anv: Advertise SEND count through VK_EXT_pipeline_executable_properties
[mesa.git] / src / intel / compiler / brw_fs_generator.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_generator.cpp
25 *
26 * This file supports generating code from the FS LIR to the actual
27 * native instructions.
28 */
29
30 #include "brw_eu.h"
31 #include "brw_fs.h"
32 #include "brw_cfg.h"
33 #include "util/mesa-sha1.h"
34
35 static enum brw_reg_file
36 brw_file_from_reg(fs_reg *reg)
37 {
38 switch (reg->file) {
39 case ARF:
40 return BRW_ARCHITECTURE_REGISTER_FILE;
41 case FIXED_GRF:
42 case VGRF:
43 return BRW_GENERAL_REGISTER_FILE;
44 case MRF:
45 return BRW_MESSAGE_REGISTER_FILE;
46 case IMM:
47 return BRW_IMMEDIATE_VALUE;
48 case BAD_FILE:
49 case ATTR:
50 case UNIFORM:
51 unreachable("not reached");
52 }
53 return BRW_ARCHITECTURE_REGISTER_FILE;
54 }
55
56 static struct brw_reg
57 brw_reg_from_fs_reg(const struct gen_device_info *devinfo, fs_inst *inst,
58 fs_reg *reg, bool compressed)
59 {
60 struct brw_reg brw_reg;
61
62 switch (reg->file) {
63 case MRF:
64 assert((reg->nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
65 /* Fallthrough */
66 case VGRF:
67 if (reg->stride == 0) {
68 brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->nr, 0);
69 } else {
70 /* From the Haswell PRM:
71 *
72 * "VertStride must be used to cross GRF register boundaries. This
73 * rule implies that elements within a 'Width' cannot cross GRF
74 * boundaries."
75 *
76 * The maximum width value that could satisfy this restriction is:
77 */
78 const unsigned reg_width = REG_SIZE / (reg->stride * type_sz(reg->type));
79
80 /* Because the hardware can only split source regions at a whole
81 * multiple of width during decompression (i.e. vertically), clamp
82 * the value obtained above to the physical execution size of a
83 * single decompressed chunk of the instruction:
84 */
85 const unsigned phys_width = compressed ? inst->exec_size / 2 :
86 inst->exec_size;
87
88 const unsigned max_hw_width = 16;
89
90 /* XXX - The equation above is strictly speaking not correct on
91 * hardware that supports unbalanced GRF writes -- On Gen9+
92 * each decompressed chunk of the instruction may have a
93 * different execution size when the number of components
94 * written to each destination GRF is not the same.
95 */
96 if (reg->stride > 4) {
97 assert(reg != &inst->dst);
98 assert(reg->stride * type_sz(reg->type) <= REG_SIZE);
99 brw_reg = brw_vecn_reg(1, brw_file_from_reg(reg), reg->nr, 0);
100 brw_reg = stride(brw_reg, reg->stride, 1, 0);
101 } else {
102 const unsigned width = MIN3(reg_width, phys_width, max_hw_width);
103 brw_reg = brw_vecn_reg(width, brw_file_from_reg(reg), reg->nr, 0);
104 brw_reg = stride(brw_reg, width * reg->stride, width, reg->stride);
105 }
106
107 if (devinfo->gen == 7 && !devinfo->is_haswell) {
108 /* From the IvyBridge PRM (EU Changes by Processor Generation, page 13):
109 * "Each DF (Double Float) operand uses an element size of 4 rather
110 * than 8 and all regioning parameters are twice what the values
111 * would be based on the true element size: ExecSize, Width,
112 * HorzStride, and VertStride. Each DF operand uses a pair of
113 * channels and all masking and swizzing should be adjusted
114 * appropriately."
115 *
116 * From the IvyBridge PRM (Special Requirements for Handling Double
117 * Precision Data Types, page 71):
118 * "In Align1 mode, all regioning parameters like stride, execution
119 * size, and width must use the syntax of a pair of packed
120 * floats. The offsets for these data types must be 64-bit
121 * aligned. The execution size and regioning parameters are in terms
122 * of floats."
123 *
124 * Summarized: when handling DF-typed arguments, ExecSize,
125 * VertStride, and Width must be doubled.
126 *
127 * It applies to BayTrail too.
128 */
129 if (type_sz(reg->type) == 8) {
130 brw_reg.width++;
131 if (brw_reg.vstride > 0)
132 brw_reg.vstride++;
133 assert(brw_reg.hstride == BRW_HORIZONTAL_STRIDE_1);
134 }
135
136 /* When converting from DF->F, we set the destination stride to 2
137 * because each d2f conversion implicitly writes 2 floats, being
138 * the first one the converted value. IVB/BYT actually writes two
139 * F components per SIMD channel, and every other component is
140 * filled with garbage.
141 */
142 if (reg == &inst->dst && get_exec_type_size(inst) == 8 &&
143 type_sz(inst->dst.type) < 8) {
144 assert(brw_reg.hstride > BRW_HORIZONTAL_STRIDE_1);
145 brw_reg.hstride--;
146 }
147 }
148 }
149
150 brw_reg = retype(brw_reg, reg->type);
151 brw_reg = byte_offset(brw_reg, reg->offset);
152 brw_reg.abs = reg->abs;
153 brw_reg.negate = reg->negate;
154 break;
155 case ARF:
156 case FIXED_GRF:
157 case IMM:
158 assert(reg->offset == 0);
159 brw_reg = reg->as_brw_reg();
160 break;
161 case BAD_FILE:
162 /* Probably unused. */
163 brw_reg = brw_null_reg();
164 break;
165 case ATTR:
166 case UNIFORM:
167 unreachable("not reached");
168 }
169
170 /* On HSW+, scalar DF sources can be accessed using the normal <0,1,0>
171 * region, but on IVB and BYT DF regions must be programmed in terms of
172 * floats. A <0,2,1> region accomplishes this.
173 */
174 if (devinfo->gen == 7 && !devinfo->is_haswell &&
175 type_sz(reg->type) == 8 &&
176 brw_reg.vstride == BRW_VERTICAL_STRIDE_0 &&
177 brw_reg.width == BRW_WIDTH_1 &&
178 brw_reg.hstride == BRW_HORIZONTAL_STRIDE_0) {
179 brw_reg.width = BRW_WIDTH_2;
180 brw_reg.hstride = BRW_HORIZONTAL_STRIDE_1;
181 }
182
183 return brw_reg;
184 }
185
186 fs_generator::fs_generator(const struct brw_compiler *compiler, void *log_data,
187 void *mem_ctx,
188 struct brw_stage_prog_data *prog_data,
189 bool runtime_check_aads_emit,
190 gl_shader_stage stage)
191
192 : compiler(compiler), log_data(log_data),
193 devinfo(compiler->devinfo),
194 prog_data(prog_data),
195 runtime_check_aads_emit(runtime_check_aads_emit), debug_flag(false),
196 stage(stage), mem_ctx(mem_ctx)
197 {
198 p = rzalloc(mem_ctx, struct brw_codegen);
199 brw_init_codegen(devinfo, p, mem_ctx);
200
201 /* In the FS code generator, we are very careful to ensure that we always
202 * set the right execution size so we don't need the EU code to "help" us
203 * by trying to infer it. Sometimes, it infers the wrong thing.
204 */
205 p->automatic_exec_sizes = false;
206 }
207
208 fs_generator::~fs_generator()
209 {
210 }
211
212 class ip_record : public exec_node {
213 public:
214 DECLARE_RALLOC_CXX_OPERATORS(ip_record)
215
216 ip_record(int ip)
217 {
218 this->ip = ip;
219 }
220
221 int ip;
222 };
223
224 bool
225 fs_generator::patch_discard_jumps_to_fb_writes()
226 {
227 if (devinfo->gen < 6 || this->discard_halt_patches.is_empty())
228 return false;
229
230 int scale = brw_jump_scale(p->devinfo);
231
232 /* There is a somewhat strange undocumented requirement of using
233 * HALT, according to the simulator. If some channel has HALTed to
234 * a particular UIP, then by the end of the program, every channel
235 * must have HALTed to that UIP. Furthermore, the tracking is a
236 * stack, so you can't do the final halt of a UIP after starting
237 * halting to a new UIP.
238 *
239 * Symptoms of not emitting this instruction on actual hardware
240 * included GPU hangs and sparkly rendering on the piglit discard
241 * tests.
242 */
243 brw_inst *last_halt = gen6_HALT(p);
244 brw_inst_set_uip(p->devinfo, last_halt, 1 * scale);
245 brw_inst_set_jip(p->devinfo, last_halt, 1 * scale);
246
247 int ip = p->nr_insn;
248
249 foreach_in_list(ip_record, patch_ip, &discard_halt_patches) {
250 brw_inst *patch = &p->store[patch_ip->ip];
251
252 assert(brw_inst_opcode(p->devinfo, patch) == BRW_OPCODE_HALT);
253 /* HALT takes a half-instruction distance from the pre-incremented IP. */
254 brw_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale);
255 }
256
257 this->discard_halt_patches.make_empty();
258 return true;
259 }
260
261 void
262 fs_generator::generate_send(fs_inst *inst,
263 struct brw_reg dst,
264 struct brw_reg desc,
265 struct brw_reg ex_desc,
266 struct brw_reg payload,
267 struct brw_reg payload2)
268 {
269 const bool dst_is_null = dst.file == BRW_ARCHITECTURE_REGISTER_FILE &&
270 dst.nr == BRW_ARF_NULL;
271 const unsigned rlen = dst_is_null ? 0 : inst->size_written / REG_SIZE;
272
273 uint32_t desc_imm = inst->desc |
274 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size);
275
276 uint32_t ex_desc_imm = brw_message_ex_desc(devinfo, inst->ex_mlen);
277
278 if (ex_desc.file != BRW_IMMEDIATE_VALUE || ex_desc.ud || ex_desc_imm) {
279 /* If we have any sort of extended descriptor, then we need SENDS. This
280 * also covers the dual-payload case because ex_mlen goes in ex_desc.
281 */
282 brw_send_indirect_split_message(p, inst->sfid, dst, payload, payload2,
283 desc, desc_imm, ex_desc, ex_desc_imm,
284 inst->eot);
285 if (inst->check_tdr)
286 brw_inst_set_opcode(p->devinfo, brw_last_inst,
287 devinfo->gen >= 12 ? BRW_OPCODE_SENDC : BRW_OPCODE_SENDSC);
288 } else {
289 brw_send_indirect_message(p, inst->sfid, dst, payload, desc, desc_imm,
290 inst->eot);
291 if (inst->check_tdr)
292 brw_inst_set_opcode(p->devinfo, brw_last_inst, BRW_OPCODE_SENDC);
293 }
294 }
295
296 void
297 fs_generator::fire_fb_write(fs_inst *inst,
298 struct brw_reg payload,
299 struct brw_reg implied_header,
300 GLuint nr)
301 {
302 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
303
304 if (devinfo->gen < 6) {
305 brw_push_insn_state(p);
306 brw_set_default_exec_size(p, BRW_EXECUTE_8);
307 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
308 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
309 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
310 brw_MOV(p, offset(retype(payload, BRW_REGISTER_TYPE_UD), 1),
311 offset(retype(implied_header, BRW_REGISTER_TYPE_UD), 1));
312 brw_pop_insn_state(p);
313 }
314
315 uint32_t msg_control = brw_fb_write_msg_control(inst, prog_data);
316
317 /* We assume render targets start at 0, because headerless FB write
318 * messages set "Render Target Index" to 0. Using a different binding
319 * table index would make it impossible to use headerless messages.
320 */
321 const uint32_t surf_index = inst->target;
322
323 brw_inst *insn = brw_fb_WRITE(p,
324 payload,
325 retype(implied_header, BRW_REGISTER_TYPE_UW),
326 msg_control,
327 surf_index,
328 nr,
329 0,
330 inst->eot,
331 inst->last_rt,
332 inst->header_size != 0);
333
334 if (devinfo->gen >= 6)
335 brw_inst_set_rt_slot_group(devinfo, insn, inst->group / 16);
336 }
337
338 void
339 fs_generator::generate_fb_write(fs_inst *inst, struct brw_reg payload)
340 {
341 if (devinfo->gen < 8 && !devinfo->is_haswell) {
342 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
343 brw_set_default_flag_reg(p, 0, 0);
344 }
345
346 const struct brw_reg implied_header =
347 devinfo->gen < 6 ? payload : brw_null_reg();
348
349 if (inst->base_mrf >= 0)
350 payload = brw_message_reg(inst->base_mrf);
351
352 if (!runtime_check_aads_emit) {
353 fire_fb_write(inst, payload, implied_header, inst->mlen);
354 } else {
355 /* This can only happen in gen < 6 */
356 assert(devinfo->gen < 6);
357
358 struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD));
359
360 /* Check runtime bit to detect if we have to send AA data or not */
361 brw_push_insn_state(p);
362 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
363 brw_set_default_exec_size(p, BRW_EXECUTE_1);
364 brw_AND(p,
365 v1_null_ud,
366 retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD),
367 brw_imm_ud(1<<26));
368 brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
369
370 int jmp = brw_JMPI(p, brw_imm_ud(0), BRW_PREDICATE_NORMAL) - p->store;
371 brw_pop_insn_state(p);
372 {
373 /* Don't send AA data */
374 fire_fb_write(inst, offset(payload, 1), implied_header, inst->mlen-1);
375 }
376 brw_land_fwd_jump(p, jmp);
377 fire_fb_write(inst, payload, implied_header, inst->mlen);
378 }
379 }
380
381 void
382 fs_generator::generate_fb_read(fs_inst *inst, struct brw_reg dst,
383 struct brw_reg payload)
384 {
385 assert(inst->size_written % REG_SIZE == 0);
386 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
387 /* We assume that render targets start at binding table index 0. */
388 const unsigned surf_index = inst->target;
389
390 gen9_fb_READ(p, dst, payload, surf_index,
391 inst->header_size, inst->size_written / REG_SIZE,
392 prog_data->persample_dispatch);
393 }
394
395 void
396 fs_generator::generate_mov_indirect(fs_inst *inst,
397 struct brw_reg dst,
398 struct brw_reg reg,
399 struct brw_reg indirect_byte_offset)
400 {
401 assert(indirect_byte_offset.type == BRW_REGISTER_TYPE_UD);
402 assert(indirect_byte_offset.file == BRW_GENERAL_REGISTER_FILE);
403 assert(!reg.abs && !reg.negate);
404 assert(reg.type == dst.type);
405
406 unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr;
407
408 if (indirect_byte_offset.file == BRW_IMMEDIATE_VALUE) {
409 imm_byte_offset += indirect_byte_offset.ud;
410
411 reg.nr = imm_byte_offset / REG_SIZE;
412 reg.subnr = imm_byte_offset % REG_SIZE;
413 brw_MOV(p, dst, reg);
414 } else {
415 /* Prior to Broadwell, there are only 8 address registers. */
416 assert(inst->exec_size <= 8 || devinfo->gen >= 8);
417
418 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
419 struct brw_reg addr = vec8(brw_address_reg(0));
420
421 /* Whether we can use destination dependency control without running the
422 * risk of a hang if an instruction gets shot down.
423 */
424 const bool use_dep_ctrl = !inst->predicate &&
425 inst->exec_size == dispatch_width;
426 brw_inst *insn;
427
428 /* The destination stride of an instruction (in bytes) must be greater
429 * than or equal to the size of the rest of the instruction. Since the
430 * address register is of type UW, we can't use a D-type instruction.
431 * In order to get around this, re retype to UW and use a stride.
432 */
433 indirect_byte_offset =
434 retype(spread(indirect_byte_offset, 2), BRW_REGISTER_TYPE_UW);
435
436 /* There are a number of reasons why we don't use the base offset here.
437 * One reason is that the field is only 9 bits which means we can only
438 * use it to access the first 16 GRFs. Also, from the Haswell PRM
439 * section "Register Region Restrictions":
440 *
441 * "The lower bits of the AddressImmediate must not overflow to
442 * change the register address. The lower 5 bits of Address
443 * Immediate when added to lower 5 bits of address register gives
444 * the sub-register offset. The upper bits of Address Immediate
445 * when added to upper bits of address register gives the register
446 * address. Any overflow from sub-register offset is dropped."
447 *
448 * Since the indirect may cause us to cross a register boundary, this
449 * makes the base offset almost useless. We could try and do something
450 * clever where we use a actual base offset if base_offset % 32 == 0 but
451 * that would mean we were generating different code depending on the
452 * base offset. Instead, for the sake of consistency, we'll just do the
453 * add ourselves. This restriction is only listed in the Haswell PRM
454 * but empirical testing indicates that it applies on all older
455 * generations and is lifted on Broadwell.
456 *
457 * In the end, while base_offset is nice to look at in the generated
458 * code, using it saves us 0 instructions and would require quite a bit
459 * of case-by-case work. It's just not worth it.
460 *
461 * Due to a hardware bug some platforms (particularly Gen11+) seem to
462 * require the address components of all channels to be valid whether or
463 * not they're active, which causes issues if we use VxH addressing
464 * under non-uniform control-flow. We can easily work around that by
465 * initializing the whole address register with a pipelined NoMask MOV
466 * instruction.
467 */
468 if (devinfo->gen >= 7) {
469 insn = brw_MOV(p, addr, brw_imm_uw(imm_byte_offset));
470 brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
471 brw_inst_set_pred_control(devinfo, insn, BRW_PREDICATE_NONE);
472 if (devinfo->gen >= 12)
473 brw_set_default_swsb(p, tgl_swsb_null());
474 else
475 brw_inst_set_no_dd_clear(devinfo, insn, use_dep_ctrl);
476 }
477
478 insn = brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset));
479 if (devinfo->gen >= 12)
480 brw_set_default_swsb(p, tgl_swsb_regdist(1));
481 else if (devinfo->gen >= 7)
482 brw_inst_set_no_dd_check(devinfo, insn, use_dep_ctrl);
483
484 if (type_sz(reg.type) > 4 &&
485 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
486 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo) ||
487 !devinfo->has_64bit_float)) {
488 /* IVB has an issue (which we found empirically) where it reads two
489 * address register components per channel for indirectly addressed
490 * 64-bit sources.
491 *
492 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
493 *
494 * "When source or destination datatype is 64b or operation is
495 * integer DWord multiply, indirect addressing must not be used."
496 *
497 * To work around both of these, we do two integer MOVs insead of one
498 * 64-bit MOV. Because no double value should ever cross a register
499 * boundary, it's safe to use the immediate offset in the indirect
500 * here to handle adding 4 bytes to the offset and avoid the extra
501 * ADD to the register file.
502 */
503 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
504 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
505 brw_set_default_swsb(p, tgl_swsb_null());
506 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
507 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
508 } else {
509 struct brw_reg ind_src = brw_VxH_indirect(0, 0);
510
511 brw_inst *mov = brw_MOV(p, dst, retype(ind_src, reg.type));
512
513 if (devinfo->gen == 6 && dst.file == BRW_MESSAGE_REGISTER_FILE &&
514 !inst->get_next()->is_tail_sentinel() &&
515 ((fs_inst *)inst->get_next())->mlen > 0) {
516 /* From the Sandybridge PRM:
517 *
518 * "[Errata: DevSNB(SNB)] If MRF register is updated by any
519 * instruction that “indexed/indirect” source AND is followed
520 * by a send, the instruction requires a “Switch”. This is to
521 * avoid race condition where send may dispatch before MRF is
522 * updated."
523 */
524 brw_inst_set_thread_control(devinfo, mov, BRW_THREAD_SWITCH);
525 }
526 }
527 }
528 }
529
530 void
531 fs_generator::generate_shuffle(fs_inst *inst,
532 struct brw_reg dst,
533 struct brw_reg src,
534 struct brw_reg idx)
535 {
536 /* Ivy bridge has some strange behavior that makes this a real pain to
537 * implement for 64-bit values so we just don't bother.
538 */
539 assert(devinfo->gen >= 8 || devinfo->is_haswell || type_sz(src.type) <= 4);
540
541 /* Because we're using the address register, we're limited to 8-wide
542 * execution on gen7. On gen8, we're limited to 16-wide by the address
543 * register file and 8-wide for 64-bit types. We could try and make this
544 * instruction splittable higher up in the compiler but that gets weird
545 * because it reads all of the channels regardless of execution size. It's
546 * easier just to split it here.
547 */
548 const unsigned lower_width =
549 (devinfo->gen <= 7 || type_sz(src.type) > 4) ?
550 8 : MIN2(16, inst->exec_size);
551
552 brw_set_default_exec_size(p, cvt(lower_width) - 1);
553 for (unsigned group = 0; group < inst->exec_size; group += lower_width) {
554 brw_set_default_group(p, group);
555
556 if ((src.vstride == 0 && src.hstride == 0) ||
557 idx.file == BRW_IMMEDIATE_VALUE) {
558 /* Trivial, the source is already uniform or the index is a constant.
559 * We will typically not get here if the optimizer is doing its job,
560 * but asserting would be mean.
561 */
562 const unsigned i = idx.file == BRW_IMMEDIATE_VALUE ? idx.ud : 0;
563 brw_MOV(p, suboffset(dst, group), stride(suboffset(src, i), 0, 1, 0));
564 } else {
565 /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
566 struct brw_reg addr = vec8(brw_address_reg(0));
567
568 struct brw_reg group_idx = suboffset(idx, group);
569
570 if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) {
571 /* Things get grumpy if the register is too wide. */
572 group_idx.width--;
573 group_idx.vstride--;
574 }
575
576 assert(type_sz(group_idx.type) <= 4);
577 if (type_sz(group_idx.type) == 4) {
578 /* The destination stride of an instruction (in bytes) must be
579 * greater than or equal to the size of the rest of the
580 * instruction. Since the address register is of type UW, we
581 * can't use a D-type instruction. In order to get around this,
582 * re retype to UW and use a stride.
583 */
584 group_idx = retype(spread(group_idx, 2), BRW_REGISTER_TYPE_W);
585 }
586
587 /* Take into account the component size and horizontal stride. */
588 assert(src.vstride == src.hstride + src.width);
589 brw_SHL(p, addr, group_idx,
590 brw_imm_uw(_mesa_logbase2(type_sz(src.type)) +
591 src.hstride - 1));
592
593 /* Add on the register start offset */
594 brw_set_default_swsb(p, tgl_swsb_regdist(1));
595 brw_ADD(p, addr, addr, brw_imm_uw(src.nr * REG_SIZE + src.subnr));
596
597 if (type_sz(src.type) > 4 &&
598 ((devinfo->gen == 7 && !devinfo->is_haswell) ||
599 devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
600 /* IVB has an issue (which we found empirically) where it reads
601 * two address register components per channel for indirectly
602 * addressed 64-bit sources.
603 *
604 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
605 *
606 * "When source or destination datatype is 64b or operation is
607 * integer DWord multiply, indirect addressing must not be
608 * used."
609 *
610 * To work around both of these, we do two integer MOVs insead of
611 * one 64-bit MOV. Because no double value should ever cross a
612 * register boundary, it's safe to use the immediate offset in the
613 * indirect here to handle adding 4 bytes to the offset and avoid
614 * the extra ADD to the register file.
615 */
616 struct brw_reg gdst = suboffset(dst, group);
617 struct brw_reg dst_d = retype(spread(gdst, 2),
618 BRW_REGISTER_TYPE_D);
619 assert(dst.hstride == 1);
620 brw_MOV(p, dst_d,
621 retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
622 brw_set_default_swsb(p, tgl_swsb_null());
623 brw_MOV(p, byte_offset(dst_d, 4),
624 retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
625 } else {
626 brw_MOV(p, suboffset(dst, group * dst.hstride),
627 retype(brw_VxH_indirect(0, 0), src.type));
628 }
629 }
630
631 brw_set_default_swsb(p, tgl_swsb_null());
632 }
633 }
634
635 void
636 fs_generator::generate_quad_swizzle(const fs_inst *inst,
637 struct brw_reg dst, struct brw_reg src,
638 unsigned swiz)
639 {
640 /* Requires a quad. */
641 assert(inst->exec_size >= 4);
642
643 if (src.file == BRW_IMMEDIATE_VALUE ||
644 has_scalar_region(src)) {
645 /* The value is uniform across all channels */
646 brw_MOV(p, dst, src);
647
648 } else if (devinfo->gen < 11 && type_sz(src.type) == 4) {
649 /* This only works on 8-wide 32-bit values */
650 assert(inst->exec_size == 8);
651 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
652 assert(src.vstride == src.width + 1);
653 brw_set_default_access_mode(p, BRW_ALIGN_16);
654 struct brw_reg swiz_src = stride(src, 4, 4, 1);
655 swiz_src.swizzle = swiz;
656 brw_MOV(p, dst, swiz_src);
657
658 } else {
659 assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
660 assert(src.vstride == src.width + 1);
661 const struct brw_reg src_0 = suboffset(src, BRW_GET_SWZ(swiz, 0));
662
663 switch (swiz) {
664 case BRW_SWIZZLE_XXXX:
665 case BRW_SWIZZLE_YYYY:
666 case BRW_SWIZZLE_ZZZZ:
667 case BRW_SWIZZLE_WWWW:
668 brw_MOV(p, dst, stride(src_0, 4, 4, 0));
669 break;
670
671 case BRW_SWIZZLE_XXZZ:
672 case BRW_SWIZZLE_YYWW:
673 brw_MOV(p, dst, stride(src_0, 2, 2, 0));
674 break;
675
676 case BRW_SWIZZLE_XYXY:
677 case BRW_SWIZZLE_ZWZW:
678 assert(inst->exec_size == 4);
679 brw_MOV(p, dst, stride(src_0, 0, 2, 1));
680 break;
681
682 default:
683 assert(inst->force_writemask_all);
684 brw_set_default_exec_size(p, cvt(inst->exec_size / 4) - 1);
685
686 for (unsigned c = 0; c < 4; c++) {
687 brw_inst *insn = brw_MOV(
688 p, stride(suboffset(dst, c),
689 4 * inst->dst.stride, 1, 4 * inst->dst.stride),
690 stride(suboffset(src, BRW_GET_SWZ(swiz, c)), 4, 1, 0));
691
692 if (devinfo->gen < 12) {
693 brw_inst_set_no_dd_clear(devinfo, insn, c < 3);
694 brw_inst_set_no_dd_check(devinfo, insn, c > 0);
695 }
696
697 brw_set_default_swsb(p, tgl_swsb_null());
698 }
699
700 break;
701 }
702 }
703 }
704
705 void
706 fs_generator::generate_urb_read(fs_inst *inst,
707 struct brw_reg dst,
708 struct brw_reg header)
709 {
710 assert(inst->size_written % REG_SIZE == 0);
711 assert(header.file == BRW_GENERAL_REGISTER_FILE);
712 assert(header.type == BRW_REGISTER_TYPE_UD);
713
714 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
715 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
716 brw_set_src0(p, send, header);
717 if (devinfo->gen < 12)
718 brw_set_src1(p, send, brw_imm_ud(0u));
719
720 brw_inst_set_sfid(p->devinfo, send, BRW_SFID_URB);
721 brw_inst_set_urb_opcode(p->devinfo, send, GEN8_URB_OPCODE_SIMD8_READ);
722
723 if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT)
724 brw_inst_set_urb_per_slot_offset(p->devinfo, send, true);
725
726 brw_inst_set_mlen(p->devinfo, send, inst->mlen);
727 brw_inst_set_rlen(p->devinfo, send, inst->size_written / REG_SIZE);
728 brw_inst_set_header_present(p->devinfo, send, true);
729 brw_inst_set_urb_global_offset(p->devinfo, send, inst->offset);
730 }
731
732 void
733 fs_generator::generate_urb_write(fs_inst *inst, struct brw_reg payload)
734 {
735 brw_inst *insn;
736
737 /* WaClearTDRRegBeforeEOTForNonPS.
738 *
739 * WA: Clear tdr register before send EOT in all non-PS shader kernels
740 *
741 * mov(8) tdr0:ud 0x0:ud {NoMask}"
742 */
743 if (inst->eot && p->devinfo->gen == 10) {
744 brw_push_insn_state(p);
745 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
746 brw_MOV(p, brw_tdr_reg(), brw_imm_uw(0));
747 brw_pop_insn_state(p);
748 }
749
750 insn = brw_next_insn(p, BRW_OPCODE_SEND);
751
752 brw_set_dest(p, insn, brw_null_reg());
753 brw_set_src0(p, insn, payload);
754 if (devinfo->gen < 12)
755 brw_set_src1(p, insn, brw_imm_ud(0u));
756
757 brw_inst_set_sfid(p->devinfo, insn, BRW_SFID_URB);
758 brw_inst_set_urb_opcode(p->devinfo, insn, GEN8_URB_OPCODE_SIMD8_WRITE);
759
760 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
761 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
762 brw_inst_set_urb_per_slot_offset(p->devinfo, insn, true);
763
764 if (inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
765 inst->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT)
766 brw_inst_set_urb_channel_mask_present(p->devinfo, insn, true);
767
768 brw_inst_set_mlen(p->devinfo, insn, inst->mlen);
769 brw_inst_set_rlen(p->devinfo, insn, 0);
770 brw_inst_set_eot(p->devinfo, insn, inst->eot);
771 brw_inst_set_header_present(p->devinfo, insn, true);
772 brw_inst_set_urb_global_offset(p->devinfo, insn, inst->offset);
773 }
774
775 void
776 fs_generator::generate_cs_terminate(fs_inst *inst, struct brw_reg payload)
777 {
778 struct brw_inst *insn;
779
780 insn = brw_next_insn(p, BRW_OPCODE_SEND);
781
782 brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
783 brw_set_src0(p, insn, retype(payload, BRW_REGISTER_TYPE_UW));
784 if (devinfo->gen < 12)
785 brw_set_src1(p, insn, brw_imm_ud(0u));
786
787 /* Terminate a compute shader by sending a message to the thread spawner.
788 */
789 brw_inst_set_sfid(devinfo, insn, BRW_SFID_THREAD_SPAWNER);
790 brw_inst_set_mlen(devinfo, insn, 1);
791 brw_inst_set_rlen(devinfo, insn, 0);
792 brw_inst_set_eot(devinfo, insn, inst->eot);
793 brw_inst_set_header_present(devinfo, insn, false);
794
795 brw_inst_set_ts_opcode(devinfo, insn, 0); /* Dereference resource */
796
797 if (devinfo->gen < 11) {
798 brw_inst_set_ts_request_type(devinfo, insn, 0); /* Root thread */
799
800 /* Note that even though the thread has a URB resource associated with it,
801 * we set the "do not dereference URB" bit, because the URB resource is
802 * managed by the fixed-function unit, so it will free it automatically.
803 */
804 brw_inst_set_ts_resource_select(devinfo, insn, 1); /* Do not dereference URB */
805 }
806
807 brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
808 }
809
810 void
811 fs_generator::generate_barrier(fs_inst *, struct brw_reg src)
812 {
813 brw_barrier(p, src);
814 if (devinfo->gen >= 12) {
815 brw_set_default_swsb(p, tgl_swsb_null());
816 brw_SYNC(p, TGL_SYNC_BAR);
817 } else {
818 brw_WAIT(p);
819 }
820 }
821
822 bool
823 fs_generator::generate_linterp(fs_inst *inst,
824 struct brw_reg dst, struct brw_reg *src)
825 {
826 /* PLN reads:
827 * / in SIMD16 \
828 * -----------------------------------
829 * | src1+0 | src1+1 | src1+2 | src1+3 |
830 * |-----------------------------------|
831 * |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)|
832 * -----------------------------------
833 *
834 * but for the LINE/MAC pair, the LINE reads Xs and the MAC reads Ys:
835 *
836 * -----------------------------------
837 * | src1+0 | src1+1 | src1+2 | src1+3 |
838 * |-----------------------------------|
839 * |(x0, x1)|(y0, y1)| | | in SIMD8
840 * |-----------------------------------|
841 * |(x0, x1)|(x2, x3)|(y0, y1)|(y2, y3)| in SIMD16
842 * -----------------------------------
843 *
844 * See also: emit_interpolation_setup_gen4().
845 */
846 struct brw_reg delta_x = src[0];
847 struct brw_reg delta_y = offset(src[0], inst->exec_size / 8);
848 struct brw_reg interp = src[1];
849 brw_inst *i[2];
850
851 /* nir_lower_interpolation() will do the lowering to MAD instructions for
852 * us on gen11+
853 */
854 assert(devinfo->gen < 11);
855
856 if (devinfo->has_pln) {
857 if (devinfo->gen <= 6 && (delta_x.nr & 1) != 0) {
858 /* From the Sandy Bridge PRM Vol. 4, Pt. 2, Section 8.3.53, "Plane":
859 *
860 * "[DevSNB]:<src1> must be even register aligned.
861 *
862 * This restriction is lifted on Ivy Bridge.
863 *
864 * This means that we need to split PLN into LINE+MAC on-the-fly.
865 * Unfortunately, the inputs are laid out for PLN and not LINE+MAC so
866 * we have to split into SIMD8 pieces. For gen4 (!has_pln), the
867 * coordinate registers are laid out differently so we leave it as a
868 * SIMD16 instruction.
869 */
870 assert(inst->exec_size == 8 || inst->exec_size == 16);
871 assert(inst->group % 16 == 0);
872
873 brw_push_insn_state(p);
874 brw_set_default_exec_size(p, BRW_EXECUTE_8);
875
876 /* Thanks to two accumulators, we can emit all the LINEs and then all
877 * the MACs. This improves parallelism a bit.
878 */
879 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
880 brw_inst *line = brw_LINE(p, brw_null_reg(), interp,
881 offset(delta_x, g * 2));
882 brw_inst_set_group(devinfo, line, inst->group + g * 8);
883
884 /* LINE writes the accumulator automatically on gen4-5. On Sandy
885 * Bridge and later, we have to explicitly enable it.
886 */
887 if (devinfo->gen >= 6)
888 brw_inst_set_acc_wr_control(p->devinfo, line, true);
889
890 /* brw_set_default_saturate() is called before emitting
891 * instructions, so the saturate bit is set in each instruction,
892 * so we need to unset it on the LINE instructions.
893 */
894 brw_inst_set_saturate(p->devinfo, line, false);
895 }
896
897 for (unsigned g = 0; g < inst->exec_size / 8; g++) {
898 brw_inst *mac = brw_MAC(p, offset(dst, g), suboffset(interp, 1),
899 offset(delta_x, g * 2 + 1));
900 brw_inst_set_group(devinfo, mac, inst->group + g * 8);
901 brw_inst_set_cond_modifier(p->devinfo, mac, inst->conditional_mod);
902 }
903
904 brw_pop_insn_state(p);
905
906 return true;
907 } else {
908 brw_PLN(p, dst, interp, delta_x);
909
910 return false;
911 }
912 } else {
913 i[0] = brw_LINE(p, brw_null_reg(), interp, delta_x);
914 i[1] = brw_MAC(p, dst, suboffset(interp, 1), delta_y);
915
916 brw_inst_set_cond_modifier(p->devinfo, i[1], inst->conditional_mod);
917
918 /* brw_set_default_saturate() is called before emitting instructions, so
919 * the saturate bit is set in each instruction, so we need to unset it on
920 * the first instruction.
921 */
922 brw_inst_set_saturate(p->devinfo, i[0], false);
923
924 return true;
925 }
926 }
927
928 void
929 fs_generator::generate_get_buffer_size(fs_inst *inst,
930 struct brw_reg dst,
931 struct brw_reg src,
932 struct brw_reg surf_index)
933 {
934 assert(devinfo->gen >= 7);
935 assert(surf_index.file == BRW_IMMEDIATE_VALUE);
936
937 uint32_t simd_mode;
938 int rlen = 4;
939
940 switch (inst->exec_size) {
941 case 8:
942 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
943 break;
944 case 16:
945 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
946 break;
947 default:
948 unreachable("Invalid width for texture instruction");
949 }
950
951 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
952 rlen = 8;
953 dst = vec16(dst);
954 }
955
956 brw_SAMPLE(p,
957 retype(dst, BRW_REGISTER_TYPE_UW),
958 inst->base_mrf,
959 src,
960 surf_index.ud,
961 0,
962 GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
963 rlen, /* response length */
964 inst->mlen,
965 inst->header_size > 0,
966 simd_mode,
967 BRW_SAMPLER_RETURN_FORMAT_SINT32);
968 }
969
970 void
971 fs_generator::generate_tex(fs_inst *inst, struct brw_reg dst,
972 struct brw_reg surface_index,
973 struct brw_reg sampler_index)
974 {
975 assert(devinfo->gen < 7);
976 assert(inst->size_written % REG_SIZE == 0);
977 int msg_type = -1;
978 uint32_t simd_mode;
979 uint32_t return_format;
980
981 /* Sampler EOT message of less than the dispatch width would kill the
982 * thread prematurely.
983 */
984 assert(!inst->eot || inst->exec_size == dispatch_width);
985
986 switch (dst.type) {
987 case BRW_REGISTER_TYPE_D:
988 return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
989 break;
990 case BRW_REGISTER_TYPE_UD:
991 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
992 break;
993 default:
994 return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
995 break;
996 }
997
998 /* Stomp the resinfo output type to UINT32. On gens 4-5, the output type
999 * is set as part of the message descriptor. On gen4, the PRM seems to
1000 * allow UINT32 and FLOAT32 (i965 PRM, Vol. 4 Section 4.8.1.1), but on
1001 * later gens UINT32 is required. Once you hit Sandy Bridge, the bit is
1002 * gone from the message descriptor entirely and you just get UINT32 all
1003 * the time regasrdless. Since we can really only do non-UINT32 on gen4,
1004 * just stomp it to UINT32 all the time.
1005 */
1006 if (inst->opcode == SHADER_OPCODE_TXS)
1007 return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
1008
1009 switch (inst->exec_size) {
1010 case 8:
1011 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1012 break;
1013 case 16:
1014 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1015 break;
1016 default:
1017 unreachable("Invalid width for texture instruction");
1018 }
1019
1020 if (devinfo->gen >= 5) {
1021 switch (inst->opcode) {
1022 case SHADER_OPCODE_TEX:
1023 if (inst->shadow_compare) {
1024 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE;
1025 } else {
1026 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE;
1027 }
1028 break;
1029 case FS_OPCODE_TXB:
1030 if (inst->shadow_compare) {
1031 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE;
1032 } else {
1033 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
1034 }
1035 break;
1036 case SHADER_OPCODE_TXL:
1037 if (inst->shadow_compare) {
1038 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
1039 } else {
1040 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
1041 }
1042 break;
1043 case SHADER_OPCODE_TXS:
1044 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
1045 break;
1046 case SHADER_OPCODE_TXD:
1047 assert(!inst->shadow_compare);
1048 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
1049 break;
1050 case SHADER_OPCODE_TXF:
1051 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1052 break;
1053 case SHADER_OPCODE_TXF_CMS:
1054 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1055 break;
1056 case SHADER_OPCODE_LOD:
1057 msg_type = GEN5_SAMPLER_MESSAGE_LOD;
1058 break;
1059 case SHADER_OPCODE_TG4:
1060 assert(devinfo->gen == 6);
1061 assert(!inst->shadow_compare);
1062 msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
1063 break;
1064 case SHADER_OPCODE_SAMPLEINFO:
1065 msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
1066 break;
1067 default:
1068 unreachable("not reached");
1069 }
1070 } else {
1071 switch (inst->opcode) {
1072 case SHADER_OPCODE_TEX:
1073 /* Note that G45 and older determines shadow compare and dispatch width
1074 * from message length for most messages.
1075 */
1076 if (inst->exec_size == 8) {
1077 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
1078 if (inst->shadow_compare) {
1079 assert(inst->mlen == 6);
1080 } else {
1081 assert(inst->mlen <= 4);
1082 }
1083 } else {
1084 if (inst->shadow_compare) {
1085 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE;
1086 assert(inst->mlen == 9);
1087 } else {
1088 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE;
1089 assert(inst->mlen <= 7 && inst->mlen % 2 == 1);
1090 }
1091 }
1092 break;
1093 case FS_OPCODE_TXB:
1094 if (inst->shadow_compare) {
1095 assert(inst->exec_size == 8);
1096 assert(inst->mlen == 6);
1097 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_BIAS_COMPARE;
1098 } else {
1099 assert(inst->mlen == 9);
1100 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
1101 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1102 }
1103 break;
1104 case SHADER_OPCODE_TXL:
1105 if (inst->shadow_compare) {
1106 assert(inst->exec_size == 8);
1107 assert(inst->mlen == 6);
1108 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_LOD_COMPARE;
1109 } else {
1110 assert(inst->mlen == 9);
1111 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_LOD;
1112 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1113 }
1114 break;
1115 case SHADER_OPCODE_TXD:
1116 /* There is no sample_d_c message; comparisons are done manually */
1117 assert(inst->exec_size == 8);
1118 assert(inst->mlen == 7 || inst->mlen == 10);
1119 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE_GRADIENTS;
1120 break;
1121 case SHADER_OPCODE_TXF:
1122 assert(inst->mlen <= 9 && inst->mlen % 2 == 1);
1123 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1124 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1125 break;
1126 case SHADER_OPCODE_TXS:
1127 assert(inst->mlen == 3);
1128 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_RESINFO;
1129 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1130 break;
1131 default:
1132 unreachable("not reached");
1133 }
1134 }
1135 assert(msg_type != -1);
1136
1137 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
1138 dst = vec16(dst);
1139 }
1140
1141 assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
1142
1143 /* Load the message header if present. If there's a texture offset,
1144 * we need to set it up explicitly and load the offset bitfield.
1145 * Otherwise, we can use an implied move from g0 to the first message reg.
1146 */
1147 struct brw_reg src = brw_null_reg();
1148 if (inst->header_size != 0) {
1149 if (devinfo->gen < 6 && !inst->offset) {
1150 /* Set up an implied move from g0 to the MRF. */
1151 src = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
1152 } else {
1153 const tgl_swsb swsb = brw_get_default_swsb(p);
1154 assert(inst->base_mrf != -1);
1155 struct brw_reg header_reg = brw_message_reg(inst->base_mrf);
1156
1157 brw_push_insn_state(p);
1158 brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
1159 brw_set_default_exec_size(p, BRW_EXECUTE_8);
1160 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1161 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE);
1162 /* Explicitly set up the message header by copying g0 to the MRF. */
1163 brw_MOV(p, header_reg, brw_vec8_grf(0, 0));
1164 brw_set_default_swsb(p, tgl_swsb_regdist(1));
1165
1166 brw_set_default_exec_size(p, BRW_EXECUTE_1);
1167 if (inst->offset) {
1168 /* Set the offset bits in DWord 2. */
1169 brw_MOV(p, get_element_ud(header_reg, 2),
1170 brw_imm_ud(inst->offset));
1171 }
1172
1173 brw_pop_insn_state(p);
1174 brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
1175 }
1176 }
1177
1178 uint32_t base_binding_table_index;
1179 switch (inst->opcode) {
1180 case SHADER_OPCODE_TG4:
1181 base_binding_table_index = prog_data->binding_table.gather_texture_start;
1182 break;
1183 default:
1184 base_binding_table_index = prog_data->binding_table.texture_start;
1185 break;
1186 }
1187
1188 assert(surface_index.file == BRW_IMMEDIATE_VALUE);
1189 assert(sampler_index.file == BRW_IMMEDIATE_VALUE);
1190
1191 brw_SAMPLE(p,
1192 retype(dst, BRW_REGISTER_TYPE_UW),
1193 inst->base_mrf,
1194 src,
1195 surface_index.ud + base_binding_table_index,
1196 sampler_index.ud % 16,
1197 msg_type,
1198 inst->size_written / REG_SIZE,
1199 inst->mlen,
1200 inst->header_size != 0,
1201 simd_mode,
1202 return_format);
1203 }
1204
1205
1206 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
1207 * looking like:
1208 *
1209 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
1210 *
1211 * Ideally, we want to produce:
1212 *
1213 * DDX DDY
1214 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
1215 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
1216 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
1217 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
1218 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
1219 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
1220 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
1221 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
1222 *
1223 * and add another set of two more subspans if in 16-pixel dispatch mode.
1224 *
1225 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
1226 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
1227 * pair. But the ideal approximation may impose a huge performance cost on
1228 * sample_d. On at least Haswell, sample_d instruction does some
1229 * optimizations if the same LOD is used for all pixels in the subspan.
1230 *
1231 * For DDY, we need to use ALIGN16 mode since it's capable of doing the
1232 * appropriate swizzling.
1233 */
1234 void
1235 fs_generator::generate_ddx(const fs_inst *inst,
1236 struct brw_reg dst, struct brw_reg src)
1237 {
1238 unsigned vstride, width;
1239
1240 if (devinfo->gen >= 8) {
1241 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1242 /* produce accurate derivatives */
1243 vstride = BRW_VERTICAL_STRIDE_2;
1244 width = BRW_WIDTH_2;
1245 } else {
1246 /* replicate the derivative at the top-left pixel to other pixels */
1247 vstride = BRW_VERTICAL_STRIDE_4;
1248 width = BRW_WIDTH_4;
1249 }
1250
1251 struct brw_reg src0 = byte_offset(src, type_sz(src.type));;
1252 struct brw_reg src1 = src;
1253
1254 src0.vstride = vstride;
1255 src0.width = width;
1256 src0.hstride = BRW_HORIZONTAL_STRIDE_0;
1257 src1.vstride = vstride;
1258 src1.width = width;
1259 src1.hstride = BRW_HORIZONTAL_STRIDE_0;
1260
1261 brw_ADD(p, dst, src0, negate(src1));
1262 } else {
1263 /* On Haswell and earlier, the region used above appears to not work
1264 * correctly for compressed instructions. At least on Haswell and
1265 * Iron Lake, compressed ALIGN16 instructions do work. Since we
1266 * would have to split to SIMD8 no matter which method we choose, we
1267 * may as well use ALIGN16 on all platforms gen7 and earlier.
1268 */
1269 struct brw_reg src0 = stride(src, 4, 4, 1);
1270 struct brw_reg src1 = stride(src, 4, 4, 1);
1271 if (inst->opcode == FS_OPCODE_DDX_FINE) {
1272 src0.swizzle = BRW_SWIZZLE_XXZZ;
1273 src1.swizzle = BRW_SWIZZLE_YYWW;
1274 } else {
1275 src0.swizzle = BRW_SWIZZLE_XXXX;
1276 src1.swizzle = BRW_SWIZZLE_YYYY;
1277 }
1278
1279 brw_push_insn_state(p);
1280 brw_set_default_access_mode(p, BRW_ALIGN_16);
1281 brw_ADD(p, dst, negate(src0), src1);
1282 brw_pop_insn_state(p);
1283 }
1284 }
1285
1286 /* The negate_value boolean is used to negate the derivative computation for
1287 * FBOs, since they place the origin at the upper left instead of the lower
1288 * left.
1289 */
1290 void
1291 fs_generator::generate_ddy(const fs_inst *inst,
1292 struct brw_reg dst, struct brw_reg src)
1293 {
1294 const uint32_t type_size = type_sz(src.type);
1295
1296 if (inst->opcode == FS_OPCODE_DDY_FINE) {
1297 /* produce accurate derivatives.
1298 *
1299 * From the Broadwell PRM, Volume 7 (3D-Media-GPGPU)
1300 * "Register Region Restrictions", Section "1. Special Restrictions":
1301 *
1302 * "In Align16 mode, the channel selects and channel enables apply to
1303 * a pair of half-floats, because these parameters are defined for
1304 * DWord elements ONLY. This is applicable when both source and
1305 * destination are half-floats."
1306 *
1307 * So for half-float operations we use the Gen11+ Align1 path. CHV
1308 * inherits its FP16 hardware from SKL, so it is not affected.
1309 */
1310 if (devinfo->gen >= 11 ||
1311 (devinfo->is_broadwell && src.type == BRW_REGISTER_TYPE_HF)) {
1312 src = stride(src, 0, 2, 1);
1313
1314 brw_push_insn_state(p);
1315 brw_set_default_exec_size(p, BRW_EXECUTE_4);
1316 for (uint32_t g = 0; g < inst->exec_size; g += 4) {
1317 brw_set_default_group(p, inst->group + g);
1318 brw_ADD(p, byte_offset(dst, g * type_size),
1319 negate(byte_offset(src, g * type_size)),
1320 byte_offset(src, (g + 2) * type_size));
1321 brw_set_default_swsb(p, tgl_swsb_null());
1322 }
1323 brw_pop_insn_state(p);
1324 } else {
1325 struct brw_reg src0 = stride(src, 4, 4, 1);
1326 struct brw_reg src1 = stride(src, 4, 4, 1);
1327 src0.swizzle = BRW_SWIZZLE_XYXY;
1328 src1.swizzle = BRW_SWIZZLE_ZWZW;
1329
1330 brw_push_insn_state(p);
1331 brw_set_default_access_mode(p, BRW_ALIGN_16);
1332 brw_ADD(p, dst, negate(src0), src1);
1333 brw_pop_insn_state(p);
1334 }
1335 } else {
1336 /* replicate the derivative at the top-left pixel to other pixels */
1337 if (devinfo->gen >= 8) {
1338 struct brw_reg src0 = byte_offset(stride(src, 4, 4, 0), 0 * type_size);
1339 struct brw_reg src1 = byte_offset(stride(src, 4, 4, 0), 2 * type_size);
1340
1341 brw_ADD(p, dst, negate(src0), src1);
1342 } else {
1343 /* On Haswell and earlier, the region used above appears to not work
1344 * correctly for compressed instructions. At least on Haswell and
1345 * Iron Lake, compressed ALIGN16 instructions do work. Since we
1346 * would have to split to SIMD8 no matter which method we choose, we
1347 * may as well use ALIGN16 on all platforms gen7 and earlier.
1348 */
1349 struct brw_reg src0 = stride(src, 4, 4, 1);
1350 struct brw_reg src1 = stride(src, 4, 4, 1);
1351 src0.swizzle = BRW_SWIZZLE_XXXX;
1352 src1.swizzle = BRW_SWIZZLE_ZZZZ;
1353
1354 brw_push_insn_state(p);
1355 brw_set_default_access_mode(p, BRW_ALIGN_16);
1356 brw_ADD(p, dst, negate(src0), src1);
1357 brw_pop_insn_state(p);
1358 }
1359 }
1360 }
1361
1362 void
1363 fs_generator::generate_discard_jump(fs_inst *)
1364 {
1365 assert(devinfo->gen >= 6);
1366
1367 /* This HALT will be patched up at FB write time to point UIP at the end of
1368 * the program, and at brw_uip_jip() JIP will be set to the end of the
1369 * current block (or the program).
1370 */
1371 this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn));
1372 gen6_HALT(p);
1373 }
1374
1375 void
1376 fs_generator::generate_scratch_write(fs_inst *inst, struct brw_reg src)
1377 {
1378 /* The 32-wide messages only respect the first 16-wide half of the channel
1379 * enable signals which are replicated identically for the second group of
1380 * 16 channels, so we cannot use them unless the write is marked
1381 * force_writemask_all.
1382 */
1383 const unsigned lower_size = inst->force_writemask_all ? inst->exec_size :
1384 MIN2(16, inst->exec_size);
1385 const unsigned block_size = 4 * lower_size / REG_SIZE;
1386 const tgl_swsb swsb = brw_get_default_swsb(p);
1387 assert(inst->mlen != 0);
1388
1389 brw_push_insn_state(p);
1390 brw_set_default_exec_size(p, cvt(lower_size) - 1);
1391 brw_set_default_compression(p, lower_size > 8);
1392
1393 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1394 brw_set_default_group(p, inst->group + lower_size * i);
1395
1396 if (i > 0) {
1397 assert(swsb.mode & TGL_SBID_SET);
1398 brw_set_default_swsb(p, tgl_swsb_sbid(TGL_SBID_SRC, swsb.sbid));
1399 } else {
1400 brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
1401 }
1402
1403 brw_MOV(p, brw_uvec_mrf(lower_size, inst->base_mrf + 1, 0),
1404 retype(offset(src, block_size * i), BRW_REGISTER_TYPE_UD));
1405
1406 brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
1407 brw_oword_block_write_scratch(p, brw_message_reg(inst->base_mrf),
1408 block_size,
1409 inst->offset + block_size * REG_SIZE * i);
1410 }
1411
1412 brw_pop_insn_state(p);
1413 }
1414
1415 void
1416 fs_generator::generate_scratch_read(fs_inst *inst, struct brw_reg dst)
1417 {
1418 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1419 assert(inst->mlen != 0);
1420
1421 brw_oword_block_read_scratch(p, dst, brw_message_reg(inst->base_mrf),
1422 inst->exec_size / 8, inst->offset);
1423 }
1424
1425 void
1426 fs_generator::generate_scratch_read_gen7(fs_inst *inst, struct brw_reg dst)
1427 {
1428 assert(inst->exec_size <= 16 || inst->force_writemask_all);
1429
1430 gen7_block_read_scratch(p, dst, inst->exec_size / 8, inst->offset);
1431 }
1432
1433 void
1434 fs_generator::generate_uniform_pull_constant_load(fs_inst *inst,
1435 struct brw_reg dst,
1436 struct brw_reg index,
1437 struct brw_reg offset)
1438 {
1439 assert(type_sz(dst.type) == 4);
1440 assert(inst->mlen != 0);
1441
1442 assert(index.file == BRW_IMMEDIATE_VALUE &&
1443 index.type == BRW_REGISTER_TYPE_UD);
1444 uint32_t surf_index = index.ud;
1445
1446 assert(offset.file == BRW_IMMEDIATE_VALUE &&
1447 offset.type == BRW_REGISTER_TYPE_UD);
1448 uint32_t read_offset = offset.ud;
1449
1450 brw_oword_block_read(p, dst, brw_message_reg(inst->base_mrf),
1451 read_offset, surf_index);
1452 }
1453
1454 void
1455 fs_generator::generate_uniform_pull_constant_load_gen7(fs_inst *inst,
1456 struct brw_reg dst,
1457 struct brw_reg index,
1458 struct brw_reg payload)
1459 {
1460 assert(index.type == BRW_REGISTER_TYPE_UD);
1461 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1462 assert(type_sz(dst.type) == 4);
1463
1464 if (index.file == BRW_IMMEDIATE_VALUE) {
1465 const uint32_t surf_index = index.ud;
1466
1467 brw_push_insn_state(p);
1468 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1469 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1470 brw_pop_insn_state(p);
1471
1472 brw_inst_set_sfid(devinfo, send, GEN6_SFID_DATAPORT_CONSTANT_CACHE);
1473 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UD));
1474 brw_set_src0(p, send, retype(payload, BRW_REGISTER_TYPE_UD));
1475 brw_set_desc(p, send,
1476 brw_message_desc(devinfo, 1, DIV_ROUND_UP(inst->size_written,
1477 REG_SIZE), true) |
1478 brw_dp_read_desc(devinfo, surf_index,
1479 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1480 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1481 BRW_DATAPORT_READ_TARGET_DATA_CACHE));
1482
1483 } else {
1484 const tgl_swsb swsb = brw_get_default_swsb(p);
1485 struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1486
1487 brw_push_insn_state(p);
1488 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1489
1490 /* a0.0 = surf_index & 0xff */
1491 brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
1492 brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1493 brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1494 brw_set_dest(p, insn_and, addr);
1495 brw_set_src0(p, insn_and, vec1(retype(index, BRW_REGISTER_TYPE_UD)));
1496 brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1497
1498 /* dst = send(payload, a0.0 | <descriptor>) */
1499 brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
1500 brw_send_indirect_message(
1501 p, GEN6_SFID_DATAPORT_CONSTANT_CACHE,
1502 retype(dst, BRW_REGISTER_TYPE_UD),
1503 retype(payload, BRW_REGISTER_TYPE_UD), addr,
1504 brw_message_desc(devinfo, 1,
1505 DIV_ROUND_UP(inst->size_written, REG_SIZE), true) |
1506 brw_dp_read_desc(devinfo, 0 /* surface */,
1507 BRW_DATAPORT_OWORD_BLOCK_DWORDS(inst->exec_size),
1508 GEN7_DATAPORT_DC_OWORD_BLOCK_READ,
1509 BRW_DATAPORT_READ_TARGET_DATA_CACHE),
1510 false /* EOT */);
1511
1512 brw_pop_insn_state(p);
1513 }
1514 }
1515
1516 void
1517 fs_generator::generate_varying_pull_constant_load_gen4(fs_inst *inst,
1518 struct brw_reg dst,
1519 struct brw_reg index)
1520 {
1521 assert(devinfo->gen < 7); /* Should use the gen7 variant. */
1522 assert(inst->header_size != 0);
1523 assert(inst->mlen);
1524
1525 assert(index.file == BRW_IMMEDIATE_VALUE &&
1526 index.type == BRW_REGISTER_TYPE_UD);
1527 uint32_t surf_index = index.ud;
1528
1529 uint32_t simd_mode, rlen, msg_type;
1530 if (inst->exec_size == 16) {
1531 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1532 rlen = 8;
1533 } else {
1534 assert(inst->exec_size == 8);
1535 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1536 rlen = 4;
1537 }
1538
1539 if (devinfo->gen >= 5)
1540 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
1541 else {
1542 /* We always use the SIMD16 message so that we only have to load U, and
1543 * not V or R.
1544 */
1545 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_LD;
1546 assert(inst->mlen == 3);
1547 assert(inst->size_written == 8 * REG_SIZE);
1548 rlen = 8;
1549 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
1550 }
1551
1552 struct brw_reg header = brw_vec8_grf(0, 0);
1553 gen6_resolve_implied_move(p, &header, inst->base_mrf);
1554
1555 brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1556 brw_inst_set_compression(devinfo, send, false);
1557 brw_inst_set_sfid(devinfo, send, BRW_SFID_SAMPLER);
1558 brw_set_dest(p, send, retype(dst, BRW_REGISTER_TYPE_UW));
1559 brw_set_src0(p, send, header);
1560 if (devinfo->gen < 6)
1561 brw_inst_set_base_mrf(p->devinfo, send, inst->base_mrf);
1562
1563 /* Our surface is set up as floats, regardless of what actual data is
1564 * stored in it.
1565 */
1566 uint32_t return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
1567 brw_set_desc(p, send,
1568 brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size) |
1569 brw_sampler_desc(devinfo, surf_index,
1570 0, /* sampler (unused) */
1571 msg_type, simd_mode, return_format));
1572 }
1573
1574 void
1575 fs_generator::generate_pixel_interpolator_query(fs_inst *inst,
1576 struct brw_reg dst,
1577 struct brw_reg src,
1578 struct brw_reg msg_data,
1579 unsigned msg_type)
1580 {
1581 const bool has_payload = inst->src[0].file != BAD_FILE;
1582 assert(msg_data.type == BRW_REGISTER_TYPE_UD);
1583 assert(inst->size_written % REG_SIZE == 0);
1584
1585 brw_pixel_interpolator_query(p,
1586 retype(dst, BRW_REGISTER_TYPE_UW),
1587 /* If we don't have a payload, what we send doesn't matter */
1588 has_payload ? src : brw_vec8_grf(0, 0),
1589 inst->pi_noperspective,
1590 msg_type,
1591 msg_data,
1592 has_payload ? 2 * inst->exec_size / 8 : 1,
1593 inst->size_written / REG_SIZE);
1594 }
1595
1596 /* Sets vstride=1, width=4, hstride=0 of register src1 during
1597 * the ADD instruction.
1598 */
1599 void
1600 fs_generator::generate_set_sample_id(fs_inst *inst,
1601 struct brw_reg dst,
1602 struct brw_reg src0,
1603 struct brw_reg src1)
1604 {
1605 assert(dst.type == BRW_REGISTER_TYPE_D ||
1606 dst.type == BRW_REGISTER_TYPE_UD);
1607 assert(src0.type == BRW_REGISTER_TYPE_D ||
1608 src0.type == BRW_REGISTER_TYPE_UD);
1609
1610 const struct brw_reg reg = stride(src1, 1, 4, 0);
1611 const unsigned lower_size = MIN2(inst->exec_size,
1612 devinfo->gen >= 8 ? 16 : 8);
1613
1614 for (unsigned i = 0; i < inst->exec_size / lower_size; i++) {
1615 brw_inst *insn = brw_ADD(p, offset(dst, i * lower_size / 8),
1616 offset(src0, (src0.vstride == 0 ? 0 : (1 << (src0.vstride - 1)) *
1617 (i * lower_size / (1 << src0.width))) *
1618 type_sz(src0.type) / REG_SIZE),
1619 suboffset(reg, i * lower_size / 4));
1620 brw_inst_set_exec_size(devinfo, insn, cvt(lower_size) - 1);
1621 brw_inst_set_group(devinfo, insn, inst->group + lower_size * i);
1622 brw_inst_set_compression(devinfo, insn, lower_size > 8);
1623 brw_set_default_swsb(p, tgl_swsb_null());
1624 }
1625 }
1626
1627 void
1628 fs_generator::generate_pack_half_2x16_split(fs_inst *,
1629 struct brw_reg dst,
1630 struct brw_reg x,
1631 struct brw_reg y)
1632 {
1633 assert(devinfo->gen >= 7);
1634 assert(dst.type == BRW_REGISTER_TYPE_UD);
1635 assert(x.type == BRW_REGISTER_TYPE_F);
1636 assert(y.type == BRW_REGISTER_TYPE_F);
1637
1638 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
1639 *
1640 * Because this instruction does not have a 16-bit floating-point type,
1641 * the destination data type must be Word (W).
1642 *
1643 * The destination must be DWord-aligned and specify a horizontal stride
1644 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
1645 * each destination channel and the upper word is not modified.
1646 */
1647 struct brw_reg dst_w = spread(retype(dst, BRW_REGISTER_TYPE_W), 2);
1648
1649 /* Give each 32-bit channel of dst the form below, where "." means
1650 * unchanged.
1651 * 0x....hhhh
1652 */
1653 brw_F32TO16(p, dst_w, y);
1654
1655 /* Now the form:
1656 * 0xhhhh0000
1657 */
1658 brw_set_default_swsb(p, tgl_swsb_regdist(1));
1659 brw_SHL(p, dst, dst, brw_imm_ud(16u));
1660
1661 /* And, finally the form of packHalf2x16's output:
1662 * 0xhhhhllll
1663 */
1664 brw_F32TO16(p, dst_w, x);
1665 }
1666
1667 void
1668 fs_generator::generate_shader_time_add(fs_inst *,
1669 struct brw_reg payload,
1670 struct brw_reg offset,
1671 struct brw_reg value)
1672 {
1673 const tgl_swsb swsb = brw_get_default_swsb(p);
1674
1675 assert(devinfo->gen >= 7);
1676 brw_push_insn_state(p);
1677 brw_set_default_mask_control(p, true);
1678 brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
1679
1680 assert(payload.file == BRW_GENERAL_REGISTER_FILE);
1681 struct brw_reg payload_offset = retype(brw_vec1_grf(payload.nr, 0),
1682 offset.type);
1683 struct brw_reg payload_value = retype(brw_vec1_grf(payload.nr + 1, 0),
1684 value.type);
1685
1686 assert(offset.file == BRW_IMMEDIATE_VALUE);
1687 if (value.file == BRW_GENERAL_REGISTER_FILE) {
1688 value.width = BRW_WIDTH_1;
1689 value.hstride = BRW_HORIZONTAL_STRIDE_0;
1690 value.vstride = BRW_VERTICAL_STRIDE_0;
1691 } else {
1692 assert(value.file == BRW_IMMEDIATE_VALUE);
1693 }
1694
1695 /* Trying to deal with setup of the params from the IR is crazy in the FS8
1696 * case, and we don't really care about squeezing every bit of performance
1697 * out of this path, so we just emit the MOVs from here.
1698 */
1699 brw_MOV(p, payload_offset, offset);
1700 brw_set_default_swsb(p, tgl_swsb_null());
1701 brw_MOV(p, payload_value, value);
1702 brw_set_default_swsb(p, tgl_swsb_dst_dep(swsb, 1));
1703 brw_shader_time_add(p, payload,
1704 prog_data->binding_table.shader_time_start);
1705 brw_pop_insn_state(p);
1706 }
1707
1708 void
1709 fs_generator::enable_debug(const char *shader_name)
1710 {
1711 debug_flag = true;
1712 this->shader_name = shader_name;
1713 }
1714
1715 int
1716 fs_generator::generate_code(const cfg_t *cfg, int dispatch_width,
1717 struct shader_stats shader_stats,
1718 struct brw_compile_stats *stats)
1719 {
1720 /* align to 64 byte boundary. */
1721 while (p->next_insn_offset % 64)
1722 brw_NOP(p);
1723
1724 this->dispatch_width = dispatch_width;
1725
1726 int start_offset = p->next_insn_offset;
1727
1728 /* `send_count` explicitly does not include spills or fills, as we'd
1729 * like to use it as a metric for intentional memory access or other
1730 * shared function use. Otherwise, subtle changes to scheduling or
1731 * register allocation could cause it to fluctuate wildly - and that
1732 * effect is already counted in spill/fill counts.
1733 */
1734 int spill_count = 0, fill_count = 0;
1735 int loop_count = 0, send_count = 0, nop_count = 0;
1736 bool is_accum_used = false;
1737
1738 struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1739
1740 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1741 if (inst->opcode == SHADER_OPCODE_UNDEF)
1742 continue;
1743
1744 struct brw_reg src[4], dst;
1745 unsigned int last_insn_offset = p->next_insn_offset;
1746 bool multiple_instructions_emitted = false;
1747
1748 /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the
1749 * "Register Region Restrictions" section: for BDW, SKL:
1750 *
1751 * "A POW/FDIV operation must not be followed by an instruction
1752 * that requires two destination registers."
1753 *
1754 * The documentation is often lacking annotations for Atom parts,
1755 * and empirically this affects CHV as well.
1756 */
1757 if (devinfo->gen >= 8 &&
1758 devinfo->gen <= 9 &&
1759 p->nr_insn > 1 &&
1760 brw_inst_opcode(devinfo, brw_last_inst) == BRW_OPCODE_MATH &&
1761 brw_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW &&
1762 inst->dst.component_size(inst->exec_size) > REG_SIZE) {
1763 brw_NOP(p);
1764 last_insn_offset = p->next_insn_offset;
1765
1766 /* In order to avoid spurious instruction count differences when the
1767 * instruction schedule changes, keep track of the number of inserted
1768 * NOPs.
1769 */
1770 nop_count++;
1771 }
1772
1773 /* GEN:BUG:14010017096:
1774 *
1775 * Clear accumulator register before end of thread.
1776 */
1777 if (inst->eot && is_accum_used && devinfo->gen >= 12) {
1778 brw_set_default_exec_size(p, BRW_EXECUTE_16);
1779 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1780 brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
1781 brw_MOV(p, brw_acc_reg(8), brw_imm_f(0.0f));
1782 last_insn_offset = p->next_insn_offset;
1783 }
1784
1785 if (!is_accum_used && !inst->eot) {
1786 is_accum_used = inst->writes_accumulator_implicitly(devinfo) ||
1787 inst->dst.is_accumulator();
1788 }
1789
1790 if (unlikely(debug_flag))
1791 disasm_annotate(disasm_info, inst, p->next_insn_offset);
1792
1793 /* If the instruction writes to more than one register, it needs to be
1794 * explicitly marked as compressed on Gen <= 5. On Gen >= 6 the
1795 * hardware figures out by itself what the right compression mode is,
1796 * but we still need to know whether the instruction is compressed to
1797 * set up the source register regions appropriately.
1798 *
1799 * XXX - This is wrong for instructions that write a single register but
1800 * read more than one which should strictly speaking be treated as
1801 * compressed. For instructions that don't write any registers it
1802 * relies on the destination being a null register of the correct
1803 * type and regioning so the instruction is considered compressed
1804 * or not accordingly.
1805 */
1806 const bool compressed =
1807 inst->dst.component_size(inst->exec_size) > REG_SIZE;
1808 brw_set_default_compression(p, compressed);
1809 brw_set_default_group(p, inst->group);
1810
1811 for (unsigned int i = 0; i < inst->sources; i++) {
1812 src[i] = brw_reg_from_fs_reg(devinfo, inst,
1813 &inst->src[i], compressed);
1814 /* The accumulator result appears to get used for the
1815 * conditional modifier generation. When negating a UD
1816 * value, there is a 33rd bit generated for the sign in the
1817 * accumulator value, so now you can't check, for example,
1818 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
1819 */
1820 assert(!inst->conditional_mod ||
1821 inst->src[i].type != BRW_REGISTER_TYPE_UD ||
1822 !inst->src[i].negate);
1823 }
1824 dst = brw_reg_from_fs_reg(devinfo, inst,
1825 &inst->dst, compressed);
1826
1827 brw_set_default_access_mode(p, BRW_ALIGN_1);
1828 brw_set_default_predicate_control(p, inst->predicate);
1829 brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1830 /* On gen7 and above, hardware automatically adds the group onto the
1831 * flag subregister number. On Sandy Bridge and older, we have to do it
1832 * ourselves.
1833 */
1834 const unsigned flag_subreg = inst->flag_subreg +
1835 (devinfo->gen >= 7 ? 0 : inst->group / 16);
1836 brw_set_default_flag_reg(p, flag_subreg / 2, flag_subreg % 2);
1837 brw_set_default_saturate(p, inst->saturate);
1838 brw_set_default_mask_control(p, inst->force_writemask_all);
1839 brw_set_default_acc_write_control(p, inst->writes_accumulator);
1840 brw_set_default_swsb(p, inst->sched);
1841
1842 unsigned exec_size = inst->exec_size;
1843 if (devinfo->gen == 7 && !devinfo->is_haswell &&
1844 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) {
1845 exec_size *= 2;
1846 }
1847
1848 brw_set_default_exec_size(p, cvt(exec_size) - 1);
1849
1850 assert(inst->force_writemask_all || inst->exec_size >= 4);
1851 assert(inst->force_writemask_all || inst->group % inst->exec_size == 0);
1852 assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
1853 assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1854
1855 switch (inst->opcode) {
1856 case BRW_OPCODE_SYNC:
1857 assert(src[0].file == BRW_IMMEDIATE_VALUE);
1858 brw_SYNC(p, tgl_sync_function(src[0].ud));
1859 break;
1860 case BRW_OPCODE_MOV:
1861 brw_MOV(p, dst, src[0]);
1862 break;
1863 case BRW_OPCODE_ADD:
1864 brw_ADD(p, dst, src[0], src[1]);
1865 break;
1866 case BRW_OPCODE_MUL:
1867 brw_MUL(p, dst, src[0], src[1]);
1868 break;
1869 case BRW_OPCODE_AVG:
1870 brw_AVG(p, dst, src[0], src[1]);
1871 break;
1872 case BRW_OPCODE_MACH:
1873 brw_MACH(p, dst, src[0], src[1]);
1874 break;
1875
1876 case BRW_OPCODE_LINE:
1877 brw_LINE(p, dst, src[0], src[1]);
1878 break;
1879
1880 case BRW_OPCODE_MAD:
1881 assert(devinfo->gen >= 6);
1882 if (devinfo->gen < 10)
1883 brw_set_default_access_mode(p, BRW_ALIGN_16);
1884 brw_MAD(p, dst, src[0], src[1], src[2]);
1885 break;
1886
1887 case BRW_OPCODE_LRP:
1888 assert(devinfo->gen >= 6 && devinfo->gen <= 10);
1889 if (devinfo->gen < 10)
1890 brw_set_default_access_mode(p, BRW_ALIGN_16);
1891 brw_LRP(p, dst, src[0], src[1], src[2]);
1892 break;
1893
1894 case BRW_OPCODE_FRC:
1895 brw_FRC(p, dst, src[0]);
1896 break;
1897 case BRW_OPCODE_RNDD:
1898 brw_RNDD(p, dst, src[0]);
1899 break;
1900 case BRW_OPCODE_RNDE:
1901 brw_RNDE(p, dst, src[0]);
1902 break;
1903 case BRW_OPCODE_RNDZ:
1904 brw_RNDZ(p, dst, src[0]);
1905 break;
1906
1907 case BRW_OPCODE_AND:
1908 brw_AND(p, dst, src[0], src[1]);
1909 break;
1910 case BRW_OPCODE_OR:
1911 brw_OR(p, dst, src[0], src[1]);
1912 break;
1913 case BRW_OPCODE_XOR:
1914 brw_XOR(p, dst, src[0], src[1]);
1915 break;
1916 case BRW_OPCODE_NOT:
1917 brw_NOT(p, dst, src[0]);
1918 break;
1919 case BRW_OPCODE_ASR:
1920 brw_ASR(p, dst, src[0], src[1]);
1921 break;
1922 case BRW_OPCODE_SHR:
1923 brw_SHR(p, dst, src[0], src[1]);
1924 break;
1925 case BRW_OPCODE_SHL:
1926 brw_SHL(p, dst, src[0], src[1]);
1927 break;
1928 case BRW_OPCODE_ROL:
1929 assert(devinfo->gen >= 11);
1930 assert(src[0].type == dst.type);
1931 brw_ROL(p, dst, src[0], src[1]);
1932 break;
1933 case BRW_OPCODE_ROR:
1934 assert(devinfo->gen >= 11);
1935 assert(src[0].type == dst.type);
1936 brw_ROR(p, dst, src[0], src[1]);
1937 break;
1938 case BRW_OPCODE_F32TO16:
1939 assert(devinfo->gen >= 7);
1940 brw_F32TO16(p, dst, src[0]);
1941 break;
1942 case BRW_OPCODE_F16TO32:
1943 assert(devinfo->gen >= 7);
1944 brw_F16TO32(p, dst, src[0]);
1945 break;
1946 case BRW_OPCODE_CMP:
1947 if (inst->exec_size >= 16 && devinfo->gen == 7 && !devinfo->is_haswell &&
1948 dst.file == BRW_ARCHITECTURE_REGISTER_FILE) {
1949 /* For unknown reasons the WaCMPInstFlagDepClearedEarly workaround
1950 * implemented in the compiler is not sufficient. Overriding the
1951 * type when the destination is the null register is necessary but
1952 * not sufficient by itself.
1953 */
1954 assert(dst.nr == BRW_ARF_NULL);
1955 dst.type = BRW_REGISTER_TYPE_D;
1956 }
1957 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1958 break;
1959 case BRW_OPCODE_SEL:
1960 brw_SEL(p, dst, src[0], src[1]);
1961 break;
1962 case BRW_OPCODE_CSEL:
1963 assert(devinfo->gen >= 8);
1964 if (devinfo->gen < 10)
1965 brw_set_default_access_mode(p, BRW_ALIGN_16);
1966 brw_CSEL(p, dst, src[0], src[1], src[2]);
1967 break;
1968 case BRW_OPCODE_BFREV:
1969 assert(devinfo->gen >= 7);
1970 brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
1971 retype(src[0], BRW_REGISTER_TYPE_UD));
1972 break;
1973 case BRW_OPCODE_FBH:
1974 assert(devinfo->gen >= 7);
1975 brw_FBH(p, retype(dst, src[0].type), src[0]);
1976 break;
1977 case BRW_OPCODE_FBL:
1978 assert(devinfo->gen >= 7);
1979 brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
1980 retype(src[0], BRW_REGISTER_TYPE_UD));
1981 break;
1982 case BRW_OPCODE_LZD:
1983 brw_LZD(p, dst, src[0]);
1984 break;
1985 case BRW_OPCODE_CBIT:
1986 assert(devinfo->gen >= 7);
1987 brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
1988 retype(src[0], BRW_REGISTER_TYPE_UD));
1989 break;
1990 case BRW_OPCODE_ADDC:
1991 assert(devinfo->gen >= 7);
1992 brw_ADDC(p, dst, src[0], src[1]);
1993 break;
1994 case BRW_OPCODE_SUBB:
1995 assert(devinfo->gen >= 7);
1996 brw_SUBB(p, dst, src[0], src[1]);
1997 break;
1998 case BRW_OPCODE_MAC:
1999 brw_MAC(p, dst, src[0], src[1]);
2000 break;
2001
2002 case BRW_OPCODE_BFE:
2003 assert(devinfo->gen >= 7);
2004 if (devinfo->gen < 10)
2005 brw_set_default_access_mode(p, BRW_ALIGN_16);
2006 brw_BFE(p, dst, src[0], src[1], src[2]);
2007 break;
2008
2009 case BRW_OPCODE_BFI1:
2010 assert(devinfo->gen >= 7);
2011 brw_BFI1(p, dst, src[0], src[1]);
2012 break;
2013 case BRW_OPCODE_BFI2:
2014 assert(devinfo->gen >= 7);
2015 if (devinfo->gen < 10)
2016 brw_set_default_access_mode(p, BRW_ALIGN_16);
2017 brw_BFI2(p, dst, src[0], src[1], src[2]);
2018 break;
2019
2020 case BRW_OPCODE_IF:
2021 if (inst->src[0].file != BAD_FILE) {
2022 /* The instruction has an embedded compare (only allowed on gen6) */
2023 assert(devinfo->gen == 6);
2024 gen6_IF(p, inst->conditional_mod, src[0], src[1]);
2025 } else {
2026 brw_IF(p, brw_get_default_exec_size(p));
2027 }
2028 break;
2029
2030 case BRW_OPCODE_ELSE:
2031 brw_ELSE(p);
2032 break;
2033 case BRW_OPCODE_ENDIF:
2034 brw_ENDIF(p);
2035 break;
2036
2037 case BRW_OPCODE_DO:
2038 brw_DO(p, brw_get_default_exec_size(p));
2039 break;
2040
2041 case BRW_OPCODE_BREAK:
2042 brw_BREAK(p);
2043 break;
2044 case BRW_OPCODE_CONTINUE:
2045 brw_CONT(p);
2046 break;
2047
2048 case BRW_OPCODE_WHILE:
2049 brw_WHILE(p);
2050 loop_count++;
2051 break;
2052
2053 case SHADER_OPCODE_RCP:
2054 case SHADER_OPCODE_RSQ:
2055 case SHADER_OPCODE_SQRT:
2056 case SHADER_OPCODE_EXP2:
2057 case SHADER_OPCODE_LOG2:
2058 case SHADER_OPCODE_SIN:
2059 case SHADER_OPCODE_COS:
2060 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2061 if (devinfo->gen >= 6) {
2062 assert(inst->mlen == 0);
2063 assert(devinfo->gen >= 7 || inst->exec_size == 8);
2064 gen6_math(p, dst, brw_math_function(inst->opcode),
2065 src[0], brw_null_reg());
2066 } else {
2067 assert(inst->mlen >= 1);
2068 assert(devinfo->gen == 5 || devinfo->is_g4x || inst->exec_size == 8);
2069 gen4_math(p, dst,
2070 brw_math_function(inst->opcode),
2071 inst->base_mrf, src[0],
2072 BRW_MATH_PRECISION_FULL);
2073 send_count++;
2074 }
2075 break;
2076 case SHADER_OPCODE_INT_QUOTIENT:
2077 case SHADER_OPCODE_INT_REMAINDER:
2078 case SHADER_OPCODE_POW:
2079 assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
2080 if (devinfo->gen >= 6) {
2081 assert(inst->mlen == 0);
2082 assert((devinfo->gen >= 7 && inst->opcode == SHADER_OPCODE_POW) ||
2083 inst->exec_size == 8);
2084 gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
2085 } else {
2086 assert(inst->mlen >= 1);
2087 assert(inst->exec_size == 8);
2088 gen4_math(p, dst, brw_math_function(inst->opcode),
2089 inst->base_mrf, src[0],
2090 BRW_MATH_PRECISION_FULL);
2091 send_count++;
2092 }
2093 break;
2094 case FS_OPCODE_LINTERP:
2095 multiple_instructions_emitted = generate_linterp(inst, dst, src);
2096 break;
2097 case FS_OPCODE_PIXEL_X:
2098 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2099 src[0].subnr = 0 * type_sz(src[0].type);
2100 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2101 break;
2102 case FS_OPCODE_PIXEL_Y:
2103 assert(src[0].type == BRW_REGISTER_TYPE_UW);
2104 src[0].subnr = 4 * type_sz(src[0].type);
2105 brw_MOV(p, dst, stride(src[0], 8, 4, 1));
2106 break;
2107
2108 case SHADER_OPCODE_SEND:
2109 generate_send(inst, dst, src[0], src[1], src[2],
2110 inst->ex_mlen > 0 ? src[3] : brw_null_reg());
2111 if ((inst->desc & 0xff) == BRW_BTI_STATELESS ||
2112 (inst->desc & 0xff) == GEN8_BTI_STATELESS_NON_COHERENT) {
2113 if (inst->size_written)
2114 fill_count++;
2115 else
2116 spill_count++;
2117 } else {
2118 send_count++;
2119 }
2120 break;
2121
2122 case SHADER_OPCODE_GET_BUFFER_SIZE:
2123 generate_get_buffer_size(inst, dst, src[0], src[1]);
2124 send_count++;
2125 break;
2126 case SHADER_OPCODE_TEX:
2127 case FS_OPCODE_TXB:
2128 case SHADER_OPCODE_TXD:
2129 case SHADER_OPCODE_TXF:
2130 case SHADER_OPCODE_TXF_CMS:
2131 case SHADER_OPCODE_TXL:
2132 case SHADER_OPCODE_TXS:
2133 case SHADER_OPCODE_LOD:
2134 case SHADER_OPCODE_TG4:
2135 case SHADER_OPCODE_SAMPLEINFO:
2136 assert(inst->src[0].file == BAD_FILE);
2137 generate_tex(inst, dst, src[1], src[2]);
2138 send_count++;
2139 break;
2140
2141 case FS_OPCODE_DDX_COARSE:
2142 case FS_OPCODE_DDX_FINE:
2143 generate_ddx(inst, dst, src[0]);
2144 break;
2145 case FS_OPCODE_DDY_COARSE:
2146 case FS_OPCODE_DDY_FINE:
2147 generate_ddy(inst, dst, src[0]);
2148 break;
2149
2150 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2151 generate_scratch_write(inst, src[0]);
2152 spill_count++;
2153 break;
2154
2155 case SHADER_OPCODE_GEN4_SCRATCH_READ:
2156 generate_scratch_read(inst, dst);
2157 fill_count++;
2158 break;
2159
2160 case SHADER_OPCODE_GEN7_SCRATCH_READ:
2161 generate_scratch_read_gen7(inst, dst);
2162 fill_count++;
2163 break;
2164
2165 case SHADER_OPCODE_MOV_INDIRECT:
2166 generate_mov_indirect(inst, dst, src[0], src[1]);
2167 break;
2168
2169 case SHADER_OPCODE_URB_READ_SIMD8:
2170 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
2171 generate_urb_read(inst, dst, src[0]);
2172 send_count++;
2173 break;
2174
2175 case SHADER_OPCODE_URB_WRITE_SIMD8:
2176 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
2177 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
2178 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
2179 generate_urb_write(inst, src[0]);
2180 send_count++;
2181 break;
2182
2183 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
2184 assert(inst->force_writemask_all);
2185 generate_uniform_pull_constant_load(inst, dst, src[0], src[1]);
2186 send_count++;
2187 break;
2188
2189 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
2190 assert(inst->force_writemask_all);
2191 generate_uniform_pull_constant_load_gen7(inst, dst, src[0], src[1]);
2192 send_count++;
2193 break;
2194
2195 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
2196 generate_varying_pull_constant_load_gen4(inst, dst, src[0]);
2197 send_count++;
2198 break;
2199
2200 case FS_OPCODE_REP_FB_WRITE:
2201 case FS_OPCODE_FB_WRITE:
2202 generate_fb_write(inst, src[0]);
2203 send_count++;
2204 break;
2205
2206 case FS_OPCODE_FB_READ:
2207 generate_fb_read(inst, dst, src[0]);
2208 send_count++;
2209 break;
2210
2211 case FS_OPCODE_DISCARD_JUMP:
2212 generate_discard_jump(inst);
2213 break;
2214
2215 case SHADER_OPCODE_SHADER_TIME_ADD:
2216 generate_shader_time_add(inst, src[0], src[1], src[2]);
2217 break;
2218
2219 case SHADER_OPCODE_MEMORY_FENCE:
2220 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2221 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2222 brw_memory_fence(p, dst, src[0], BRW_OPCODE_SEND, src[1].ud, src[2].ud);
2223 send_count++;
2224 break;
2225
2226 case FS_OPCODE_SCHEDULING_FENCE:
2227 if (unlikely(debug_flag))
2228 disasm_info->use_tail = true;
2229 break;
2230
2231 case SHADER_OPCODE_INTERLOCK:
2232 assert(devinfo->gen >= 9);
2233 /* The interlock is basically a memory fence issued via sendc */
2234 brw_memory_fence(p, dst, src[0], BRW_OPCODE_SENDC, false, /* bti */ 0);
2235 break;
2236
2237 case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
2238 const struct brw_reg mask =
2239 brw_stage_has_packed_dispatch(devinfo, stage,
2240 prog_data) ? brw_imm_ud(~0u) :
2241 stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
2242 brw_dmask_reg();
2243 brw_find_live_channel(p, dst, mask);
2244 break;
2245 }
2246 case FS_OPCODE_LOAD_LIVE_CHANNELS: {
2247 assert(devinfo->gen >= 8);
2248 assert(inst->force_writemask_all && inst->group == 0);
2249 assert(inst->dst.file == BAD_FILE);
2250 brw_set_default_exec_size(p, BRW_EXECUTE_1);
2251 brw_MOV(p, retype(brw_flag_subreg(inst->flag_subreg),
2252 BRW_REGISTER_TYPE_UD),
2253 retype(brw_mask_reg(0), BRW_REGISTER_TYPE_UD));
2254 break;
2255 }
2256 case SHADER_OPCODE_BROADCAST:
2257 assert(inst->force_writemask_all);
2258 brw_broadcast(p, dst, src[0], src[1]);
2259 break;
2260
2261 case SHADER_OPCODE_SHUFFLE:
2262 generate_shuffle(inst, dst, src[0], src[1]);
2263 break;
2264
2265 case SHADER_OPCODE_SEL_EXEC:
2266 assert(inst->force_writemask_all);
2267 brw_set_default_mask_control(p, BRW_MASK_DISABLE);
2268 brw_MOV(p, dst, src[1]);
2269 brw_set_default_mask_control(p, BRW_MASK_ENABLE);
2270 brw_set_default_swsb(p, tgl_swsb_null());
2271 brw_MOV(p, dst, src[0]);
2272 break;
2273
2274 case SHADER_OPCODE_QUAD_SWIZZLE:
2275 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2276 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2277 generate_quad_swizzle(inst, dst, src[0], src[1].ud);
2278 break;
2279
2280 case SHADER_OPCODE_CLUSTER_BROADCAST: {
2281 assert(!src[0].negate && !src[0].abs);
2282 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2283 assert(src[1].type == BRW_REGISTER_TYPE_UD);
2284 assert(src[2].file == BRW_IMMEDIATE_VALUE);
2285 assert(src[2].type == BRW_REGISTER_TYPE_UD);
2286 const unsigned component = src[1].ud;
2287 const unsigned cluster_size = src[2].ud;
2288 unsigned vstride = cluster_size;
2289 unsigned width = cluster_size;
2290
2291 /* The maximum exec_size is 32, but the maximum width is only 16. */
2292 if (inst->exec_size == width) {
2293 vstride = 0;
2294 width = 1;
2295 }
2296
2297 struct brw_reg strided = stride(suboffset(src[0], component),
2298 vstride, width, 0);
2299 if (type_sz(src[0].type) > 4 &&
2300 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
2301 /* IVB has an issue (which we found empirically) where it reads
2302 * two address register components per channel for indirectly
2303 * addressed 64-bit sources.
2304 *
2305 * From the Cherryview PRM Vol 7. "Register Region Restrictions":
2306 *
2307 * "When source or destination datatype is 64b or operation is
2308 * integer DWord multiply, indirect addressing must not be
2309 * used."
2310 *
2311 * To work around both of these, we do two integer MOVs insead of
2312 * one 64-bit MOV. Because no double value should ever cross a
2313 * register boundary, it's safe to use the immediate offset in the
2314 * indirect here to handle adding 4 bytes to the offset and avoid
2315 * the extra ADD to the register file.
2316 */
2317 assert(src[0].type == dst.type);
2318 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
2319 subscript(strided, BRW_REGISTER_TYPE_D, 0));
2320 brw_set_default_swsb(p, tgl_swsb_null());
2321 brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
2322 subscript(strided, BRW_REGISTER_TYPE_D, 1));
2323 } else {
2324 brw_MOV(p, dst, strided);
2325 }
2326 break;
2327 }
2328
2329 case FS_OPCODE_SET_SAMPLE_ID:
2330 generate_set_sample_id(inst, dst, src[0], src[1]);
2331 break;
2332
2333 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
2334 generate_pack_half_2x16_split(inst, dst, src[0], src[1]);
2335 break;
2336
2337 case FS_OPCODE_PLACEHOLDER_HALT:
2338 /* This is the place where the final HALT needs to be inserted if
2339 * we've emitted any discards. If not, this will emit no code.
2340 */
2341 if (!patch_discard_jumps_to_fb_writes()) {
2342 if (unlikely(debug_flag)) {
2343 disasm_info->use_tail = true;
2344 }
2345 }
2346 break;
2347
2348 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
2349 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2350 GEN7_PIXEL_INTERPOLATOR_LOC_SAMPLE);
2351 send_count++;
2352 break;
2353
2354 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
2355 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2356 GEN7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET);
2357 send_count++;
2358 break;
2359
2360 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
2361 generate_pixel_interpolator_query(inst, dst, src[0], src[1],
2362 GEN7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET);
2363 send_count++;
2364 break;
2365
2366 case CS_OPCODE_CS_TERMINATE:
2367 generate_cs_terminate(inst, src[0]);
2368 send_count++;
2369 break;
2370
2371 case SHADER_OPCODE_BARRIER:
2372 generate_barrier(inst, src[0]);
2373 send_count++;
2374 break;
2375
2376 case BRW_OPCODE_DIM:
2377 assert(devinfo->is_haswell);
2378 assert(src[0].type == BRW_REGISTER_TYPE_DF);
2379 assert(dst.type == BRW_REGISTER_TYPE_DF);
2380 brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2381 break;
2382
2383 case SHADER_OPCODE_RND_MODE: {
2384 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2385 /*
2386 * Changes the floating point rounding mode updating the control
2387 * register field defined at cr0.0[5-6] bits.
2388 */
2389 enum brw_rnd_mode mode =
2390 (enum brw_rnd_mode) (src[0].d << BRW_CR0_RND_MODE_SHIFT);
2391 brw_float_controls_mode(p, mode, BRW_CR0_RND_MODE_MASK);
2392 }
2393 break;
2394
2395 case SHADER_OPCODE_FLOAT_CONTROL_MODE:
2396 assert(src[0].file == BRW_IMMEDIATE_VALUE);
2397 assert(src[1].file == BRW_IMMEDIATE_VALUE);
2398 brw_float_controls_mode(p, src[0].d, src[1].d);
2399 break;
2400
2401 default:
2402 unreachable("Unsupported opcode");
2403
2404 case SHADER_OPCODE_LOAD_PAYLOAD:
2405 unreachable("Should be lowered by lower_load_payload()");
2406 }
2407
2408 if (multiple_instructions_emitted)
2409 continue;
2410
2411 if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2412 assert(p->next_insn_offset == last_insn_offset + 16 ||
2413 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2414 "emitting more than 1 instruction");
2415
2416 brw_inst *last = &p->store[last_insn_offset / 16];
2417
2418 if (inst->conditional_mod)
2419 brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2420 if (devinfo->gen < 12) {
2421 brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2422 brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2423 }
2424 }
2425 }
2426
2427 brw_set_uip_jip(p, start_offset);
2428
2429 /* end of program sentinel */
2430 disasm_new_inst_group(disasm_info, p->next_insn_offset);
2431
2432 #ifndef NDEBUG
2433 bool validated =
2434 #else
2435 if (unlikely(debug_flag))
2436 #endif
2437 brw_validate_instructions(devinfo, p->store,
2438 start_offset,
2439 p->next_insn_offset,
2440 disasm_info);
2441
2442 int before_size = p->next_insn_offset - start_offset;
2443 brw_compact_instructions(p, start_offset, disasm_info);
2444 int after_size = p->next_insn_offset - start_offset;
2445
2446 if (unlikely(debug_flag)) {
2447 unsigned char sha1[21];
2448 char sha1buf[41];
2449
2450 _mesa_sha1_compute(p->store + start_offset / sizeof(brw_inst),
2451 after_size, sha1);
2452 _mesa_sha1_format(sha1buf, sha1);
2453
2454 fprintf(stderr, "Native code for %s (sha1 %s)\n"
2455 "SIMD%d shader: %d instructions. %d loops. %u cycles. "
2456 "%d:%d spills:fills, %u sends, "
2457 "scheduled with mode %s. "
2458 "Promoted %u constants. "
2459 "Compacted %d to %d bytes (%.0f%%)\n",
2460 shader_name, sha1buf,
2461 dispatch_width, before_size / 16,
2462 loop_count, cfg->cycle_count,
2463 spill_count, fill_count, send_count,
2464 shader_stats.scheduler_mode,
2465 shader_stats.promoted_constants,
2466 before_size, after_size,
2467 100.0f * (before_size - after_size) / before_size);
2468
2469 /* overriding the shader makes disasm_info invalid */
2470 if (!brw_try_override_assembly(p, start_offset, sha1buf)) {
2471 dump_assembly(p->store, disasm_info);
2472 } else {
2473 fprintf(stderr, "Successfully overrode shader with sha1 %s\n\n", sha1buf);
2474 }
2475 }
2476 ralloc_free(disasm_info);
2477 assert(validated);
2478
2479 compiler->shader_debug_log(log_data,
2480 "%s SIMD%d shader: %d inst, %d loops, %u cycles, "
2481 "%d:%d spills:fills, %u sends, "
2482 "scheduled with mode %s, "
2483 "Promoted %u constants, "
2484 "compacted %d to %d bytes.",
2485 _mesa_shader_stage_to_abbrev(stage),
2486 dispatch_width, before_size / 16 - nop_count,
2487 loop_count, cfg->cycle_count,
2488 spill_count, fill_count, send_count,
2489 shader_stats.scheduler_mode,
2490 shader_stats.promoted_constants,
2491 before_size, after_size);
2492 if (stats) {
2493 stats->dispatch_width = dispatch_width;
2494 stats->instructions = before_size / 16 - nop_count;
2495 stats->sends = send_count;
2496 stats->loops = loop_count;
2497 stats->cycles = cfg->cycle_count;
2498 stats->spills = spill_count;
2499 stats->fills = fill_count;
2500 }
2501
2502 return start_offset;
2503 }
2504
2505 const unsigned *
2506 fs_generator::get_assembly()
2507 {
2508 return brw_get_program(p, &prog_data->program_size);
2509 }