intel/fs: Assert that the gen4-6 plane restrictions are followed
[mesa.git] / src / intel / compiler / brw_fs_generator.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_generator.cpp
25 *
26 * This file supports generating code from the FS LIR to the actual
27 * native instructions.
28 */
29
30 #include "brw_eu.h"
31 #include "brw_fs.h"
32 #include "brw_cfg.h"
33
34 static enum brw_reg_file
35 brw_file_from_reg(fs_reg *reg)
36 {
37 switch (reg->file) {
38 case ARF:
39 return BRW_ARCHITECTURE_REGISTER_FILE;
40 case FIXED_GRF:
41 case VGRF:
42 return BRW_GENERAL_REGISTER_FILE;
43 case MRF:
44 return BRW_MESSAGE_REGISTER_FILE;
45 case IMM:
46 return BRW_IMMEDIATE_VALUE;
47 case BAD_FILE:
48 case ATTR:
49 case UNIFORM:
50 unreachable("not reached");
51 }
52 return BRW_ARCHITECTURE_REGISTER_FILE;
53 }
54
55 static struct brw_reg
56 brw_reg_from_fs_reg(const struct gen_device_info *devinfo, fs_inst *inst,
57 fs_reg *reg, bool compressed)
58 {
59 struct brw_reg brw_reg;
60
61 switch (reg->file) {
62 case MRF:
63 assert((reg->nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
64 /* Fallthrough */
65 case VGRF:
66 if (reg->stride == 0) {
67 brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->nr, 0);
68 } else {
69 /* From the Haswell PRM:
70 *
71 * "VertStride must be used to cross GRF register boundaries. This
72 * rule implies that elements within a 'Width' cannot cross GRF
73 * boundaries."
74 *
75 * The maximum width value that could satisfy this restriction is:
76 */
77 const unsigned reg_width = REG_SIZE / (reg->stride * type_sz(reg->type));
78
79 /* Because the hardware can only split source regions at a whole
80 * multiple of width during decompression (i.e. vertically), clamp
81 * the value obtained above to the physical execution size of a
82 * single decompressed chunk of the instruction:
83 */
84 const unsigned phys_width = compressed ? inst->exec_size / 2 :
85 inst->exec_size;
86
87 /* XXX - The equation above is strictly speaking not correct on
88 * hardware that supports unbalanced GRF writes -- On Gen9+
89 * each decompressed chunk of the instruction may have a
90 * different execution size when the number of components
91 * written to each destination GRF is not the same.
92 */
93 const unsigned width = MIN2(reg_width, phys_width);
94 brw_reg = brw_vecn_reg(width, brw_file_from_reg(reg), reg->nr, 0);
95 brw_reg = stride(brw_reg, width * reg->stride, width, reg->stride);
96
97 if (devinfo->gen == 7 && !devinfo->is_haswell) {
98 /* From the IvyBridge PRM (EU Changes by Processor Generation, page 13):
99 * "Each DF (Double Float) operand uses an element size of 4 rather
100 * than 8 and all regioning parameters are twice what the values
101 * would be based on the true element size: ExecSize, Width,
102 * HorzStride, and VertStride. Each DF operand uses a pair of
103 * channels and all masking and swizzing should be adjusted
104 * appropriately."
105 *
106 * From the IvyBridge PRM (Special Requirements for Handling Double
107 * Precision Data Types, page 71):
108 * "In Align1 mode, all regioning parameters like stride, execution
109 * size, and width must use the syntax of a pair of packed
110 * floats. The offsets for these data types must be 64-bit
111 * aligned. The execution size and regioning parameters are in terms
112 * of floats."
113 *
114 * Summarized: when handling DF-typed arguments, ExecSize,
115 * VertStride, and Width must be doubled.
116 *
117 * It applies to BayTrail too.
118 */
119 if (type_sz(reg->type) == 8) {
120 brw_reg.width++;
121 if (brw_reg.vstride > 0)
122 brw_reg.vstride++;
123 assert(brw_reg.hstride == BRW_HORIZONTAL_STRIDE_1);
124 }
125
126 /* When converting from DF->F, we set the destination stride to 2
127 * because each d2f conversion implicitly writes 2 floats, being
128 * the first one the converted value. IVB/BYT actually writes two
129 * F components per SIMD channel, and every other component is
130 * filled with garbage.
131 */
132 if (reg == &inst->dst && get_exec_type_size(inst) == 8 &&
133 type_sz(inst->dst.type) < 8) {
134 assert(brw_reg.hstride > BRW_HORIZONTAL_STRIDE_1);
135 brw_reg.hstride--;
136 }
137 }
138 }
139
140 brw_reg = retype(brw_reg, reg->type);
141 brw_reg = byte_offset(brw_reg, reg->offset);
142 brw_reg.abs = reg->abs;
143 brw_reg.negate = reg->negate;
144 break;
145 case ARF:
146 case FIXED_GRF:
147 case IMM:
148 assert(reg->offset == 0);
149 brw_reg = reg->as_brw_reg();
150 break;
151 case BAD_FILE:
152 /* Probably unused. */
153 brw_reg = brw_null_reg();
154 break;
155 case ATTR:
156 case UNIFORM:
157 unreachable("not reached");
158 }
159
160 /* On HSW+, scalar DF sources can be accessed using the normal <0,1,0>
161 * region, but on IVB and BYT DF regions must be programmed in terms of
162 * floats. A <0,2,1> region accomplishes this.
163 */
164 if (devinfo->gen == 7 && !devinfo->is_haswell &&
165 type_sz(reg->type) == 8 &&
166 brw_reg.vstride == BRW_VERTICAL_STRIDE_0 &&
167 brw_reg.width == BRW_WIDTH_1 &&
168 brw_reg.hstride == BRW_HORIZONTAL_STRIDE_0) {
169 brw_reg.width = BRW_WIDTH_2;
170 brw_reg.hstride = BRW_HORIZONTAL_STRIDE_1;
171 }
172
173 return brw_reg;
174 }
175
176 fs_generator::fs_generator(const struct brw_compiler *compiler, void *log_data,
177 void *mem_ctx,
178 const void *key,
179 struct brw_stage_prog_data *prog_data,
180 unsigned promoted_constants,
181 bool runtime_check_aads_emit,
182 gl_shader_stage stage)
183
184 : compiler(compiler), log_data(log_data),
185 devinfo(compiler->devinfo), key(key),
186 prog_data(prog_data),
187 promoted_constants(promoted_constants),
188 runtime_check_aads_emit(runtime_check_aads_emit), debug_flag(false),
189 stage(stage), mem_ctx(mem_ctx)
190 {
191 p = rzalloc(mem_ctx, struct brw_codegen);
192 brw_init_codegen(devinfo, p, mem_ctx);
193
194 /* In the FS code generator, we are very careful to ensure that we always
195 * set the right execution size so we don't need the EU code to "help" us
196 * by trying to infer it. Sometimes, it infers the wrong thing.
197 */
198 p->automatic_exec_sizes = false;
199 }
200
201 fs_generator::~fs_generator()
202 {
203 }
204
205 class ip_record : public exec_node {
206 public:
207 DECLARE_RALLOC_CXX_OPERATORS(ip_record)
208
209 ip_record(int ip)
210 {
211 this->ip = ip;
212 }
213
214 int ip;
215 };
216
217 bool
218 fs_generator::patch_discard_jumps_to_fb_writes()
219 {
220 if (devinfo->gen < 6 || this->discard_halt_patches.is_empty())
221 return false;
222
223 int scale = brw_jump_scale(p->devinfo);
224
225 /* There is a somewhat strange undocumented requirement of using
226 * HALT, according to the simulator. If some channel has HALTed to
227 * a particular UIP, then by the end of the program, every channel
228 * must have HALTed to that UIP. Furthermore, the tracking is a
229 * stack, so you can't do the final halt of a UIP after starting
230 * halting to a new UIP.
231 *
232 * Symptoms of not emitting this instruction on actual hardware
233 * included GPU hangs and sparkly rendering on the piglit discard
234 * tests.
235 */
236 brw_inst *last_halt = gen6_HALT(p);
237 brw_inst_set_uip(p->devinfo, last_halt, 1 * scale);
238 brw_inst_set_jip(p->devinfo, last_halt, 1 * scale);
239
240 int ip = p->nr_insn;
241
242 foreach_in_list(ip_record, patch_ip, &discard_halt_patches) {
243 brw_inst *patch = &p->store[patch_ip->ip];
244
245 assert(brw_inst_opcode(p->devinfo, patch) == BRW_OPCODE_HALT);
246 /* HALT takes a half-instruction distance from the pre-incremented IP. */
247 brw_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale);
248 }
249
250 this->discard_halt_patches.make_empty();
251 return true;
252 }
253
254 void
255 fs_generator::fire_fb_write(fs_inst *inst,
256 struct brw_reg payload,
257 struct brw_reg implied_header,
258 GLuint nr)
259 {
260 uint32_t msg_control;
261
262 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
263
264 if (devinfo->gen < 6) {
265 brw_push_insn_state(p);
266 brw_set_default_exec_size(p, BRW_EXECUTE_8);
267 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
268 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
269 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
270 brw_MOV(p, offset(payload, 1), brw_vec8_grf(1, 0));
271 brw_pop_insn_state(p);
272 }
273
274 if (inst->opcode == FS_OPCODE_REP_FB_WRITE)
275 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
276 else if (prog_data->dual_src_blend) {
277 if (!inst->group)
278 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
279 else
280 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
281 } else if (inst->exec_size == 16)
282 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
283 else
284 msg_control = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
285
286 /* We assume render targets start at 0, because headerless FB write
287 * messages set "Render Target Index" to 0. Using a different binding
288 * table index would make it impossible to use headerless messages.
289 */
290 const uint32_t surf_index = inst->target;
291
292 bool last_render_target = inst->eot ||
293 (prog_data->dual_src_blend && dispatch_width == 16);
294
295
296 brw_fb_WRITE(p,
297 payload,
298 implied_header,
299 msg_control,
300 surf_index,
301 nr,
302 0,
303 inst->eot,
304 last_render_target,
305 inst->header_size != 0);
306
307 brw_mark_surface_used(&prog_data->base, surf_index);
308 }
309
310 void
311 fs_generator::generate_fb_write(fs_inst *inst, struct brw_reg payload)
312 {
313 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
314 const brw_wm_prog_key * const key = (brw_wm_prog_key * const) this->key;
315 struct brw_reg implied_header;
316
317 if (devinfo->gen < 8 && !devinfo->is_haswell) {
318 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
319 }
320
321 if (inst->base_mrf >= 0)
322 payload = brw_message_reg(inst->base_mrf);
323
324 /* Header is 2 regs, g0 and g1 are the contents. g0 will be implied
325 * move, here's g1.
326 */
327 if (inst->header_size != 0) {
328 brw_push_insn_state(p);
329 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
330 brw_set_default_exec_size(p, BRW_EXECUTE_1);
331 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
332 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
333 brw_set_default_flag_reg(p, 0, 0);
334
335 /* On HSW, the GPU will use the predicate on SENDC, unless the header is
336 * present.
337 */
338 if (prog_data->uses_kill) {
339 struct brw_reg pixel_mask;
340
341 if (devinfo->gen >= 6)
342 pixel_mask = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW);
343 else
344 pixel_mask = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW);
345
346 brw_MOV(p, pixel_mask, brw_flag_reg(0, 1));
347 }
348
349 if (devinfo->gen >= 6) {
350 brw_push_insn_state(p);
351 brw_set_default_exec_size(p, BRW_EXECUTE_16);
352 brw_set_default_compression_control(p, BRW_COMPRESSION_COMPRESSED);
353 brw_MOV(p,
354 retype(payload, BRW_REGISTER_TYPE_UD),
355 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
356 brw_pop_insn_state(p);
357
358 if (inst->target > 0 && key->replicate_alpha) {
359 /* Set "Source0 Alpha Present to RenderTarget" bit in message
360 * header.
361 */
362 brw_OR(p,
363 vec1(retype(payload, BRW_REGISTER_TYPE_UD)),
364 vec1(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)),
365 brw_imm_ud(0x1 << 11));
366 }
367
368 if (inst->target > 0) {
369 /* Set the render target index for choosing BLEND_STATE. */
370 brw_MOV(p, retype(vec1(suboffset(payload, 2)),
371 BRW_REGISTER_TYPE_UD),
372 brw_imm_ud(inst->target));
373 }
374
375 /* Set computes stencil to render target */
376 if (prog_data->computed_stencil) {
377 brw_OR(p,
378 vec1(retype(payload, BRW_REGISTER_TYPE_UD)),
379 vec1(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)),
380 brw_imm_ud(0x1 << 14));
381 }
382
383 implied_header = brw_null_reg();
384 } else {
385 implied_header = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
386 }
387
388 brw_pop_insn_state(p);
389 } else {
390 implied_header = brw_null_reg();
391 }
392
393 if (!runtime_check_aads_emit) {
394 fire_fb_write(inst, payload, implied_header, inst->mlen);
395 } else {
396 /* This can only happen in gen < 6 */
397 assert(devinfo->gen < 6);
398
399 struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
400
401 /* Check runtime bit to detect if we have to send AA data or not */
402 brw_push_insn_state(p);
403 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
404 brw_set_default_exec_size(p, BRW_EXECUTE_1);
405 brw_AND(p,
406 v1_null_ud,
407 retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD),
408 brw_imm_ud(1<<26));
409 brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
410
411 int jmp = brw_JMPI(p, brw_imm_ud(0), BRW_PREDICATE_NORMAL) - p->store;
412 brw_pop_insn_state(p);
413 {
414 /* Don't send AA data */
415 fire_fb_write(inst, offset(payload, 1), implied_header, inst->mlen-1);
416 }
417 brw_land_fwd_jump(p, jmp);
418 fire_fb_write(inst, payload, implied_header, inst->mlen);
419 }
420 }
421
422 void
423 fs_generator::generate_fb_read(fs_inst *inst, struct brw_reg dst,
424 struct brw_reg payload)
425 {
426 assert(inst->size_written % REG_SIZE == 0);
427 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
428 /* We assume that render targets start at binding table index 0. */
429 const unsigned surf_index = inst->target;
430
431 gen9_fb_READ(p, dst, payload, surf_index,
432 inst->header_size, inst->size_written / REG_SIZE,
433 prog_data->persample_dispatch);
434
435 brw_mark_surface_used(&prog_data->base, surf_index);
436 }
437
438 void
439 fs_generator::generate_mov_indirect(fs_inst *inst,
440 struct brw_reg dst,
441 struct brw_reg reg,
442 struct brw_reg indirect_byte_offset)
443 {
444 assert(indirect_byte_offset.type == BRW_REGISTER_TYPE_UD);
445 assert(indirect_byte_offset.file == BRW_GENERAL_REGISTER_FILE);
446 assert(!reg.abs && !reg.negate);
447 assert(reg.type == dst.type);
448
449 unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr;
450
451 if (indirect_byte_offset.file == BRW_IMMEDIATE_VALUE) {
452 imm_byte_offset += indirect_byte_offset.ud;
453
454 reg.nr = imm_byte_offset / REG_SIZE;
455 reg.subnr = imm_byte_offset % REG_SIZE;
456 brw_MOV(p, dst, reg);
457 } else {
458 /* Prior to Broadwell, there are only 8 address registers. */
459 assert(inst->exec_size <= 8 || devinfo->gen >= 8);
460
461 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
462 struct brw_reg addr = vec8(brw_address_reg(0));
463
464 /* The destination stride of an instruction (in bytes) must be greater
465 * than or equal to the size of the rest of the instruction. Since the
466 * address register is of type UW, we can't use a D-type instruction.
467 * In order to get around this, re retype to UW and use a stride.
468 */
469 indirect_byte_offset =
470 retype(spread(indirect_byte_offset, 2), BRW_REGISTER_TYPE_UW);
471
472 /* There are a number of reasons why we don't use the base offset here.
473 * One reason is that the field is only 9 bits which means we can only
474 * use it to access the first 16 GRFs. Also, from the Haswell PRM
475 * section "Register Region Restrictions":
476 *
477 * "The lower bits of the AddressImmediate must not overflow to
478 * change the register address. The lower 5 bits of Address
479 * Immediate when added to lower 5 bits of address register gives
480 * the sub-register offset. The upper bits of Address Immediate
481 * when added to upper bits of address register gives the register
482 * address. Any overflow from sub-register offset is dropped."
483 *
484 * Since the indirect may cause us to cross a register boundary, this
485 * makes the base offset almost useless. We could try and do something
486 * clever where we use a actual base offset if base_offset % 32 == 0 but
487 * that would mean we were generating different code depending on the
488 * base offset. Instead, for the sake of consistency, we'll just do the
489 * add ourselves. This restriction is only listed in the Haswell PRM
490 * but empirical testing indicates that it applies on all older
491 * generations and is lifted on Broadwell.
492 *
493 * In the end, while base_offset is nice to look at in the generated
494 * code, using it saves us 0 instructions and would require quite a bit
495 * of case-by-case work. It's just not worth it.
496 */
497 brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset));
498
499 if (type_sz(reg.type) > 4 &&
500 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
501 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
502 /* IVB has an issue (which we found empirically) where it reads two
503 * address register components per channel for indirectly addressed
504 * 64-bit sources.
505 *
506 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
507 *
508 * "When source or destination datatype is 64b or operation is
509 * integer DWord multiply, indirect addressing must not be used."
510 *
511 * To work around both of these, we do two integer MOVs insead of one
512 * 64-bit MOV. Because no double value should ever cross a register
513 * boundary, it's safe to use the immediate offset in the indirect
514 * here to handle adding 4 bytes to the offset and avoid the extra
515 * ADD to the register file.
516 */
517 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
518 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
519 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
520 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
521 } else {
522 struct brw_reg ind_src = brw_VxH_indirect(0, 0);
523
524 brw_inst *mov = brw_MOV(p, dst, retype(ind_src, reg.type));
525
526 if (devinfo->gen == 6 && dst.file == BRW_MESSAGE_REGISTER_FILE &&
527 !inst->get_next()->is_tail_sentinel() &&
528 ((fs_inst *)inst->get_next())->mlen > 0) {
529 /* From the Sandybridge PRM:
530 *
531 * "[Errata: DevSNB(SNB)] If MRF register is updated by any
532 * instruction that “indexed/indirect” source AND is followed
533 * by a send, the instruction requires a “Switch”. This is to
534 * avoid race condition where send may dispatch before MRF is
535 * updated."
536 */
537 brw_inst_set_thread_control(devinfo, mov, BRW_THREAD_SWITCH);
538 }
539 }
540 }
541 }
542
543 void
544 fs_generator::generate_shuffle(fs_inst *inst,
545 struct brw_reg dst,
546 struct brw_reg src,
547 struct brw_reg idx)
548 {
549 /* Ivy bridge has some strange behavior that makes this a real pain to
550 * implement for 64-bit values so we just don't bother.
551 */
552 assert(devinfo->gen >= 8 || devinfo->is_haswell || type_sz(src.type) <= 4);
553
554 /* Because we're using the address register, we're limited to 8-wide
555 * execution on gen7. On gen8, we're limited to 16-wide by the address
556 * register file and 8-wide for 64-bit types. We could try and make this
557 * instruction splittable higher up in the compiler but that gets weird
558 * because it reads all of the channels regardless of execution size. It's
559 * easier just to split it here.
560 */
561 const unsigned lower_width =
562 (devinfo->gen <= 7 || type_sz(src.type) > 4) ?
563 8 : MIN2(16, inst->exec_size);
564
565 brw_set_default_exec_size(p, cvt(lower_width) - 1);
566 for (unsigned group = 0; group < inst->exec_size; group += lower_width) {
567 brw_set_default_group(p, group);
568
569 if ((src.vstride == 0 && src.hstride == 0) ||
570 idx.file == BRW_IMMEDIATE_VALUE) {
571 /* Trivial, the source is already uniform or the index is a constant.
572 * We will typically not get here if the optimizer is doing its job,
573 * but asserting would be mean.
574 */
575 const unsigned i = idx.file == BRW_IMMEDIATE_VALUE ? idx.ud : 0;
576 brw_MOV(p, suboffset(dst, group), stride(suboffset(src, i), 0, 1, 0));
577 } else {
578 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
579 struct brw_reg addr = vec8(brw_address_reg(0));
580
581 struct brw_reg group_idx = suboffset(idx, group);
582
583 if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) {
584 /* Things get grumpy if the register is too wide. */
585 group_idx.width--;
586 group_idx.vstride--;
587 }
588
589 assert(type_sz(group_idx.type) <= 4);
590 if (type_sz(group_idx.type) == 4) {
591 /* The destination stride of an instruction (in bytes) must be
592 * greater than or equal to the size of the rest of the
593 * instruction. Since the address register is of type UW, we
594 * can't use a D-type instruction. In order to get around this,
595 * re retype to UW and use a stride.
596 */
597 group_idx = retype(spread(group_idx, 2), BRW_REGISTER_TYPE_W);
598 }
599
600 /* Take into account the component size and horizontal stride. */
601 assert(src.vstride == src.hstride + src.width);
602 brw_SHL(p, addr, group_idx,
603 brw_imm_uw(_mesa_logbase2(type_sz(src.type)) +
604 src.hstride - 1));
605
606 /* Add on the register start offset */
607 brw_ADD(p, addr, addr, brw_imm_uw(src.nr * REG_SIZE + src.subnr));
608
609 if (type_sz(src.type) > 4 &&
610 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
611 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
612 /* IVB has an issue (which we found empirically) where it reads
613 * two address register components per channel for indirectly
614 * addressed 64-bit sources.
615 *
616 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
617 *
618 * "When source or destination datatype is 64b or operation is
619 * integer DWord multiply, indirect addressing must not be
620 * used."
621 *
622 * To work around both of these, we do two integer MOVs insead of
623 * one 64-bit MOV. Because no double value should ever cross a
624 * register boundary, it's safe to use the immediate offset in the
625 * indirect here to handle adding 4 bytes to the offset and avoid
626 * the extra ADD to the register file.
627 */
628 struct brw_reg gdst = suboffset(dst, group);
629 struct brw_reg dst_d = retype(spread(gdst, 2),
630 BRW_REGISTER_TYPE_D);
631 brw_MOV(p, dst_d,
632 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
633 brw_MOV(p, byte_offset(dst_d, 4),
634 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
635 } else {
636 brw_MOV(p, suboffset(dst, group),
637 retype(brw_VxH_indirect(0, 0), src.type));
638 }
639 }
640 }
641 }
642
643 void
644 fs_generator::generate_urb_read(fs_inst *inst,
645 struct brw_reg dst,
646 struct brw_reg header)
647 {
648 assert(inst->size_written % REG_SIZE == 0);
649 assert(header.file == BRW_GENERAL_REGISTER_FILE);
650 assert(header.type == BRW_REGISTER_TYPE_UD);
651
652 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
653 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
654 brw_set_src0(p, send, header);
655 brw_set_src1(p, send, brw_imm_ud(0u));
656
657 brw_inst_set_sfid(p->devinfo, send, BRW_SFID_URB);
658 brw_inst_set_urb_opcode(p->devinfo, send, GEN8_URB_OPCODE_SIMD8_READ);
659
660 if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT)
661 brw_inst_set_urb_per_slot_offset(p->devinfo, send, true);
662
663 brw_inst_set_mlen(p->devinfo, send, inst->mlen);
664 brw_inst_set_rlen(p->devinfo, send, inst->size_written / REG_SIZE);
665 brw_inst_set_header_present(p->devinfo, send, true);
666 brw_inst_set_urb_global_offset(p->devinfo, send, inst->offset);
667 }
668
669 void
670 fs_generator::generate_urb_write(fs_inst *inst, struct brw_reg payload)
671 {
672 brw_inst *insn;
673
674 /* WaClearTDRRegBeforeEOTForNonPS.
675 *
676 * WA: Clear tdr register before send EOT in all non-PS shader kernels
677 *
678 * mov(8) tdr0:ud 0x0:ud {NoMask}"
679 */
680 if (inst->eot && p->devinfo->gen == 10) {
681 brw_push_insn_state(p);
682 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
683 brw_MOV(p, brw_tdr_reg(), brw_imm_uw(0));
684 brw_pop_insn_state(p);
685 }
686
687 insn = brw_next_insn(p, BRW_OPCODE_SEND);
688
689 brw_set_dest(p, insn, brw_null_reg());
690 brw_set_src0(p, insn, payload);
691 brw_set_src1(p, insn, brw_imm_d(0));
692
693 brw_inst_set_sfid(p->devinfo, insn, BRW_SFID_URB);
694 brw_inst_set_urb_opcode(p->devinfo, insn, GEN8_URB_OPCODE_SIMD8_WRITE);
695
696 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
697 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
698 brw_inst_set_urb_per_slot_offset(p->devinfo, insn, true);
699
700 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
701 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
702 brw_inst_set_urb_channel_mask_present(p->devinfo, insn, true);
703
704 brw_inst_set_mlen(p->devinfo, insn, inst->mlen);
705 brw_inst_set_rlen(p->devinfo, insn, 0);
706 brw_inst_set_eot(p->devinfo, insn, inst->eot);
707 brw_inst_set_header_present(p->devinfo, insn, true);
708 brw_inst_set_urb_global_offset(p->devinfo, insn, inst->offset);
709 }
710
711 void
712 fs_generator::generate_cs_terminate(fs_inst *inst, struct brw_reg payload)
713 {
714 struct brw_inst *insn;
715
716 insn = brw_next_insn(p, BRW_OPCODE_SEND);
717
718 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
719 brw_set_src0(p, insn, retype(payload, BRW_REGISTER_TYPE_UW));
720 brw_set_src1(p, insn, brw_imm_d(0));
721
722 /* Terminate a compute shader by sending a message to the thread spawner.
723 */
724 brw_inst_set_sfid(devinfo, insn, BRW_SFID_THREAD_SPAWNER);
725 brw_inst_set_mlen(devinfo, insn, 1);
726 brw_inst_set_rlen(devinfo, insn, 0);
727 brw_inst_set_eot(devinfo, insn, inst->eot);
728 brw_inst_set_header_present(devinfo, insn, false);
729
730 brw_inst_set_ts_opcode(devinfo, insn, 0); /* Dereference resource */
731 brw_inst_set_ts_request_type(devinfo, insn, 0); /* Root thread */
732
733 /* Note that even though the thread has a URB resource associated with it,
734 * we set the "do not dereference URB" bit, because the URB resource is
735 * managed by the fixed-function unit, so it will free it automatically.
736 */
737 brw_inst_set_ts_resource_select(devinfo, insn, 1); /* Do not dereference URB */
738
739 brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
740 }
741
742 void
743 fs_generator::generate_barrier(fs_inst *, struct brw_reg src)
744 {
745 brw_barrier(p, src);
746 brw_WAIT(p);
747 }
748
749 bool
750 fs_generator::generate_linterp(fs_inst *inst,
751 struct brw_reg dst, struct brw_reg *src)
752 {
753 /* PLN reads:
754 * / in SIMD16 \
755 * -----------------------------------
756 * | src1+0 | src1+1 | src1+2 | src1+3 |
757 * |-----------------------------------|
758 * |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)|
759 * -----------------------------------
760 *
761 * but for the LINE/MAC pair, the LINE reads Xs and the MAC reads Ys:
762 *
763 * -----------------------------------
764 * | src1+0 | src1+1 | src1+2 | src1+3 |
765 * |-----------------------------------|
766 * |(x0, x1)|(y0, y1)| | | in SIMD8
767 * |-----------------------------------|
768 * |(x0, x1)|(x2, x3)|(y0, y1)|(y2, y3)| in SIMD16
769 * -----------------------------------
770 *
771 * See also: emit_interpolation_setup_gen4().
772 */
773 struct brw_reg delta_x = src[0];
774 struct brw_reg delta_y = offset(src[0], inst->exec_size / 8);
775 struct brw_reg interp = src[1];
776 brw_inst *i[4];
777
778 if (devinfo->gen >= 11) {
779 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_NF);
780 struct brw_reg dwP = suboffset(interp, 0);
781 struct brw_reg dwQ = suboffset(interp, 1);
782 struct brw_reg dwR = suboffset(interp, 3);
783
784 brw_set_default_exec_size(p, BRW_EXECUTE_8);
785
786 if (inst->exec_size == 8) {
787 i[0] = brw_MAD(p, acc, dwR, offset(delta_x, 0), dwP);
788 i[1] = brw_MAD(p, offset(dst, 0), acc, offset(delta_y, 0), dwQ);
789
790 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
791
792 /* brw_set_default_saturate() is called before emitting instructions,
793 * so the saturate bit is set in each instruction, so we need to unset
794 * it on the first instruction of each pair.
795 */
796 brw_inst_set_saturate(p->devinfo, i[0], false);
797 } else {
798 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
799 i[0] = brw_MAD(p, acc, dwR, offset(delta_x, 0), dwP);
800 i[1] = brw_MAD(p, offset(dst, 0), acc, offset(delta_x, 1), dwQ);
801
802 brw_set_default_compression_control(p, BRW_COMPRESSION_2NDHALF);
803 i[2] = brw_MAD(p, acc, dwR, offset(delta_y, 0), dwP);
804 i[3] = brw_MAD(p, offset(dst, 1), acc, offset(delta_y, 1), dwQ);
805
806 brw_set_default_compression_control(p, BRW_COMPRESSION_COMPRESSED);
807
808 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
809 brw_inst_set_cond_modifier(p->devinfo, i[3], inst->conditional_mod);
810
811 /* brw_set_default_saturate() is called before emitting instructions,
812 * so the saturate bit is set in each instruction, so we need to unset
813 * it on the first instruction of each pair.
814 */
815 brw_inst_set_saturate(p->devinfo, i[0], false);
816 brw_inst_set_saturate(p->devinfo, i[2], false);
817 }
818
819 return true;
820 } else if (devinfo->has_pln) {
821 /* From the Sandy Bridge PRM Vol. 4, Pt. 2, Section 8.3.53, "Plane":
822 *
823 * "[DevSNB]:<src1> must be even register aligned.
824 *
825 * This restriction is lifted on Ivy Bridge.
826 */
827 assert(devinfo->gen >= 7 || (delta_x.nr & 1) == 0);
828 brw_PLN(p, dst, interp, delta_x);
829
830 return false;
831 } else {
832 i[0] = brw_LINE(p, brw_null_reg(), interp, delta_x);
833 i[1] = brw_MAC(p, dst, suboffset(interp, 1), delta_y);
834
835 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
836
837 /* brw_set_default_saturate() is called before emitting instructions, so
838 * the saturate bit is set in each instruction, so we need to unset it on
839 * the first instruction.
840 */
841 brw_inst_set_saturate(p->devinfo, i[0], false);
842
843 return true;
844 }
845 }
846
847 void
848 fs_generator::generate_get_buffer_size(fs_inst *inst,
849 struct brw_reg dst,
850 struct brw_reg src,
851 struct brw_reg surf_index)
852 {
853 assert(devinfo->gen >= 7);
854 assert(surf_index.file == BRW_IMMEDIATE_VALUE);
855
856 uint32_t simd_mode;
857 int rlen = 4;
858
859 switch (inst->exec_size) {
860 case 8:
861 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
862 break;
863 case 16:
864 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
865 break;
866 default:
867 unreachable("Invalid width for texture instruction");
868 }
869
870 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
871 rlen = 8;
872 dst = vec16(dst);
873 }
874
875 brw_SAMPLE(p,
876 retype(dst, BRW_REGISTER_TYPE_UW),
877 inst->base_mrf,
878 src,
879 surf_index.ud,
880 0,
881 GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
882 rlen, /* response length */
883 inst->mlen,
884 inst->header_size > 0,
885 simd_mode,
886 BRW_SAMPLER_RETURN_FORMAT_SINT32);
887
888 brw_mark_surface_used(prog_data, surf_index.ud);
889 }
890
891 void
892 fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src,
893 struct brw_reg surface_index,
894 struct brw_reg sampler_index)
895 {
896 assert(inst->size_written % REG_SIZE == 0);
897 int msg_type = -1;
898 uint32_t simd_mode;
899 uint32_t return_format;
900 bool is_combined_send = inst->eot;
901
902 switch (dst.type) {
903 case BRW_REGISTER_TYPE_D:
904 return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
905 break;
906 case BRW_REGISTER_TYPE_UD:
907 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
908 break;
909 default:
910 return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
911 break;
912 }
913
914 /* Stomp the resinfo output type to UINT32. On gens 4-5, the output type
915 * is set as part of the message descriptor. On gen4, the PRM seems to
916 * allow UINT32 and FLOAT32 (i965 PRM, Vol. 4 Section 4.8.1.1), but on
917 * later gens UINT32 is required. Once you hit Sandy Bridge, the bit is
918 * gone from the message descriptor entirely and you just get UINT32 all
919 * the time regasrdless. Since we can really only do non-UINT32 on gen4,
920 * just stomp it to UINT32 all the time.
921 */
922 if (inst->opcode == SHADER_OPCODE_TXS)
923 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
924
925 switch (inst->exec_size) {
926 case 8:
927 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
928 break;
929 case 16:
930 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
931 break;
932 default:
933 unreachable("Invalid width for texture instruction");
934 }
935
936 if (devinfo->gen >= 5) {
937 switch (inst->opcode) {
938 case SHADER_OPCODE_TEX:
939 if (inst->shadow_compare) {
940 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE;
941 } else {
942 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE;
943 }
944 break;
945 case FS_OPCODE_TXB:
946 if (inst->shadow_compare) {
947 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE;
948 } else {
949 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
950 }
951 break;
952 case SHADER_OPCODE_TXL:
953 if (inst->shadow_compare) {
954 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
955 } else {
956 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
957 }
958 break;
959 case SHADER_OPCODE_TXL_LZ:
960 assert(devinfo->gen >= 9);
961 if (inst->shadow_compare) {
962 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_C_LZ;
963 } else {
964 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LZ;
965 }
966 break;
967 case SHADER_OPCODE_TXS:
968 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
969 break;
970 case SHADER_OPCODE_TXD:
971 if (inst->shadow_compare) {
972 /* Gen7.5+. Otherwise, lowered in NIR */
973 assert(devinfo->gen >= 8 || devinfo->is_haswell);
974 msg_type = HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE;
975 } else {
976 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
977 }
978 break;
979 case SHADER_OPCODE_TXF:
980 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
981 break;
982 case SHADER_OPCODE_TXF_LZ:
983 assert(devinfo->gen >= 9);
984 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LD_LZ;
985 break;
986 case SHADER_OPCODE_TXF_CMS_W:
987 assert(devinfo->gen >= 9);
988 msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W;
989 break;
990 case SHADER_OPCODE_TXF_CMS:
991 if (devinfo->gen >= 7)
992 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS;
993 else
994 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
995 break;
996 case SHADER_OPCODE_TXF_UMS:
997 assert(devinfo->gen >= 7);
998 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS;
999 break;
1000 case SHADER_OPCODE_TXF_MCS:
1001 assert(devinfo->gen >= 7);
1002 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
1003 break;
1004 case SHADER_OPCODE_LOD:
1005 msg_type = GEN5_SAMPLER_MESSAGE_LOD;
1006 break;
1007 case SHADER_OPCODE_TG4:
1008 if (inst->shadow_compare) {
1009 assert(devinfo->gen >= 7);
1010 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C;
1011 } else {
1012 assert(devinfo->gen >= 6);
1013 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
1014 }
1015 break;
1016 case SHADER_OPCODE_TG4_OFFSET:
1017 assert(devinfo->gen >= 7);
1018 if (inst->shadow_compare) {
1019 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C;
1020 } else {
1021 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
1022 }
1023 break;
1024 case SHADER_OPCODE_SAMPLEINFO:
1025 msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
1026 break;
1027 default:
1028 unreachable("not reached");
1029 }
1030 } else {
1031 switch (inst->opcode) {
1032 case SHADER_OPCODE_TEX:
1033 /* Note that G45 and older determines shadow compare and dispatch width
1034 * from message length for most messages.
1035 */
1036 if (inst->exec_size == 8) {
1037 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
1038 if (inst->shadow_compare) {
1039 assert(inst->mlen == 6);
1040 } else {
1041 assert(inst->mlen <= 4);
1042 }
1043 } else {
1044 if (inst->shadow_compare) {
1045 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
1046 assert(inst->mlen == 9);
1047 } else {
1048 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
1049 assert(inst->mlen <= 7 && inst->mlen % 2 == 1);
1050 }
1051 }
1052 break;
1053 case FS_OPCODE_TXB:
1054 if (inst->shadow_compare) {
1055 assert(inst->exec_size == 8);
1056 assert(inst->mlen == 6);
1057 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE;
1058 } else {
1059 assert(inst->mlen == 9);
1060 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1061 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1062 }
1063 break;
1064 case SHADER_OPCODE_TXL:
1065 if (inst->shadow_compare) {
1066 assert(inst->exec_size == 8);
1067 assert(inst->mlen == 6);
1068 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE;
1069 } else {
1070 assert(inst->mlen == 9);
1071 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD;
1072 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1073 }
1074 break;
1075 case SHADER_OPCODE_TXD:
1076 /* There is no sample_d_c message; comparisons are done manually */
1077 assert(inst->exec_size == 8);
1078 assert(inst->mlen == 7 || inst->mlen == 10);
1079 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS;
1080 break;
1081 case SHADER_OPCODE_TXF:
1082 assert(inst->mlen <= 9 && inst->mlen % 2 == 1);
1083 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1084 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1085 break;
1086 case SHADER_OPCODE_TXS:
1087 assert(inst->mlen == 3);
1088 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO;
1089 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1090 break;
1091 default:
1092 unreachable("not reached");
1093 }
1094 }
1095 assert(msg_type != -1);
1096
1097 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
1098 dst = vec16(dst);
1099 }
1100
1101 assert(devinfo->gen < 7 || inst->header_size == 0 ||
1102 src.file == BRW_GENERAL_REGISTER_FILE);
1103
1104 assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
1105
1106 /* Load the message header if present. If there's a texture offset,
1107 * we need to set it up explicitly and load the offset bitfield.
1108 * Otherwise, we can use an implied move from g0 to the first message reg.
1109 */
1110 if (inst->header_size != 0 && devinfo->gen < 7) {
1111 if (devinfo->gen < 6 && !inst->offset) {
1112 /* Set up an implied move from g0 to the MRF. */
1113 src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
1114 } else {
1115 assert(inst->base_mrf != -1);
1116 struct brw_reg header_reg = brw_message_reg(inst->base_mrf);
1117
1118 brw_push_insn_state(p);
1119 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1120 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1121 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1122 /* Explicitly set up the message header by copying g0 to the MRF. */
1123 brw_MOV(p, header_reg, brw_vec8_grf(0, 0));
1124
1125 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1126 if (inst->offset) {
1127 /* Set the offset bits in DWord 2. */
1128 brw_MOV(p, get_element_ud(header_reg, 2),
1129 brw_imm_ud(inst->offset));
1130 }
1131
1132 brw_pop_insn_state(p);
1133 }
1134 }
1135
1136 uint32_t base_binding_table_index = (inst->opcode == SHADER_OPCODE_TG4 ||
1137 inst->opcode == SHADER_OPCODE_TG4_OFFSET)
1138 ? prog_data->binding_table.gather_texture_start
1139 : prog_data->binding_table.texture_start;
1140
1141 if (surface_index.file == BRW_IMMEDIATE_VALUE &&
1142 sampler_index.file == BRW_IMMEDIATE_VALUE) {
1143 uint32_t surface = surface_index.ud;
1144 uint32_t sampler = sampler_index.ud;
1145
1146 brw_SAMPLE(p,
1147 retype(dst, BRW_REGISTER_TYPE_UW),
1148 inst->base_mrf,
1149 src,
1150 surface + base_binding_table_index,
1151 sampler % 16,
1152 msg_type,
1153 inst->size_written / REG_SIZE,
1154 inst->mlen,
1155 inst->header_size != 0,
1156 simd_mode,
1157 return_format);
1158
1159 brw_mark_surface_used(prog_data, surface + base_binding_table_index);
1160 } else {
1161 /* Non-const sampler index */
1162
1163 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1164 struct brw_reg surface_reg = vec1(retype(surface_index, BRW_REGISTER_TYPE_UD));
1165 struct brw_reg sampler_reg = vec1(retype(sampler_index, BRW_REGISTER_TYPE_UD));
1166
1167 brw_push_insn_state(p);
1168 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1169 brw_set_default_access_mode(p, BRW_ALIGN_1);
1170 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1171
1172 if (brw_regs_equal(&surface_reg, &sampler_reg)) {
1173 brw_MUL(p, addr, sampler_reg, brw_imm_uw(0x101));
1174 } else {
1175 if (sampler_reg.file == BRW_IMMEDIATE_VALUE) {
1176 brw_OR(p, addr, surface_reg, brw_imm_ud(sampler_reg.ud << 8));
1177 } else {
1178 brw_SHL(p, addr, sampler_reg, brw_imm_ud(8));
1179 brw_OR(p, addr, addr, surface_reg);
1180 }
1181 }
1182 if (base_binding_table_index)
1183 brw_ADD(p, addr, addr, brw_imm_ud(base_binding_table_index));
1184 brw_AND(p, addr, addr, brw_imm_ud(0xfff));
1185
1186 brw_pop_insn_state(p);
1187
1188 /* dst = send(offset, a0.0 | <descriptor>) */
1189 brw_inst *insn = brw_send_indirect_message(
1190 p, BRW_SFID_SAMPLER, dst, src, addr);
1191 brw_set_sampler_message(p, insn,
1192 0 /* surface */,
1193 0 /* sampler */,
1194 msg_type,
1195 inst->size_written / REG_SIZE,
1196 inst->mlen /* mlen */,
1197 inst->header_size != 0 /* header */,
1198 simd_mode,
1199 return_format);
1200
1201 /* visitor knows more than we do about the surface limit required,
1202 * so has already done marking.
1203 */
1204 }
1205
1206 if (is_combined_send) {
1207 brw_inst_set_eot(p->devinfo, brw_last_inst, true);
1208 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDC);
1209 }
1210 }
1211
1212
1213 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
1214 * looking like:
1215 *
1216 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
1217 *
1218 * Ideally, we want to produce:
1219 *
1220 * DDX DDY
1221 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
1222 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
1223 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
1224 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
1225 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
1226 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
1227 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
1228 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
1229 *
1230 * and add another set of two more subspans if in 16-pixel dispatch mode.
1231 *
1232 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
1233 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
1234 * pair. But the ideal approximation may impose a huge performance cost on
1235 * sample_d. On at least Haswell, sample_d instruction does some
1236 * optimizations if the same LOD is used for all pixels in the subspan.
1237 *
1238 * For DDY, we need to use ALIGN16 mode since it's capable of doing the
1239 * appropriate swizzling.
1240 */
1241 void
1242 fs_generator::generate_ddx(const fs_inst *inst,
1243 struct brw_reg dst, struct brw_reg src)
1244 {
1245 unsigned vstride, width;
1246
1247 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1248 /* produce accurate derivatives */
1249 vstride = BRW_VERTICAL_STRIDE_2;
1250 width = BRW_WIDTH_2;
1251 } else {
1252 /* replicate the derivative at the top-left pixel to other pixels */
1253 vstride = BRW_VERTICAL_STRIDE_4;
1254 width = BRW_WIDTH_4;
1255 }
1256
1257 struct brw_reg src0 = src;
1258 struct brw_reg src1 = src;
1259
1260 src0.subnr = sizeof(float);
1261 src0.vstride = vstride;
1262 src0.width = width;
1263 src0.hstride = BRW_HORIZONTAL_STRIDE_0;
1264 src1.vstride = vstride;
1265 src1.width = width;
1266 src1.hstride = BRW_HORIZONTAL_STRIDE_0;
1267
1268 brw_ADD(p, dst, src0, negate(src1));
1269 }
1270
1271 /* The negate_value boolean is used to negate the derivative computation for
1272 * FBOs, since they place the origin at the upper left instead of the lower
1273 * left.
1274 */
1275 void
1276 fs_generator::generate_ddy(const fs_inst *inst,
1277 struct brw_reg dst, struct brw_reg src)
1278 {
1279 if (inst->opcode == FS_OPCODE_DDY_FINE) {
1280 /* produce accurate derivatives */
1281 if (devinfo->gen >= 11) {
1282 src = stride(src, 0, 2, 1);
1283 struct brw_reg src_0 = byte_offset(src, 0 * sizeof(float));
1284 struct brw_reg src_2 = byte_offset(src, 2 * sizeof(float));
1285 struct brw_reg src_4 = byte_offset(src, 4 * sizeof(float));
1286 struct brw_reg src_6 = byte_offset(src, 6 * sizeof(float));
1287 struct brw_reg src_8 = byte_offset(src, 8 * sizeof(float));
1288 struct brw_reg src_10 = byte_offset(src, 10 * sizeof(float));
1289 struct brw_reg src_12 = byte_offset(src, 12 * sizeof(float));
1290 struct brw_reg src_14 = byte_offset(src, 14 * sizeof(float));
1291
1292 struct brw_reg dst_0 = byte_offset(dst, 0 * sizeof(float));
1293 struct brw_reg dst_4 = byte_offset(dst, 4 * sizeof(float));
1294 struct brw_reg dst_8 = byte_offset(dst, 8 * sizeof(float));
1295 struct brw_reg dst_12 = byte_offset(dst, 12 * sizeof(float));
1296
1297 brw_push_insn_state(p);
1298 brw_set_default_exec_size(p, BRW_EXECUTE_4);
1299
1300 brw_ADD(p, dst_0, negate(src_0), src_2);
1301 brw_ADD(p, dst_4, negate(src_4), src_6);
1302
1303 if (inst->exec_size == 16) {
1304 brw_ADD(p, dst_8, negate(src_8), src_10);
1305 brw_ADD(p, dst_12, negate(src_12), src_14);
1306 }
1307
1308 brw_pop_insn_state(p);
1309 } else {
1310 struct brw_reg src0 = stride(src, 4, 4, 1);
1311 struct brw_reg src1 = stride(src, 4, 4, 1);
1312 src0.swizzle = BRW_SWIZZLE_XYXY;
1313 src1.swizzle = BRW_SWIZZLE_ZWZW;
1314
1315 brw_push_insn_state(p);
1316 brw_set_default_access_mode(p, BRW_ALIGN_16);
1317 brw_ADD(p, dst, negate(src0), src1);
1318 brw_pop_insn_state(p);
1319 }
1320 } else {
1321 /* replicate the derivative at the top-left pixel to other pixels */
1322 struct brw_reg src0 = stride(src, 4, 4, 0);
1323 struct brw_reg src1 = stride(src, 4, 4, 0);
1324 src0.subnr = 0 * sizeof(float);
1325 src1.subnr = 2 * sizeof(float);
1326
1327 brw_ADD(p, dst, negate(src0), src1);
1328 }
1329 }
1330
1331 void
1332 fs_generator::generate_discard_jump(fs_inst *)
1333 {
1334 assert(devinfo->gen >= 6);
1335
1336 /* This HALT will be patched up at FB write time to point UIP at the end of
1337 * the program, and at brw_uip_jip() JIP will be set to the end of the
1338 * current block (or the program).
1339 */
1340 this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn));
1341 gen6_HALT(p);
1342 }
1343
1344 void
1345 fs_generator::generate_scratch_write(fs_inst *inst, struct brw_reg src)
1346 {
1347 /* The 32-wide messages only respect the first 16-wide half of the channel
1348 * enable signals which are replicated identically for the second group of
1349 * 16 channels, so we cannot use them unless the write is marked
1350 * force_writemask_all.
1351 */
1352 const unsigned lower_size = inst->force_writemask_all ? inst->exec_size :
1353 MIN2(16, inst->exec_size);
1354 const unsigned block_size = 4 * lower_size / REG_SIZE;
1355 assert(inst->mlen != 0);
1356
1357 brw_push_insn_state(p);
1358 brw_set_default_exec_size(p, cvt(lower_size) - 1);
1359 brw_set_default_compression(p, lower_size > 8);
1360
1361 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1362 brw_set_default_group(p, inst->group + lower_size * i);
1363
1364 brw_MOV(p, brw_uvec_mrf(lower_size, inst->base_mrf + 1, 0),
1365 retype(offset(src, block_size * i), BRW_REGISTER_TYPE_UD));
1366
1367 brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf),
1368 block_size,
1369 inst->offset + block_size * REG_SIZE * i);
1370 }
1371
1372 brw_pop_insn_state(p);
1373 }
1374
1375 void
1376 fs_generator::generate_scratch_read(fs_inst *inst, struct brw_reg dst)
1377 {
1378 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1379 assert(inst->mlen != 0);
1380
1381 brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf),
1382 inst->exec_size / 8, inst->offset);
1383 }
1384
1385 void
1386 fs_generator::generate_scratch_read_gen7(fs_inst *inst, struct brw_reg dst)
1387 {
1388 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1389
1390 gen7_block_read_scratch(p, dst, inst->exec_size / 8, inst->offset);
1391 }
1392
1393 void
1394 fs_generator::generate_uniform_pull_constant_load(fs_inst *inst,
1395 struct brw_reg dst,
1396 struct brw_reg index,
1397 struct brw_reg offset)
1398 {
1399 assert(type_sz(dst.type) == 4);
1400 assert(inst->mlen != 0);
1401
1402 assert(index.file == BRW_IMMEDIATE_VALUE &&
1403 index.type == BRW_REGISTER_TYPE_UD);
1404 uint32_t surf_index = index.ud;
1405
1406 assert(offset.file == BRW_IMMEDIATE_VALUE &&
1407 offset.type == BRW_REGISTER_TYPE_UD);
1408 uint32_t read_offset = offset.ud;
1409
1410 brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
1411 read_offset, surf_index);
1412 }
1413
1414 void
1415 fs_generator::generate_uniform_pull_constant_load_gen7(fs_inst *inst,
1416 struct brw_reg dst,
1417 struct brw_reg index,
1418 struct brw_reg payload)
1419 {
1420 assert(index.type == BRW_REGISTER_TYPE_UD);
1421 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1422 assert(type_sz(dst.type) == 4);
1423
1424 if (index.file == BRW_IMMEDIATE_VALUE) {
1425 const uint32_t surf_index = index.ud;
1426
1427 brw_push_insn_state(p);
1428 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1429 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1430 brw_pop_insn_state(p);
1431
1432 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
1433 brw_set_src0(p, send, retype(payload, BRW_REGISTER_TYPE_UD));
1434 brw_set_dp_read_message(p, send, surf_index,
1435 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1436 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1437 GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1438 1, /* mlen */
1439 true, /* header */
1440 DIV_ROUND_UP(inst->size_written, REG_SIZE));
1441
1442 } else {
1443 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1444
1445 brw_push_insn_state(p);
1446 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1447
1448 /* a0.0 = surf_index & 0xff */
1449 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1450 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1451 brw_set_dest(p, insn_and, addr);
1452 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1453 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1454
1455 /* dst = send(payload, a0.0 | <descriptor>) */
1456 brw_inst *insn = brw_send_indirect_message(
1457 p, GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1458 retype(dst, BRW_REGISTER_TYPE_UD),
1459 retype(payload, BRW_REGISTER_TYPE_UD), addr);
1460 brw_set_dp_read_message(p, insn, 0 /* surface */,
1461 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1462 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1463 GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1464 1, /* mlen */
1465 true, /* header */
1466 DIV_ROUND_UP(inst->size_written, REG_SIZE));
1467
1468 brw_pop_insn_state(p);
1469 }
1470 }
1471
1472 void
1473 fs_generator::generate_varying_pull_constant_load_gen4(fs_inst *inst,
1474 struct brw_reg dst,
1475 struct brw_reg index)
1476 {
1477 assert(devinfo->gen < 7); /* Should use the gen7 variant. */
1478 assert(inst->header_size != 0);
1479 assert(inst->mlen);
1480
1481 assert(index.file == BRW_IMMEDIATE_VALUE &&
1482 index.type == BRW_REGISTER_TYPE_UD);
1483 uint32_t surf_index = index.ud;
1484
1485 uint32_t simd_mode, rlen, msg_type;
1486 if (inst->exec_size == 16) {
1487 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1488 rlen = 8;
1489 } else {
1490 assert(inst->exec_size == 8);
1491 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1492 rlen = 4;
1493 }
1494
1495 if (devinfo->gen >= 5)
1496 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1497 else {
1498 /* We always use the SIMD16 message so that we only have to load U, and
1499 * not V or R.
1500 */
1501 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1502 assert(inst->mlen == 3);
1503 assert(inst->size_written == 8 * REG_SIZE);
1504 rlen = 8;
1505 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1506 }
1507
1508 struct brw_reg header = brw_vec8_grf(0, 0);
1509 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1510
1511 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1512 brw_inst_set_compression(devinfo, send, false);
1513 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1514 brw_set_src0(p, send, header);
1515 if (devinfo->gen < 6)
1516 brw_inst_set_base_mrf(p->devinfo, send, inst->base_mrf);
1517
1518 /* Our surface is set up as floats, regardless of what actual data is
1519 * stored in it.
1520 */
1521 uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1522 brw_set_sampler_message(p, send,
1523 surf_index,
1524 0, /* sampler (unused) */
1525 msg_type,
1526 rlen,
1527 inst->mlen,
1528 inst->header_size != 0,
1529 simd_mode,
1530 return_format);
1531 }
1532
1533 void
1534 fs_generator::generate_varying_pull_constant_load_gen7(fs_inst *inst,
1535 struct brw_reg dst,
1536 struct brw_reg index,
1537 struct brw_reg offset)
1538 {
1539 assert(devinfo->gen >= 7);
1540 /* Varying-offset pull constant loads are treated as a normal expression on
1541 * gen7, so the fact that it's a send message is hidden at the IR level.
1542 */
1543 assert(inst->header_size == 0);
1544 assert(!inst->mlen);
1545 assert(index.type == BRW_REGISTER_TYPE_UD);
1546
1547 uint32_t simd_mode, rlen, mlen;
1548 if (inst->exec_size == 16) {
1549 mlen = 2;
1550 rlen = 8;
1551 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1552 } else {
1553 assert(inst->exec_size == 8);
1554 mlen = 1;
1555 rlen = 4;
1556 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1557 }
1558
1559 if (index.file == BRW_IMMEDIATE_VALUE) {
1560
1561 uint32_t surf_index = index.ud;
1562
1563 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1564 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1565 brw_set_src0(p, send, offset);
1566 brw_set_sampler_message(p, send,
1567 surf_index,
1568 0, /* LD message ignores sampler unit */
1569 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1570 rlen,
1571 mlen,
1572 false, /* no header */
1573 simd_mode,
1574 0);
1575
1576 } else {
1577
1578 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1579
1580 brw_push_insn_state(p);
1581 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1582
1583 /* a0.0 = surf_index & 0xff */
1584 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1585 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1586 brw_set_dest(p, insn_and, addr);
1587 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1588 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1589
1590 brw_pop_insn_state(p);
1591
1592 /* dst = send(offset, a0.0 | <descriptor>) */
1593 brw_inst *insn = brw_send_indirect_message(
1594 p, BRW_SFID_SAMPLER, retype(dst, BRW_REGISTER_TYPE_UW),
1595 offset, addr);
1596 brw_set_sampler_message(p, insn,
1597 0 /* surface */,
1598 0 /* sampler */,
1599 GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1600 rlen /* rlen */,
1601 mlen /* mlen */,
1602 false /* header */,
1603 simd_mode,
1604 0);
1605 }
1606 }
1607
1608 /**
1609 * Cause the current pixel/sample mask (from R1.7 bits 15:0) to be transferred
1610 * into the flags register (f0.0).
1611 *
1612 * Used only on Gen6 and above.
1613 */
1614 void
1615 fs_generator::generate_mov_dispatch_to_flags(fs_inst *inst)
1616 {
1617 struct brw_reg flags = brw_flag_subreg(inst->flag_subreg);
1618 struct brw_reg dispatch_mask;
1619
1620 if (devinfo->gen >= 6)
1621 dispatch_mask = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW);
1622 else
1623 dispatch_mask = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW);
1624
1625 brw_push_insn_state(p);
1626 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1627 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1628 brw_MOV(p, flags, dispatch_mask);
1629 brw_pop_insn_state(p);
1630 }
1631
1632 void
1633 fs_generator::generate_pixel_interpolator_query(fs_inst *inst,
1634 struct brw_reg dst,
1635 struct brw_reg src,
1636 struct brw_reg msg_data,
1637 unsigned msg_type)
1638 {
1639 assert(inst->size_written % REG_SIZE == 0);
1640 assert(msg_data.type == BRW_REGISTER_TYPE_UD);
1641
1642 brw_pixel_interpolator_query(p,
1643 retype(dst, BRW_REGISTER_TYPE_UW),
1644 src,
1645 inst->pi_noperspective,
1646 msg_type,
1647 msg_data,
1648 inst->mlen,
1649 inst->size_written / REG_SIZE);
1650 }
1651
1652 /* Sets vstride=1, width=4, hstride=0 of register src1 during
1653 * the ADD instruction.
1654 */
1655 void
1656 fs_generator::generate_set_sample_id(fs_inst *inst,
1657 struct brw_reg dst,
1658 struct brw_reg src0,
1659 struct brw_reg src1)
1660 {
1661 assert(dst.type == BRW_REGISTER_TYPE_D ||
1662 dst.type == BRW_REGISTER_TYPE_UD);
1663 assert(src0.type == BRW_REGISTER_TYPE_D ||
1664 src0.type == BRW_REGISTER_TYPE_UD);
1665
1666 struct brw_reg reg = stride(src1, 1, 4, 0);
1667 if (devinfo->gen >= 8 || inst->exec_size == 8) {
1668 brw_ADD(p, dst, src0, reg);
1669 } else if (inst->exec_size == 16) {
1670 brw_push_insn_state(p);
1671 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1672 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1673 brw_ADD(p, firsthalf(dst), firsthalf(src0), reg);
1674 brw_set_default_compression_control(p, BRW_COMPRESSION_2NDHALF);
1675 brw_ADD(p, sechalf(dst), sechalf(src0), suboffset(reg, 2));
1676 brw_pop_insn_state(p);
1677 }
1678 }
1679
1680 void
1681 fs_generator::generate_pack_half_2x16_split(fs_inst *,
1682 struct brw_reg dst,
1683 struct brw_reg x,
1684 struct brw_reg y)
1685 {
1686 assert(devinfo->gen >= 7);
1687 assert(dst.type == BRW_REGISTER_TYPE_UD);
1688 assert(x.type == BRW_REGISTER_TYPE_F);
1689 assert(y.type == BRW_REGISTER_TYPE_F);
1690
1691 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
1692 *
1693 * Because this instruction does not have a 16-bit floating-point type,
1694 * the destination data type must be Word (W).
1695 *
1696 * The destination must be DWord-aligned and specify a horizontal stride
1697 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
1698 * each destination channel and the upper word is not modified.
1699 */
1700 struct brw_reg dst_w = spread(retype(dst, BRW_REGISTER_TYPE_W), 2);
1701
1702 /* Give each 32-bit channel of dst the form below, where "." means
1703 * unchanged.
1704 * 0x....hhhh
1705 */
1706 brw_F32TO16(p, dst_w, y);
1707
1708 /* Now the form:
1709 * 0xhhhh0000
1710 */
1711 brw_SHL(p, dst, dst, brw_imm_ud(16u));
1712
1713 /* And, finally the form of packHalf2x16's output:
1714 * 0xhhhhllll
1715 */
1716 brw_F32TO16(p, dst_w, x);
1717 }
1718
1719 void
1720 fs_generator::generate_unpack_half_2x16_split(fs_inst *inst,
1721 struct brw_reg dst,
1722 struct brw_reg src)
1723 {
1724 assert(devinfo->gen >= 7);
1725 assert(dst.type == BRW_REGISTER_TYPE_F);
1726 assert(src.type == BRW_REGISTER_TYPE_UD);
1727
1728 /* From the Ivybridge PRM, Vol4, Part3, Section 6.26 f16to32:
1729 *
1730 * Because this instruction does not have a 16-bit floating-point type,
1731 * the source data type must be Word (W). The destination type must be
1732 * F (Float).
1733 */
1734 struct brw_reg src_w = spread(retype(src, BRW_REGISTER_TYPE_W), 2);
1735
1736 /* Each channel of src has the form of unpackHalf2x16's input: 0xhhhhllll.
1737 * For the Y case, we wish to access only the upper word; therefore
1738 * a 16-bit subregister offset is needed.
1739 */
1740 assert(inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X ||
1741 inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y);
1742 if (inst->opcode == FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y)
1743 src_w.subnr += 2;
1744
1745 brw_F16TO32(p, dst, src_w);
1746 }
1747
1748 void
1749 fs_generator::generate_shader_time_add(fs_inst *,
1750 struct brw_reg payload,
1751 struct brw_reg offset,
1752 struct brw_reg value)
1753 {
1754 assert(devinfo->gen >= 7);
1755 brw_push_insn_state(p);
1756 brw_set_default_mask_control(p, true);
1757
1758 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1759 struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0),
1760 offset.type);
1761 struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0),
1762 value.type);
1763
1764 assert(offset.file == BRW_IMMEDIATE_VALUE);
1765 if (value.file == BRW_GENERAL_REGISTER_FILE) {
1766 value.width = BRW_WIDTH_1;
1767 value.hstride = BRW_HORIZONTAL_STRIDE_0;
1768 value.vstride = BRW_VERTICAL_STRIDE_0;
1769 } else {
1770 assert(value.file == BRW_IMMEDIATE_VALUE);
1771 }
1772
1773 /* Trying to deal with setup of the params from the IR is crazy in the FS8
1774 * case, and we don't really care about squeezing every bit of performance
1775 * out of this path, so we just emit the MOVs from here.
1776 */
1777 brw_MOV(p, payload_offset, offset);
1778 brw_MOV(p, payload_value, value);
1779 brw_shader_time_add(p, payload,
1780 prog_data->binding_table.shader_time_start);
1781 brw_pop_insn_state(p);
1782
1783 brw_mark_surface_used(prog_data,
1784 prog_data->binding_table.shader_time_start);
1785 }
1786
1787 void
1788 fs_generator::enable_debug(const char *shader_name)
1789 {
1790 debug_flag = true;
1791 this->shader_name = shader_name;
1792 }
1793
1794 int
1795 fs_generator::generate_code(const cfg_t *cfg, int dispatch_width)
1796 {
1797 /* align to 64 byte boundary. */
1798 while (p->next_insn_offset % 64)
1799 brw_NOP(p);
1800
1801 this->dispatch_width = dispatch_width;
1802
1803 int start_offset = p->next_insn_offset;
1804 int spill_count = 0, fill_count = 0;
1805 int loop_count = 0;
1806
1807 struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1808
1809 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1810 struct brw_reg src[3], dst;
1811 unsigned int last_insn_offset = p->next_insn_offset;
1812 bool multiple_instructions_emitted = false;
1813
1814 /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the
1815 * "Register Region Restrictions" section: for BDW, SKL:
1816 *
1817 * "A POW/FDIV operation must not be followed by an instruction
1818 * that requires two destination registers."
1819 *
1820 * The documentation is often lacking annotations for Atom parts,
1821 * and empirically this affects CHV as well.
1822 */
1823 if (devinfo->gen >= 8 &&
1824 devinfo->gen <= 9 &&
1825 p->nr_insn > 1 &&
1826 brw_inst_opcode(devinfo, brw_last_inst) == BRW_OPCODE_MATH &&
1827 brw_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW &&
1828 inst->dst.component_size(inst->exec_size) > REG_SIZE) {
1829 brw_NOP(p);
1830 last_insn_offset = p->next_insn_offset;
1831 }
1832
1833 if (unlikely(debug_flag))
1834 disasm_annotate(disasm_info, inst, p->next_insn_offset);
1835
1836 /* If the instruction writes to more than one register, it needs to be
1837 * explicitly marked as compressed on Gen <= 5. On Gen >= 6 the
1838 * hardware figures out by itself what the right compression mode is,
1839 * but we still need to know whether the instruction is compressed to
1840 * set up the source register regions appropriately.
1841 *
1842 * XXX - This is wrong for instructions that write a single register but
1843 * read more than one which should strictly speaking be treated as
1844 * compressed. For instructions that don't write any registers it
1845 * relies on the destination being a null register of the correct
1846 * type and regioning so the instruction is considered compressed
1847 * or not accordingly.
1848 */
1849 const bool compressed =
1850 inst->dst.component_size(inst->exec_size) > REG_SIZE;
1851 brw_set_default_compression(p, compressed);
1852 brw_set_default_group(p, inst->group);
1853
1854 for (unsigned int i = 0; i < inst->sources; i++) {
1855 src[i] = brw_reg_from_fs_reg(devinfo, inst,
1856 &inst->src[i], compressed);
1857 /* The accumulator result appears to get used for the
1858 * conditional modifier generation. When negating a UD
1859 * value, there is a 33rd bit generated for the sign in the
1860 * accumulator value, so now you can't check, for example,
1861 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
1862 */
1863 assert(!inst->conditional_mod ||
1864 inst->src[i].type != BRW_REGISTER_TYPE_UD ||
1865 !inst->src[i].negate);
1866 }
1867 dst = brw_reg_from_fs_reg(devinfo, inst,
1868 &inst->dst, compressed);
1869
1870 brw_set_default_access_mode(p, BRW_ALIGN_1);
1871 brw_set_default_predicate_control(p, inst->predicate);
1872 brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1873 brw_set_default_flag_reg(p, inst->flag_subreg / 2, inst->flag_subreg % 2);
1874 brw_set_default_saturate(p, inst->saturate);
1875 brw_set_default_mask_control(p, inst->force_writemask_all);
1876 brw_set_default_acc_write_control(p, inst->writes_accumulator);
1877
1878 unsigned exec_size = inst->exec_size;
1879 if (devinfo->gen == 7 && !devinfo->is_haswell &&
1880 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) {
1881 exec_size *= 2;
1882 }
1883
1884 brw_set_default_exec_size(p, cvt(exec_size) - 1);
1885
1886 assert(inst->force_writemask_all || inst->exec_size >= 4);
1887 assert(inst->force_writemask_all || inst->group % inst->exec_size == 0);
1888 assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
1889 assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1890
1891 switch (inst->opcode) {
1892 case BRW_OPCODE_MOV:
1893 brw_MOV(p, dst, src[0]);
1894 break;
1895 case BRW_OPCODE_ADD:
1896 brw_ADD(p, dst, src[0], src[1]);
1897 break;
1898 case BRW_OPCODE_MUL:
1899 brw_MUL(p, dst, src[0], src[1]);
1900 break;
1901 case BRW_OPCODE_AVG:
1902 brw_AVG(p, dst, src[0], src[1]);
1903 break;
1904 case BRW_OPCODE_MACH:
1905 brw_MACH(p, dst, src[0], src[1]);
1906 break;
1907
1908 case BRW_OPCODE_LINE:
1909 brw_LINE(p, dst, src[0], src[1]);
1910 break;
1911
1912 case BRW_OPCODE_MAD:
1913 assert(devinfo->gen >= 6);
1914 if (devinfo->gen < 10)
1915 brw_set_default_access_mode(p, BRW_ALIGN_16);
1916 brw_MAD(p, dst, src[0], src[1], src[2]);
1917 break;
1918
1919 case BRW_OPCODE_LRP:
1920 assert(devinfo->gen >= 6 && devinfo->gen <= 10);
1921 if (devinfo->gen < 10)
1922 brw_set_default_access_mode(p, BRW_ALIGN_16);
1923 brw_LRP(p, dst, src[0], src[1], src[2]);
1924 break;
1925
1926 case BRW_OPCODE_FRC:
1927 brw_FRC(p, dst, src[0]);
1928 break;
1929 case BRW_OPCODE_RNDD:
1930 brw_RNDD(p, dst, src[0]);
1931 break;
1932 case BRW_OPCODE_RNDE:
1933 brw_RNDE(p, dst, src[0]);
1934 break;
1935 case BRW_OPCODE_RNDZ:
1936 brw_RNDZ(p, dst, src[0]);
1937 break;
1938
1939 case BRW_OPCODE_AND:
1940 brw_AND(p, dst, src[0], src[1]);
1941 break;
1942 case BRW_OPCODE_OR:
1943 brw_OR(p, dst, src[0], src[1]);
1944 break;
1945 case BRW_OPCODE_XOR:
1946 brw_XOR(p, dst, src[0], src[1]);
1947 break;
1948 case BRW_OPCODE_NOT:
1949 brw_NOT(p, dst, src[0]);
1950 break;
1951 case BRW_OPCODE_ASR:
1952 brw_ASR(p, dst, src[0], src[1]);
1953 break;
1954 case BRW_OPCODE_SHR:
1955 brw_SHR(p, dst, src[0], src[1]);
1956 break;
1957 case BRW_OPCODE_SHL:
1958 brw_SHL(p, dst, src[0], src[1]);
1959 break;
1960 case BRW_OPCODE_F32TO16:
1961 assert(devinfo->gen >= 7);
1962 brw_F32TO16(p, dst, src[0]);
1963 break;
1964 case BRW_OPCODE_F16TO32:
1965 assert(devinfo->gen >= 7);
1966 brw_F16TO32(p, dst, src[0]);
1967 break;
1968 case BRW_OPCODE_CMP:
1969 if (inst->exec_size >= 16 && devinfo->gen == 7 && !devinfo->is_haswell &&
1970 dst.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1971 /* For unknown reasons the WaCMPInstFlagDepClearedEarly workaround
1972 * implemented in the compiler is not sufficient. Overriding the
1973 * type when the destination is the null register is necessary but
1974 * not sufficient by itself.
1975 */
1976 assert(dst.nr == BRW_ARF_NULL);
1977 dst.type = BRW_REGISTER_TYPE_D;
1978 }
1979 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1980 break;
1981 case BRW_OPCODE_SEL:
1982 brw_SEL(p, dst, src[0], src[1]);
1983 break;
1984 case BRW_OPCODE_CSEL:
1985 assert(devinfo->gen >= 8);
1986 if (devinfo->gen < 10)
1987 brw_set_default_access_mode(p, BRW_ALIGN_16);
1988 brw_CSEL(p, dst, src[0], src[1], src[2]);
1989 break;
1990 case BRW_OPCODE_BFREV:
1991 assert(devinfo->gen >= 7);
1992 brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
1993 retype(src[0], BRW_REGISTER_TYPE_UD));
1994 break;
1995 case BRW_OPCODE_FBH:
1996 assert(devinfo->gen >= 7);
1997 brw_FBH(p, retype(dst, src[0].type), src[0]);
1998 break;
1999 case BRW_OPCODE_FBL:
2000 assert(devinfo->gen >= 7);
2001 brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
2002 retype(src[0], BRW_REGISTER_TYPE_UD));
2003 break;
2004 case BRW_OPCODE_LZD:
2005 brw_LZD(p, dst, src[0]);
2006 break;
2007 case BRW_OPCODE_CBIT:
2008 assert(devinfo->gen >= 7);
2009 brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
2010 retype(src[0], BRW_REGISTER_TYPE_UD));
2011 break;
2012 case BRW_OPCODE_ADDC:
2013 assert(devinfo->gen >= 7);
2014 brw_ADDC(p, dst, src[0], src[1]);
2015 break;
2016 case BRW_OPCODE_SUBB:
2017 assert(devinfo->gen >= 7);
2018 brw_SUBB(p, dst, src[0], src[1]);
2019 break;
2020 case BRW_OPCODE_MAC:
2021 brw_MAC(p, dst, src[0], src[1]);
2022 break;
2023
2024 case BRW_OPCODE_BFE:
2025 assert(devinfo->gen >= 7);
2026 if (devinfo->gen < 10)
2027 brw_set_default_access_mode(p, BRW_ALIGN_16);
2028 brw_BFE(p, dst, src[0], src[1], src[2]);
2029 break;
2030
2031 case BRW_OPCODE_BFI1:
2032 assert(devinfo->gen >= 7);
2033 brw_BFI1(p, dst, src[0], src[1]);
2034 break;
2035 case BRW_OPCODE_BFI2:
2036 assert(devinfo->gen >= 7);
2037 if (devinfo->gen < 10)
2038 brw_set_default_access_mode(p, BRW_ALIGN_16);
2039 brw_BFI2(p, dst, src[0], src[1], src[2]);
2040 break;
2041
2042 case BRW_OPCODE_IF:
2043 if (inst->src[0].file != BAD_FILE) {
2044 /* The instruction has an embedded compare (only allowed on gen6) */
2045 assert(devinfo->gen == 6);
2046 gen6_IF(p, inst->conditional_mod, src[0], src[1]);
2047 } else {
2048 brw_IF(p, brw_inst_exec_size(devinfo, p->current));
2049 }
2050 break;
2051
2052 case BRW_OPCODE_ELSE:
2053 brw_ELSE(p);
2054 break;
2055 case BRW_OPCODE_ENDIF:
2056 brw_ENDIF(p);
2057 break;
2058
2059 case BRW_OPCODE_DO:
2060 brw_DO(p, brw_inst_exec_size(devinfo, p->current));
2061 break;
2062
2063 case BRW_OPCODE_BREAK:
2064 brw_BREAK(p);
2065 break;
2066 case BRW_OPCODE_CONTINUE:
2067 brw_CONT(p);
2068 break;
2069
2070 case BRW_OPCODE_WHILE:
2071 brw_WHILE(p);
2072 loop_count++;
2073 break;
2074
2075 case SHADER_OPCODE_RCP:
2076 case SHADER_OPCODE_RSQ:
2077 case SHADER_OPCODE_SQRT:
2078 case SHADER_OPCODE_EXP2:
2079 case SHADER_OPCODE_LOG2:
2080 case SHADER_OPCODE_SIN:
2081 case SHADER_OPCODE_COS:
2082 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2083 if (devinfo->gen >= 6) {
2084 assert(inst->mlen == 0);
2085 assert(devinfo->gen >= 7 || inst->exec_size == 8);
2086 gen6_math(p, dst, brw_math_function(inst->opcode),
2087 src[0], brw_null_reg());
2088 } else {
2089 assert(inst->mlen >= 1);
2090 assert(devinfo->gen == 5 || devinfo->is_g4x || inst->exec_size == 8);
2091 gen4_math(p, dst,
2092 brw_math_function(inst->opcode),
2093 inst->base_mrf, src[0],
2094 BRW_MATH_PRECISION_FULL);
2095 }
2096 break;
2097 case SHADER_OPCODE_INT_QUOTIENT:
2098 case SHADER_OPCODE_INT_REMAINDER:
2099 case SHADER_OPCODE_POW:
2100 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2101 if (devinfo->gen >= 6) {
2102 assert(inst->mlen == 0);
2103 assert((devinfo->gen >= 7 && inst->opcode == SHADER_OPCODE_POW) ||
2104 inst->exec_size == 8);
2105 gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
2106 } else {
2107 assert(inst->mlen >= 1);
2108 assert(inst->exec_size == 8);
2109 gen4_math(p, dst, brw_math_function(inst->opcode),
2110 inst->base_mrf, src[0],
2111 BRW_MATH_PRECISION_FULL);
2112 }
2113 break;
2114 case FS_OPCODE_CINTERP:
2115 brw_MOV(p, dst, src[0]);
2116 break;
2117 case FS_OPCODE_LINTERP:
2118 multiple_instructions_emitted = generate_linterp(inst, dst, src);
2119 break;
2120 case FS_OPCODE_PIXEL_X:
2121 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2122 src[0].subnr = 0 * type_sz(src[0].type);
2123 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2124 break;
2125 case FS_OPCODE_PIXEL_Y:
2126 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2127 src[0].subnr = 4 * type_sz(src[0].type);
2128 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2129 break;
2130 case SHADER_OPCODE_GET_BUFFER_SIZE:
2131 generate_get_buffer_size(inst, dst, src[0], src[1]);
2132 break;
2133 case SHADER_OPCODE_TEX:
2134 case FS_OPCODE_TXB:
2135 case SHADER_OPCODE_TXD:
2136 case SHADER_OPCODE_TXF:
2137 case SHADER_OPCODE_TXF_LZ:
2138 case SHADER_OPCODE_TXF_CMS:
2139 case SHADER_OPCODE_TXF_CMS_W:
2140 case SHADER_OPCODE_TXF_UMS:
2141 case SHADER_OPCODE_TXF_MCS:
2142 case SHADER_OPCODE_TXL:
2143 case SHADER_OPCODE_TXL_LZ:
2144 case SHADER_OPCODE_TXS:
2145 case SHADER_OPCODE_LOD:
2146 case SHADER_OPCODE_TG4:
2147 case SHADER_OPCODE_TG4_OFFSET:
2148 case SHADER_OPCODE_SAMPLEINFO:
2149 generate_tex(inst, dst, src[0], src[1], src[2]);
2150 break;
2151 case FS_OPCODE_DDX_COARSE:
2152 case FS_OPCODE_DDX_FINE:
2153 generate_ddx(inst, dst, src[0]);
2154 break;
2155 case FS_OPCODE_DDY_COARSE:
2156 case FS_OPCODE_DDY_FINE:
2157 generate_ddy(inst, dst, src[0]);
2158 break;
2159
2160 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2161 generate_scratch_write(inst, src[0]);
2162 spill_count++;
2163 break;
2164
2165 case SHADER_OPCODE_GEN4_SCRATCH_READ:
2166 generate_scratch_read(inst, dst);
2167 fill_count++;
2168 break;
2169
2170 case SHADER_OPCODE_GEN7_SCRATCH_READ:
2171 generate_scratch_read_gen7(inst, dst);
2172 fill_count++;
2173 break;
2174
2175 case SHADER_OPCODE_MOV_INDIRECT:
2176 generate_mov_indirect(inst, dst, src[0], src[1]);
2177 break;
2178
2179 case SHADER_OPCODE_URB_READ_SIMD8:
2180 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
2181 generate_urb_read(inst, dst, src[0]);
2182 break;
2183
2184 case SHADER_OPCODE_URB_WRITE_SIMD8:
2185 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
2186 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
2187 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
2188 generate_urb_write(inst, src[0]);
2189 break;
2190
2191 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
2192 assert(inst->force_writemask_all);
2193 generate_uniform_pull_constant_load(inst, dst, src[0], src[1]);
2194 break;
2195
2196 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
2197 assert(inst->force_writemask_all);
2198 generate_uniform_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2199 break;
2200
2201 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
2202 generate_varying_pull_constant_load_gen4(inst, dst, src[0]);
2203 break;
2204
2205 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
2206 generate_varying_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2207 break;
2208
2209 case FS_OPCODE_REP_FB_WRITE:
2210 case FS_OPCODE_FB_WRITE:
2211 generate_fb_write(inst, src[0]);
2212 break;
2213
2214 case FS_OPCODE_FB_READ:
2215 generate_fb_read(inst, dst, src[0]);
2216 break;
2217
2218 case FS_OPCODE_MOV_DISPATCH_TO_FLAGS:
2219 generate_mov_dispatch_to_flags(inst);
2220 break;
2221
2222 case FS_OPCODE_DISCARD_JUMP:
2223 generate_discard_jump(inst);
2224 break;
2225
2226 case SHADER_OPCODE_SHADER_TIME_ADD:
2227 generate_shader_time_add(inst, src[0], src[1], src[2]);
2228 break;
2229
2230 case SHADER_OPCODE_UNTYPED_ATOMIC:
2231 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2232 brw_untyped_atomic(p, dst, src[0], src[1], src[2].ud,
2233 inst->mlen, !inst->dst.is_null(),
2234 inst->header_size);
2235 break;
2236
2237 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
2238 assert(!inst->header_size);
2239 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2240 brw_untyped_surface_read(p, dst, src[0], src[1],
2241 inst->mlen, src[2].ud);
2242 break;
2243
2244 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
2245 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2246 brw_untyped_surface_write(p, src[0], src[1],
2247 inst->mlen, src[2].ud,
2248 inst->header_size);
2249 break;
2250
2251 case SHADER_OPCODE_BYTE_SCATTERED_READ:
2252 assert(!inst->header_size);
2253 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2254 brw_byte_scattered_read(p, dst, src[0], src[1],
2255 inst->mlen, src[2].ud);
2256 break;
2257
2258 case SHADER_OPCODE_BYTE_SCATTERED_WRITE:
2259 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2260 brw_byte_scattered_write(p, src[0], src[1],
2261 inst->mlen, src[2].ud,
2262 inst->header_size);
2263 break;
2264
2265 case SHADER_OPCODE_TYPED_ATOMIC:
2266 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2267 brw_typed_atomic(p, dst, src[0], src[1],
2268 src[2].ud, inst->mlen, !inst->dst.is_null(),
2269 inst->header_size);
2270 break;
2271
2272 case SHADER_OPCODE_TYPED_SURFACE_READ:
2273 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2274 brw_typed_surface_read(p, dst, src[0], src[1],
2275 inst->mlen, src[2].ud,
2276 inst->header_size);
2277 break;
2278
2279 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
2280 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2281 brw_typed_surface_write(p, src[0], src[1], inst->mlen, src[2].ud,
2282 inst->header_size);
2283 break;
2284
2285 case SHADER_OPCODE_MEMORY_FENCE:
2286 brw_memory_fence(p, dst);
2287 break;
2288
2289 case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
2290 const struct brw_reg mask =
2291 brw_stage_has_packed_dispatch(devinfo, stage,
2292 prog_data) ? brw_imm_ud(~0u) :
2293 stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
2294 brw_dmask_reg();
2295 brw_find_live_channel(p, dst, mask);
2296 break;
2297 }
2298
2299 case SHADER_OPCODE_BROADCAST:
2300 assert(inst->force_writemask_all);
2301 brw_broadcast(p, dst, src[0], src[1]);
2302 break;
2303
2304 case SHADER_OPCODE_SHUFFLE:
2305 generate_shuffle(inst, dst, src[0], src[1]);
2306 break;
2307
2308 case SHADER_OPCODE_SEL_EXEC:
2309 assert(inst->force_writemask_all);
2310 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2311 brw_MOV(p, dst, src[1]);
2312 brw_set_default_mask_control(p, BRW_MASK_ENABLE);
2313 brw_MOV(p, dst, src[0]);
2314 break;
2315
2316 case SHADER_OPCODE_QUAD_SWIZZLE:
2317 /* This only works on 8-wide 32-bit values */
2318 assert(inst->exec_size == 8);
2319 assert(type_sz(src[0].type) == 4);
2320 assert(inst->force_writemask_all);
2321 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2322 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2323
2324 if (src[0].file == BRW_IMMEDIATE_VALUE ||
2325 (src[0].vstride == 0 && src[0].hstride == 0)) {
2326 /* The value is uniform across all channels */
2327 brw_MOV(p, dst, src[0]);
2328 } else {
2329 brw_set_default_access_mode(p, BRW_ALIGN_16);
2330 struct brw_reg swiz_src = stride(src[0], 4, 4, 1);
2331 swiz_src.swizzle = inst->src[1].ud;
2332 brw_MOV(p, dst, swiz_src);
2333 }
2334 break;
2335
2336 case SHADER_OPCODE_CLUSTER_BROADCAST: {
2337 assert(src[0].type == dst.type);
2338 assert(!src[0].negate && !src[0].abs);
2339 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2340 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2341 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2342 assert(src[2].type == BRW_REGISTER_TYPE_UD);
2343 const unsigned component = src[1].ud;
2344 const unsigned cluster_size = src[2].ud;
2345 struct brw_reg strided = stride(suboffset(src[0], component),
2346 cluster_size, cluster_size, 0);
2347 if (type_sz(src[0].type) > 4 &&
2348 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
2349 /* IVB has an issue (which we found empirically) where it reads
2350 * two address register components per channel for indirectly
2351 * addressed 64-bit sources.
2352 *
2353 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
2354 *
2355 * "When source or destination datatype is 64b or operation is
2356 * integer DWord multiply, indirect addressing must not be
2357 * used."
2358 *
2359 * To work around both of these, we do two integer MOVs insead of
2360 * one 64-bit MOV. Because no double value should ever cross a
2361 * register boundary, it's safe to use the immediate offset in the
2362 * indirect here to handle adding 4 bytes to the offset and avoid
2363 * the extra ADD to the register file.
2364 */
2365 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
2366 subscript(strided, BRW_REGISTER_TYPE_D, 0));
2367 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
2368 subscript(strided, BRW_REGISTER_TYPE_D, 1));
2369 } else {
2370 brw_MOV(p, dst, strided);
2371 }
2372 break;
2373 }
2374
2375 case FS_OPCODE_SET_SAMPLE_ID:
2376 generate_set_sample_id(inst, dst, src[0], src[1]);
2377 break;
2378
2379 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
2380 generate_pack_half_2x16_split(inst, dst, src[0], src[1]);
2381 break;
2382
2383 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
2384 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
2385 generate_unpack_half_2x16_split(inst, dst, src[0]);
2386 break;
2387
2388 case FS_OPCODE_PLACEHOLDER_HALT:
2389 /* This is the place where the final HALT needs to be inserted if
2390 * we've emitted any discards. If not, this will emit no code.
2391 */
2392 if (!patch_discard_jumps_to_fb_writes()) {
2393 if (unlikely(debug_flag)) {
2394 disasm_info->use_tail = true;
2395 }
2396 }
2397 break;
2398
2399 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
2400 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2401 GEN7_PIXEL_INTERPOLATOR_LOC_SAMPLE);
2402 break;
2403
2404 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
2405 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2406 GEN7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET);
2407 break;
2408
2409 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
2410 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2411 GEN7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET);
2412 break;
2413
2414 case CS_OPCODE_CS_TERMINATE:
2415 generate_cs_terminate(inst, src[0]);
2416 break;
2417
2418 case SHADER_OPCODE_BARRIER:
2419 generate_barrier(inst, src[0]);
2420 break;
2421
2422 case BRW_OPCODE_DIM:
2423 assert(devinfo->is_haswell);
2424 assert(src[0].type == BRW_REGISTER_TYPE_DF);
2425 assert(dst.type == BRW_REGISTER_TYPE_DF);
2426 brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2427 break;
2428
2429 case SHADER_OPCODE_RND_MODE:
2430 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2431 brw_rounding_mode(p, (brw_rnd_mode) src[0].d);
2432 break;
2433
2434 default:
2435 unreachable("Unsupported opcode");
2436
2437 case SHADER_OPCODE_LOAD_PAYLOAD:
2438 unreachable("Should be lowered by lower_load_payload()");
2439 }
2440
2441 if (multiple_instructions_emitted)
2442 continue;
2443
2444 if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2445 assert(p->next_insn_offset == last_insn_offset + 16 ||
2446 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2447 "emitting more than 1 instruction");
2448
2449 brw_inst *last = &p->store[last_insn_offset / 16];
2450
2451 if (inst->conditional_mod)
2452 brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2453 brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2454 brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2455 }
2456 }
2457
2458 brw_set_uip_jip(p, start_offset);
2459
2460 /* end of program sentinel */
2461 disasm_new_inst_group(disasm_info, p->next_insn_offset);
2462
2463 #ifndef NDEBUG
2464 bool validated =
2465 #else
2466 if (unlikely(debug_flag))
2467 #endif
2468 brw_validate_instructions(devinfo, p->store,
2469 start_offset,
2470 p->next_insn_offset,
2471 disasm_info);
2472
2473 int before_size = p->next_insn_offset - start_offset;
2474 brw_compact_instructions(p, start_offset, disasm_info);
2475 int after_size = p->next_insn_offset - start_offset;
2476
2477 if (unlikely(debug_flag)) {
2478 fprintf(stderr, "Native code for %s\n"
2479 "SIMD%d shader: %d instructions. %d loops. %u cycles. %d:%d spills:fills. Promoted %u constants. Compacted %d to %d"
2480 " bytes (%.0f%%)\n",
2481 shader_name, dispatch_width, before_size / 16, loop_count, cfg->cycle_count,
2482 spill_count, fill_count, promoted_constants, before_size, after_size,
2483 100.0f * (before_size - after_size) / before_size);
2484
2485 dump_assembly(p->store, disasm_info);
2486 }
2487 ralloc_free(disasm_info);
2488 assert(validated);
2489
2490 compiler->shader_debug_log(log_data,
2491 "%s SIMD%d shader: %d inst, %d loops, %u cycles, "
2492 "%d:%d spills:fills, Promoted %u constants, "
2493 "compacted %d to %d bytes.",
2494 _mesa_shader_stage_to_abbrev(stage),
2495 dispatch_width, before_size / 16,
2496 loop_count, cfg->cycle_count, spill_count,
2497 fill_count, promoted_constants, before_size,
2498 after_size);
2499
2500 return start_offset;
2501 }
2502
2503 const unsigned *
2504 fs_generator::get_assembly()
2505 {
2506 return brw_get_program(p, &prog_data->program_size);
2507 }