-type instruction.
425 * In order to get around this, re retype to UW and use a stride.
426 */
427 indirect_byte_offset =
428 retype(spread(indirect_byte_offset, 2), BRW_REGISTER_TYPE_UW);
429
430 /* There are a number of reasons why we don't use the base offset here.
431 * One reason is that the field is only 9 bits which means we can only
432 * use it to access the first 16 GRFs. Also, from the Haswell PRM
433 * section "Register Region Restrictions":
434 *
435 * "The lower bits of the AddressImmediate must not overflow to
436 * change the register address. The lower 5 bits of Address
437 * Immediate when added to lower 5 bits of address register gives
438 * the sub-register offset. The upper bits of Address Immediate
439 * when added to upper bits of address register gives the register
440 * address. Any overflow from sub-register offset is dropped."
441 *
442 * Since the indirect may cause us to cross a register boundary, this
443 * makes the base offset almost useless. We could try and do something
444 * clever where we use a actual base offset if base_offset % 32 == 0 but
445 * that would mean we were generating different code depending on the
446 * base offset. Instead, for the sake of consistency, we'll just do the
447 * add ourselves. This restriction is only listed in the Haswell PRM
448 * but empirical testing indicates that it applies on all older
449 * generations and is lifted on Broadwell.
450 *
451 * In the end, while base_offset is nice to look at in the generated
452 * code, using it saves us 0 instructions and would require quite a bit
453 * of case-by-case work. It's just not worth it.
454 */
455 brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset));
456
457 if (type_sz(reg.type) > 4 &&
458 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
459 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo) ||
460 !devinfo->has_64bit_types)) {
461 /* IVB has an issue (which we found empirically) where it reads two
462 * address register components per channel for indirectly addressed
463 * 64-bit sources.
464 *
465 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
466 *
467 * "When source or destination datatype is 64b or operation is
468 * integer DWord multiply, indirect addressing must not be used."
469 *
470 * To work around both of these, we do two integer MOVs insead of one
471 * 64-bit MOV. Because no double value should ever cross a register
472 * boundary, it's safe to use the immediate offset in the indirect
473 * here to handle adding 4 bytes to the offset and avoid the extra
474 * ADD to the register file.
475 */
476 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
477 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
478 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
479 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
480 } else {
481 struct brw_reg ind_src = brw_VxH_indirect(0, 0);
482
483 brw_inst *mov = brw_MOV(p, dst, retype(ind_src, reg.type));
484
485 if (devinfo->gen == 6 && dst.file == BRW_MESSAGE_REGISTER_FILE &&
486 !inst->get_next()->is_tail_sentinel() &&
487 ((fs_inst *)inst->get_next())->mlen > 0) {
488 /* From the Sandybridge PRM:
489 *
490 * "[Errata: DevSNB(SNB)] If MRF register is updated by any
491 * instruction that “indexed/indirect” source AND is followed
492 * by a send, the instruction requires a “Switch”. This is to
493 * avoid race condition where send may dispatch before MRF is
494 * updated."
495 */
496 brw_inst_set_thread_control(devinfo, mov, BRW_THREAD_SWITCH);
497 }
498 }
499 }
500 }
501
502 void
503 fs_generator::generate_shuffle(fs_inst *inst,
504 struct brw_reg dst,
505 struct brw_reg src,
506 struct brw_reg idx)
507 {
508 /* Ivy bridge has some strange behavior that makes this a real pain to
509 * implement for 64-bit values so we just don't bother.
510 */
511 assert(devinfo->gen >= 8 || devinfo->is_haswell || type_sz(src.type) <= 4);
512
513 /* Because we're using the address register, we're limited to 8-wide
514 * execution on gen7. On gen8, we're limited to 16-wide by the address
515 * register file and 8-wide for 64-bit types. We could try and make this
516 * instruction splittable higher up in the compiler but that gets weird
517 * because it reads all of the channels regardless of execution size. It's
518 * easier just to split it here.
519 */
520 const unsigned lower_width =
521 (devinfo->gen <= 7 || type_sz(src.type) > 4) ?
522 8 : MIN2(16, inst->exec_size);
523
524 brw_set_default_exec_size(p, cvt(lower_width) - 1);
525 for (unsigned group = 0; group < inst->exec_size; group += lower_width) {
526 brw_set_default_group(p, group);
527
528 if ((src.vstride == 0 && src.hstride == 0) ||
529 idx.file == BRW_IMMEDIATE_VALUE) {
530 /* Trivial, the source is already uniform or the index is a constant.
531 * We will typically not get here if the optimizer is doing its job,
532 * but asserting would be mean.
533 */
534 const unsigned i = idx.file == BRW_IMMEDIATE_VALUE ? idx.ud : 0;
535 brw_MOV(p, suboffset(dst, group), stride(suboffset(src, i), 0, 1, 0));
536 } else {
537 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
538 struct brw_reg addr = vec8(brw_address_reg(0));
539
540 struct brw_reg group_idx = suboffset(idx, group);
541
542 if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) {
543 /* Things get grumpy if the register is too wide. */
544 group_idx.width--;
545 group_idx.vstride--;
546 }
547
548 assert(type_sz(group_idx.type) <= 4);
549 if (type_sz(group_idx.type) == 4) {
550 /* The destination stride of an instruction (in bytes) must be
551 * greater than or equal to the size of the rest of the
552 * instruction. Since the address register is of type UW, we
553 * can't use a D-type instruction. In order to get around this,
554 * re retype to UW and use a stride.
555 */
556 group_idx = retype(spread(group_idx, 2), BRW_REGISTER_TYPE_W);
557 }
558
559 /* Take into account the component size and horizontal stride. */
560 assert(src.vstride == src.hstride + src.width);
561 brw_SHL(p, addr, group_idx,
562 brw_imm_uw(_mesa_logbase2(type_sz(src.type)) +
563 src.hstride - 1));
564
565 /* Add on the register start offset */
566 brw_ADD(p, addr, addr, brw_imm_uw(src.nr * REG_SIZE + src.subnr));
567
568 if (type_sz(src.type) > 4 &&
569 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
570 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
571 /* IVB has an issue (which we found empirically) where it reads
572 * two address register components per channel for indirectly
573 * addressed 64-bit sources.
574 *
575 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
576 *
577 * "When source or destination datatype is 64b or operation is
578 * integer DWord multiply, indirect addressing must not be
579 * used."
580 *
581 * To work around both of these, we do two integer MOVs insead of
582 * one 64-bit MOV. Because no double value should ever cross a
583 * register boundary, it's safe to use the immediate offset in the
584 * indirect here to handle adding 4 bytes to the offset and avoid
585 * the extra ADD to the register file.
586 */
587 struct brw_reg gdst = suboffset(dst, group);
588 struct brw_reg dst_d = retype(spread(gdst, 2),
589 BRW_REGISTER_TYPE_D);
590 assert(dst.hstride == 1);
591 brw_MOV(p, dst_d,
592 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
593 brw_MOV(p, byte_offset(dst_d, 4),
594 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
595 } else {
596 brw_MOV(p, suboffset(dst, group * dst.hstride),
597 retype(brw_VxH_indirect(0, 0), src.type));
598 }
599 }
600 }
601 }
602
603 void
604 fs_generator::generate_quad_swizzle(const fs_inst *inst,
605 struct brw_reg dst, struct brw_reg src,
606 unsigned swiz)
607 {
608 /* Requires a quad. */
609 assert(inst->exec_size >= 4);
610
611 if (src.file == BRW_IMMEDIATE_VALUE ||
612 has_scalar_region(src)) {
613 /* The value is uniform across all channels */
614 brw_MOV(p, dst, src);
615
616 } else if (devinfo->gen < 11 && type_sz(src.type) == 4) {
617 /* This only works on 8-wide 32-bit values */
618 assert(inst->exec_size == 8);
619 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
620 assert(src.vstride == src.width + 1);
621 brw_set_default_access_mode(p, BRW_ALIGN_16);
622 struct brw_reg swiz_src = stride(src, 4, 4, 1);
623 swiz_src.swizzle = swiz;
624 brw_MOV(p, dst, swiz_src);
625
626 } else {
627 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
628 assert(src.vstride == src.width + 1);
629 const struct brw_reg src_0 = suboffset(src, BRW_GET_SWZ(swiz, 0));
630
631 switch (swiz) {
632 case BRW_SWIZZLE_XXXX:
633 case BRW_SWIZZLE_YYYY:
634 case BRW_SWIZZLE_ZZZZ:
635 case BRW_SWIZZLE_WWWW:
636 brw_MOV(p, dst, stride(src_0, 4, 4, 0));
637 break;
638
639 case BRW_SWIZZLE_XXZZ:
640 case BRW_SWIZZLE_YYWW:
641 brw_MOV(p, dst, stride(src_0, 2, 2, 0));
642 break;
643
644 case BRW_SWIZZLE_XYXY:
645 case BRW_SWIZZLE_ZWZW:
646 assert(inst->exec_size == 4);
647 brw_MOV(p, dst, stride(src_0, 0, 2, 1));
648 break;
649
650 default:
651 assert(inst->force_writemask_all);
652 brw_set_default_exec_size(p, cvt(inst->exec_size / 4) - 1);
653
654 for (unsigned c = 0; c < 4; c++) {
655 brw_inst *insn = brw_MOV(
656 p, stride(suboffset(dst, c),
657 4 * inst->dst.stride, 1, 4 * inst->dst.stride),
658 stride(suboffset(src, BRW_GET_SWZ(swiz, c)), 4, 1, 0));
659
660 brw_inst_set_no_dd_clear(devinfo, insn, c < 3);
661 brw_inst_set_no_dd_check(devinfo, insn, c > 0);
662 }
663
664 break;
665 }
666 }
667 }
668
669 void
670 fs_generator::generate_urb_read(fs_inst *inst,
671 struct brw_reg dst,
672 struct brw_reg header)
673 {
674 assert(inst->size_written % REG_SIZE == 0);
675 assert(header.file == BRW_GENERAL_REGISTER_FILE);
676 assert(header.type == BRW_REGISTER_TYPE_UD);
677
678 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
679 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
680 brw_set_src0(p, send, header);
681 brw_set_src1(p, send, brw_imm_ud(0u));
682
683 brw_inst_set_sfid(p->devinfo, send, BRW_SFID_URB);
684 brw_inst_set_urb_opcode(p->devinfo, send, GEN8_URB_OPCODE_SIMD8_READ);
685
686 if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT)
687 brw_inst_set_urb_per_slot_offset(p->devinfo, send, true);
688
689 brw_inst_set_mlen(p->devinfo, send, inst->mlen);
690 brw_inst_set_rlen(p->devinfo, send, inst->size_written / REG_SIZE);
691 brw_inst_set_header_present(p->devinfo, send, true);
692 brw_inst_set_urb_global_offset(p->devinfo, send, inst->offset);
693 }
694
695 void
696 fs_generator::generate_urb_write(fs_inst *inst, struct brw_reg payload)
697 {
698 brw_inst *insn;
699
700 /* WaClearTDRRegBeforeEOTForNonPS.
701 *
702 * WA: Clear tdr register before send EOT in all non-PS shader kernels
703 *
704 * mov(8) tdr0:ud 0x0:ud {NoMask}"
705 */
706 if (inst->eot && p->devinfo->gen == 10) {
707 brw_push_insn_state(p);
708 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
709 brw_MOV(p, brw_tdr_reg(), brw_imm_uw(0));
710 brw_pop_insn_state(p);
711 }
712
713 insn = brw_next_insn(p, BRW_OPCODE_SEND);
714
715 brw_set_dest(p, insn, brw_null_reg());
716 brw_set_src0(p, insn, payload);
717 brw_set_src1(p, insn, brw_imm_ud(0u));
718
719 brw_inst_set_sfid(p->devinfo, insn, BRW_SFID_URB);
720 brw_inst_set_urb_opcode(p->devinfo, insn, GEN8_URB_OPCODE_SIMD8_WRITE);
721
722 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
723 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
724 brw_inst_set_urb_per_slot_offset(p->devinfo, insn, true);
725
726 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
727 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
728 brw_inst_set_urb_channel_mask_present(p->devinfo, insn, true);
729
730 brw_inst_set_mlen(p->devinfo, insn, inst->mlen);
731 brw_inst_set_rlen(p->devinfo, insn, 0);
732 brw_inst_set_eot(p->devinfo, insn, inst->eot);
733 brw_inst_set_header_present(p->devinfo, insn, true);
734 brw_inst_set_urb_global_offset(p->devinfo, insn, inst->offset);
735 }
736
737 void
738 fs_generator::generate_cs_terminate(fs_inst *inst, struct brw_reg payload)
739 {
740 struct brw_inst *insn;
741
742 insn = brw_next_insn(p, BRW_OPCODE_SEND);
743
744 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
745 brw_set_src0(p, insn, retype(payload, BRW_REGISTER_TYPE_UW));
746 brw_set_src1(p, insn, brw_imm_ud(0u));
747
748 /* Terminate a compute shader by sending a message to the thread spawner.
749 */
750 brw_inst_set_sfid(devinfo, insn, BRW_SFID_THREAD_SPAWNER);
751 brw_inst_set_mlen(devinfo, insn, 1);
752 brw_inst_set_rlen(devinfo, insn, 0);
753 brw_inst_set_eot(devinfo, insn, inst->eot);
754 brw_inst_set_header_present(devinfo, insn, false);
755
756 brw_inst_set_ts_opcode(devinfo, insn, 0); /* Dereference resource */
757 brw_inst_set_ts_request_type(devinfo, insn, 0); /* Root thread */
758
759 /* Note that even though the thread has a URB resource associated with it,
760 * we set the "do not dereference URB" bit, because the URB resource is
761 * managed by the fixed-function unit, so it will free it automatically.
762 */
763 brw_inst_set_ts_resource_select(devinfo, insn, 1); /* Do not dereference URB */
764
765 brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
766 }
767
768 void
769 fs_generator::generate_barrier(fs_inst *, struct brw_reg src)
770 {
771 brw_barrier(p, src);
772 brw_WAIT(p);
773 }
774
775 bool
776 fs_generator::generate_linterp(fs_inst *inst,
777 struct brw_reg dst, struct brw_reg *src)
778 {
779 /* PLN reads:
780 * / in SIMD16 \
781 * -----------------------------------
782 * | src1+0 | src1+1 | src1+2 | src1+3 |
783 * |-----------------------------------|
784 * |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)|
785 * -----------------------------------
786 *
787 * but for the LINE/MAC pair, the LINE reads Xs and the MAC reads Ys:
788 *
789 * -----------------------------------
790 * | src1+0 | src1+1 | src1+2 | src1+3 |
791 * |-----------------------------------|
792 * |(x0, x1)|(y0, y1)| | | in SIMD8
793 * |-----------------------------------|
794 * |(x0, x1)|(x2, x3)|(y0, y1)|(y2, y3)| in SIMD16
795 * -----------------------------------
796 *
797 * See also: emit_interpolation_setup_gen4().
798 */
799 struct brw_reg delta_x = src[0];
800 struct brw_reg delta_y = offset(src[0], inst->exec_size / 8);
801 struct brw_reg interp = src[1];
802 brw_inst *i[2];
803
804 /* nir_lower_interpolation() will do the lowering to MAD instructions for
805 * us on gen11+
806 */
807 assert(devinfo->gen < 11);
808
809 if (devinfo->has_pln) {
810 if (devinfo->gen <= 6 && (delta_x.nr & 1) != 0) {
811 /* From the Sandy Bridge PRM Vol. 4, Pt. 2, Section 8.3.53, "Plane":
812 *
813 * "[DevSNB]:<src1> must be even register aligned.
814 *
815 * This restriction is lifted on Ivy Bridge.
816 *
817 * This means that we need to split PLN into LINE+MAC on-the-fly.
818 * Unfortunately, the inputs are laid out for PLN and not LINE+MAC so
819 * we have to split into SIMD8 pieces. For gen4 (!has_pln), the
820 * coordinate registers are laid out differently so we leave it as a
821 * SIMD16 instruction.
822 */
823 assert(inst->exec_size == 8 || inst->exec_size == 16);
824 assert(inst->group % 16 == 0);
825
826 brw_push_insn_state(p);
827 brw_set_default_exec_size(p, BRW_EXECUTE_8);
828
829 /* Thanks to two accumulators, we can emit all the LINEs and then all
830 * the MACs. This improves parallelism a bit.
831 */
832 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
833 brw_inst *line = brw_LINE(p, brw_null_reg(), interp,
834 offset(delta_x, g * 2));
835 brw_inst_set_group(devinfo, line, inst->group + g * 8);
836
837 /* LINE writes the accumulator automatically on gen4-5. On Sandy
838 * Bridge and later, we have to explicitly enable it.
839 */
840 if (devinfo->gen >= 6)
841 brw_inst_set_acc_wr_control(p->devinfo, line, true);
842
843 /* brw_set_default_saturate() is called before emitting
844 * instructions, so the saturate bit is set in each instruction,
845 * so we need to unset it on the LINE instructions.
846 */
847 brw_inst_set_saturate(p->devinfo, line, false);
848 }
849
850 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
851 brw_inst *mac = brw_MAC(p, offset(dst, g), suboffset(interp, 1),
852 offset(delta_x, g * 2 + 1));
853 brw_inst_set_group(devinfo, mac, inst->group + g * 8);
854 brw_inst_set_cond_modifier(p->devinfo, mac, inst->conditional_mod);
855 }
856
857 brw_pop_insn_state(p);
858
859 return true;
860 } else {
861 brw_PLN(p, dst, interp, delta_x);
862
863 return false;
864 }
865 } else {
866 i[0] = brw_LINE(p, brw_null_reg(), interp, delta_x);
867 i[1] = brw_MAC(p, dst, suboffset(interp, 1), delta_y);
868
869 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
870
871 /* brw_set_default_saturate() is called before emitting instructions, so
872 * the saturate bit is set in each instruction, so we need to unset it on
873 * the first instruction.
874 */
875 brw_inst_set_saturate(p->devinfo, i[0], false);
876
877 return true;
878 }
879 }
880
881 void
882 fs_generator::generate_get_buffer_size(fs_inst *inst,
883 struct brw_reg dst,
884 struct brw_reg src,
885 struct brw_reg surf_index)
886 {
887 assert(devinfo->gen >= 7);
888 assert(surf_index.file == BRW_IMMEDIATE_VALUE);
889
890 uint32_t simd_mode;
891 int rlen = 4;
892
893 switch (inst->exec_size) {
894 case 8:
895 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
896 break;
897 case 16:
898 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
899 break;
900 default:
901 unreachable("Invalid width for texture instruction");
902 }
903
904 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
905 rlen = 8;
906 dst = vec16(dst);
907 }
908
909 brw_SAMPLE(p,
910 retype(dst, BRW_REGISTER_TYPE_UW),
911 inst->base_mrf,
912 src,
913 surf_index.ud,
914 0,
915 GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
916 rlen, /* response length */
917 inst->mlen,
918 inst->header_size > 0,
919 simd_mode,
920 BRW_SAMPLER_RETURN_FORMAT_SINT32);
921 }
922
923 void
924 fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst,
925 struct brw_reg surface_index,
926 struct brw_reg sampler_index)
927 {
928 assert(devinfo->gen < 7);
929 assert(inst->size_written % REG_SIZE == 0);
930 int msg_type = -1;
931 uint32_t simd_mode;
932 uint32_t return_format;
933
934 /* Sampler EOT message of less than the dispatch width would kill the
935 * thread prematurely.
936 */
937 assert(!inst->eot || inst->exec_size == dispatch_width);
938
939 switch (dst.type) {
940 case BRW_REGISTER_TYPE_D:
941 return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
942 break;
943 case BRW_REGISTER_TYPE_UD:
944 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
945 break;
946 default:
947 return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
948 break;
949 }
950
951 /* Stomp the resinfo output type to UINT32. On gens 4-5, the output type
952 * is set as part of the message descriptor. On gen4, the PRM seems to
953 * allow UINT32 and FLOAT32 (i965 PRM, Vol. 4 Section 4.8.1.1), but on
954 * later gens UINT32 is required. Once you hit Sandy Bridge, the bit is
955 * gone from the message descriptor entirely and you just get UINT32 all
956 * the time regasrdless. Since we can really only do non-UINT32 on gen4,
957 * just stomp it to UINT32 all the time.
958 */
959 if (inst->opcode == SHADER_OPCODE_TXS)
960 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
961
962 switch (inst->exec_size) {
963 case 8:
964 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
965 break;
966 case 16:
967 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
968 break;
969 default:
970 unreachable("Invalid width for texture instruction");
971 }
972
973 if (devinfo->gen >= 5) {
974 switch (inst->opcode) {
975 case SHADER_OPCODE_TEX:
976 if (inst->shadow_compare) {
977 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE;
978 } else {
979 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE;
980 }
981 break;
982 case FS_OPCODE_TXB:
983 if (inst->shadow_compare) {
984 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE;
985 } else {
986 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
987 }
988 break;
989 case SHADER_OPCODE_TXL:
990 if (inst->shadow_compare) {
991 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
992 } else {
993 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
994 }
995 break;
996 case SHADER_OPCODE_TXS:
997 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
998 break;
999 case SHADER_OPCODE_TXD:
1000 assert(!inst->shadow_compare);
1001 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
1002 break;
1003 case SHADER_OPCODE_TXF:
1004 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1005 break;
1006 case SHADER_OPCODE_TXF_CMS:
1007 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1008 break;
1009 case SHADER_OPCODE_LOD:
1010 msg_type = GEN5_SAMPLER_MESSAGE_LOD;
1011 break;
1012 case SHADER_OPCODE_TG4:
1013 assert(devinfo->gen == 6);
1014 assert(!inst->shadow_compare);
1015 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
1016 break;
1017 case SHADER_OPCODE_SAMPLEINFO:
1018 msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
1019 break;
1020 default:
1021 unreachable("not reached");
1022 }
1023 } else {
1024 switch (inst->opcode) {
1025 case SHADER_OPCODE_TEX:
1026 /* Note that G45 and older determines shadow compare and dispatch width
1027 * from message length for most messages.
1028 */
1029 if (inst->exec_size == 8) {
1030 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
1031 if (inst->shadow_compare) {
1032 assert(inst->mlen == 6);
1033 } else {
1034 assert(inst->mlen <= 4);
1035 }
1036 } else {
1037 if (inst->shadow_compare) {
1038 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
1039 assert(inst->mlen == 9);
1040 } else {
1041 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
1042 assert(inst->mlen <= 7 && inst->mlen % 2 == 1);
1043 }
1044 }
1045 break;
1046 case FS_OPCODE_TXB:
1047 if (inst->shadow_compare) {
1048 assert(inst->exec_size == 8);
1049 assert(inst->mlen == 6);
1050 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE;
1051 } else {
1052 assert(inst->mlen == 9);
1053 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1054 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1055 }
1056 break;
1057 case SHADER_OPCODE_TXL:
1058 if (inst->shadow_compare) {
1059 assert(inst->exec_size == 8);
1060 assert(inst->mlen == 6);
1061 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE;
1062 } else {
1063 assert(inst->mlen == 9);
1064 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD;
1065 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1066 }
1067 break;
1068 case SHADER_OPCODE_TXD:
1069 /* There is no sample_d_c message; comparisons are done manually */
1070 assert(inst->exec_size == 8);
1071 assert(inst->mlen == 7 || inst->mlen == 10);
1072 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS;
1073 break;
1074 case SHADER_OPCODE_TXF:
1075 assert(inst->mlen <= 9 && inst->mlen % 2 == 1);
1076 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1077 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1078 break;
1079 case SHADER_OPCODE_TXS:
1080 assert(inst->mlen == 3);
1081 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO;
1082 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1083 break;
1084 default:
1085 unreachable("not reached");
1086 }
1087 }
1088 assert(msg_type != -1);
1089
1090 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
1091 dst = vec16(dst);
1092 }
1093
1094 assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
1095
1096 /* Load the message header if present. If there's a texture offset,
1097 * we need to set it up explicitly and load the offset bitfield.
1098 * Otherwise, we can use an implied move from g0 to the first message reg.
1099 */
1100 struct brw_reg src = brw_null_reg();
1101 if (inst->header_size != 0) {
1102 if (devinfo->gen < 6 && !inst->offset) {
1103 /* Set up an implied move from g0 to the MRF. */
1104 src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
1105 } else {
1106 assert(inst->base_mrf != -1);
1107 struct brw_reg header_reg = brw_message_reg(inst->base_mrf);
1108
1109 brw_push_insn_state(p);
1110 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1111 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1112 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1113 /* Explicitly set up the message header by copying g0 to the MRF. */
1114 brw_MOV(p, header_reg, brw_vec8_grf(0, 0));
1115
1116 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1117 if (inst->offset) {
1118 /* Set the offset bits in DWord 2. */
1119 brw_MOV(p, get_element_ud(header_reg, 2),
1120 brw_imm_ud(inst->offset));
1121 }
1122
1123 brw_pop_insn_state(p);
1124 }
1125 }
1126
1127 uint32_t base_binding_table_index;
1128 switch (inst->opcode) {
1129 case SHADER_OPCODE_TG4:
1130 base_binding_table_index = prog_data->binding_table.gather_texture_start;
1131 break;
1132 default:
1133 base_binding_table_index = prog_data->binding_table.texture_start;
1134 break;
1135 }
1136
1137 assert(surface_index.file == BRW_IMMEDIATE_VALUE);
1138 assert(sampler_index.file == BRW_IMMEDIATE_VALUE);
1139
1140 brw_SAMPLE(p,
1141 retype(dst, BRW_REGISTER_TYPE_UW),
1142 inst->base_mrf,
1143 src,
1144 surface_index.ud + base_binding_table_index,
1145 sampler_index.ud % 16,
1146 msg_type,
1147 inst->size_written / REG_SIZE,
1148 inst->mlen,
1149 inst->header_size != 0,
1150 simd_mode,
1151 return_format);
1152 }
1153
1154
1155 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
1156 * looking like:
1157 *
1158 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
1159 *
1160 * Ideally, we want to produce:
1161 *
1162 * DDX DDY
1163 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
1164 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
1165 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
1166 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
1167 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
1168 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
1169 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
1170 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
1171 *
1172 * and add another set of two more subspans if in 16-pixel dispatch mode.
1173 *
1174 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
1175 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
1176 * pair. But the ideal approximation may impose a huge performance cost on
1177 * sample_d. On at least Haswell, sample_d instruction does some
1178 * optimizations if the same LOD is used for all pixels in the subspan.
1179 *
1180 * For DDY, we need to use ALIGN16 mode since it's capable of doing the
1181 * appropriate swizzling.
1182 */
1183 void
1184 fs_generator::generate_ddx(const fs_inst *inst,
1185 struct brw_reg dst, struct brw_reg src)
1186 {
1187 unsigned vstride, width;
1188
1189 if (devinfo->gen >= 8) {
1190 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1191 /* produce accurate derivatives */
1192 vstride = BRW_VERTICAL_STRIDE_2;
1193 width = BRW_WIDTH_2;
1194 } else {
1195 /* replicate the derivative at the top-left pixel to other pixels */
1196 vstride = BRW_VERTICAL_STRIDE_4;
1197 width = BRW_WIDTH_4;
1198 }
1199
1200 struct brw_reg src0 = byte_offset(src, type_sz(src.type));;
1201 struct brw_reg src1 = src;
1202
1203 src0.vstride = vstride;
1204 src0.width = width;
1205 src0.hstride = BRW_HORIZONTAL_STRIDE_0;
1206 src1.vstride = vstride;
1207 src1.width = width;
1208 src1.hstride = BRW_HORIZONTAL_STRIDE_0;
1209
1210 brw_ADD(p, dst, src0, negate(src1));
1211 } else {
1212 /* On Haswell and earlier, the region used above appears to not work
1213 * correctly for compressed instructions. At least on Haswell and
1214 * Iron Lake, compressed ALIGN16 instructions do work. Since we
1215 * would have to split to SIMD8 no matter which method we choose, we
1216 * may as well use ALIGN16 on all platforms gen7 and earlier.
1217 */
1218 struct brw_reg src0 = stride(src, 4, 4, 1);
1219 struct brw_reg src1 = stride(src, 4, 4, 1);
1220 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1221 src0.swizzle = BRW_SWIZZLE_XXZZ;
1222 src1.swizzle = BRW_SWIZZLE_YYWW;
1223 } else {
1224 src0.swizzle = BRW_SWIZZLE_XXXX;
1225 src1.swizzle = BRW_SWIZZLE_YYYY;
1226 }
1227
1228 brw_push_insn_state(p);
1229 brw_set_default_access_mode(p, BRW_ALIGN_16);
1230 brw_ADD(p, dst, negate(src0), src1);
1231 brw_pop_insn_state(p);
1232 }
1233 }
1234
1235 /* The negate_value boolean is used to negate the derivative computation for
1236 * FBOs, since they place the origin at the upper left instead of the lower
1237 * left.
1238 */
1239 void
1240 fs_generator::generate_ddy(const fs_inst *inst,
1241 struct brw_reg dst, struct brw_reg src)
1242 {
1243 const uint32_t type_size = type_sz(src.type);
1244
1245 if (inst->opcode == FS_OPCODE_DDY_FINE) {
1246 /* produce accurate derivatives.
1247 *
1248 * From the Broadwell PRM, Volume 7 (3D-Media-GPGPU)
1249 * "Register Region Restrictions", Section "1. Special Restrictions":
1250 *
1251 * "In Align16 mode, the channel selects and channel enables apply to
1252 * a pair of half-floats, because these parameters are defined for
1253 * DWord elements ONLY. This is applicable when both source and
1254 * destination are half-floats."
1255 *
1256 * So for half-float operations we use the Gen11+ Align1 path. CHV
1257 * inherits its FP16 hardware from SKL, so it is not affected.
1258 */
1259 if (devinfo->gen >= 11 ||
1260 (devinfo->is_broadwell && src.type == BRW_REGISTER_TYPE_HF)) {
1261 src = stride(src, 0, 2, 1);
1262
1263 brw_push_insn_state(p);
1264 brw_set_default_exec_size(p, BRW_EXECUTE_4);
1265 for (uint32_t g = 0; g < inst->exec_size; g += 4) {
1266 brw_set_default_group(p, inst->group + g);
1267 brw_ADD(p, byte_offset(dst, g * type_size),
1268 negate(byte_offset(src, g * type_size)),
1269 byte_offset(src, (g + 2) * type_size));
1270 }
1271 brw_pop_insn_state(p);
1272 } else {
1273 struct brw_reg src0 = stride(src, 4, 4, 1);
1274 struct brw_reg src1 = stride(src, 4, 4, 1);
1275 src0.swizzle = BRW_SWIZZLE_XYXY;
1276 src1.swizzle = BRW_SWIZZLE_ZWZW;
1277
1278 brw_push_insn_state(p);
1279 brw_set_default_access_mode(p, BRW_ALIGN_16);
1280 brw_ADD(p, dst, negate(src0), src1);
1281 brw_pop_insn_state(p);
1282 }
1283 } else {
1284 /* replicate the derivative at the top-left pixel to other pixels */
1285 if (devinfo->gen >= 8) {
1286 struct brw_reg src0 = byte_offset(stride(src, 4, 4, 0), 0 * type_size);
1287 struct brw_reg src1 = byte_offset(stride(src, 4, 4, 0), 2 * type_size);
1288
1289 brw_ADD(p, dst, negate(src0), src1);
1290 } else {
1291 /* On Haswell and earlier, the region used above appears to not work
1292 * correctly for compressed instructions. At least on Haswell and
1293 * Iron Lake, compressed ALIGN16 instructions do work. Since we
1294 * would have to split to SIMD8 no matter which method we choose, we
1295 * may as well use ALIGN16 on all platforms gen7 and earlier.
1296 */
1297 struct brw_reg src0 = stride(src, 4, 4, 1);
1298 struct brw_reg src1 = stride(src, 4, 4, 1);
1299 src0.swizzle = BRW_SWIZZLE_XXXX;
1300 src1.swizzle = BRW_SWIZZLE_ZZZZ;
1301
1302 brw_push_insn_state(p);
1303 brw_set_default_access_mode(p, BRW_ALIGN_16);
1304 brw_ADD(p, dst, negate(src0), src1);
1305 brw_pop_insn_state(p);
1306 }
1307 }
1308 }
1309
1310 void
1311 fs_generator::generate_discard_jump(fs_inst *)
1312 {
1313 assert(devinfo->gen >= 6);
1314
1315 /* This HALT will be patched up at FB write time to point UIP at the end of
1316 * the program, and at brw_uip_jip() JIP will be set to the end of the
1317 * current block (or the program).
1318 */
1319 this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn));
1320 gen6_HALT(p);
1321 }
1322
1323 void
1324 fs_generator::generate_scratch_write(fs_inst *inst, struct brw_reg src)
1325 {
1326 /* The 32-wide messages only respect the first 16-wide half of the channel
1327 * enable signals which are replicated identically for the second group of
1328 * 16 channels, so we cannot use them unless the write is marked
1329 * force_writemask_all.
1330 */
1331 const unsigned lower_size = inst->force_writemask_all ? inst->exec_size :
1332 MIN2(16, inst->exec_size);
1333 const unsigned block_size = 4 * lower_size / REG_SIZE;
1334 assert(inst->mlen != 0);
1335
1336 brw_push_insn_state(p);
1337 brw_set_default_exec_size(p, cvt(lower_size) - 1);
1338 brw_set_default_compression(p, lower_size > 8);
1339
1340 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1341 brw_set_default_group(p, inst->group + lower_size * i);
1342
1343 brw_MOV(p, brw_uvec_mrf(lower_size, inst->base_mrf + 1, 0),
1344 retype(offset(src, block_size * i), BRW_REGISTER_TYPE_UD));
1345
1346 brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf),
1347 block_size,
1348 inst->offset + block_size * REG_SIZE * i);
1349 }
1350
1351 brw_pop_insn_state(p);
1352 }
1353
1354 void
1355 fs_generator::generate_scratch_read(fs_inst *inst, struct brw_reg dst)
1356 {
1357 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1358 assert(inst->mlen != 0);
1359
1360 brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf),
1361 inst->exec_size / 8, inst->offset);
1362 }
1363
1364 void
1365 fs_generator::generate_scratch_read_gen7(fs_inst *inst, struct brw_reg dst)
1366 {
1367 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1368
1369 gen7_block_read_scratch(p, dst, inst->exec_size / 8, inst->offset);
1370 }
1371
1372 void
1373 fs_generator::generate_uniform_pull_constant_load(fs_inst *inst,
1374 struct brw_reg dst,
1375 struct brw_reg index,
1376 struct brw_reg offset)
1377 {
1378 assert(type_sz(dst.type) == 4);
1379 assert(inst->mlen != 0);
1380
1381 assert(index.file == BRW_IMMEDIATE_VALUE &&
1382 index.type == BRW_REGISTER_TYPE_UD);
1383 uint32_t surf_index = index.ud;
1384
1385 assert(offset.file == BRW_IMMEDIATE_VALUE &&
1386 offset.type == BRW_REGISTER_TYPE_UD);
1387 uint32_t read_offset = offset.ud;
1388
1389 brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
1390 read_offset, surf_index);
1391 }
1392
1393 void
1394 fs_generator::generate_uniform_pull_constant_load_gen7(fs_inst *inst,
1395 struct brw_reg dst,
1396 struct brw_reg index,
1397 struct brw_reg payload)
1398 {
1399 assert(index.type == BRW_REGISTER_TYPE_UD);
1400 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1401 assert(type_sz(dst.type) == 4);
1402
1403 if (index.file == BRW_IMMEDIATE_VALUE) {
1404 const uint32_t surf_index = index.ud;
1405
1406 brw_push_insn_state(p);
1407 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1408 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1409 brw_pop_insn_state(p);
1410
1411 brw_inst_set_sfid(devinfo, send, GEN6_SFID_DATAPORT_CONSTANT_CACHE);
1412 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
1413 brw_set_src0(p, send, retype(payload, BRW_REGISTER_TYPE_UD));
1414 brw_set_desc(p, send,
1415 brw_message_desc(devinfo, 1, DIV_ROUND_UP(inst->size_written,
1416 REG_SIZE), true) |
1417 brw_dp_read_desc(devinfo, surf_index,
1418 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1419 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1420 BRW_DATAPORT_READ_TARGET_DATA_CACHE));
1421
1422 } else {
1423 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1424
1425 brw_push_insn_state(p);
1426 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1427
1428 /* a0.0 = surf_index & 0xff */
1429 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1430 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1431 brw_set_dest(p, insn_and, addr);
1432 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1433 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1434
1435 /* dst = send(payload, a0.0 | <descriptor>) */
1436 brw_send_indirect_message(
1437 p, GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1438 retype(dst, BRW_REGISTER_TYPE_UD),
1439 retype(payload, BRW_REGISTER_TYPE_UD), addr,
1440 brw_message_desc(devinfo, 1,
1441 DIV_ROUND_UP(inst->size_written, REG_SIZE), true) |
1442 brw_dp_read_desc(devinfo, 0 /* surface */,
1443 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1444 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1445 BRW_DATAPORT_READ_TARGET_DATA_CACHE),
1446 false /* EOT */);
1447
1448 brw_pop_insn_state(p);
1449 }
1450 }
1451
1452 void
1453 fs_generator::generate_varying_pull_constant_load_gen4(fs_inst *inst,
1454 struct brw_reg dst,
1455 struct brw_reg index)
1456 {
1457 assert(devinfo->gen < 7); /* Should use the gen7 variant. */
1458 assert(inst->header_size != 0);
1459 assert(inst->mlen);
1460
1461 assert(index.file == BRW_IMMEDIATE_VALUE &&
1462 index.type == BRW_REGISTER_TYPE_UD);
1463 uint32_t surf_index = index.ud;
1464
1465 uint32_t simd_mode, rlen, msg_type;
1466 if (inst->exec_size == 16) {
1467 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1468 rlen = 8;
1469 } else {
1470 assert(inst->exec_size == 8);
1471 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1472 rlen = 4;
1473 }
1474
1475 if (devinfo->gen >= 5)
1476 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1477 else {
1478 /* We always use the SIMD16 message so that we only have to load U, and
1479 * not V or R.
1480 */
1481 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1482 assert(inst->mlen == 3);
1483 assert(inst->size_written == 8 * REG_SIZE);
1484 rlen = 8;
1485 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1486 }
1487
1488 struct brw_reg header = brw_vec8_grf(0, 0);
1489 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1490
1491 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1492 brw_inst_set_compression(devinfo, send, false);
1493 brw_inst_set_sfid(devinfo, send, BRW_SFID_SAMPLER);
1494 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1495 brw_set_src0(p, send, header);
1496 if (devinfo->gen < 6)
1497 brw_inst_set_base_mrf(p->devinfo, send, inst->base_mrf);
1498
1499 /* Our surface is set up as floats, regardless of what actual data is
1500 * stored in it.
1501 */
1502 uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1503 brw_set_desc(p, send,
1504 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size) |
1505 brw_sampler_desc(devinfo, surf_index,
1506 0, /* sampler (unused) */
1507 msg_type, simd_mode, return_format));
1508 }
1509
1510 void
1511 fs_generator::generate_pixel_interpolator_query(fs_inst *inst,
1512 struct brw_reg dst,
1513 struct brw_reg src,
1514 struct brw_reg msg_data,
1515 unsigned msg_type)
1516 {
1517 const bool has_payload = inst->src[0].file != BAD_FILE;
1518 assert(msg_data.type == BRW_REGISTER_TYPE_UD);
1519 assert(inst->size_written % REG_SIZE == 0);
1520
1521 brw_pixel_interpolator_query(p,
1522 retype(dst, BRW_REGISTER_TYPE_UW),
1523 /* If we don't have a payload, what we send doesn't matter */
1524 has_payload ? src : brw_vec8_grf(0, 0),
1525 inst->pi_noperspective,
1526 msg_type,
1527 msg_data,
1528 has_payload ? 2 * inst->exec_size / 8 : 1,
1529 inst->size_written / REG_SIZE);
1530 }
1531
1532 /* Sets vstride=1, width=4, hstride=0 of register src1 during
1533 * the ADD instruction.
1534 */
1535 void
1536 fs_generator::generate_set_sample_id(fs_inst *inst,
1537 struct brw_reg dst,
1538 struct brw_reg src0,
1539 struct brw_reg src1)
1540 {
1541 assert(dst.type == BRW_REGISTER_TYPE_D ||
1542 dst.type == BRW_REGISTER_TYPE_UD);
1543 assert(src0.type == BRW_REGISTER_TYPE_D ||
1544 src0.type == BRW_REGISTER_TYPE_UD);
1545
1546 const struct brw_reg reg = stride(src1, 1, 4, 0);
1547 const unsigned lower_size = MIN2(inst->exec_size,
1548 devinfo->gen >= 8 ? 16 : 8);
1549
1550 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1551 brw_inst *insn = brw_ADD(p, offset(dst, i * lower_size / 8),
1552 offset(src0, (src0.vstride == 0 ? 0 : (1 << (src0.vstride - 1)) *
1553 (i * lower_size / (1 << src0.width))) *
1554 type_sz(src0.type) / REG_SIZE),
1555 suboffset(reg, i * lower_size / 4));
1556 brw_inst_set_exec_size(devinfo, insn, cvt(lower_size) - 1);
1557 brw_inst_set_group(devinfo, insn, inst->group + lower_size * i);
1558 brw_inst_set_compression(devinfo, insn, lower_size > 8);
1559 }
1560 }
1561
1562 void
1563 fs_generator::generate_pack_half_2x16_split(fs_inst *,
1564 struct brw_reg dst,
1565 struct brw_reg x,
1566 struct brw_reg y)
1567 {
1568 assert(devinfo->gen >= 7);
1569 assert(dst.type == BRW_REGISTER_TYPE_UD);
1570 assert(x.type == BRW_REGISTER_TYPE_F);
1571 assert(y.type == BRW_REGISTER_TYPE_F);
1572
1573 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
1574 *
1575 * Because this instruction does not have a 16-bit floating-point type,
1576 * the destination data type must be Word (W).
1577 *
1578 * The destination must be DWord-aligned and specify a horizontal stride
1579 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
1580 * each destination channel and the upper word is not modified.
1581 */
1582 struct brw_reg dst_w = spread(retype(dst, BRW_REGISTER_TYPE_W), 2);
1583
1584 /* Give each 32-bit channel of dst the form below, where "." means
1585 * unchanged.
1586 * 0x....hhhh
1587 */
1588 brw_F32TO16(p, dst_w, y);
1589
1590 /* Now the form:
1591 * 0xhhhh0000
1592 */
1593 brw_SHL(p, dst, dst, brw_imm_ud(16u));
1594
1595 /* And, finally the form of packHalf2x16's output:
1596 * 0xhhhhllll
1597 */
1598 brw_F32TO16(p, dst_w, x);
1599 }
1600
1601 void
1602 fs_generator::generate_shader_time_add(fs_inst *,
1603 struct brw_reg payload,
1604 struct brw_reg offset,
1605 struct brw_reg value)
1606 {
1607 assert(devinfo->gen >= 7);
1608 brw_push_insn_state(p);
1609 brw_set_default_mask_control(p, true);
1610
1611 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1612 struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0),
1613 offset.type);
1614 struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0),
1615 value.type);
1616
1617 assert(offset.file == BRW_IMMEDIATE_VALUE);
1618 if (value.file == BRW_GENERAL_REGISTER_FILE) {
1619 value.width = BRW_WIDTH_1;
1620 value.hstride = BRW_HORIZONTAL_STRIDE_0;
1621 value.vstride = BRW_VERTICAL_STRIDE_0;
1622 } else {
1623 assert(value.file == BRW_IMMEDIATE_VALUE);
1624 }
1625
1626 /* Trying to deal with setup of the params from the IR is crazy in the FS8
1627 * case, and we don't really care about squeezing every bit of performance
1628 * out of this path, so we just emit the MOVs from here.
1629 */
1630 brw_MOV(p, payload_offset, offset);
1631 brw_MOV(p, payload_value, value);
1632 brw_shader_time_add(p, payload,
1633 prog_data->binding_table.shader_time_start);
1634 brw_pop_insn_state(p);
1635 }
1636
1637 void
1638 fs_generator::enable_debug(const char *shader_name)
1639 {
1640 debug_flag = true;
1641 this->shader_name = shader_name;
1642 }
1643
1644 int
1645 fs_generator::generate_code(const cfg_t *cfg, int dispatch_width,
1646 struct brw_compile_stats *stats)
1647 {
1648 /* align to 64 byte boundary. */
1649 while (p->next_insn_offset % 64)
1650 brw_NOP(p);
1651
1652 this->dispatch_width = dispatch_width;
1653
1654 int start_offset = p->next_insn_offset;
1655 int spill_count = 0, fill_count = 0;
1656 int loop_count = 0;
1657
1658 struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1659
1660 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1661 if (inst->opcode == SHADER_OPCODE_UNDEF)
1662 continue;
1663
1664 struct brw_reg src[4], dst;
1665 unsigned int last_insn_offset = p->next_insn_offset;
1666 bool multiple_instructions_emitted = false;
1667
1668 /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the
1669 * "Register Region Restrictions" section: for BDW, SKL:
1670 *
1671 * "A POW/FDIV operation must not be followed by an instruction
1672 * that requires two destination registers."
1673 *
1674 * The documentation is often lacking annotations for Atom parts,
1675 * and empirically this affects CHV as well.
1676 */
1677 if (devinfo->gen >= 8 &&
1678 devinfo->gen <= 9 &&
1679 p->nr_insn > 1 &&
1680 brw_inst_opcode(devinfo, brw_last_inst) == BRW_OPCODE_MATH &&
1681 brw_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW &&
1682 inst->dst.component_size(inst->exec_size) > REG_SIZE) {
1683 brw_NOP(p);
1684 last_insn_offset = p->next_insn_offset;
1685 }
1686
1687 if (unlikely(debug_flag))
1688 disasm_annotate(disasm_info, inst, p->next_insn_offset);
1689
1690 /* If the instruction writes to more than one register, it needs to be
1691 * explicitly marked as compressed on Gen <= 5. On Gen >= 6 the
1692 * hardware figures out by itself what the right compression mode is,
1693 * but we still need to know whether the instruction is compressed to
1694 * set up the source register regions appropriately.
1695 *
1696 * XXX - This is wrong for instructions that write a single register but
1697 * read more than one which should strictly speaking be treated as
1698 * compressed. For instructions that don't write any registers it
1699 * relies on the destination being a null register of the correct
1700 * type and regioning so the instruction is considered compressed
1701 * or not accordingly.
1702 */
1703 const bool compressed =
1704 inst->dst.component_size(inst->exec_size) > REG_SIZE;
1705 brw_set_default_compression(p, compressed);
1706 brw_set_default_group(p, inst->group);
1707
1708 for (unsigned int i = 0; i < inst->sources; i++) {
1709 src[i] = brw_reg_from_fs_reg(devinfo, inst,
1710 &inst->src[i], compressed);
1711 /* The accumulator result appears to get used for the
1712 * conditional modifier generation. When negating a UD
1713 * value, there is a 33rd bit generated for the sign in the
1714 * accumulator value, so now you can't check, for example,
1715 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
1716 */
1717 assert(!inst->conditional_mod ||
1718 inst->src[i].type != BRW_REGISTER_TYPE_UD ||
1719 !inst->src[i].negate);
1720 }
1721 dst = brw_reg_from_fs_reg(devinfo, inst,
1722 &inst->dst, compressed);
1723
1724 brw_set_default_access_mode(p, BRW_ALIGN_1);
1725 brw_set_default_predicate_control(p, inst->predicate);
1726 brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1727 /* On gen7 and above, hardware automatically adds the group onto the
1728 * flag subregister number. On Sandy Bridge and older, we have to do it
1729 * ourselves.
1730 */
1731 const unsigned flag_subreg = inst->flag_subreg +
1732 (devinfo->gen >= 7 ? 0 : inst->group / 16);
1733 brw_set_default_flag_reg(p, flag_subreg / 2, flag_subreg % 2);
1734 brw_set_default_saturate(p, inst->saturate);
1735 brw_set_default_mask_control(p, inst->force_writemask_all);
1736 brw_set_default_acc_write_control(p, inst->writes_accumulator);
1737
1738 unsigned exec_size = inst->exec_size;
1739 if (devinfo->gen == 7 && !devinfo->is_haswell &&
1740 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) {
1741 exec_size *= 2;
1742 }
1743
1744 brw_set_default_exec_size(p, cvt(exec_size) - 1);
1745
1746 assert(inst->force_writemask_all || inst->exec_size >= 4);
1747 assert(inst->force_writemask_all || inst->group % inst->exec_size == 0);
1748 assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
1749 assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1750
1751 switch (inst->opcode) {
1752 case BRW_OPCODE_MOV:
1753 brw_MOV(p, dst, src[0]);
1754 break;
1755 case BRW_OPCODE_ADD:
1756 brw_ADD(p, dst, src[0], src[1]);
1757 break;
1758 case BRW_OPCODE_MUL:
1759 brw_MUL(p, dst, src[0], src[1]);
1760 break;
1761 case BRW_OPCODE_AVG:
1762 brw_AVG(p, dst, src[0], src[1]);
1763 break;
1764 case BRW_OPCODE_MACH:
1765 brw_MACH(p, dst, src[0], src[1]);
1766 break;
1767
1768 case BRW_OPCODE_LINE:
1769 brw_LINE(p, dst, src[0], src[1]);
1770 break;
1771
1772 case BRW_OPCODE_MAD:
1773 assert(devinfo->gen >= 6);
1774 if (devinfo->gen < 10)
1775 brw_set_default_access_mode(p, BRW_ALIGN_16);
1776 brw_MAD(p, dst, src[0], src[1], src[2]);
1777 break;
1778
1779 case BRW_OPCODE_LRP:
1780 assert(devinfo->gen >= 6 && devinfo->gen <= 10);
1781 if (devinfo->gen < 10)
1782 brw_set_default_access_mode(p, BRW_ALIGN_16);
1783 brw_LRP(p, dst, src[0], src[1], src[2]);
1784 break;
1785
1786 case BRW_OPCODE_FRC:
1787 brw_FRC(p, dst, src[0]);
1788 break;
1789 case BRW_OPCODE_RNDD:
1790 brw_RNDD(p, dst, src[0]);
1791 break;
1792 case BRW_OPCODE_RNDE:
1793 brw_RNDE(p, dst, src[0]);
1794 break;
1795 case BRW_OPCODE_RNDZ:
1796 brw_RNDZ(p, dst, src[0]);
1797 break;
1798
1799 case BRW_OPCODE_AND:
1800 brw_AND(p, dst, src[0], src[1]);
1801 break;
1802 case BRW_OPCODE_OR:
1803 brw_OR(p, dst, src[0], src[1]);
1804 break;
1805 case BRW_OPCODE_XOR:
1806 brw_XOR(p, dst, src[0], src[1]);
1807 break;
1808 case BRW_OPCODE_NOT:
1809 brw_NOT(p, dst, src[0]);
1810 break;
1811 case BRW_OPCODE_ASR:
1812 brw_ASR(p, dst, src[0], src[1]);
1813 break;
1814 case BRW_OPCODE_SHR:
1815 brw_SHR(p, dst, src[0], src[1]);
1816 break;
1817 case BRW_OPCODE_SHL:
1818 brw_SHL(p, dst, src[0], src[1]);
1819 break;
1820 case BRW_OPCODE_ROL:
1821 assert(devinfo->gen >= 11);
1822 assert(src[0].type == dst.type);
1823 brw_ROL(p, dst, src[0], src[1]);
1824 break;
1825 case BRW_OPCODE_ROR:
1826 assert(devinfo->gen >= 11);
1827 assert(src[0].type == dst.type);
1828 brw_ROR(p, dst, src[0], src[1]);
1829 break;
1830 case BRW_OPCODE_F32TO16:
1831 assert(devinfo->gen >= 7);
1832 brw_F32TO16(p, dst, src[0]);
1833 break;
1834 case BRW_OPCODE_F16TO32:
1835 assert(devinfo->gen >= 7);
1836 brw_F16TO32(p, dst, src[0]);
1837 break;
1838 case BRW_OPCODE_CMP:
1839 if (inst->exec_size >= 16 && devinfo->gen == 7 && !devinfo->is_haswell &&
1840 dst.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1841 /* For unknown reasons the WaCMPInstFlagDepClearedEarly workaround
1842 * implemented in the compiler is not sufficient. Overriding the
1843 * type when the destination is the null register is necessary but
1844 * not sufficient by itself.
1845 */
1846 assert(dst.nr == BRW_ARF_NULL);
1847 dst.type = BRW_REGISTER_TYPE_D;
1848 }
1849 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1850 break;
1851 case BRW_OPCODE_SEL:
1852 brw_SEL(p, dst, src[0], src[1]);
1853 break;
1854 case BRW_OPCODE_CSEL:
1855 assert(devinfo->gen >= 8);
1856 if (devinfo->gen < 10)
1857 brw_set_default_access_mode(p, BRW_ALIGN_16);
1858 brw_CSEL(p, dst, src[0], src[1], src[2]);
1859 break;
1860 case BRW_OPCODE_BFREV:
1861 assert(devinfo->gen >= 7);
1862 brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
1863 retype(src[0], BRW_REGISTER_TYPE_UD));
1864 break;
1865 case BRW_OPCODE_FBH:
1866 assert(devinfo->gen >= 7);
1867 brw_FBH(p, retype(dst, src[0].type), src[0]);
1868 break;
1869 case BRW_OPCODE_FBL:
1870 assert(devinfo->gen >= 7);
1871 brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
1872 retype(src[0], BRW_REGISTER_TYPE_UD));
1873 break;
1874 case BRW_OPCODE_LZD:
1875 brw_LZD(p, dst, src[0]);
1876 break;
1877 case BRW_OPCODE_CBIT:
1878 assert(devinfo->gen >= 7);
1879 brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
1880 retype(src[0], BRW_REGISTER_TYPE_UD));
1881 break;
1882 case BRW_OPCODE_ADDC:
1883 assert(devinfo->gen >= 7);
1884 brw_ADDC(p, dst, src[0], src[1]);
1885 break;
1886 case BRW_OPCODE_SUBB:
1887 assert(devinfo->gen >= 7);
1888 brw_SUBB(p, dst, src[0], src[1]);
1889 break;
1890 case BRW_OPCODE_MAC:
1891 brw_MAC(p, dst, src[0], src[1]);
1892 break;
1893
1894 case BRW_OPCODE_BFE:
1895 assert(devinfo->gen >= 7);
1896 if (devinfo->gen < 10)
1897 brw_set_default_access_mode(p, BRW_ALIGN_16);
1898 brw_BFE(p, dst, src[0], src[1], src[2]);
1899 break;
1900
1901 case BRW_OPCODE_BFI1:
1902 assert(devinfo->gen >= 7);
1903 brw_BFI1(p, dst, src[0], src[1]);
1904 break;
1905 case BRW_OPCODE_BFI2:
1906 assert(devinfo->gen >= 7);
1907 if (devinfo->gen < 10)
1908 brw_set_default_access_mode(p, BRW_ALIGN_16);
1909 brw_BFI2(p, dst, src[0], src[1], src[2]);
1910 break;
1911
1912 case BRW_OPCODE_IF:
1913 if (inst->src[0].file != BAD_FILE) {
1914 /* The instruction has an embedded compare (only allowed on gen6) */
1915 assert(devinfo->gen == 6);
1916 gen6_IF(p, inst->conditional_mod, src[0], src[1]);
1917 } else {
1918 brw_IF(p, brw_get_default_exec_size(p));
1919 }
1920 break;
1921
1922 case BRW_OPCODE_ELSE:
1923 brw_ELSE(p);
1924 break;
1925 case BRW_OPCODE_ENDIF:
1926 brw_ENDIF(p);
1927 break;
1928
1929 case BRW_OPCODE_DO:
1930 brw_DO(p, brw_get_default_exec_size(p));
1931 break;
1932
1933 case BRW_OPCODE_BREAK:
1934 brw_BREAK(p);
1935 break;
1936 case BRW_OPCODE_CONTINUE:
1937 brw_CONT(p);
1938 break;
1939
1940 case BRW_OPCODE_WHILE:
1941 brw_WHILE(p);
1942 loop_count++;
1943 break;
1944
1945 case SHADER_OPCODE_RCP:
1946 case SHADER_OPCODE_RSQ:
1947 case SHADER_OPCODE_SQRT:
1948 case SHADER_OPCODE_EXP2:
1949 case SHADER_OPCODE_LOG2:
1950 case SHADER_OPCODE_SIN:
1951 case SHADER_OPCODE_COS:
1952 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1953 if (devinfo->gen >= 6) {
1954 assert(inst->mlen == 0);
1955 assert(devinfo->gen >= 7 || inst->exec_size == 8);
1956 gen6_math(p, dst, brw_math_function(inst->opcode),
1957 src[0], brw_null_reg());
1958 } else {
1959 assert(inst->mlen >= 1);
1960 assert(devinfo->gen == 5 || devinfo->is_g4x || inst->exec_size == 8);
1961 gen4_math(p, dst,
1962 brw_math_function(inst->opcode),
1963 inst->base_mrf, src[0],
1964 BRW_MATH_PRECISION_FULL);
1965 }
1966 break;
1967 case SHADER_OPCODE_INT_QUOTIENT:
1968 case SHADER_OPCODE_INT_REMAINDER:
1969 case SHADER_OPCODE_POW:
1970 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1971 if (devinfo->gen >= 6) {
1972 assert(inst->mlen == 0);
1973 assert((devinfo->gen >= 7 && inst->opcode == SHADER_OPCODE_POW) ||
1974 inst->exec_size == 8);
1975 gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
1976 } else {
1977 assert(inst->mlen >= 1);
1978 assert(inst->exec_size == 8);
1979 gen4_math(p, dst, brw_math_function(inst->opcode),
1980 inst->base_mrf, src[0],
1981 BRW_MATH_PRECISION_FULL);
1982 }
1983 break;
1984 case FS_OPCODE_LINTERP:
1985 multiple_instructions_emitted = generate_linterp(inst, dst, src);
1986 break;
1987 case FS_OPCODE_PIXEL_X:
1988 assert(src[0].type == BRW_REGISTER_TYPE_UW);
1989 src[0].subnr = 0 * type_sz(src[0].type);
1990 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
1991 break;
1992 case FS_OPCODE_PIXEL_Y:
1993 assert(src[0].type == BRW_REGISTER_TYPE_UW);
1994 src[0].subnr = 4 * type_sz(src[0].type);
1995 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
1996 break;
1997
1998 case SHADER_OPCODE_SEND:
1999 generate_send(inst, dst, src[0], src[1], src[2],
2000 inst->ex_mlen > 0 ? src[3] : brw_null_reg());
2001 break;
2002
2003 case SHADER_OPCODE_GET_BUFFER_SIZE:
2004 generate_get_buffer_size(inst, dst, src[0], src[1]);
2005 break;
2006 case SHADER_OPCODE_TEX:
2007 case FS_OPCODE_TXB:
2008 case SHADER_OPCODE_TXD:
2009 case SHADER_OPCODE_TXF:
2010 case SHADER_OPCODE_TXF_CMS:
2011 case SHADER_OPCODE_TXL:
2012 case SHADER_OPCODE_TXS:
2013 case SHADER_OPCODE_LOD:
2014 case SHADER_OPCODE_TG4:
2015 case SHADER_OPCODE_SAMPLEINFO:
2016 assert(inst->src[0].file == BAD_FILE);
2017 generate_tex(inst, dst, src[1], src[2]);
2018 break;
2019
2020 case FS_OPCODE_DDX_COARSE:
2021 case FS_OPCODE_DDX_FINE:
2022 generate_ddx(inst, dst, src[0]);
2023 break;
2024 case FS_OPCODE_DDY_COARSE:
2025 case FS_OPCODE_DDY_FINE:
2026 generate_ddy(inst, dst, src[0]);
2027 break;
2028
2029 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2030 generate_scratch_write(inst, src[0]);
2031 spill_count++;
2032 break;
2033
2034 case SHADER_OPCODE_GEN4_SCRATCH_READ:
2035 generate_scratch_read(inst, dst);
2036 fill_count++;
2037 break;
2038
2039 case SHADER_OPCODE_GEN7_SCRATCH_READ:
2040 generate_scratch_read_gen7(inst, dst);
2041 fill_count++;
2042 break;
2043
2044 case SHADER_OPCODE_MOV_INDIRECT:
2045 generate_mov_indirect(inst, dst, src[0], src[1]);
2046 break;
2047
2048 case SHADER_OPCODE_URB_READ_SIMD8:
2049 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
2050 generate_urb_read(inst, dst, src[0]);
2051 break;
2052
2053 case SHADER_OPCODE_URB_WRITE_SIMD8:
2054 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
2055 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
2056 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
2057 generate_urb_write(inst, src[0]);
2058 break;
2059
2060 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
2061 assert(inst->force_writemask_all);
2062 generate_uniform_pull_constant_load(inst, dst, src[0], src[1]);
2063 break;
2064
2065 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
2066 assert(inst->force_writemask_all);
2067 generate_uniform_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2068 break;
2069
2070 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
2071 generate_varying_pull_constant_load_gen4(inst, dst, src[0]);
2072 break;
2073
2074 case FS_OPCODE_REP_FB_WRITE:
2075 case FS_OPCODE_FB_WRITE:
2076 generate_fb_write(inst, src[0]);
2077 break;
2078
2079 case FS_OPCODE_FB_READ:
2080 generate_fb_read(inst, dst, src[0]);
2081 break;
2082
2083 case FS_OPCODE_DISCARD_JUMP:
2084 generate_discard_jump(inst);
2085 break;
2086
2087 case SHADER_OPCODE_SHADER_TIME_ADD:
2088 generate_shader_time_add(inst, src[0], src[1], src[2]);
2089 break;
2090
2091 case SHADER_OPCODE_MEMORY_FENCE:
2092 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2093 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2094 brw_memory_fence(p, dst, src[0], BRW_OPCODE_SEND, src[1].ud, src[2].ud);
2095 break;
2096
2097 case SHADER_OPCODE_INTERLOCK:
2098 assert(devinfo->gen >= 9);
2099 /* The interlock is basically a memory fence issued via sendc */
2100 brw_memory_fence(p, dst, src[0], BRW_OPCODE_SENDC, false, /* bti */ 0);
2101 break;
2102
2103 case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
2104 const struct brw_reg mask =
2105 brw_stage_has_packed_dispatch(devinfo, stage,
2106 prog_data) ? brw_imm_ud(~0u) :
2107 stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
2108 brw_dmask_reg();
2109 brw_find_live_channel(p, dst, mask);
2110 break;
2111 }
2112
2113 case SHADER_OPCODE_BROADCAST:
2114 assert(inst->force_writemask_all);
2115 brw_broadcast(p, dst, src[0], src[1]);
2116 break;
2117
2118 case SHADER_OPCODE_SHUFFLE:
2119 generate_shuffle(inst, dst, src[0], src[1]);
2120 break;
2121
2122 case SHADER_OPCODE_SEL_EXEC:
2123 assert(inst->force_writemask_all);
2124 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2125 brw_MOV(p, dst, src[1]);
2126 brw_set_default_mask_control(p, BRW_MASK_ENABLE);
2127 brw_MOV(p, dst, src[0]);
2128 break;
2129
2130 case SHADER_OPCODE_QUAD_SWIZZLE:
2131 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2132 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2133 generate_quad_swizzle(inst, dst, src[0], src[1].ud);
2134 break;
2135
2136 case SHADER_OPCODE_CLUSTER_BROADCAST: {
2137 assert(!src[0].negate && !src[0].abs);
2138 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2139 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2140 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2141 assert(src[2].type == BRW_REGISTER_TYPE_UD);
2142 const unsigned component = src[1].ud;
2143 const unsigned cluster_size = src[2].ud;
2144 unsigned vstride = cluster_size;
2145 unsigned width = cluster_size;
2146
2147 /* The maximum exec_size is 32, but the maximum width is only 16. */
2148 if (inst->exec_size == width) {
2149 vstride = 0;
2150 width = 1;
2151 }
2152
2153 struct brw_reg strided = stride(suboffset(src[0], component),
2154 vstride, width, 0);
2155 if (type_sz(src[0].type) > 4 &&
2156 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
2157 /* IVB has an issue (which we found empirically) where it reads
2158 * two address register components per channel for indirectly
2159 * addressed 64-bit sources.
2160 *
2161 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
2162 *
2163 * "When source or destination datatype is 64b or operation is
2164 * integer DWord multiply, indirect addressing must not be
2165 * used."
2166 *
2167 * To work around both of these, we do two integer MOVs insead of
2168 * one 64-bit MOV. Because no double value should ever cross a
2169 * register boundary, it's safe to use the immediate offset in the
2170 * indirect here to handle adding 4 bytes to the offset and avoid
2171 * the extra ADD to the register file.
2172 */
2173 assert(src[0].type == dst.type);
2174 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
2175 subscript(strided, BRW_REGISTER_TYPE_D, 0));
2176 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
2177 subscript(strided, BRW_REGISTER_TYPE_D, 1));
2178 } else {
2179 brw_MOV(p, dst, strided);
2180 }
2181 break;
2182 }
2183
2184 case FS_OPCODE_SET_SAMPLE_ID:
2185 generate_set_sample_id(inst, dst, src[0], src[1]);
2186 break;
2187
2188 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
2189 generate_pack_half_2x16_split(inst, dst, src[0], src[1]);
2190 break;
2191
2192 case FS_OPCODE_PLACEHOLDER_HALT:
2193 /* This is the place where the final HALT needs to be inserted if
2194 * we've emitted any discards. If not, this will emit no code.
2195 */
2196 if (!patch_discard_jumps_to_fb_writes()) {
2197 if (unlikely(debug_flag)) {
2198 disasm_info->use_tail = true;
2199 }
2200 }
2201 break;
2202
2203 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
2204 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2205 GEN7_PIXEL_INTERPOLATOR_LOC_SAMPLE);
2206 break;
2207
2208 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
2209 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2210 GEN7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET);
2211 break;
2212
2213 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
2214 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2215 GEN7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET);
2216 break;
2217
2218 case CS_OPCODE_CS_TERMINATE:
2219 generate_cs_terminate(inst, src[0]);
2220 break;
2221
2222 case SHADER_OPCODE_BARRIER:
2223 generate_barrier(inst, src[0]);
2224 break;
2225
2226 case BRW_OPCODE_DIM:
2227 assert(devinfo->is_haswell);
2228 assert(src[0].type == BRW_REGISTER_TYPE_DF);
2229 assert(dst.type == BRW_REGISTER_TYPE_DF);
2230 brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2231 break;
2232
2233 case SHADER_OPCODE_RND_MODE: {
2234 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2235 /*
2236 * Changes the floating point rounding mode updating the control
2237 * register field defined at cr0.0[5-6] bits.
2238 */
2239 enum brw_rnd_mode mode =
2240 (enum brw_rnd_mode) (src[0].d << BRW_CR0_RND_MODE_SHIFT);
2241 brw_float_controls_mode(p, mode, BRW_CR0_RND_MODE_MASK);
2242 }
2243 break;
2244
2245 case SHADER_OPCODE_FLOAT_CONTROL_MODE:
2246 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2247 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2248 brw_float_controls_mode(p, src[0].d, src[1].d);
2249 break;
2250
2251 default:
2252 unreachable("Unsupported opcode");
2253
2254 case SHADER_OPCODE_LOAD_PAYLOAD:
2255 unreachable("Should be lowered by lower_load_payload()");
2256 }
2257
2258 if (multiple_instructions_emitted)
2259 continue;
2260
2261 if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2262 assert(p->next_insn_offset == last_insn_offset + 16 ||
2263 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2264 "emitting more than 1 instruction");
2265
2266 brw_inst *last = &p->store[last_insn_offset / 16];
2267
2268 if (inst->conditional_mod)
2269 brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2270 brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2271 brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2272 }
2273 }
2274
2275 brw_set_uip_jip(p, start_offset);
2276
2277 /* end of program sentinel */
2278 disasm_new_inst_group(disasm_info, p->next_insn_offset);
2279
2280 #ifndef NDEBUG
2281 bool validated =
2282 #else
2283 if (unlikely(debug_flag))
2284 #endif
2285 brw_validate_instructions(devinfo, p->store,
2286 start_offset,
2287 p->next_insn_offset,
2288 disasm_info);
2289
2290 int before_size = p->next_insn_offset - start_offset;
2291 brw_compact_instructions(p, start_offset, disasm_info);
2292 int after_size = p->next_insn_offset - start_offset;
2293
2294 if (unlikely(debug_flag)) {
2295 unsigned char sha1[21];
2296 char sha1buf[41];
2297
2298 _mesa_sha1_compute(p->store + start_offset / sizeof(brw_inst),
2299 after_size, sha1);
2300 _mesa_sha1_format(sha1buf, sha1);
2301
2302 fprintf(stderr, "Native code for %s (sha1 %s)\n"
2303 "SIMD%d shader: %d instructions. %d loops. %u cycles. "
2304 "%d:%d spills:fills. "
2305 "scheduled with mode %s. "
2306 "Promoted %u constants. "
2307 "Compacted %d to %d bytes (%.0f%%)\n",
2308 shader_name, sha1buf,
2309 dispatch_width, before_size / 16,
2310 loop_count, cfg->cycle_count,
2311 spill_count, fill_count,
2312 shader_stats.scheduler_mode,
2313 shader_stats.promoted_constants,
2314 before_size, after_size,
2315 100.0f * (before_size - after_size) / before_size);
2316
2317 /* overriding the shader makes disasm_info invalid */
2318 if (!brw_try_override_assembly(p, start_offset, sha1buf)) {
2319 dump_assembly(p->store, disasm_info);
2320 } else {
2321 fprintf(stderr, "Successfully overrode shader with sha1 %s\n\n", sha1buf);
2322 }
2323 }
2324 ralloc_free(disasm_info);
2325 assert(validated);
2326
2327 compiler->shader_debug_log(log_data,
2328 "%s SIMD%d shader: %d inst, %d loops, %u cycles, "
2329 "%d:%d spills:fills, "
2330 "scheduled with mode %s, "
2331 "Promoted %u constants, "
2332 "compacted %d to %d bytes.",
2333 _mesa_shader_stage_to_abbrev(stage),
2334 dispatch_width, before_size / 16,
2335 loop_count, cfg->cycle_count,
2336 spill_count, fill_count,
2337 shader_stats.scheduler_mode,
2338 shader_stats.promoted_constants,
2339 before_size, after_size);
2340 if (stats) {
2341 stats->dispatch_width = dispatch_width;
2342 stats->instructions = before_size / 16;
2343 stats->loops = loop_count;
2344 stats->cycles = cfg->cycle_count;
2345 stats->spills = spill_count;
2346 stats->fills = fill_count;
2347 }
2348
2349 return start_offset;
2350 }
2351
2352 const unsigned *
2353 fs_generator::get_assembly()
2354 {
2355 return brw_get_program(p, &prog_data->program_size);
2356 }