2451fbf0349c851250dc6e20eadc07ba4cb584b9
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "brw_eu.h"
28 #include "nir_search_helpers.h"
29 #include "util/u_math.h"
30 #include "util/bitscan.h"
31
32 using namespace brw;
33
34 void
35 fs_visitor::emit_nir_code()
36 {
37 /* emit the arrays used for inputs and outputs - load/store intrinsics will
38 * be converted to reads/writes of these arrays
39 */
40 nir_setup_outputs();
41 nir_setup_uniforms();
42 nir_emit_system_values();
43
44 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
45 }
46
47 void
48 fs_visitor::nir_setup_outputs()
49 {
50 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
51 return;
52
53 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
54
55 /* Calculate the size of output registers in a separate pass, before
56 * allocating them. With ARB_enhanced_layouts, multiple output variables
57 * may occupy the same slot, but have different type sizes.
58 */
59 nir_foreach_variable(var, &nir->outputs) {
60 const int loc = var->data.driver_location;
61 const unsigned var_vec4s =
62 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
63 : type_size_vec4(var->type, true);
64 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
65 }
66
67 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
68 if (vec4s[loc] == 0) {
69 loc++;
70 continue;
71 }
72
73 unsigned reg_size = vec4s[loc];
74
75 /* Check if there are any ranges that start within this range and extend
76 * past it. If so, include them in this allocation.
77 */
78 for (unsigned i = 1; i < reg_size; i++)
79 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
80
81 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
82 for (unsigned i = 0; i < reg_size; i++)
83 outputs[loc + i] = offset(reg, bld, 4 * i);
84
85 loc += reg_size;
86 }
87 }
88
89 void
90 fs_visitor::nir_setup_uniforms()
91 {
92 /* Only the first compile gets to set up uniforms. */
93 if (push_constant_loc) {
94 assert(pull_constant_loc);
95 return;
96 }
97
98 uniforms = nir->num_uniforms / 4;
99
100 if (stage == MESA_SHADER_COMPUTE) {
101 /* Add a uniform for the thread local id. It must be the last uniform
102 * on the list.
103 */
104 assert(uniforms == prog_data->nr_params);
105 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
106 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
107 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
108 }
109 }
110
111 static bool
112 emit_system_values_block(nir_block *block, fs_visitor *v)
113 {
114 fs_reg *reg;
115
116 nir_foreach_instr(instr, block) {
117 if (instr->type != nir_instr_type_intrinsic)
118 continue;
119
120 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
121 switch (intrin->intrinsic) {
122 case nir_intrinsic_load_vertex_id:
123 case nir_intrinsic_load_base_vertex:
124 unreachable("should be lowered by nir_lower_system_values().");
125
126 case nir_intrinsic_load_vertex_id_zero_base:
127 case nir_intrinsic_load_is_indexed_draw:
128 case nir_intrinsic_load_first_vertex:
129 case nir_intrinsic_load_instance_id:
130 case nir_intrinsic_load_base_instance:
131 case nir_intrinsic_load_draw_id:
132 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
133
134 case nir_intrinsic_load_invocation_id:
135 if (v->stage == MESA_SHADER_TESS_CTRL)
136 break;
137 assert(v->stage == MESA_SHADER_GEOMETRY);
138 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
139 if (reg->file == BAD_FILE) {
140 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
141 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
142 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
143 abld.SHR(iid, g1, brw_imm_ud(27u));
144 *reg = iid;
145 }
146 break;
147
148 case nir_intrinsic_load_sample_pos:
149 assert(v->stage == MESA_SHADER_FRAGMENT);
150 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
151 if (reg->file == BAD_FILE)
152 *reg = *v->emit_samplepos_setup();
153 break;
154
155 case nir_intrinsic_load_sample_id:
156 assert(v->stage == MESA_SHADER_FRAGMENT);
157 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
158 if (reg->file == BAD_FILE)
159 *reg = *v->emit_sampleid_setup();
160 break;
161
162 case nir_intrinsic_load_sample_mask_in:
163 assert(v->stage == MESA_SHADER_FRAGMENT);
164 assert(v->devinfo->gen >= 7);
165 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
166 if (reg->file == BAD_FILE)
167 *reg = *v->emit_samplemaskin_setup();
168 break;
169
170 case nir_intrinsic_load_work_group_id:
171 assert(v->stage == MESA_SHADER_COMPUTE);
172 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
173 if (reg->file == BAD_FILE)
174 *reg = *v->emit_cs_work_group_id_setup();
175 break;
176
177 case nir_intrinsic_load_helper_invocation:
178 assert(v->stage == MESA_SHADER_FRAGMENT);
179 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
180 if (reg->file == BAD_FILE) {
181 const fs_builder abld =
182 v->bld.annotate("gl_HelperInvocation", NULL);
183
184 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
185 * pixel mask is in g1.7 of the thread payload.
186 *
187 * We move the per-channel pixel enable bit to the low bit of each
188 * channel by shifting the byte containing the pixel mask by the
189 * vector immediate 0x76543210UV.
190 *
191 * The region of <1,8,0> reads only 1 byte (the pixel masks for
192 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
193 * masks for 2 and 3) in SIMD16.
194 */
195 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
196
197 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
198 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
199 hbld.SHR(offset(shifted, hbld, i),
200 stride(retype(brw_vec1_grf(1 + i, 7),
201 BRW_REGISTER_TYPE_UB),
202 1, 8, 0),
203 brw_imm_v(0x76543210));
204 }
205
206 /* A set bit in the pixel mask means the channel is enabled, but
207 * that is the opposite of gl_HelperInvocation so we need to invert
208 * the mask.
209 *
210 * The negate source-modifier bit of logical instructions on Gen8+
211 * performs 1's complement negation, so we can use that instead of
212 * a NOT instruction.
213 */
214 fs_reg inverted = negate(shifted);
215 if (v->devinfo->gen < 8) {
216 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
217 abld.NOT(inverted, shifted);
218 }
219
220 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
221 * with 1 and negating.
222 */
223 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
224 abld.AND(anded, inverted, brw_imm_uw(1));
225
226 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
227 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
228 *reg = dst;
229 }
230 break;
231
232 default:
233 break;
234 }
235 }
236
237 return true;
238 }
239
240 void
241 fs_visitor::nir_emit_system_values()
242 {
243 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
244 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
245 nir_system_values[i] = fs_reg();
246 }
247
248 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
249 * never end up using it.
250 */
251 {
252 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
253 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
254 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
255
256 const fs_builder allbld8 = abld.group(8, 0).exec_all();
257 allbld8.MOV(reg, brw_imm_v(0x76543210));
258 if (dispatch_width > 8)
259 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
260 if (dispatch_width > 16) {
261 const fs_builder allbld16 = abld.group(16, 0).exec_all();
262 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
263 }
264 }
265
266 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
267 nir_foreach_block(block, impl)
268 emit_system_values_block(block, this);
269 }
270
271 /*
272 * Returns a type based on a reference_type (word, float, half-float) and a
273 * given bit_size.
274 *
275 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
276 *
277 * @FIXME: 64-bit return types are always DF on integer types to maintain
278 * compability with uses of DF previously to the introduction of int64
279 * support.
280 */
281 static brw_reg_type
282 brw_reg_type_from_bit_size(const unsigned bit_size,
283 const brw_reg_type reference_type)
284 {
285 switch(reference_type) {
286 case BRW_REGISTER_TYPE_HF:
287 case BRW_REGISTER_TYPE_F:
288 case BRW_REGISTER_TYPE_DF:
289 switch(bit_size) {
290 case 16:
291 return BRW_REGISTER_TYPE_HF;
292 case 32:
293 return BRW_REGISTER_TYPE_F;
294 case 64:
295 return BRW_REGISTER_TYPE_DF;
296 default:
297 unreachable("Invalid bit size");
298 }
299 case BRW_REGISTER_TYPE_B:
300 case BRW_REGISTER_TYPE_W:
301 case BRW_REGISTER_TYPE_D:
302 case BRW_REGISTER_TYPE_Q:
303 switch(bit_size) {
304 case 8:
305 return BRW_REGISTER_TYPE_B;
306 case 16:
307 return BRW_REGISTER_TYPE_W;
308 case 32:
309 return BRW_REGISTER_TYPE_D;
310 case 64:
311 return BRW_REGISTER_TYPE_Q;
312 default:
313 unreachable("Invalid bit size");
314 }
315 case BRW_REGISTER_TYPE_UB:
316 case BRW_REGISTER_TYPE_UW:
317 case BRW_REGISTER_TYPE_UD:
318 case BRW_REGISTER_TYPE_UQ:
319 switch(bit_size) {
320 case 8:
321 return BRW_REGISTER_TYPE_UB;
322 case 16:
323 return BRW_REGISTER_TYPE_UW;
324 case 32:
325 return BRW_REGISTER_TYPE_UD;
326 case 64:
327 return BRW_REGISTER_TYPE_UQ;
328 default:
329 unreachable("Invalid bit size");
330 }
331 default:
332 unreachable("Unknown type");
333 }
334 }
335
336 void
337 fs_visitor::nir_emit_impl(nir_function_impl *impl)
338 {
339 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
340 for (unsigned i = 0; i < impl->reg_alloc; i++) {
341 nir_locals[i] = fs_reg();
342 }
343
344 foreach_list_typed(nir_register, reg, node, &impl->registers) {
345 unsigned array_elems =
346 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
347 unsigned size = array_elems * reg->num_components;
348 const brw_reg_type reg_type = reg->bit_size == 8 ? BRW_REGISTER_TYPE_B :
349 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
350 nir_locals[reg->index] = bld.vgrf(reg_type, size);
351 }
352
353 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
354 impl->ssa_alloc);
355
356 nir_emit_cf_list(&impl->body);
357 }
358
359 void
360 fs_visitor::nir_emit_cf_list(exec_list *list)
361 {
362 exec_list_validate(list);
363 foreach_list_typed(nir_cf_node, node, node, list) {
364 switch (node->type) {
365 case nir_cf_node_if:
366 nir_emit_if(nir_cf_node_as_if(node));
367 break;
368
369 case nir_cf_node_loop:
370 nir_emit_loop(nir_cf_node_as_loop(node));
371 break;
372
373 case nir_cf_node_block:
374 nir_emit_block(nir_cf_node_as_block(node));
375 break;
376
377 default:
378 unreachable("Invalid CFG node block");
379 }
380 }
381 }
382
383 void
384 fs_visitor::nir_emit_if(nir_if *if_stmt)
385 {
386 bool invert;
387 fs_reg cond_reg;
388
389 /* If the condition has the form !other_condition, use other_condition as
390 * the source, but invert the predicate on the if instruction.
391 */
392 nir_alu_instr *cond = nir_src_as_alu_instr(if_stmt->condition);
393 if (cond != NULL && cond->op == nir_op_inot) {
394 assert(!cond->src[0].negate);
395 assert(!cond->src[0].abs);
396
397 invert = true;
398 cond_reg = get_nir_src(cond->src[0].src);
399 } else {
400 invert = false;
401 cond_reg = get_nir_src(if_stmt->condition);
402 }
403
404 /* first, put the condition into f0 */
405 fs_inst *inst = bld.MOV(bld.null_reg_d(),
406 retype(cond_reg, BRW_REGISTER_TYPE_D));
407 inst->conditional_mod = BRW_CONDITIONAL_NZ;
408
409 bld.IF(BRW_PREDICATE_NORMAL)->predicate_inverse = invert;
410
411 nir_emit_cf_list(&if_stmt->then_list);
412
413 if (!nir_cf_list_is_empty_block(&if_stmt->else_list)) {
414 bld.emit(BRW_OPCODE_ELSE);
415 nir_emit_cf_list(&if_stmt->else_list);
416 }
417
418 bld.emit(BRW_OPCODE_ENDIF);
419
420 if (devinfo->gen < 7)
421 limit_dispatch_width(16, "Non-uniform control flow unsupported "
422 "in SIMD32 mode.");
423 }
424
425 void
426 fs_visitor::nir_emit_loop(nir_loop *loop)
427 {
428 bld.emit(BRW_OPCODE_DO);
429
430 nir_emit_cf_list(&loop->body);
431
432 bld.emit(BRW_OPCODE_WHILE);
433
434 if (devinfo->gen < 7)
435 limit_dispatch_width(16, "Non-uniform control flow unsupported "
436 "in SIMD32 mode.");
437 }
438
439 void
440 fs_visitor::nir_emit_block(nir_block *block)
441 {
442 nir_foreach_instr(instr, block) {
443 nir_emit_instr(instr);
444 }
445 }
446
447 void
448 fs_visitor::nir_emit_instr(nir_instr *instr)
449 {
450 const fs_builder abld = bld.annotate(NULL, instr);
451
452 switch (instr->type) {
453 case nir_instr_type_alu:
454 nir_emit_alu(abld, nir_instr_as_alu(instr), true);
455 break;
456
457 case nir_instr_type_deref:
458 unreachable("All derefs should've been lowered");
459 break;
460
461 case nir_instr_type_intrinsic:
462 switch (stage) {
463 case MESA_SHADER_VERTEX:
464 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
465 break;
466 case MESA_SHADER_TESS_CTRL:
467 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
468 break;
469 case MESA_SHADER_TESS_EVAL:
470 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
471 break;
472 case MESA_SHADER_GEOMETRY:
473 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
474 break;
475 case MESA_SHADER_FRAGMENT:
476 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
477 break;
478 case MESA_SHADER_COMPUTE:
479 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
480 break;
481 default:
482 unreachable("unsupported shader stage");
483 }
484 break;
485
486 case nir_instr_type_tex:
487 nir_emit_texture(abld, nir_instr_as_tex(instr));
488 break;
489
490 case nir_instr_type_load_const:
491 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
492 break;
493
494 case nir_instr_type_ssa_undef:
495 /* We create a new VGRF for undefs on every use (by handling
496 * them in get_nir_src()), rather than for each definition.
497 * This helps register coalescing eliminate MOVs from undef.
498 */
499 break;
500
501 case nir_instr_type_jump:
502 nir_emit_jump(abld, nir_instr_as_jump(instr));
503 break;
504
505 default:
506 unreachable("unknown instruction type");
507 }
508 }
509
510 /**
511 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
512 * match instr.
513 */
514 bool
515 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
516 const fs_reg &result)
517 {
518 if (!instr->src[0].src.is_ssa ||
519 !instr->src[0].src.ssa->parent_instr)
520 return false;
521
522 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
523 return false;
524
525 nir_alu_instr *src0 =
526 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
527
528 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
529 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
530 return false;
531
532 /* If either opcode has source modifiers, bail.
533 *
534 * TODO: We can potentially handle source modifiers if both of the opcodes
535 * we're combining are signed integers.
536 */
537 if (instr->src[0].abs || instr->src[0].negate ||
538 src0->src[0].abs || src0->src[0].negate)
539 return false;
540
541 unsigned element = nir_src_as_uint(src0->src[1].src);
542
543 /* Element type to extract.*/
544 const brw_reg_type type = brw_int_type(
545 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
546 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
547
548 fs_reg op0 = get_nir_src(src0->src[0].src);
549 op0.type = brw_type_for_nir_type(devinfo,
550 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
551 nir_src_bit_size(src0->src[0].src)));
552 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
553
554 set_saturate(instr->dest.saturate,
555 bld.MOV(result, subscript(op0, type, element)));
556 return true;
557 }
558
559 bool
560 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
561 const fs_reg &result)
562 {
563 nir_intrinsic_instr *src0 = nir_src_as_intrinsic(instr->src[0].src);
564 if (src0 == NULL || src0->intrinsic != nir_intrinsic_load_front_face)
565 return false;
566
567 if (!nir_src_is_const(instr->src[1].src) ||
568 !nir_src_is_const(instr->src[2].src))
569 return false;
570
571 const float value1 = nir_src_as_float(instr->src[1].src);
572 const float value2 = nir_src_as_float(instr->src[2].src);
573 if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
574 return false;
575
576 /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
577 assert(value1 == -value2);
578
579 fs_reg tmp = vgrf(glsl_type::int_type);
580
581 if (devinfo->gen >= 6) {
582 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
583 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
584
585 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
586 *
587 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
588 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
589 *
590 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
591 *
592 * This negation looks like it's safe in practice, because bits 0:4 will
593 * surely be TRIANGLES
594 */
595
596 if (value1 == -1.0f) {
597 g0.negate = true;
598 }
599
600 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
601 g0, brw_imm_uw(0x3f80));
602 } else {
603 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
604 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
605
606 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
607 *
608 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
609 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
610 *
611 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
612 *
613 * This negation looks like it's safe in practice, because bits 0:4 will
614 * surely be TRIANGLES
615 */
616
617 if (value1 == -1.0f) {
618 g1_6.negate = true;
619 }
620
621 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
622 }
623 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
624
625 return true;
626 }
627
628 static void
629 emit_find_msb_using_lzd(const fs_builder &bld,
630 const fs_reg &result,
631 const fs_reg &src,
632 bool is_signed)
633 {
634 fs_inst *inst;
635 fs_reg temp = src;
636
637 if (is_signed) {
638 /* LZD of an absolute value source almost always does the right
639 * thing. There are two problem values:
640 *
641 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
642 * 0. However, findMSB(int(0x80000000)) == 30.
643 *
644 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
645 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
646 *
647 * For a value of zero or negative one, -1 will be returned.
648 *
649 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
650 * findMSB(-(1<<x)) should return x-1.
651 *
652 * For all negative number cases, including 0x80000000 and
653 * 0xffffffff, the correct value is obtained from LZD if instead of
654 * negating the (already negative) value the logical-not is used. A
655 * conditonal logical-not can be achieved in two instructions.
656 */
657 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
658
659 bld.ASR(temp, src, brw_imm_d(31));
660 bld.XOR(temp, temp, src);
661 }
662
663 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
664 retype(temp, BRW_REGISTER_TYPE_UD));
665
666 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
667 * from the LSB side. Subtract the result from 31 to convert the MSB
668 * count into an LSB count. If no bits are set, LZD will return 32.
669 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
670 */
671 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
672 inst->src[0].negate = true;
673 }
674
675 static brw_rnd_mode
676 brw_rnd_mode_from_nir_op (const nir_op op) {
677 switch (op) {
678 case nir_op_f2f16_rtz:
679 return BRW_RND_MODE_RTZ;
680 case nir_op_f2f16_rtne:
681 return BRW_RND_MODE_RTNE;
682 default:
683 unreachable("Operation doesn't support rounding mode");
684 }
685 }
686
687 fs_reg
688 fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
689 nir_alu_instr *instr,
690 fs_reg *op,
691 bool need_dest)
692 {
693 fs_reg result =
694 need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
695
696 result.type = brw_type_for_nir_type(devinfo,
697 (nir_alu_type)(nir_op_infos[instr->op].output_type |
698 nir_dest_bit_size(instr->dest.dest)));
699
700 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
701 op[i] = get_nir_src(instr->src[i].src);
702 op[i].type = brw_type_for_nir_type(devinfo,
703 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
704 nir_src_bit_size(instr->src[i].src)));
705 op[i].abs = instr->src[i].abs;
706 op[i].negate = instr->src[i].negate;
707 }
708
709 /* Move and vecN instrutions may still be vectored. Return the raw,
710 * vectored source and destination so that fs_visitor::nir_emit_alu can
711 * handle it. Other callers should not have to handle these kinds of
712 * instructions.
713 */
714 switch (instr->op) {
715 case nir_op_mov:
716 case nir_op_vec2:
717 case nir_op_vec3:
718 case nir_op_vec4:
719 return result;
720 default:
721 break;
722 }
723
724 /* At this point, we have dealt with any instruction that operates on
725 * more than a single channel. Therefore, we can just adjust the source
726 * and destination registers for that channel and emit the instruction.
727 */
728 unsigned channel = 0;
729 if (nir_op_infos[instr->op].output_size == 0) {
730 /* Since NIR is doing the scalarizing for us, we should only ever see
731 * vectorized operations with a single channel.
732 */
733 assert(util_bitcount(instr->dest.write_mask) == 1);
734 channel = ffs(instr->dest.write_mask) - 1;
735
736 result = offset(result, bld, channel);
737 }
738
739 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
740 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
741 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
742 }
743
744 return result;
745 }
746
747 void
748 fs_visitor::resolve_inot_sources(const fs_builder &bld, nir_alu_instr *instr,
749 fs_reg *op)
750 {
751 for (unsigned i = 0; i < 2; i++) {
752 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[i].src);
753
754 if (inot_instr != NULL && inot_instr->op == nir_op_inot &&
755 !inot_instr->src[0].abs && !inot_instr->src[0].negate) {
756 /* The source of the inot is now the source of instr. */
757 prepare_alu_destination_and_sources(bld, inot_instr, &op[i], false);
758
759 assert(!op[i].negate);
760 op[i].negate = true;
761 } else {
762 op[i] = resolve_source_modifiers(op[i]);
763 }
764 }
765 }
766
767 bool
768 fs_visitor::try_emit_b2fi_of_inot(const fs_builder &bld,
769 fs_reg result,
770 nir_alu_instr *instr)
771 {
772 if (devinfo->gen < 6 || devinfo->gen >= 12)
773 return false;
774
775 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[0].src);
776
777 if (inot_instr == NULL || inot_instr->op != nir_op_inot)
778 return false;
779
780 /* HF is also possible as a destination on BDW+. For nir_op_b2i, the set
781 * of valid size-changing combinations is a bit more complex.
782 *
783 * The source restriction is just because I was lazy about generating the
784 * constant below.
785 */
786 if (nir_dest_bit_size(instr->dest.dest) != 32 ||
787 nir_src_bit_size(inot_instr->src[0].src) != 32)
788 return false;
789
790 /* b2[fi](inot(a)) maps a=0 => 1, a=-1 => 0. Since a can only be 0 or -1,
791 * this is float(1 + a).
792 */
793 fs_reg op;
794
795 prepare_alu_destination_and_sources(bld, inot_instr, &op, false);
796
797 /* Ignore the saturate modifier, if there is one. The result of the
798 * arithmetic can only be 0 or 1, so the clamping will do nothing anyway.
799 */
800 bld.ADD(result, op, brw_imm_d(1));
801
802 return true;
803 }
804
805 /**
806 * Emit code for nir_op_fsign possibly fused with a nir_op_fmul
807 *
808 * If \c instr is not the \c nir_op_fsign, then \c fsign_src is the index of
809 * the source of \c instr that is a \c nir_op_fsign.
810 */
811 void
812 fs_visitor::emit_fsign(const fs_builder &bld, const nir_alu_instr *instr,
813 fs_reg result, fs_reg *op, unsigned fsign_src)
814 {
815 fs_inst *inst;
816
817 assert(instr->op == nir_op_fsign || instr->op == nir_op_fmul);
818 assert(fsign_src < nir_op_infos[instr->op].num_inputs);
819
820 if (instr->op != nir_op_fsign) {
821 const nir_alu_instr *const fsign_instr =
822 nir_src_as_alu_instr(instr->src[fsign_src].src);
823
824 assert(!fsign_instr->dest.saturate);
825
826 /* op[fsign_src] has the nominal result of the fsign, and op[1 -
827 * fsign_src] has the other multiply source. This must be rearranged so
828 * that op[0] is the source of the fsign op[1] is the other multiply
829 * source.
830 */
831 if (fsign_src != 0)
832 op[1] = op[0];
833
834 op[0] = get_nir_src(fsign_instr->src[0].src);
835
836 const nir_alu_type t =
837 (nir_alu_type)(nir_op_infos[instr->op].input_types[0] |
838 nir_src_bit_size(fsign_instr->src[0].src));
839
840 op[0].type = brw_type_for_nir_type(devinfo, t);
841 op[0].abs = fsign_instr->src[0].abs;
842 op[0].negate = fsign_instr->src[0].negate;
843
844 unsigned channel = 0;
845 if (nir_op_infos[instr->op].output_size == 0) {
846 /* Since NIR is doing the scalarizing for us, we should only ever see
847 * vectorized operations with a single channel.
848 */
849 assert(util_bitcount(instr->dest.write_mask) == 1);
850 channel = ffs(instr->dest.write_mask) - 1;
851 }
852
853 op[0] = offset(op[0], bld, fsign_instr->src[0].swizzle[channel]);
854 } else {
855 assert(!instr->dest.saturate);
856 }
857
858 if (op[0].abs) {
859 /* Straightforward since the source can be assumed to be either strictly
860 * >= 0 or strictly <= 0 depending on the setting of the negate flag.
861 */
862 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
863
864 if (instr->op == nir_op_fsign) {
865 inst = (op[0].negate)
866 ? bld.MOV(result, brw_imm_f(-1.0f))
867 : bld.MOV(result, brw_imm_f(1.0f));
868 } else {
869 op[1].negate = (op[0].negate != op[1].negate);
870 inst = bld.MOV(result, op[1]);
871 }
872
873 set_predicate(BRW_PREDICATE_NORMAL, inst);
874 } else if (type_sz(op[0].type) == 2) {
875 /* AND(val, 0x8000) gives the sign bit.
876 *
877 * Predicated OR ORs 1.0 (0x3c00) with the sign bit if val is not zero.
878 */
879 fs_reg zero = retype(brw_imm_uw(0), BRW_REGISTER_TYPE_HF);
880 bld.CMP(bld.null_reg_f(), op[0], zero, BRW_CONDITIONAL_NZ);
881
882 op[0].type = BRW_REGISTER_TYPE_UW;
883 result.type = BRW_REGISTER_TYPE_UW;
884 bld.AND(result, op[0], brw_imm_uw(0x8000u));
885
886 if (instr->op == nir_op_fsign)
887 inst = bld.OR(result, result, brw_imm_uw(0x3c00u));
888 else {
889 /* Use XOR here to get the result sign correct. */
890 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UW));
891 }
892
893 inst->predicate = BRW_PREDICATE_NORMAL;
894 } else if (type_sz(op[0].type) == 4) {
895 /* AND(val, 0x80000000) gives the sign bit.
896 *
897 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
898 * zero.
899 */
900 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
901
902 op[0].type = BRW_REGISTER_TYPE_UD;
903 result.type = BRW_REGISTER_TYPE_UD;
904 bld.AND(result, op[0], brw_imm_ud(0x80000000u));
905
906 if (instr->op == nir_op_fsign)
907 inst = bld.OR(result, result, brw_imm_ud(0x3f800000u));
908 else {
909 /* Use XOR here to get the result sign correct. */
910 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UD));
911 }
912
913 inst->predicate = BRW_PREDICATE_NORMAL;
914 } else {
915 /* For doubles we do the same but we need to consider:
916 *
917 * - 2-src instructions can't operate with 64-bit immediates
918 * - The sign is encoded in the high 32-bit of each DF
919 * - We need to produce a DF result.
920 */
921
922 fs_reg zero = vgrf(glsl_type::double_type);
923 bld.MOV(zero, setup_imm_df(bld, 0.0));
924 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
925
926 bld.MOV(result, zero);
927
928 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
929 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
930 brw_imm_ud(0x80000000u));
931
932 if (instr->op == nir_op_fsign) {
933 set_predicate(BRW_PREDICATE_NORMAL,
934 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
935 } else {
936 /* This could be done better in some cases. If the scale is an
937 * immediate with the low 32-bits all 0, emitting a separate XOR and
938 * OR would allow an algebraic optimization to remove the OR. There
939 * are currently zero instances of fsign(double(x))*IMM in shader-db
940 * or any test suite, so it is hard to care at this time.
941 */
942 fs_reg result_int64 = retype(result, BRW_REGISTER_TYPE_UQ);
943 inst = bld.XOR(result_int64, result_int64,
944 retype(op[1], BRW_REGISTER_TYPE_UQ));
945 }
946 }
947 }
948
949 /**
950 * Deteremine whether sources of a nir_op_fmul can be fused with a nir_op_fsign
951 *
952 * Checks the operands of a \c nir_op_fmul to determine whether or not
953 * \c emit_fsign could fuse the multiplication with the \c sign() calculation.
954 *
955 * \param instr The multiplication instruction
956 *
957 * \param fsign_src The source of \c instr that may or may not be a
958 * \c nir_op_fsign
959 */
960 static bool
961 can_fuse_fmul_fsign(nir_alu_instr *instr, unsigned fsign_src)
962 {
963 assert(instr->op == nir_op_fmul);
964
965 nir_alu_instr *const fsign_instr =
966 nir_src_as_alu_instr(instr->src[fsign_src].src);
967
968 /* Rules:
969 *
970 * 1. instr->src[fsign_src] must be a nir_op_fsign.
971 * 2. The nir_op_fsign can only be used by this multiplication.
972 * 3. The source that is the nir_op_fsign does not have source modifiers.
973 * \c emit_fsign only examines the source modifiers of the source of the
974 * \c nir_op_fsign.
975 *
976 * The nir_op_fsign must also not have the saturate modifier, but steps
977 * have already been taken (in nir_opt_algebraic) to ensure that.
978 */
979 return fsign_instr != NULL && fsign_instr->op == nir_op_fsign &&
980 is_used_once(fsign_instr) &&
981 !instr->src[fsign_src].abs && !instr->src[fsign_src].negate;
982 }
983
984 void
985 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr,
986 bool need_dest)
987 {
988 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
989 fs_inst *inst;
990
991 fs_reg op[4];
992 fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, need_dest);
993
994 switch (instr->op) {
995 case nir_op_mov:
996 case nir_op_vec2:
997 case nir_op_vec3:
998 case nir_op_vec4: {
999 fs_reg temp = result;
1000 bool need_extra_copy = false;
1001 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1002 if (!instr->src[i].src.is_ssa &&
1003 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
1004 need_extra_copy = true;
1005 temp = bld.vgrf(result.type, 4);
1006 break;
1007 }
1008 }
1009
1010 for (unsigned i = 0; i < 4; i++) {
1011 if (!(instr->dest.write_mask & (1 << i)))
1012 continue;
1013
1014 if (instr->op == nir_op_mov) {
1015 inst = bld.MOV(offset(temp, bld, i),
1016 offset(op[0], bld, instr->src[0].swizzle[i]));
1017 } else {
1018 inst = bld.MOV(offset(temp, bld, i),
1019 offset(op[i], bld, instr->src[i].swizzle[0]));
1020 }
1021 inst->saturate = instr->dest.saturate;
1022 }
1023
1024 /* In this case the source and destination registers were the same,
1025 * so we need to insert an extra set of moves in order to deal with
1026 * any swizzling.
1027 */
1028 if (need_extra_copy) {
1029 for (unsigned i = 0; i < 4; i++) {
1030 if (!(instr->dest.write_mask & (1 << i)))
1031 continue;
1032
1033 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
1034 }
1035 }
1036 return;
1037 }
1038
1039 case nir_op_i2f32:
1040 case nir_op_u2f32:
1041 if (optimize_extract_to_float(instr, result))
1042 return;
1043 inst = bld.MOV(result, op[0]);
1044 inst->saturate = instr->dest.saturate;
1045 break;
1046
1047 case nir_op_f2f16_rtne:
1048 case nir_op_f2f16_rtz:
1049 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1050 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
1051 /* fallthrough */
1052 case nir_op_f2f16:
1053 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
1054 * on the HW gen, it is a special hw opcode or just a MOV, and
1055 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
1056 *
1057 * But if we want to use that opcode, we need to provide support on
1058 * different optimizations and lowerings. As right now HF support is
1059 * only for gen8+, it will be better to use directly the MOV, and use
1060 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
1061 */
1062 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1063 inst = bld.MOV(result, op[0]);
1064 inst->saturate = instr->dest.saturate;
1065 break;
1066
1067 case nir_op_b2i8:
1068 case nir_op_b2i16:
1069 case nir_op_b2i32:
1070 case nir_op_b2i64:
1071 case nir_op_b2f16:
1072 case nir_op_b2f32:
1073 case nir_op_b2f64:
1074 if (try_emit_b2fi_of_inot(bld, result, instr))
1075 break;
1076 op[0].type = BRW_REGISTER_TYPE_D;
1077 op[0].negate = !op[0].negate;
1078 /* fallthrough */
1079 case nir_op_i2f64:
1080 case nir_op_i2i64:
1081 case nir_op_u2f64:
1082 case nir_op_u2u64:
1083 case nir_op_f2f64:
1084 case nir_op_f2i64:
1085 case nir_op_f2u64:
1086 case nir_op_i2i32:
1087 case nir_op_u2u32:
1088 case nir_op_f2f32:
1089 case nir_op_f2i32:
1090 case nir_op_f2u32:
1091 case nir_op_i2f16:
1092 case nir_op_i2i16:
1093 case nir_op_u2f16:
1094 case nir_op_u2u16:
1095 case nir_op_f2i16:
1096 case nir_op_f2u16:
1097 case nir_op_i2i8:
1098 case nir_op_u2u8:
1099 case nir_op_f2i8:
1100 case nir_op_f2u8:
1101 if (result.type == BRW_REGISTER_TYPE_B ||
1102 result.type == BRW_REGISTER_TYPE_UB ||
1103 result.type == BRW_REGISTER_TYPE_HF)
1104 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1105
1106 if (op[0].type == BRW_REGISTER_TYPE_B ||
1107 op[0].type == BRW_REGISTER_TYPE_UB ||
1108 op[0].type == BRW_REGISTER_TYPE_HF)
1109 assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
1110
1111 inst = bld.MOV(result, op[0]);
1112 inst->saturate = instr->dest.saturate;
1113 break;
1114
1115 case nir_op_fsat:
1116 inst = bld.MOV(result, op[0]);
1117 inst->saturate = true;
1118 break;
1119
1120 case nir_op_fneg:
1121 case nir_op_ineg:
1122 op[0].negate = true;
1123 inst = bld.MOV(result, op[0]);
1124 if (instr->op == nir_op_fneg)
1125 inst->saturate = instr->dest.saturate;
1126 break;
1127
1128 case nir_op_fabs:
1129 case nir_op_iabs:
1130 op[0].negate = false;
1131 op[0].abs = true;
1132 inst = bld.MOV(result, op[0]);
1133 if (instr->op == nir_op_fabs)
1134 inst->saturate = instr->dest.saturate;
1135 break;
1136
1137 case nir_op_fsign:
1138 emit_fsign(bld, instr, result, op, 0);
1139 break;
1140
1141 case nir_op_frcp:
1142 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
1143 inst->saturate = instr->dest.saturate;
1144 break;
1145
1146 case nir_op_fexp2:
1147 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
1148 inst->saturate = instr->dest.saturate;
1149 break;
1150
1151 case nir_op_flog2:
1152 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
1153 inst->saturate = instr->dest.saturate;
1154 break;
1155
1156 case nir_op_fsin:
1157 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
1158 inst->saturate = instr->dest.saturate;
1159 break;
1160
1161 case nir_op_fcos:
1162 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
1163 inst->saturate = instr->dest.saturate;
1164 break;
1165
1166 case nir_op_fddx:
1167 if (fs_key->high_quality_derivatives) {
1168 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1169 } else {
1170 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1171 }
1172 inst->saturate = instr->dest.saturate;
1173 break;
1174 case nir_op_fddx_fine:
1175 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1176 inst->saturate = instr->dest.saturate;
1177 break;
1178 case nir_op_fddx_coarse:
1179 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1180 inst->saturate = instr->dest.saturate;
1181 break;
1182 case nir_op_fddy:
1183 if (fs_key->high_quality_derivatives) {
1184 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1185 } else {
1186 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1187 }
1188 inst->saturate = instr->dest.saturate;
1189 break;
1190 case nir_op_fddy_fine:
1191 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1192 inst->saturate = instr->dest.saturate;
1193 break;
1194 case nir_op_fddy_coarse:
1195 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1196 inst->saturate = instr->dest.saturate;
1197 break;
1198
1199 case nir_op_iadd:
1200 case nir_op_fadd:
1201 inst = bld.ADD(result, op[0], op[1]);
1202 inst->saturate = instr->dest.saturate;
1203 break;
1204
1205 case nir_op_uadd_sat:
1206 inst = bld.ADD(result, op[0], op[1]);
1207 inst->saturate = true;
1208 break;
1209
1210 case nir_op_fmul:
1211 for (unsigned i = 0; i < 2; i++) {
1212 if (can_fuse_fmul_fsign(instr, i)) {
1213 emit_fsign(bld, instr, result, op, i);
1214 return;
1215 }
1216 }
1217
1218 inst = bld.MUL(result, op[0], op[1]);
1219 inst->saturate = instr->dest.saturate;
1220 break;
1221
1222 case nir_op_imul_2x32_64:
1223 case nir_op_umul_2x32_64:
1224 bld.MUL(result, op[0], op[1]);
1225 break;
1226
1227 case nir_op_imul:
1228 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1229 bld.MUL(result, op[0], op[1]);
1230 break;
1231
1232 case nir_op_imul_high:
1233 case nir_op_umul_high:
1234 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1235 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1236 break;
1237
1238 case nir_op_idiv:
1239 case nir_op_udiv:
1240 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1241 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1242 break;
1243
1244 case nir_op_uadd_carry:
1245 unreachable("Should have been lowered by carry_to_arith().");
1246
1247 case nir_op_usub_borrow:
1248 unreachable("Should have been lowered by borrow_to_arith().");
1249
1250 case nir_op_umod:
1251 case nir_op_irem:
1252 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1253 * appears that our hardware just does the right thing for signed
1254 * remainder.
1255 */
1256 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1257 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1258 break;
1259
1260 case nir_op_imod: {
1261 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1262 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1263
1264 /* Math instructions don't support conditional mod */
1265 inst = bld.MOV(bld.null_reg_d(), result);
1266 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1267
1268 /* Now, we need to determine if signs of the sources are different.
1269 * When we XOR the sources, the top bit is 0 if they are the same and 1
1270 * if they are different. We can then use a conditional modifier to
1271 * turn that into a predicate. This leads us to an XOR.l instruction.
1272 *
1273 * Technically, according to the PRM, you're not allowed to use .l on a
1274 * XOR instruction. However, emperical experiments and Curro's reading
1275 * of the simulator source both indicate that it's safe.
1276 */
1277 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1278 inst = bld.XOR(tmp, op[0], op[1]);
1279 inst->predicate = BRW_PREDICATE_NORMAL;
1280 inst->conditional_mod = BRW_CONDITIONAL_L;
1281
1282 /* If the result of the initial remainder operation is non-zero and the
1283 * two sources have different signs, add in a copy of op[1] to get the
1284 * final integer modulus value.
1285 */
1286 inst = bld.ADD(result, result, op[1]);
1287 inst->predicate = BRW_PREDICATE_NORMAL;
1288 break;
1289 }
1290
1291 case nir_op_flt32:
1292 case nir_op_fge32:
1293 case nir_op_feq32:
1294 case nir_op_fne32: {
1295 fs_reg dest = result;
1296
1297 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1298 if (bit_size != 32)
1299 dest = bld.vgrf(op[0].type, 1);
1300
1301 brw_conditional_mod cond;
1302 switch (instr->op) {
1303 case nir_op_flt32:
1304 cond = BRW_CONDITIONAL_L;
1305 break;
1306 case nir_op_fge32:
1307 cond = BRW_CONDITIONAL_GE;
1308 break;
1309 case nir_op_feq32:
1310 cond = BRW_CONDITIONAL_Z;
1311 break;
1312 case nir_op_fne32:
1313 cond = BRW_CONDITIONAL_NZ;
1314 break;
1315 default:
1316 unreachable("bad opcode");
1317 }
1318
1319 bld.CMP(dest, op[0], op[1], cond);
1320
1321 if (bit_size > 32) {
1322 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1323 } else if(bit_size < 32) {
1324 /* When we convert the result to 32-bit we need to be careful and do
1325 * it as a signed conversion to get sign extension (for 32-bit true)
1326 */
1327 const brw_reg_type src_type =
1328 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1329
1330 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1331 }
1332 break;
1333 }
1334
1335 case nir_op_ilt32:
1336 case nir_op_ult32:
1337 case nir_op_ige32:
1338 case nir_op_uge32:
1339 case nir_op_ieq32:
1340 case nir_op_ine32: {
1341 fs_reg dest = result;
1342
1343 /* On Gen11 we have an additional issue being that src1 cannot be a byte
1344 * type. So we convert both operands for the comparison.
1345 */
1346 fs_reg temp_op[2];
1347 temp_op[0] = bld.fix_byte_src(op[0]);
1348 temp_op[1] = bld.fix_byte_src(op[1]);
1349
1350 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1351 if (bit_size != 32)
1352 dest = bld.vgrf(temp_op[0].type, 1);
1353
1354 brw_conditional_mod cond;
1355 switch (instr->op) {
1356 case nir_op_ilt32:
1357 case nir_op_ult32:
1358 cond = BRW_CONDITIONAL_L;
1359 break;
1360 case nir_op_ige32:
1361 case nir_op_uge32:
1362 cond = BRW_CONDITIONAL_GE;
1363 break;
1364 case nir_op_ieq32:
1365 cond = BRW_CONDITIONAL_Z;
1366 break;
1367 case nir_op_ine32:
1368 cond = BRW_CONDITIONAL_NZ;
1369 break;
1370 default:
1371 unreachable("bad opcode");
1372 }
1373 bld.CMP(dest, temp_op[0], temp_op[1], cond);
1374
1375 if (bit_size > 32) {
1376 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1377 } else if (bit_size < 32) {
1378 /* When we convert the result to 32-bit we need to be careful and do
1379 * it as a signed conversion to get sign extension (for 32-bit true)
1380 */
1381 const brw_reg_type src_type =
1382 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1383
1384 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1385 }
1386 break;
1387 }
1388
1389 case nir_op_inot:
1390 if (devinfo->gen >= 8) {
1391 nir_alu_instr *inot_src_instr = nir_src_as_alu_instr(instr->src[0].src);
1392
1393 if (inot_src_instr != NULL &&
1394 (inot_src_instr->op == nir_op_ior ||
1395 inot_src_instr->op == nir_op_ixor ||
1396 inot_src_instr->op == nir_op_iand) &&
1397 !inot_src_instr->src[0].abs &&
1398 !inot_src_instr->src[0].negate &&
1399 !inot_src_instr->src[1].abs &&
1400 !inot_src_instr->src[1].negate) {
1401 /* The sources of the source logical instruction are now the
1402 * sources of the instruction that will be generated.
1403 */
1404 prepare_alu_destination_and_sources(bld, inot_src_instr, op, false);
1405 resolve_inot_sources(bld, inot_src_instr, op);
1406
1407 /* Smash all of the sources and destination to be signed. This
1408 * doesn't matter for the operation of the instruction, but cmod
1409 * propagation fails on unsigned sources with negation (due to
1410 * fs_inst::can_do_cmod returning false).
1411 */
1412 result.type =
1413 brw_type_for_nir_type(devinfo,
1414 (nir_alu_type)(nir_type_int |
1415 nir_dest_bit_size(instr->dest.dest)));
1416 op[0].type =
1417 brw_type_for_nir_type(devinfo,
1418 (nir_alu_type)(nir_type_int |
1419 nir_src_bit_size(inot_src_instr->src[0].src)));
1420 op[1].type =
1421 brw_type_for_nir_type(devinfo,
1422 (nir_alu_type)(nir_type_int |
1423 nir_src_bit_size(inot_src_instr->src[1].src)));
1424
1425 /* For XOR, only invert one of the sources. Arbitrarily choose
1426 * the first source.
1427 */
1428 op[0].negate = !op[0].negate;
1429 if (inot_src_instr->op != nir_op_ixor)
1430 op[1].negate = !op[1].negate;
1431
1432 switch (inot_src_instr->op) {
1433 case nir_op_ior:
1434 bld.AND(result, op[0], op[1]);
1435 return;
1436
1437 case nir_op_iand:
1438 bld.OR(result, op[0], op[1]);
1439 return;
1440
1441 case nir_op_ixor:
1442 bld.XOR(result, op[0], op[1]);
1443 return;
1444
1445 default:
1446 unreachable("impossible opcode");
1447 }
1448 }
1449 op[0] = resolve_source_modifiers(op[0]);
1450 }
1451 bld.NOT(result, op[0]);
1452 break;
1453 case nir_op_ixor:
1454 if (devinfo->gen >= 8) {
1455 resolve_inot_sources(bld, instr, op);
1456 }
1457 bld.XOR(result, op[0], op[1]);
1458 break;
1459 case nir_op_ior:
1460 if (devinfo->gen >= 8) {
1461 resolve_inot_sources(bld, instr, op);
1462 }
1463 bld.OR(result, op[0], op[1]);
1464 break;
1465 case nir_op_iand:
1466 if (devinfo->gen >= 8) {
1467 resolve_inot_sources(bld, instr, op);
1468 }
1469 bld.AND(result, op[0], op[1]);
1470 break;
1471
1472 case nir_op_fdot2:
1473 case nir_op_fdot3:
1474 case nir_op_fdot4:
1475 case nir_op_b32all_fequal2:
1476 case nir_op_b32all_iequal2:
1477 case nir_op_b32all_fequal3:
1478 case nir_op_b32all_iequal3:
1479 case nir_op_b32all_fequal4:
1480 case nir_op_b32all_iequal4:
1481 case nir_op_b32any_fnequal2:
1482 case nir_op_b32any_inequal2:
1483 case nir_op_b32any_fnequal3:
1484 case nir_op_b32any_inequal3:
1485 case nir_op_b32any_fnequal4:
1486 case nir_op_b32any_inequal4:
1487 unreachable("Lowered by nir_lower_alu_reductions");
1488
1489 case nir_op_fnoise1_1:
1490 case nir_op_fnoise1_2:
1491 case nir_op_fnoise1_3:
1492 case nir_op_fnoise1_4:
1493 case nir_op_fnoise2_1:
1494 case nir_op_fnoise2_2:
1495 case nir_op_fnoise2_3:
1496 case nir_op_fnoise2_4:
1497 case nir_op_fnoise3_1:
1498 case nir_op_fnoise3_2:
1499 case nir_op_fnoise3_3:
1500 case nir_op_fnoise3_4:
1501 case nir_op_fnoise4_1:
1502 case nir_op_fnoise4_2:
1503 case nir_op_fnoise4_3:
1504 case nir_op_fnoise4_4:
1505 unreachable("not reached: should be handled by lower_noise");
1506
1507 case nir_op_ldexp:
1508 unreachable("not reached: should be handled by ldexp_to_arith()");
1509
1510 case nir_op_fsqrt:
1511 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1512 inst->saturate = instr->dest.saturate;
1513 break;
1514
1515 case nir_op_frsq:
1516 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1517 inst->saturate = instr->dest.saturate;
1518 break;
1519
1520 case nir_op_i2b32:
1521 case nir_op_f2b32: {
1522 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1523 if (bit_size == 64) {
1524 /* two-argument instructions can't take 64-bit immediates */
1525 fs_reg zero;
1526 fs_reg tmp;
1527
1528 if (instr->op == nir_op_f2b32) {
1529 zero = vgrf(glsl_type::double_type);
1530 tmp = vgrf(glsl_type::double_type);
1531 bld.MOV(zero, setup_imm_df(bld, 0.0));
1532 } else {
1533 zero = vgrf(glsl_type::int64_t_type);
1534 tmp = vgrf(glsl_type::int64_t_type);
1535 bld.MOV(zero, brw_imm_q(0));
1536 }
1537
1538 /* A SIMD16 execution needs to be split in two instructions, so use
1539 * a vgrf instead of the flag register as dst so instruction splitting
1540 * works
1541 */
1542 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1543 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1544 } else {
1545 fs_reg zero;
1546 if (bit_size == 32) {
1547 zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1548 } else {
1549 assert(bit_size == 16);
1550 zero = instr->op == nir_op_f2b32 ?
1551 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1552 }
1553 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1554 }
1555 break;
1556 }
1557
1558 case nir_op_ftrunc:
1559 inst = bld.RNDZ(result, op[0]);
1560 inst->saturate = instr->dest.saturate;
1561 break;
1562
1563 case nir_op_fceil: {
1564 op[0].negate = !op[0].negate;
1565 fs_reg temp = vgrf(glsl_type::float_type);
1566 bld.RNDD(temp, op[0]);
1567 temp.negate = true;
1568 inst = bld.MOV(result, temp);
1569 inst->saturate = instr->dest.saturate;
1570 break;
1571 }
1572 case nir_op_ffloor:
1573 inst = bld.RNDD(result, op[0]);
1574 inst->saturate = instr->dest.saturate;
1575 break;
1576 case nir_op_ffract:
1577 inst = bld.FRC(result, op[0]);
1578 inst->saturate = instr->dest.saturate;
1579 break;
1580 case nir_op_fround_even:
1581 inst = bld.RNDE(result, op[0]);
1582 inst->saturate = instr->dest.saturate;
1583 break;
1584
1585 case nir_op_fquantize2f16: {
1586 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1587 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1588 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1589
1590 /* The destination stride must be at least as big as the source stride. */
1591 tmp16.type = BRW_REGISTER_TYPE_W;
1592 tmp16.stride = 2;
1593
1594 /* Check for denormal */
1595 fs_reg abs_src0 = op[0];
1596 abs_src0.abs = true;
1597 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1598 BRW_CONDITIONAL_L);
1599 /* Get the appropriately signed zero */
1600 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1601 retype(op[0], BRW_REGISTER_TYPE_UD),
1602 brw_imm_ud(0x80000000));
1603 /* Do the actual F32 -> F16 -> F32 conversion */
1604 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1605 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1606 /* Select that or zero based on normal status */
1607 inst = bld.SEL(result, zero, tmp32);
1608 inst->predicate = BRW_PREDICATE_NORMAL;
1609 inst->saturate = instr->dest.saturate;
1610 break;
1611 }
1612
1613 case nir_op_imin:
1614 case nir_op_umin:
1615 case nir_op_fmin:
1616 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1617 inst->saturate = instr->dest.saturate;
1618 break;
1619
1620 case nir_op_imax:
1621 case nir_op_umax:
1622 case nir_op_fmax:
1623 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1624 inst->saturate = instr->dest.saturate;
1625 break;
1626
1627 case nir_op_pack_snorm_2x16:
1628 case nir_op_pack_snorm_4x8:
1629 case nir_op_pack_unorm_2x16:
1630 case nir_op_pack_unorm_4x8:
1631 case nir_op_unpack_snorm_2x16:
1632 case nir_op_unpack_snorm_4x8:
1633 case nir_op_unpack_unorm_2x16:
1634 case nir_op_unpack_unorm_4x8:
1635 case nir_op_unpack_half_2x16:
1636 case nir_op_pack_half_2x16:
1637 unreachable("not reached: should be handled by lower_packing_builtins");
1638
1639 case nir_op_unpack_half_2x16_split_x:
1640 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1641 subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1642 inst->saturate = instr->dest.saturate;
1643 break;
1644 case nir_op_unpack_half_2x16_split_y:
1645 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1646 subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1647 inst->saturate = instr->dest.saturate;
1648 break;
1649
1650 case nir_op_pack_64_2x32_split:
1651 case nir_op_pack_32_2x16_split:
1652 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1653 break;
1654
1655 case nir_op_unpack_64_2x32_split_x:
1656 case nir_op_unpack_64_2x32_split_y: {
1657 if (instr->op == nir_op_unpack_64_2x32_split_x)
1658 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1659 else
1660 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1661 break;
1662 }
1663
1664 case nir_op_unpack_32_2x16_split_x:
1665 case nir_op_unpack_32_2x16_split_y: {
1666 if (instr->op == nir_op_unpack_32_2x16_split_x)
1667 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1668 else
1669 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1670 break;
1671 }
1672
1673 case nir_op_fpow:
1674 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1675 inst->saturate = instr->dest.saturate;
1676 break;
1677
1678 case nir_op_bitfield_reverse:
1679 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1680 bld.BFREV(result, op[0]);
1681 break;
1682
1683 case nir_op_bit_count:
1684 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1685 bld.CBIT(result, op[0]);
1686 break;
1687
1688 case nir_op_ufind_msb: {
1689 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1690 emit_find_msb_using_lzd(bld, result, op[0], false);
1691 break;
1692 }
1693
1694 case nir_op_ifind_msb: {
1695 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1696
1697 if (devinfo->gen < 7) {
1698 emit_find_msb_using_lzd(bld, result, op[0], true);
1699 } else {
1700 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1701
1702 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1703 * count from the LSB side. If FBH didn't return an error
1704 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1705 * count into an LSB count.
1706 */
1707 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1708
1709 inst = bld.ADD(result, result, brw_imm_d(31));
1710 inst->predicate = BRW_PREDICATE_NORMAL;
1711 inst->src[0].negate = true;
1712 }
1713 break;
1714 }
1715
1716 case nir_op_find_lsb:
1717 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1718
1719 if (devinfo->gen < 7) {
1720 fs_reg temp = vgrf(glsl_type::int_type);
1721
1722 /* (x & -x) generates a value that consists of only the LSB of x.
1723 * For all powers of 2, findMSB(y) == findLSB(y).
1724 */
1725 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1726 fs_reg negated_src = src;
1727
1728 /* One must be negated, and the other must be non-negated. It
1729 * doesn't matter which is which.
1730 */
1731 negated_src.negate = true;
1732 src.negate = false;
1733
1734 bld.AND(temp, src, negated_src);
1735 emit_find_msb_using_lzd(bld, result, temp, false);
1736 } else {
1737 bld.FBL(result, op[0]);
1738 }
1739 break;
1740
1741 case nir_op_ubitfield_extract:
1742 case nir_op_ibitfield_extract:
1743 unreachable("should have been lowered");
1744 case nir_op_ubfe:
1745 case nir_op_ibfe:
1746 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1747 bld.BFE(result, op[2], op[1], op[0]);
1748 break;
1749 case nir_op_bfm:
1750 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1751 bld.BFI1(result, op[0], op[1]);
1752 break;
1753 case nir_op_bfi:
1754 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1755 bld.BFI2(result, op[0], op[1], op[2]);
1756 break;
1757
1758 case nir_op_bitfield_insert:
1759 unreachable("not reached: should have been lowered");
1760
1761 case nir_op_ishl:
1762 bld.SHL(result, op[0], op[1]);
1763 break;
1764 case nir_op_ishr:
1765 bld.ASR(result, op[0], op[1]);
1766 break;
1767 case nir_op_ushr:
1768 bld.SHR(result, op[0], op[1]);
1769 break;
1770
1771 case nir_op_urol:
1772 bld.ROL(result, op[0], op[1]);
1773 break;
1774 case nir_op_uror:
1775 bld.ROR(result, op[0], op[1]);
1776 break;
1777
1778 case nir_op_pack_half_2x16_split:
1779 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1780 break;
1781
1782 case nir_op_ffma:
1783 inst = bld.MAD(result, op[2], op[1], op[0]);
1784 inst->saturate = instr->dest.saturate;
1785 break;
1786
1787 case nir_op_flrp:
1788 inst = bld.LRP(result, op[0], op[1], op[2]);
1789 inst->saturate = instr->dest.saturate;
1790 break;
1791
1792 case nir_op_b32csel:
1793 if (optimize_frontfacing_ternary(instr, result))
1794 return;
1795
1796 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1797 inst = bld.SEL(result, op[1], op[2]);
1798 inst->predicate = BRW_PREDICATE_NORMAL;
1799 break;
1800
1801 case nir_op_extract_u8:
1802 case nir_op_extract_i8: {
1803 unsigned byte = nir_src_as_uint(instr->src[1].src);
1804
1805 /* The PRMs say:
1806 *
1807 * BDW+
1808 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1809 * Use two instructions and a word or DWord intermediate integer type.
1810 */
1811 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1812 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1813
1814 if (instr->op == nir_op_extract_i8) {
1815 /* If we need to sign extend, extract to a word first */
1816 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1817 bld.MOV(w_temp, subscript(op[0], type, byte));
1818 bld.MOV(result, w_temp);
1819 } else if (byte & 1) {
1820 /* Extract the high byte from the word containing the desired byte
1821 * offset.
1822 */
1823 bld.SHR(result,
1824 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1825 brw_imm_uw(8));
1826 } else {
1827 /* Otherwise use an AND with 0xff and a word type */
1828 bld.AND(result,
1829 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1830 brw_imm_uw(0xff));
1831 }
1832 } else {
1833 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1834 bld.MOV(result, subscript(op[0], type, byte));
1835 }
1836 break;
1837 }
1838
1839 case nir_op_extract_u16:
1840 case nir_op_extract_i16: {
1841 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1842 unsigned word = nir_src_as_uint(instr->src[1].src);
1843 bld.MOV(result, subscript(op[0], type, word));
1844 break;
1845 }
1846
1847 default:
1848 unreachable("unhandled instruction");
1849 }
1850
1851 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1852 * to sign extend the low bit to 0/~0
1853 */
1854 if (devinfo->gen <= 5 &&
1855 !result.is_null() &&
1856 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1857 fs_reg masked = vgrf(glsl_type::int_type);
1858 bld.AND(masked, result, brw_imm_d(1));
1859 masked.negate = true;
1860 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1861 }
1862 }
1863
1864 void
1865 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1866 nir_load_const_instr *instr)
1867 {
1868 const brw_reg_type reg_type =
1869 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1870 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1871
1872 switch (instr->def.bit_size) {
1873 case 8:
1874 for (unsigned i = 0; i < instr->def.num_components; i++)
1875 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value[i].i8));
1876 break;
1877
1878 case 16:
1879 for (unsigned i = 0; i < instr->def.num_components; i++)
1880 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value[i].i16));
1881 break;
1882
1883 case 32:
1884 for (unsigned i = 0; i < instr->def.num_components; i++)
1885 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value[i].i32));
1886 break;
1887
1888 case 64:
1889 assert(devinfo->gen >= 7);
1890 if (devinfo->gen == 7) {
1891 /* We don't get 64-bit integer types until gen8 */
1892 for (unsigned i = 0; i < instr->def.num_components; i++) {
1893 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1894 setup_imm_df(bld, instr->value[i].f64));
1895 }
1896 } else {
1897 for (unsigned i = 0; i < instr->def.num_components; i++)
1898 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value[i].i64));
1899 }
1900 break;
1901
1902 default:
1903 unreachable("Invalid bit size");
1904 }
1905
1906 nir_ssa_values[instr->def.index] = reg;
1907 }
1908
1909 fs_reg
1910 fs_visitor::get_nir_src(const nir_src &src)
1911 {
1912 fs_reg reg;
1913 if (src.is_ssa) {
1914 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1915 const brw_reg_type reg_type =
1916 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1917 reg = bld.vgrf(reg_type, src.ssa->num_components);
1918 } else {
1919 reg = nir_ssa_values[src.ssa->index];
1920 }
1921 } else {
1922 /* We don't handle indirects on locals */
1923 assert(src.reg.indirect == NULL);
1924 reg = offset(nir_locals[src.reg.reg->index], bld,
1925 src.reg.base_offset * src.reg.reg->num_components);
1926 }
1927
1928 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1929 /* The only 64-bit type available on gen7 is DF, so use that. */
1930 reg.type = BRW_REGISTER_TYPE_DF;
1931 } else {
1932 /* To avoid floating-point denorm flushing problems, set the type by
1933 * default to an integer type - instructions that need floating point
1934 * semantics will set this to F if they need to
1935 */
1936 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1937 BRW_REGISTER_TYPE_D);
1938 }
1939
1940 return reg;
1941 }
1942
1943 /**
1944 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1945 *
1946 * This function should not be called on any value which may be 64 bits.
1947 * We could theoretically support 64-bit on gen8+ but we choose not to
1948 * because it wouldn't work in general (no gen7 support) and there are
1949 * enough restrictions in 64-bit immediates that you can't take the return
1950 * value and treat it the same as the result of get_nir_src().
1951 */
1952 fs_reg
1953 fs_visitor::get_nir_src_imm(const nir_src &src)
1954 {
1955 assert(nir_src_bit_size(src) == 32);
1956 return nir_src_is_const(src) ?
1957 fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
1958 }
1959
1960 fs_reg
1961 fs_visitor::get_nir_dest(const nir_dest &dest)
1962 {
1963 if (dest.is_ssa) {
1964 const brw_reg_type reg_type =
1965 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1966 dest.ssa.bit_size == 8 ?
1967 BRW_REGISTER_TYPE_D :
1968 BRW_REGISTER_TYPE_F);
1969 nir_ssa_values[dest.ssa.index] =
1970 bld.vgrf(reg_type, dest.ssa.num_components);
1971 bld.UNDEF(nir_ssa_values[dest.ssa.index]);
1972 return nir_ssa_values[dest.ssa.index];
1973 } else {
1974 /* We don't handle indirects on locals */
1975 assert(dest.reg.indirect == NULL);
1976 return offset(nir_locals[dest.reg.reg->index], bld,
1977 dest.reg.base_offset * dest.reg.reg->num_components);
1978 }
1979 }
1980
1981 void
1982 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1983 unsigned wr_mask)
1984 {
1985 for (unsigned i = 0; i < 4; i++) {
1986 if (!((wr_mask >> i) & 1))
1987 continue;
1988
1989 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1990 new_inst->dst = offset(new_inst->dst, bld, i);
1991 for (unsigned j = 0; j < new_inst->sources; j++)
1992 if (new_inst->src[j].file == VGRF)
1993 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1994
1995 bld.emit(new_inst);
1996 }
1997 }
1998
1999 static fs_inst *
2000 emit_pixel_interpolater_send(const fs_builder &bld,
2001 enum opcode opcode,
2002 const fs_reg &dst,
2003 const fs_reg &src,
2004 const fs_reg &desc,
2005 glsl_interp_mode interpolation)
2006 {
2007 struct brw_wm_prog_data *wm_prog_data =
2008 brw_wm_prog_data(bld.shader->stage_prog_data);
2009
2010 fs_inst *inst = bld.emit(opcode, dst, src, desc);
2011 /* 2 floats per slot returned */
2012 inst->size_written = 2 * dst.component_size(inst->exec_size);
2013 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
2014
2015 wm_prog_data->pulls_bary = true;
2016
2017 return inst;
2018 }
2019
2020 /**
2021 * Computes 1 << x, given a D/UD register containing some value x.
2022 */
2023 static fs_reg
2024 intexp2(const fs_builder &bld, const fs_reg &x)
2025 {
2026 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
2027
2028 fs_reg result = bld.vgrf(x.type, 1);
2029 fs_reg one = bld.vgrf(x.type, 1);
2030
2031 bld.MOV(one, retype(brw_imm_d(1), one.type));
2032 bld.SHL(result, one, x);
2033 return result;
2034 }
2035
2036 void
2037 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
2038 {
2039 assert(stage == MESA_SHADER_GEOMETRY);
2040
2041 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2042
2043 if (gs_compile->control_data_header_size_bits == 0)
2044 return;
2045
2046 /* We can only do EndPrimitive() functionality when the control data
2047 * consists of cut bits. Fortunately, the only time it isn't is when the
2048 * output type is points, in which case EndPrimitive() is a no-op.
2049 */
2050 if (gs_prog_data->control_data_format !=
2051 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
2052 return;
2053 }
2054
2055 /* Cut bits use one bit per vertex. */
2056 assert(gs_compile->control_data_bits_per_vertex == 1);
2057
2058 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2059 vertex_count.type = BRW_REGISTER_TYPE_UD;
2060
2061 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
2062 * vertex n, 0 otherwise. So all we need to do here is mark bit
2063 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
2064 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
2065 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
2066 *
2067 * Note that if EndPrimitive() is called before emitting any vertices, this
2068 * will cause us to set bit 31 of the control_data_bits register to 1.
2069 * That's fine because:
2070 *
2071 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
2072 * output, so the hardware will ignore cut bit 31.
2073 *
2074 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
2075 * last vertex, so setting cut bit 31 has no effect (since the primitive
2076 * is automatically ended when the GS terminates).
2077 *
2078 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
2079 * control_data_bits register to 0 when the first vertex is emitted.
2080 */
2081
2082 const fs_builder abld = bld.annotate("end primitive");
2083
2084 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
2085 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2086 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2087 fs_reg mask = intexp2(abld, prev_count);
2088 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2089 * attention to the lower 5 bits of its second source argument, so on this
2090 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
2091 * ((vertex_count - 1) % 32).
2092 */
2093 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2094 }
2095
2096 void
2097 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
2098 {
2099 assert(stage == MESA_SHADER_GEOMETRY);
2100 assert(gs_compile->control_data_bits_per_vertex != 0);
2101
2102 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2103
2104 const fs_builder abld = bld.annotate("emit control data bits");
2105 const fs_builder fwa_bld = bld.exec_all();
2106
2107 /* We use a single UD register to accumulate control data bits (32 bits
2108 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
2109 * at a time.
2110 *
2111 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
2112 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
2113 * use the Channel Mask phase to enable/disable which DWord within that
2114 * group to write. (Remember, different SIMD8 channels may have emitted
2115 * different numbers of vertices, so we may need per-slot offsets.)
2116 *
2117 * Channel masking presents an annoying problem: we may have to replicate
2118 * the data up to 4 times:
2119 *
2120 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
2121 *
2122 * To avoid penalizing shaders that emit a small number of vertices, we
2123 * can avoid these sometimes: if the size of the control data header is
2124 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
2125 * land in the same 128-bit group, so we can skip per-slot offsets.
2126 *
2127 * Similarly, if the control data header is <= 32 bits, there is only one
2128 * DWord, so we can skip channel masks.
2129 */
2130 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
2131
2132 fs_reg channel_mask, per_slot_offset;
2133
2134 if (gs_compile->control_data_header_size_bits > 32) {
2135 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2136 channel_mask = vgrf(glsl_type::uint_type);
2137 }
2138
2139 if (gs_compile->control_data_header_size_bits > 128) {
2140 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
2141 per_slot_offset = vgrf(glsl_type::uint_type);
2142 }
2143
2144 /* Figure out which DWord we're trying to write to using the formula:
2145 *
2146 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
2147 *
2148 * Since bits_per_vertex is a power of two, and is known at compile
2149 * time, this can be optimized to:
2150 *
2151 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
2152 */
2153 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
2154 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2155 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2156 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2157 unsigned log2_bits_per_vertex =
2158 util_last_bit(gs_compile->control_data_bits_per_vertex);
2159 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
2160
2161 if (per_slot_offset.file != BAD_FILE) {
2162 /* Set the per-slot offset to dword_index / 4, so that we'll write to
2163 * the appropriate OWord within the control data header.
2164 */
2165 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
2166 }
2167
2168 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
2169 * write to the appropriate DWORD within the OWORD.
2170 */
2171 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2172 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
2173 channel_mask = intexp2(fwa_bld, channel);
2174 /* Then the channel masks need to be in bits 23:16. */
2175 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
2176 }
2177
2178 /* Store the control data bits in the message payload and send it. */
2179 unsigned mlen = 2;
2180 if (channel_mask.file != BAD_FILE)
2181 mlen += 4; /* channel masks, plus 3 extra copies of the data */
2182 if (per_slot_offset.file != BAD_FILE)
2183 mlen++;
2184
2185 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2186 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2187 unsigned i = 0;
2188 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2189 if (per_slot_offset.file != BAD_FILE)
2190 sources[i++] = per_slot_offset;
2191 if (channel_mask.file != BAD_FILE)
2192 sources[i++] = channel_mask;
2193 while (i < mlen) {
2194 sources[i++] = this->control_data_bits;
2195 }
2196
2197 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2198 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2199 inst->mlen = mlen;
2200 /* We need to increment Global Offset by 256-bits to make room for
2201 * Broadwell's extra "Vertex Count" payload at the beginning of the
2202 * URB entry. Since this is an OWord message, Global Offset is counted
2203 * in 128-bit units, so we must set it to 2.
2204 */
2205 if (gs_prog_data->static_vertex_count == -1)
2206 inst->offset = 2;
2207 }
2208
2209 void
2210 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2211 unsigned stream_id)
2212 {
2213 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2214
2215 /* Note: we are calling this *before* increasing vertex_count, so
2216 * this->vertex_count == vertex_count - 1 in the formula above.
2217 */
2218
2219 /* Stream mode uses 2 bits per vertex */
2220 assert(gs_compile->control_data_bits_per_vertex == 2);
2221
2222 /* Must be a valid stream */
2223 assert(stream_id < MAX_VERTEX_STREAMS);
2224
2225 /* Control data bits are initialized to 0 so we don't have to set any
2226 * bits when sending vertices to stream 0.
2227 */
2228 if (stream_id == 0)
2229 return;
2230
2231 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2232
2233 /* reg::sid = stream_id */
2234 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2235 abld.MOV(sid, brw_imm_ud(stream_id));
2236
2237 /* reg:shift_count = 2 * (vertex_count - 1) */
2238 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2239 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2240
2241 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2242 * attention to the lower 5 bits of its second source argument, so on this
2243 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2244 * stream_id << ((2 * (vertex_count - 1)) % 32).
2245 */
2246 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2247 abld.SHL(mask, sid, shift_count);
2248 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2249 }
2250
2251 void
2252 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2253 unsigned stream_id)
2254 {
2255 assert(stage == MESA_SHADER_GEOMETRY);
2256
2257 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2258
2259 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2260 vertex_count.type = BRW_REGISTER_TYPE_UD;
2261
2262 /* Haswell and later hardware ignores the "Render Stream Select" bits
2263 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2264 * and instead sends all primitives down the pipeline for rasterization.
2265 * If the SOL stage is enabled, "Render Stream Select" is honored and
2266 * primitives bound to non-zero streams are discarded after stream output.
2267 *
2268 * Since the only purpose of primives sent to non-zero streams is to
2269 * be recorded by transform feedback, we can simply discard all geometry
2270 * bound to these streams when transform feedback is disabled.
2271 */
2272 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2273 return;
2274
2275 /* If we're outputting 32 control data bits or less, then we can wait
2276 * until the shader is over to output them all. Otherwise we need to
2277 * output them as we go. Now is the time to do it, since we're about to
2278 * output the vertex_count'th vertex, so it's guaranteed that the
2279 * control data bits associated with the (vertex_count - 1)th vertex are
2280 * correct.
2281 */
2282 if (gs_compile->control_data_header_size_bits > 32) {
2283 const fs_builder abld =
2284 bld.annotate("emit vertex: emit control data bits");
2285
2286 /* Only emit control data bits if we've finished accumulating a batch
2287 * of 32 bits. This is the case when:
2288 *
2289 * (vertex_count * bits_per_vertex) % 32 == 0
2290 *
2291 * (in other words, when the last 5 bits of vertex_count *
2292 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2293 * integer n (which is always the case, since bits_per_vertex is
2294 * always 1 or 2), this is equivalent to requiring that the last 5-n
2295 * bits of vertex_count are 0:
2296 *
2297 * vertex_count & (2^(5-n) - 1) == 0
2298 *
2299 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2300 * equivalent to:
2301 *
2302 * vertex_count & (32 / bits_per_vertex - 1) == 0
2303 *
2304 * TODO: If vertex_count is an immediate, we could do some of this math
2305 * at compile time...
2306 */
2307 fs_inst *inst =
2308 abld.AND(bld.null_reg_d(), vertex_count,
2309 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2310 inst->conditional_mod = BRW_CONDITIONAL_Z;
2311
2312 abld.IF(BRW_PREDICATE_NORMAL);
2313 /* If vertex_count is 0, then no control data bits have been
2314 * accumulated yet, so we can skip emitting them.
2315 */
2316 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2317 BRW_CONDITIONAL_NEQ);
2318 abld.IF(BRW_PREDICATE_NORMAL);
2319 emit_gs_control_data_bits(vertex_count);
2320 abld.emit(BRW_OPCODE_ENDIF);
2321
2322 /* Reset control_data_bits to 0 so we can start accumulating a new
2323 * batch.
2324 *
2325 * Note: in the case where vertex_count == 0, this neutralizes the
2326 * effect of any call to EndPrimitive() that the shader may have
2327 * made before outputting its first vertex.
2328 */
2329 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2330 inst->force_writemask_all = true;
2331 abld.emit(BRW_OPCODE_ENDIF);
2332 }
2333
2334 emit_urb_writes(vertex_count);
2335
2336 /* In stream mode we have to set control data bits for all vertices
2337 * unless we have disabled control data bits completely (which we do
2338 * do for GL_POINTS outputs that don't use streams).
2339 */
2340 if (gs_compile->control_data_header_size_bits > 0 &&
2341 gs_prog_data->control_data_format ==
2342 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2343 set_gs_stream_control_data_bits(vertex_count, stream_id);
2344 }
2345 }
2346
2347 void
2348 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2349 const nir_src &vertex_src,
2350 unsigned base_offset,
2351 const nir_src &offset_src,
2352 unsigned num_components,
2353 unsigned first_component)
2354 {
2355 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2356 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2357
2358 /* TODO: figure out push input layout for invocations == 1 */
2359 /* TODO: make this work with 64-bit inputs */
2360 if (gs_prog_data->invocations == 1 &&
2361 type_sz(dst.type) <= 4 &&
2362 nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2363 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2364 int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2365 nir_src_as_uint(vertex_src) * push_reg_count;
2366 for (unsigned i = 0; i < num_components; i++) {
2367 bld.MOV(offset(dst, bld, i),
2368 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2369 }
2370 return;
2371 }
2372
2373 /* Resort to the pull model. Ensure the VUE handles are provided. */
2374 assert(gs_prog_data->base.include_vue_handles);
2375
2376 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2377 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2378
2379 if (gs_prog_data->invocations == 1) {
2380 if (nir_src_is_const(vertex_src)) {
2381 /* The vertex index is constant; just select the proper URB handle. */
2382 icp_handle =
2383 retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2384 BRW_REGISTER_TYPE_UD);
2385 } else {
2386 /* The vertex index is non-constant. We need to use indirect
2387 * addressing to fetch the proper URB handle.
2388 *
2389 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2390 * indicating that channel <n> should read the handle from
2391 * DWord <n>. We convert that to bytes by multiplying by 4.
2392 *
2393 * Next, we convert the vertex index to bytes by multiplying
2394 * by 32 (shifting by 5), and add the two together. This is
2395 * the final indirect byte offset.
2396 */
2397 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2398 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2399 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2400 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2401
2402 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2403 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2404 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2405 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2406 /* Convert vertex_index to bytes (multiply by 32) */
2407 bld.SHL(vertex_offset_bytes,
2408 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2409 brw_imm_ud(5u));
2410 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2411
2412 /* Use first_icp_handle as the base offset. There is one register
2413 * of URB handles per vertex, so inform the register allocator that
2414 * we might read up to nir->info.gs.vertices_in registers.
2415 */
2416 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2417 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2418 fs_reg(icp_offset_bytes),
2419 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2420 }
2421 } else {
2422 assert(gs_prog_data->invocations > 1);
2423
2424 if (nir_src_is_const(vertex_src)) {
2425 unsigned vertex = nir_src_as_uint(vertex_src);
2426 assert(devinfo->gen >= 9 || vertex <= 5);
2427 bld.MOV(icp_handle,
2428 retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2429 BRW_REGISTER_TYPE_UD));
2430 } else {
2431 /* The vertex index is non-constant. We need to use indirect
2432 * addressing to fetch the proper URB handle.
2433 *
2434 */
2435 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2436
2437 /* Convert vertex_index to bytes (multiply by 4) */
2438 bld.SHL(icp_offset_bytes,
2439 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2440 brw_imm_ud(2u));
2441
2442 /* Use first_icp_handle as the base offset. There is one DWord
2443 * of URB handles per vertex, so inform the register allocator that
2444 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2445 */
2446 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2447 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2448 fs_reg(icp_offset_bytes),
2449 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2450 REG_SIZE));
2451 }
2452 }
2453
2454 fs_inst *inst;
2455
2456 fs_reg tmp_dst = dst;
2457 fs_reg indirect_offset = get_nir_src(offset_src);
2458 unsigned num_iterations = 1;
2459 unsigned orig_num_components = num_components;
2460
2461 if (type_sz(dst.type) == 8) {
2462 if (num_components > 2) {
2463 num_iterations = 2;
2464 num_components = 2;
2465 }
2466 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2467 tmp_dst = tmp;
2468 first_component = first_component / 2;
2469 }
2470
2471 for (unsigned iter = 0; iter < num_iterations; iter++) {
2472 if (nir_src_is_const(offset_src)) {
2473 /* Constant indexing - use global offset. */
2474 if (first_component != 0) {
2475 unsigned read_components = num_components + first_component;
2476 fs_reg tmp = bld.vgrf(dst.type, read_components);
2477 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2478 inst->size_written = read_components *
2479 tmp.component_size(inst->exec_size);
2480 for (unsigned i = 0; i < num_components; i++) {
2481 bld.MOV(offset(tmp_dst, bld, i),
2482 offset(tmp, bld, i + first_component));
2483 }
2484 } else {
2485 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2486 icp_handle);
2487 inst->size_written = num_components *
2488 tmp_dst.component_size(inst->exec_size);
2489 }
2490 inst->offset = base_offset + nir_src_as_uint(offset_src);
2491 inst->mlen = 1;
2492 } else {
2493 /* Indirect indexing - use per-slot offsets as well. */
2494 const fs_reg srcs[] = { icp_handle, indirect_offset };
2495 unsigned read_components = num_components + first_component;
2496 fs_reg tmp = bld.vgrf(dst.type, read_components);
2497 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2498 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2499 if (first_component != 0) {
2500 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2501 payload);
2502 inst->size_written = read_components *
2503 tmp.component_size(inst->exec_size);
2504 for (unsigned i = 0; i < num_components; i++) {
2505 bld.MOV(offset(tmp_dst, bld, i),
2506 offset(tmp, bld, i + first_component));
2507 }
2508 } else {
2509 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2510 payload);
2511 inst->size_written = num_components *
2512 tmp_dst.component_size(inst->exec_size);
2513 }
2514 inst->offset = base_offset;
2515 inst->mlen = 2;
2516 }
2517
2518 if (type_sz(dst.type) == 8) {
2519 shuffle_from_32bit_read(bld,
2520 offset(dst, bld, iter * 2),
2521 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2522 0,
2523 num_components);
2524 }
2525
2526 if (num_iterations > 1) {
2527 num_components = orig_num_components - 2;
2528 if(nir_src_is_const(offset_src)) {
2529 base_offset++;
2530 } else {
2531 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2532 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2533 indirect_offset = new_indirect;
2534 }
2535 }
2536 }
2537 }
2538
2539 fs_reg
2540 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2541 {
2542 nir_src *offset_src = nir_get_io_offset_src(instr);
2543
2544 if (nir_src_is_const(*offset_src)) {
2545 /* The only constant offset we should find is 0. brw_nir.c's
2546 * add_const_offset_to_base() will fold other constant offsets
2547 * into instr->const_index[0].
2548 */
2549 assert(nir_src_as_uint(*offset_src) == 0);
2550 return fs_reg();
2551 }
2552
2553 return get_nir_src(*offset_src);
2554 }
2555
2556 void
2557 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2558 nir_intrinsic_instr *instr)
2559 {
2560 assert(stage == MESA_SHADER_VERTEX);
2561
2562 fs_reg dest;
2563 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2564 dest = get_nir_dest(instr->dest);
2565
2566 switch (instr->intrinsic) {
2567 case nir_intrinsic_load_vertex_id:
2568 case nir_intrinsic_load_base_vertex:
2569 unreachable("should be lowered by nir_lower_system_values()");
2570
2571 case nir_intrinsic_load_input: {
2572 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2573 unsigned first_component = nir_intrinsic_component(instr);
2574 unsigned num_components = instr->num_components;
2575
2576 src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2577
2578 if (type_sz(dest.type) == 8)
2579 first_component /= 2;
2580
2581 /* For 16-bit support maybe a temporary will be needed to copy from
2582 * the ATTR file.
2583 */
2584 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2585 first_component, num_components);
2586 break;
2587 }
2588
2589 case nir_intrinsic_load_vertex_id_zero_base:
2590 case nir_intrinsic_load_instance_id:
2591 case nir_intrinsic_load_base_instance:
2592 case nir_intrinsic_load_draw_id:
2593 case nir_intrinsic_load_first_vertex:
2594 case nir_intrinsic_load_is_indexed_draw:
2595 unreachable("lowered by brw_nir_lower_vs_inputs");
2596
2597 default:
2598 nir_emit_intrinsic(bld, instr);
2599 break;
2600 }
2601 }
2602
2603 fs_reg
2604 fs_visitor::get_tcs_single_patch_icp_handle(const fs_builder &bld,
2605 nir_intrinsic_instr *instr)
2606 {
2607 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2608 const nir_src &vertex_src = instr->src[0];
2609 nir_intrinsic_instr *vertex_intrin = nir_src_as_intrinsic(vertex_src);
2610 fs_reg icp_handle;
2611
2612 if (nir_src_is_const(vertex_src)) {
2613 /* Emit a MOV to resolve <0,1,0> regioning. */
2614 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2615 unsigned vertex = nir_src_as_uint(vertex_src);
2616 bld.MOV(icp_handle,
2617 retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2618 BRW_REGISTER_TYPE_UD));
2619 } else if (tcs_prog_data->instances == 1 && vertex_intrin &&
2620 vertex_intrin->intrinsic == nir_intrinsic_load_invocation_id) {
2621 /* For the common case of only 1 instance, an array index of
2622 * gl_InvocationID means reading g1. Skip all the indirect work.
2623 */
2624 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2625 } else {
2626 /* The vertex index is non-constant. We need to use indirect
2627 * addressing to fetch the proper URB handle.
2628 */
2629 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2630
2631 /* Each ICP handle is a single DWord (4 bytes) */
2632 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2633 bld.SHL(vertex_offset_bytes,
2634 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2635 brw_imm_ud(2u));
2636
2637 /* Start at g1. We might read up to 4 registers. */
2638 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2639 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2640 brw_imm_ud(4 * REG_SIZE));
2641 }
2642
2643 return icp_handle;
2644 }
2645
2646 fs_reg
2647 fs_visitor::get_tcs_eight_patch_icp_handle(const fs_builder &bld,
2648 nir_intrinsic_instr *instr)
2649 {
2650 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2651 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2652 const nir_src &vertex_src = instr->src[0];
2653
2654 unsigned first_icp_handle = tcs_prog_data->include_primitive_id ? 3 : 2;
2655
2656 if (nir_src_is_const(vertex_src)) {
2657 return fs_reg(retype(brw_vec8_grf(first_icp_handle +
2658 nir_src_as_uint(vertex_src), 0),
2659 BRW_REGISTER_TYPE_UD));
2660 }
2661
2662 /* The vertex index is non-constant. We need to use indirect
2663 * addressing to fetch the proper URB handle.
2664 *
2665 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2666 * indicating that channel <n> should read the handle from
2667 * DWord <n>. We convert that to bytes by multiplying by 4.
2668 *
2669 * Next, we convert the vertex index to bytes by multiplying
2670 * by 32 (shifting by 5), and add the two together. This is
2671 * the final indirect byte offset.
2672 */
2673 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2674 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2675 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2676 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2677 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2678
2679 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2680 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2681 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2682 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2683 /* Convert vertex_index to bytes (multiply by 32) */
2684 bld.SHL(vertex_offset_bytes,
2685 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2686 brw_imm_ud(5u));
2687 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2688
2689 /* Use first_icp_handle as the base offset. There is one register
2690 * of URB handles per vertex, so inform the register allocator that
2691 * we might read up to nir->info.gs.vertices_in registers.
2692 */
2693 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2694 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2695 icp_offset_bytes, brw_imm_ud(tcs_key->input_vertices * REG_SIZE));
2696
2697 return icp_handle;
2698 }
2699
2700 struct brw_reg
2701 fs_visitor::get_tcs_output_urb_handle()
2702 {
2703 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
2704
2705 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) {
2706 return retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2707 } else {
2708 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
2709 return retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2710 }
2711 }
2712
2713 void
2714 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2715 nir_intrinsic_instr *instr)
2716 {
2717 assert(stage == MESA_SHADER_TESS_CTRL);
2718 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2719 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2720 struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
2721
2722 bool eight_patch =
2723 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH;
2724
2725 fs_reg dst;
2726 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2727 dst = get_nir_dest(instr->dest);
2728
2729 switch (instr->intrinsic) {
2730 case nir_intrinsic_load_primitive_id:
2731 bld.MOV(dst, fs_reg(eight_patch ? brw_vec8_grf(2, 0)
2732 : brw_vec1_grf(0, 1)));
2733 break;
2734 case nir_intrinsic_load_invocation_id:
2735 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2736 break;
2737 case nir_intrinsic_load_patch_vertices_in:
2738 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2739 brw_imm_d(tcs_key->input_vertices));
2740 break;
2741
2742 case nir_intrinsic_barrier: {
2743 if (tcs_prog_data->instances == 1)
2744 break;
2745
2746 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2747 fs_reg m0_2 = component(m0, 2);
2748
2749 const fs_builder chanbld = bld.exec_all().group(1, 0);
2750
2751 /* Zero the message header */
2752 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2753
2754 if (devinfo->gen < 11) {
2755 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2756 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2757 brw_imm_ud(INTEL_MASK(16, 13)));
2758
2759 /* Shift it up to bits 27:24. */
2760 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2761 } else {
2762 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2763 brw_imm_ud(INTEL_MASK(30, 24)));
2764 }
2765
2766 /* Set the Barrier Count and the enable bit */
2767 if (devinfo->gen < 11) {
2768 chanbld.OR(m0_2, m0_2,
2769 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2770 } else {
2771 chanbld.OR(m0_2, m0_2,
2772 brw_imm_ud(tcs_prog_data->instances << 8 | (1 << 15)));
2773 }
2774
2775 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2776 break;
2777 }
2778
2779 case nir_intrinsic_load_input:
2780 unreachable("nir_lower_io should never give us these.");
2781 break;
2782
2783 case nir_intrinsic_load_per_vertex_input: {
2784 fs_reg indirect_offset = get_indirect_offset(instr);
2785 unsigned imm_offset = instr->const_index[0];
2786 fs_inst *inst;
2787
2788 fs_reg icp_handle =
2789 eight_patch ? get_tcs_eight_patch_icp_handle(bld, instr)
2790 : get_tcs_single_patch_icp_handle(bld, instr);
2791
2792 /* We can only read two double components with each URB read, so
2793 * we send two read messages in that case, each one loading up to
2794 * two double components.
2795 */
2796 unsigned num_iterations = 1;
2797 unsigned num_components = instr->num_components;
2798 unsigned first_component = nir_intrinsic_component(instr);
2799 fs_reg orig_dst = dst;
2800 if (type_sz(dst.type) == 8) {
2801 first_component = first_component / 2;
2802 if (instr->num_components > 2) {
2803 num_iterations = 2;
2804 num_components = 2;
2805 }
2806
2807 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2808 dst = tmp;
2809 }
2810
2811 for (unsigned iter = 0; iter < num_iterations; iter++) {
2812 if (indirect_offset.file == BAD_FILE) {
2813 /* Constant indexing - use global offset. */
2814 if (first_component != 0) {
2815 unsigned read_components = num_components + first_component;
2816 fs_reg tmp = bld.vgrf(dst.type, read_components);
2817 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2818 for (unsigned i = 0; i < num_components; i++) {
2819 bld.MOV(offset(dst, bld, i),
2820 offset(tmp, bld, i + first_component));
2821 }
2822 } else {
2823 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2824 }
2825 inst->offset = imm_offset;
2826 inst->mlen = 1;
2827 } else {
2828 /* Indirect indexing - use per-slot offsets as well. */
2829 const fs_reg srcs[] = { icp_handle, indirect_offset };
2830 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2831 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2832 if (first_component != 0) {
2833 unsigned read_components = num_components + first_component;
2834 fs_reg tmp = bld.vgrf(dst.type, read_components);
2835 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2836 payload);
2837 for (unsigned i = 0; i < num_components; i++) {
2838 bld.MOV(offset(dst, bld, i),
2839 offset(tmp, bld, i + first_component));
2840 }
2841 } else {
2842 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2843 payload);
2844 }
2845 inst->offset = imm_offset;
2846 inst->mlen = 2;
2847 }
2848 inst->size_written = (num_components + first_component) *
2849 inst->dst.component_size(inst->exec_size);
2850
2851 /* If we are reading 64-bit data using 32-bit read messages we need
2852 * build proper 64-bit data elements by shuffling the low and high
2853 * 32-bit components around like we do for other things like UBOs
2854 * or SSBOs.
2855 */
2856 if (type_sz(dst.type) == 8) {
2857 shuffle_from_32bit_read(bld,
2858 offset(orig_dst, bld, iter * 2),
2859 retype(dst, BRW_REGISTER_TYPE_D),
2860 0, num_components);
2861 }
2862
2863 /* Copy the temporary to the destination to deal with writemasking.
2864 *
2865 * Also attempt to deal with gl_PointSize being in the .w component.
2866 */
2867 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2868 assert(type_sz(dst.type) < 8);
2869 inst->dst = bld.vgrf(dst.type, 4);
2870 inst->size_written = 4 * REG_SIZE;
2871 bld.MOV(dst, offset(inst->dst, bld, 3));
2872 }
2873
2874 /* If we are loading double data and we need a second read message
2875 * adjust the write offset
2876 */
2877 if (num_iterations > 1) {
2878 num_components = instr->num_components - 2;
2879 imm_offset++;
2880 }
2881 }
2882 break;
2883 }
2884
2885 case nir_intrinsic_load_output:
2886 case nir_intrinsic_load_per_vertex_output: {
2887 fs_reg indirect_offset = get_indirect_offset(instr);
2888 unsigned imm_offset = instr->const_index[0];
2889 unsigned first_component = nir_intrinsic_component(instr);
2890
2891 struct brw_reg output_handles = get_tcs_output_urb_handle();
2892
2893 fs_inst *inst;
2894 if (indirect_offset.file == BAD_FILE) {
2895 /* This MOV replicates the output handle to all enabled channels
2896 * is SINGLE_PATCH mode.
2897 */
2898 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2899 bld.MOV(patch_handle, output_handles);
2900
2901 {
2902 if (first_component != 0) {
2903 unsigned read_components =
2904 instr->num_components + first_component;
2905 fs_reg tmp = bld.vgrf(dst.type, read_components);
2906 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2907 patch_handle);
2908 inst->size_written = read_components * REG_SIZE;
2909 for (unsigned i = 0; i < instr->num_components; i++) {
2910 bld.MOV(offset(dst, bld, i),
2911 offset(tmp, bld, i + first_component));
2912 }
2913 } else {
2914 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2915 patch_handle);
2916 inst->size_written = instr->num_components * REG_SIZE;
2917 }
2918 inst->offset = imm_offset;
2919 inst->mlen = 1;
2920 }
2921 } else {
2922 /* Indirect indexing - use per-slot offsets as well. */
2923 const fs_reg srcs[] = { output_handles, indirect_offset };
2924 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2925 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2926 if (first_component != 0) {
2927 unsigned read_components =
2928 instr->num_components + first_component;
2929 fs_reg tmp = bld.vgrf(dst.type, read_components);
2930 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2931 payload);
2932 inst->size_written = read_components * REG_SIZE;
2933 for (unsigned i = 0; i < instr->num_components; i++) {
2934 bld.MOV(offset(dst, bld, i),
2935 offset(tmp, bld, i + first_component));
2936 }
2937 } else {
2938 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2939 payload);
2940 inst->size_written = instr->num_components * REG_SIZE;
2941 }
2942 inst->offset = imm_offset;
2943 inst->mlen = 2;
2944 }
2945 break;
2946 }
2947
2948 case nir_intrinsic_store_output:
2949 case nir_intrinsic_store_per_vertex_output: {
2950 fs_reg value = get_nir_src(instr->src[0]);
2951 bool is_64bit = (instr->src[0].is_ssa ?
2952 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2953 fs_reg indirect_offset = get_indirect_offset(instr);
2954 unsigned imm_offset = instr->const_index[0];
2955 unsigned mask = instr->const_index[1];
2956 unsigned header_regs = 0;
2957 struct brw_reg output_handles = get_tcs_output_urb_handle();
2958
2959 fs_reg srcs[7];
2960 srcs[header_regs++] = output_handles;
2961
2962 if (indirect_offset.file != BAD_FILE) {
2963 srcs[header_regs++] = indirect_offset;
2964 }
2965
2966 if (mask == 0)
2967 break;
2968
2969 unsigned num_components = util_last_bit(mask);
2970 enum opcode opcode;
2971
2972 /* We can only pack two 64-bit components in a single message, so send
2973 * 2 messages if we have more components
2974 */
2975 unsigned num_iterations = 1;
2976 unsigned iter_components = num_components;
2977 unsigned first_component = nir_intrinsic_component(instr);
2978 if (is_64bit) {
2979 first_component = first_component / 2;
2980 if (instr->num_components > 2) {
2981 num_iterations = 2;
2982 iter_components = 2;
2983 }
2984 }
2985
2986 mask = mask << first_component;
2987
2988 for (unsigned iter = 0; iter < num_iterations; iter++) {
2989 if (!is_64bit && mask != WRITEMASK_XYZW) {
2990 srcs[header_regs++] = brw_imm_ud(mask << 16);
2991 opcode = indirect_offset.file != BAD_FILE ?
2992 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2993 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2994 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2995 /* Expand the 64-bit mask to 32-bit channels. We only handle
2996 * two channels in each iteration, so we only care about X/Y.
2997 */
2998 unsigned mask32 = 0;
2999 if (mask & WRITEMASK_X)
3000 mask32 |= WRITEMASK_XY;
3001 if (mask & WRITEMASK_Y)
3002 mask32 |= WRITEMASK_ZW;
3003
3004 /* If the mask does not include any of the channels X or Y there
3005 * is nothing to do in this iteration. Move on to the next couple
3006 * of 64-bit channels.
3007 */
3008 if (!mask32) {
3009 mask >>= 2;
3010 imm_offset++;
3011 continue;
3012 }
3013
3014 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
3015 opcode = indirect_offset.file != BAD_FILE ?
3016 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
3017 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
3018 } else {
3019 opcode = indirect_offset.file != BAD_FILE ?
3020 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
3021 SHADER_OPCODE_URB_WRITE_SIMD8;
3022 }
3023
3024 for (unsigned i = 0; i < iter_components; i++) {
3025 if (!(mask & (1 << (i + first_component))))
3026 continue;
3027
3028 if (!is_64bit) {
3029 srcs[header_regs + i + first_component] = offset(value, bld, i);
3030 } else {
3031 /* We need to shuffle the 64-bit data to match the layout
3032 * expected by our 32-bit URB write messages. We use a temporary
3033 * for that.
3034 */
3035 unsigned channel = iter * 2 + i;
3036 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
3037
3038 srcs[header_regs + (i + first_component) * 2] = dest;
3039 srcs[header_regs + (i + first_component) * 2 + 1] =
3040 offset(dest, bld, 1);
3041 }
3042 }
3043
3044 unsigned mlen =
3045 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
3046 (is_64bit ? 2 * first_component : first_component);
3047 fs_reg payload =
3048 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
3049 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
3050
3051 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
3052 inst->offset = imm_offset;
3053 inst->mlen = mlen;
3054
3055 /* If this is a 64-bit attribute, select the next two 64-bit channels
3056 * to be handled in the next iteration.
3057 */
3058 if (is_64bit) {
3059 mask >>= 2;
3060 imm_offset++;
3061 }
3062 }
3063 break;
3064 }
3065
3066 default:
3067 nir_emit_intrinsic(bld, instr);
3068 break;
3069 }
3070 }
3071
3072 void
3073 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
3074 nir_intrinsic_instr *instr)
3075 {
3076 assert(stage == MESA_SHADER_TESS_EVAL);
3077 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
3078
3079 fs_reg dest;
3080 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3081 dest = get_nir_dest(instr->dest);
3082
3083 switch (instr->intrinsic) {
3084 case nir_intrinsic_load_primitive_id:
3085 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
3086 break;
3087 case nir_intrinsic_load_tess_coord:
3088 /* gl_TessCoord is part of the payload in g1-3 */
3089 for (unsigned i = 0; i < 3; i++) {
3090 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
3091 }
3092 break;
3093
3094 case nir_intrinsic_load_input:
3095 case nir_intrinsic_load_per_vertex_input: {
3096 fs_reg indirect_offset = get_indirect_offset(instr);
3097 unsigned imm_offset = instr->const_index[0];
3098 unsigned first_component = nir_intrinsic_component(instr);
3099
3100 if (type_sz(dest.type) == 8) {
3101 first_component = first_component / 2;
3102 }
3103
3104 fs_inst *inst;
3105 if (indirect_offset.file == BAD_FILE) {
3106 /* Arbitrarily only push up to 32 vec4 slots worth of data,
3107 * which is 16 registers (since each holds 2 vec4 slots).
3108 */
3109 unsigned slot_count = 1;
3110 if (type_sz(dest.type) == 8 && instr->num_components > 2)
3111 slot_count++;
3112
3113 const unsigned max_push_slots = 32;
3114 if (imm_offset + slot_count <= max_push_slots) {
3115 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
3116 for (int i = 0; i < instr->num_components; i++) {
3117 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
3118 i + first_component;
3119 bld.MOV(offset(dest, bld, i), component(src, comp));
3120 }
3121
3122 tes_prog_data->base.urb_read_length =
3123 MAX2(tes_prog_data->base.urb_read_length,
3124 DIV_ROUND_UP(imm_offset + slot_count, 2));
3125 } else {
3126 /* Replicate the patch handle to all enabled channels */
3127 const fs_reg srcs[] = {
3128 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
3129 };
3130 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
3131 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
3132
3133 if (first_component != 0) {
3134 unsigned read_components =
3135 instr->num_components + first_component;
3136 fs_reg tmp = bld.vgrf(dest.type, read_components);
3137 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
3138 patch_handle);
3139 inst->size_written = read_components * REG_SIZE;
3140 for (unsigned i = 0; i < instr->num_components; i++) {
3141 bld.MOV(offset(dest, bld, i),
3142 offset(tmp, bld, i + first_component));
3143 }
3144 } else {
3145 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
3146 patch_handle);
3147 inst->size_written = instr->num_components * REG_SIZE;
3148 }
3149 inst->mlen = 1;
3150 inst->offset = imm_offset;
3151 }
3152 } else {
3153 /* Indirect indexing - use per-slot offsets as well. */
3154
3155 /* We can only read two double components with each URB read, so
3156 * we send two read messages in that case, each one loading up to
3157 * two double components.
3158 */
3159 unsigned num_iterations = 1;
3160 unsigned num_components = instr->num_components;
3161 fs_reg orig_dest = dest;
3162 if (type_sz(dest.type) == 8) {
3163 if (instr->num_components > 2) {
3164 num_iterations = 2;
3165 num_components = 2;
3166 }
3167 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
3168 dest = tmp;
3169 }
3170
3171 for (unsigned iter = 0; iter < num_iterations; iter++) {
3172 const fs_reg srcs[] = {
3173 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
3174 indirect_offset
3175 };
3176 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3177 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
3178
3179 if (first_component != 0) {
3180 unsigned read_components =
3181 num_components + first_component;
3182 fs_reg tmp = bld.vgrf(dest.type, read_components);
3183 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
3184 payload);
3185 for (unsigned i = 0; i < num_components; i++) {
3186 bld.MOV(offset(dest, bld, i),
3187 offset(tmp, bld, i + first_component));
3188 }
3189 } else {
3190 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
3191 payload);
3192 }
3193 inst->mlen = 2;
3194 inst->offset = imm_offset;
3195 inst->size_written = (num_components + first_component) *
3196 inst->dst.component_size(inst->exec_size);
3197
3198 /* If we are reading 64-bit data using 32-bit read messages we need
3199 * build proper 64-bit data elements by shuffling the low and high
3200 * 32-bit components around like we do for other things like UBOs
3201 * or SSBOs.
3202 */
3203 if (type_sz(dest.type) == 8) {
3204 shuffle_from_32bit_read(bld,
3205 offset(orig_dest, bld, iter * 2),
3206 retype(dest, BRW_REGISTER_TYPE_D),
3207 0, num_components);
3208 }
3209
3210 /* If we are loading double data and we need a second read message
3211 * adjust the offset
3212 */
3213 if (num_iterations > 1) {
3214 num_components = instr->num_components - 2;
3215 imm_offset++;
3216 }
3217 }
3218 }
3219 break;
3220 }
3221 default:
3222 nir_emit_intrinsic(bld, instr);
3223 break;
3224 }
3225 }
3226
3227 void
3228 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3229 nir_intrinsic_instr *instr)
3230 {
3231 assert(stage == MESA_SHADER_GEOMETRY);
3232 fs_reg indirect_offset;
3233
3234 fs_reg dest;
3235 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3236 dest = get_nir_dest(instr->dest);
3237
3238 switch (instr->intrinsic) {
3239 case nir_intrinsic_load_primitive_id:
3240 assert(stage == MESA_SHADER_GEOMETRY);
3241 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3242 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3243 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3244 break;
3245
3246 case nir_intrinsic_load_input:
3247 unreachable("load_input intrinsics are invalid for the GS stage");
3248
3249 case nir_intrinsic_load_per_vertex_input:
3250 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3251 instr->src[1], instr->num_components,
3252 nir_intrinsic_component(instr));
3253 break;
3254
3255 case nir_intrinsic_emit_vertex_with_counter:
3256 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3257 break;
3258
3259 case nir_intrinsic_end_primitive_with_counter:
3260 emit_gs_end_primitive(instr->src[0]);
3261 break;
3262
3263 case nir_intrinsic_set_vertex_count:
3264 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3265 break;
3266
3267 case nir_intrinsic_load_invocation_id: {
3268 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3269 assert(val.file != BAD_FILE);
3270 dest.type = val.type;
3271 bld.MOV(dest, val);
3272 break;
3273 }
3274
3275 default:
3276 nir_emit_intrinsic(bld, instr);
3277 break;
3278 }
3279 }
3280
3281 /**
3282 * Fetch the current render target layer index.
3283 */
3284 static fs_reg
3285 fetch_render_target_array_index(const fs_builder &bld)
3286 {
3287 if (bld.shader->devinfo->gen >= 6) {
3288 /* The render target array index is provided in the thread payload as
3289 * bits 26:16 of r0.0.
3290 */
3291 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3292 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3293 brw_imm_uw(0x7ff));
3294 return idx;
3295 } else {
3296 /* Pre-SNB we only ever render into the first layer of the framebuffer
3297 * since layered rendering is not implemented.
3298 */
3299 return brw_imm_ud(0);
3300 }
3301 }
3302
3303 /**
3304 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3305 * framebuffer at the current fragment coordinates and sample index.
3306 */
3307 fs_inst *
3308 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3309 unsigned target)
3310 {
3311 const struct gen_device_info *devinfo = bld.shader->devinfo;
3312
3313 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3314 const brw_wm_prog_key *wm_key =
3315 reinterpret_cast<const brw_wm_prog_key *>(key);
3316 assert(!wm_key->coherent_fb_fetch);
3317 const struct brw_wm_prog_data *wm_prog_data =
3318 brw_wm_prog_data(stage_prog_data);
3319
3320 /* Calculate the surface index relative to the start of the texture binding
3321 * table block, since that's what the texturing messages expect.
3322 */
3323 const unsigned surface = target +
3324 wm_prog_data->binding_table.render_target_read_start -
3325 wm_prog_data->base.binding_table.texture_start;
3326
3327 /* Calculate the fragment coordinates. */
3328 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3329 bld.MOV(offset(coords, bld, 0), pixel_x);
3330 bld.MOV(offset(coords, bld, 1), pixel_y);
3331 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3332
3333 /* Calculate the sample index and MCS payload when multisampling. Luckily
3334 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3335 * shouldn't be necessary to recompile based on whether the framebuffer is
3336 * CMS or UMS.
3337 */
3338 if (wm_key->multisample_fbo &&
3339 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3340 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3341
3342 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3343 const fs_reg mcs = wm_key->multisample_fbo ?
3344 emit_mcs_fetch(coords, 3, brw_imm_ud(surface), fs_reg()) : fs_reg();
3345
3346 /* Use either a normal or a CMS texel fetch message depending on whether
3347 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3348 * message just in case the framebuffer uses 16x multisampling, it should
3349 * be equivalent to the normal CMS fetch for lower multisampling modes.
3350 */
3351 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3352 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3353 SHADER_OPCODE_TXF_CMS_LOGICAL;
3354
3355 /* Emit the instruction. */
3356 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3357 srcs[TEX_LOGICAL_SRC_COORDINATE] = coords;
3358 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0);
3359 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample;
3360 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
3361 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3362 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
3363 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
3364 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0);
3365
3366 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3367 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3368
3369 return inst;
3370 }
3371
3372 /**
3373 * Actual coherent framebuffer read implemented using the native render target
3374 * read message. Requires SKL+.
3375 */
3376 static fs_inst *
3377 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3378 {
3379 assert(bld.shader->devinfo->gen >= 9);
3380 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3381 inst->target = target;
3382 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3383
3384 return inst;
3385 }
3386
3387 static fs_reg
3388 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3389 {
3390 if (n && regs[0].file != BAD_FILE) {
3391 return regs[0];
3392
3393 } else {
3394 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3395
3396 for (unsigned i = 0; i < n; i++)
3397 regs[i] = tmp;
3398
3399 return tmp;
3400 }
3401 }
3402
3403 static fs_reg
3404 alloc_frag_output(fs_visitor *v, unsigned location)
3405 {
3406 assert(v->stage == MESA_SHADER_FRAGMENT);
3407 const brw_wm_prog_key *const key =
3408 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3409 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3410 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3411
3412 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3413 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3414
3415 else if (l == FRAG_RESULT_COLOR)
3416 return alloc_temporary(v->bld, 4, v->outputs,
3417 MAX2(key->nr_color_regions, 1));
3418
3419 else if (l == FRAG_RESULT_DEPTH)
3420 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3421
3422 else if (l == FRAG_RESULT_STENCIL)
3423 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3424
3425 else if (l == FRAG_RESULT_SAMPLE_MASK)
3426 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3427
3428 else if (l >= FRAG_RESULT_DATA0 &&
3429 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3430 return alloc_temporary(v->bld, 4,
3431 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3432
3433 else
3434 unreachable("Invalid location");
3435 }
3436
3437 /* Annoyingly, we get the barycentrics into the shader in a layout that's
3438 * optimized for PLN but it doesn't work nearly as well as one would like for
3439 * manual interpolation.
3440 */
3441 static void
3442 shuffle_from_pln_layout(const fs_builder &bld, fs_reg dest, fs_reg pln_data)
3443 {
3444 dest.type = BRW_REGISTER_TYPE_F;
3445 pln_data.type = BRW_REGISTER_TYPE_F;
3446 const fs_reg dest_u = offset(dest, bld, 0);
3447 const fs_reg dest_v = offset(dest, bld, 1);
3448
3449 for (unsigned g = 0; g < bld.dispatch_width() / 8; g++) {
3450 const fs_builder gbld = bld.group(8, g);
3451 gbld.MOV(horiz_offset(dest_u, g * 8),
3452 byte_offset(pln_data, (g * 2 + 0) * REG_SIZE));
3453 gbld.MOV(horiz_offset(dest_v, g * 8),
3454 byte_offset(pln_data, (g * 2 + 1) * REG_SIZE));
3455 }
3456 }
3457
3458 static void
3459 shuffle_to_pln_layout(const fs_builder &bld, fs_reg pln_data, fs_reg src)
3460 {
3461 pln_data.type = BRW_REGISTER_TYPE_F;
3462 src.type = BRW_REGISTER_TYPE_F;
3463 const fs_reg src_u = offset(src, bld, 0);
3464 const fs_reg src_v = offset(src, bld, 1);
3465
3466 for (unsigned g = 0; g < bld.dispatch_width() / 8; g++) {
3467 const fs_builder gbld = bld.group(8, g);
3468 gbld.MOV(byte_offset(pln_data, (g * 2 + 0) * REG_SIZE),
3469 horiz_offset(src_u, g * 8));
3470 gbld.MOV(byte_offset(pln_data, (g * 2 + 1) * REG_SIZE),
3471 horiz_offset(src_v, g * 8));
3472 }
3473 }
3474
3475 void
3476 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3477 nir_intrinsic_instr *instr)
3478 {
3479 assert(stage == MESA_SHADER_FRAGMENT);
3480
3481 fs_reg dest;
3482 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3483 dest = get_nir_dest(instr->dest);
3484
3485 switch (instr->intrinsic) {
3486 case nir_intrinsic_load_front_face:
3487 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3488 *emit_frontfacing_interpolation());
3489 break;
3490
3491 case nir_intrinsic_load_sample_pos: {
3492 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3493 assert(sample_pos.file != BAD_FILE);
3494 dest.type = sample_pos.type;
3495 bld.MOV(dest, sample_pos);
3496 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3497 break;
3498 }
3499
3500 case nir_intrinsic_load_layer_id:
3501 dest.type = BRW_REGISTER_TYPE_UD;
3502 bld.MOV(dest, fetch_render_target_array_index(bld));
3503 break;
3504
3505 case nir_intrinsic_is_helper_invocation: {
3506 /* Unlike the regular gl_HelperInvocation, that is defined at dispatch,
3507 * the helperInvocationEXT() (aka SpvOpIsHelperInvocationEXT) takes into
3508 * consideration demoted invocations. That information is stored in
3509 * f0.1.
3510 */
3511 dest.type = BRW_REGISTER_TYPE_UD;
3512
3513 bld.MOV(dest, brw_imm_ud(0));
3514
3515 fs_inst *mov = bld.MOV(dest, brw_imm_ud(~0));
3516 mov->predicate = BRW_PREDICATE_NORMAL;
3517 mov->predicate_inverse = true;
3518 mov->flag_subreg = 1;
3519 break;
3520 }
3521
3522 case nir_intrinsic_load_helper_invocation:
3523 case nir_intrinsic_load_sample_mask_in:
3524 case nir_intrinsic_load_sample_id: {
3525 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3526 fs_reg val = nir_system_values[sv];
3527 assert(val.file != BAD_FILE);
3528 dest.type = val.type;
3529 bld.MOV(dest, val);
3530 break;
3531 }
3532
3533 case nir_intrinsic_store_output: {
3534 const fs_reg src = get_nir_src(instr->src[0]);
3535 const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3536 const unsigned location = nir_intrinsic_base(instr) +
3537 SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3538 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3539 src.type);
3540
3541 for (unsigned j = 0; j < instr->num_components; j++)
3542 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3543 offset(src, bld, j));
3544
3545 break;
3546 }
3547
3548 case nir_intrinsic_load_output: {
3549 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3550 BRW_NIR_FRAG_OUTPUT_LOCATION);
3551 assert(l >= FRAG_RESULT_DATA0);
3552 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3553 const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3554 const fs_reg tmp = bld.vgrf(dest.type, 4);
3555
3556 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3557 emit_coherent_fb_read(bld, tmp, target);
3558 else
3559 emit_non_coherent_fb_read(bld, tmp, target);
3560
3561 for (unsigned j = 0; j < instr->num_components; j++) {
3562 bld.MOV(offset(dest, bld, j),
3563 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3564 }
3565
3566 break;
3567 }
3568
3569 case nir_intrinsic_demote:
3570 case nir_intrinsic_discard:
3571 case nir_intrinsic_demote_if:
3572 case nir_intrinsic_discard_if: {
3573 /* We track our discarded pixels in f0.1. By predicating on it, we can
3574 * update just the flag bits that aren't yet discarded. If there's no
3575 * condition, we emit a CMP of g0 != g0, so all currently executing
3576 * channels will get turned off.
3577 */
3578 fs_inst *cmp = NULL;
3579 if (instr->intrinsic == nir_intrinsic_demote_if ||
3580 instr->intrinsic == nir_intrinsic_discard_if) {
3581 nir_alu_instr *alu = nir_src_as_alu_instr(instr->src[0]);
3582
3583 if (alu != NULL &&
3584 alu->op != nir_op_bcsel &&
3585 alu->op != nir_op_inot) {
3586 /* Re-emit the instruction that generated the Boolean value, but
3587 * do not store it. Since this instruction will be conditional,
3588 * other instructions that want to use the real Boolean value may
3589 * get garbage. This was a problem for piglit's fs-discard-exit-2
3590 * test.
3591 *
3592 * Ideally we'd detect that the instruction cannot have a
3593 * conditional modifier before emitting the instructions. Alas,
3594 * that is nigh impossible. Instead, we're going to assume the
3595 * instruction (or last instruction) generated can have a
3596 * conditional modifier. If it cannot, fallback to the old-style
3597 * compare, and hope dead code elimination will clean up the
3598 * extra instructions generated.
3599 */
3600 nir_emit_alu(bld, alu, false);
3601
3602 cmp = (fs_inst *) instructions.get_tail();
3603 if (cmp->conditional_mod == BRW_CONDITIONAL_NONE) {
3604 if (cmp->can_do_cmod())
3605 cmp->conditional_mod = BRW_CONDITIONAL_Z;
3606 else
3607 cmp = NULL;
3608 } else {
3609 /* The old sequence that would have been generated is,
3610 * basically, bool_result == false. This is equivalent to
3611 * !bool_result, so negate the old modifier.
3612 */
3613 cmp->conditional_mod = brw_negate_cmod(cmp->conditional_mod);
3614 }
3615 }
3616
3617 if (cmp == NULL) {
3618 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3619 brw_imm_d(0), BRW_CONDITIONAL_Z);
3620 }
3621 } else {
3622 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3623 BRW_REGISTER_TYPE_UW));
3624 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3625 }
3626
3627 cmp->predicate = BRW_PREDICATE_NORMAL;
3628 cmp->flag_subreg = 1;
3629
3630 if (devinfo->gen >= 6) {
3631 /* Due to the way we implement discard, the jump will only happen
3632 * when the whole quad is discarded. So we can do this even for
3633 * demote as it won't break its uniformity promises.
3634 */
3635 emit_discard_jump();
3636 }
3637
3638 limit_dispatch_width(16, "Fragment discard/demote not implemented in SIMD32 mode.");
3639 break;
3640 }
3641
3642 case nir_intrinsic_load_input: {
3643 /* load_input is only used for flat inputs */
3644 unsigned base = nir_intrinsic_base(instr);
3645 unsigned comp = nir_intrinsic_component(instr);
3646 unsigned num_components = instr->num_components;
3647 fs_reg orig_dest = dest;
3648 enum brw_reg_type type = dest.type;
3649
3650 /* Special case fields in the VUE header */
3651 if (base == VARYING_SLOT_LAYER)
3652 comp = 1;
3653 else if (base == VARYING_SLOT_VIEWPORT)
3654 comp = 2;
3655
3656 if (nir_dest_bit_size(instr->dest) == 64) {
3657 /* const_index is in 32-bit type size units that could not be aligned
3658 * with DF. We need to read the double vector as if it was a float
3659 * vector of twice the number of components to fetch the right data.
3660 */
3661 type = BRW_REGISTER_TYPE_F;
3662 num_components *= 2;
3663 dest = bld.vgrf(type, num_components);
3664 }
3665
3666 for (unsigned int i = 0; i < num_components; i++) {
3667 bld.MOV(offset(retype(dest, type), bld, i),
3668 retype(component(interp_reg(base, comp + i), 3), type));
3669 }
3670
3671 if (nir_dest_bit_size(instr->dest) == 64) {
3672 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3673 instr->num_components);
3674 }
3675 break;
3676 }
3677
3678 case nir_intrinsic_load_fs_input_interp_deltas: {
3679 assert(stage == MESA_SHADER_FRAGMENT);
3680 assert(nir_src_as_uint(instr->src[0]) == 0);
3681 fs_reg interp = interp_reg(nir_intrinsic_base(instr),
3682 nir_intrinsic_component(instr));
3683 dest.type = BRW_REGISTER_TYPE_F;
3684 bld.MOV(offset(dest, bld, 0), component(interp, 3));
3685 bld.MOV(offset(dest, bld, 1), component(interp, 1));
3686 bld.MOV(offset(dest, bld, 2), component(interp, 0));
3687 break;
3688 }
3689
3690 case nir_intrinsic_load_barycentric_pixel:
3691 case nir_intrinsic_load_barycentric_centroid:
3692 case nir_intrinsic_load_barycentric_sample: {
3693 /* Use the delta_xy values computed from the payload */
3694 const glsl_interp_mode interp_mode =
3695 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3696 enum brw_barycentric_mode bary =
3697 brw_barycentric_mode(interp_mode, instr->intrinsic);
3698
3699 shuffle_from_pln_layout(bld, dest, this->delta_xy[bary]);
3700 break;
3701 }
3702
3703 case nir_intrinsic_load_barycentric_at_sample: {
3704 const glsl_interp_mode interpolation =
3705 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3706
3707 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
3708 if (nir_src_is_const(instr->src[0])) {
3709 unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3710
3711 emit_pixel_interpolater_send(bld,
3712 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3713 tmp,
3714 fs_reg(), /* src */
3715 brw_imm_ud(msg_data),
3716 interpolation);
3717 } else {
3718 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3719 BRW_REGISTER_TYPE_UD);
3720
3721 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3722 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3723 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3724 bld.exec_all().group(1, 0)
3725 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3726 emit_pixel_interpolater_send(bld,
3727 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3728 tmp,
3729 fs_reg(), /* src */
3730 msg_data,
3731 interpolation);
3732 } else {
3733 /* Make a loop that sends a message to the pixel interpolater
3734 * for the sample number in each live channel. If there are
3735 * multiple channels with the same sample number then these
3736 * will be handled simultaneously with a single interation of
3737 * the loop.
3738 */
3739 bld.emit(BRW_OPCODE_DO);
3740
3741 /* Get the next live sample number into sample_id_reg */
3742 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3743
3744 /* Set the flag register so that we can perform the send
3745 * message on all channels that have the same sample number
3746 */
3747 bld.CMP(bld.null_reg_ud(),
3748 sample_src, sample_id,
3749 BRW_CONDITIONAL_EQ);
3750 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3751 bld.exec_all().group(1, 0)
3752 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3753 fs_inst *inst =
3754 emit_pixel_interpolater_send(bld,
3755 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3756 tmp,
3757 fs_reg(), /* src */
3758 component(msg_data, 0),
3759 interpolation);
3760 set_predicate(BRW_PREDICATE_NORMAL, inst);
3761
3762 /* Continue the loop if there are any live channels left */
3763 set_predicate_inv(BRW_PREDICATE_NORMAL,
3764 true, /* inverse */
3765 bld.emit(BRW_OPCODE_WHILE));
3766 }
3767 }
3768 shuffle_from_pln_layout(bld, dest, tmp);
3769 break;
3770 }
3771
3772 case nir_intrinsic_load_barycentric_at_offset: {
3773 const glsl_interp_mode interpolation =
3774 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3775
3776 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3777
3778 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
3779 if (const_offset) {
3780 assert(nir_src_bit_size(instr->src[0]) == 32);
3781 unsigned off_x = MIN2((int)(const_offset[0].f32 * 16), 7) & 0xf;
3782 unsigned off_y = MIN2((int)(const_offset[1].f32 * 16), 7) & 0xf;
3783
3784 emit_pixel_interpolater_send(bld,
3785 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3786 tmp,
3787 fs_reg(), /* src */
3788 brw_imm_ud(off_x | (off_y << 4)),
3789 interpolation);
3790 } else {
3791 fs_reg src = vgrf(glsl_type::ivec2_type);
3792 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3793 BRW_REGISTER_TYPE_F);
3794 for (int i = 0; i < 2; i++) {
3795 fs_reg temp = vgrf(glsl_type::float_type);
3796 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3797 fs_reg itemp = vgrf(glsl_type::int_type);
3798 /* float to int */
3799 bld.MOV(itemp, temp);
3800
3801 /* Clamp the upper end of the range to +7/16.
3802 * ARB_gpu_shader5 requires that we support a maximum offset
3803 * of +0.5, which isn't representable in a S0.4 value -- if
3804 * we didn't clamp it, we'd end up with -8/16, which is the
3805 * opposite of what the shader author wanted.
3806 *
3807 * This is legal due to ARB_gpu_shader5's quantization
3808 * rules:
3809 *
3810 * "Not all values of <offset> may be supported; x and y
3811 * offsets may be rounded to fixed-point values with the
3812 * number of fraction bits given by the
3813 * implementation-dependent constant
3814 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3815 */
3816 set_condmod(BRW_CONDITIONAL_L,
3817 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3818 }
3819
3820 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3821 emit_pixel_interpolater_send(bld,
3822 opcode,
3823 tmp,
3824 src,
3825 brw_imm_ud(0u),
3826 interpolation);
3827 }
3828 shuffle_from_pln_layout(bld, dest, tmp);
3829 break;
3830 }
3831
3832 case nir_intrinsic_load_frag_coord:
3833 emit_fragcoord_interpolation(dest);
3834 break;
3835
3836 case nir_intrinsic_load_interpolated_input: {
3837 assert(instr->src[0].ssa &&
3838 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3839 nir_intrinsic_instr *bary_intrinsic =
3840 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3841 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3842 enum glsl_interp_mode interp_mode =
3843 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3844 fs_reg dst_xy;
3845
3846 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3847 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3848 /* Use the result of the PI message. Because the load_barycentric
3849 * intrinsics return a regular vec2 and we need it in PLN layout, we
3850 * have to do a translation. Fortunately, copy-prop cleans this up
3851 * reliably.
3852 */
3853 dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
3854 shuffle_to_pln_layout(bld, dst_xy, get_nir_src(instr->src[0]));
3855 } else {
3856 /* Use the delta_xy values computed from the payload */
3857 enum brw_barycentric_mode bary =
3858 brw_barycentric_mode(interp_mode, bary_intrin);
3859
3860 dst_xy = this->delta_xy[bary];
3861 }
3862
3863 for (unsigned int i = 0; i < instr->num_components; i++) {
3864 fs_reg interp =
3865 interp_reg(nir_intrinsic_base(instr),
3866 nir_intrinsic_component(instr) + i);
3867 interp.type = BRW_REGISTER_TYPE_F;
3868 dest.type = BRW_REGISTER_TYPE_F;
3869
3870 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3871 fs_reg tmp = vgrf(glsl_type::float_type);
3872 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3873 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3874 } else {
3875 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3876 }
3877 }
3878 break;
3879 }
3880
3881 default:
3882 nir_emit_intrinsic(bld, instr);
3883 break;
3884 }
3885 }
3886
3887 static int
3888 get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
3889 {
3890 if (nir_src_is_const(instr->src[src])) {
3891 int64_t add_val = nir_src_as_int(instr->src[src]);
3892 if (add_val == 1)
3893 return BRW_AOP_INC;
3894 else if (add_val == -1)
3895 return BRW_AOP_DEC;
3896 }
3897
3898 return BRW_AOP_ADD;
3899 }
3900
3901 void
3902 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3903 nir_intrinsic_instr *instr)
3904 {
3905 assert(stage == MESA_SHADER_COMPUTE);
3906 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3907
3908 fs_reg dest;
3909 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3910 dest = get_nir_dest(instr->dest);
3911
3912 switch (instr->intrinsic) {
3913 case nir_intrinsic_barrier:
3914 emit_barrier();
3915 cs_prog_data->uses_barrier = true;
3916 break;
3917
3918 case nir_intrinsic_load_subgroup_id:
3919 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3920 break;
3921
3922 case nir_intrinsic_load_local_invocation_id:
3923 case nir_intrinsic_load_work_group_id: {
3924 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3925 fs_reg val = nir_system_values[sv];
3926 assert(val.file != BAD_FILE);
3927 dest.type = val.type;
3928 for (unsigned i = 0; i < 3; i++)
3929 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3930 break;
3931 }
3932
3933 case nir_intrinsic_load_num_work_groups: {
3934 const unsigned surface =
3935 cs_prog_data->binding_table.work_groups_start;
3936
3937 cs_prog_data->uses_num_work_groups = true;
3938
3939 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3940 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3941 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3942 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1); /* num components */
3943
3944 /* Read the 3 GLuint components of gl_NumWorkGroups */
3945 for (unsigned i = 0; i < 3; i++) {
3946 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(i << 2);
3947 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3948 offset(dest, bld, i), srcs, SURFACE_LOGICAL_NUM_SRCS);
3949 }
3950 break;
3951 }
3952
3953 case nir_intrinsic_shared_atomic_add:
3954 nir_emit_shared_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
3955 break;
3956 case nir_intrinsic_shared_atomic_imin:
3957 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3958 break;
3959 case nir_intrinsic_shared_atomic_umin:
3960 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3961 break;
3962 case nir_intrinsic_shared_atomic_imax:
3963 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3964 break;
3965 case nir_intrinsic_shared_atomic_umax:
3966 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3967 break;
3968 case nir_intrinsic_shared_atomic_and:
3969 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3970 break;
3971 case nir_intrinsic_shared_atomic_or:
3972 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3973 break;
3974 case nir_intrinsic_shared_atomic_xor:
3975 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3976 break;
3977 case nir_intrinsic_shared_atomic_exchange:
3978 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3979 break;
3980 case nir_intrinsic_shared_atomic_comp_swap:
3981 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3982 break;
3983 case nir_intrinsic_shared_atomic_fmin:
3984 nir_emit_shared_atomic_float(bld, BRW_AOP_FMIN, instr);
3985 break;
3986 case nir_intrinsic_shared_atomic_fmax:
3987 nir_emit_shared_atomic_float(bld, BRW_AOP_FMAX, instr);
3988 break;
3989 case nir_intrinsic_shared_atomic_fcomp_swap:
3990 nir_emit_shared_atomic_float(bld, BRW_AOP_FCMPWR, instr);
3991 break;
3992
3993 case nir_intrinsic_load_shared: {
3994 assert(devinfo->gen >= 7);
3995 assert(stage == MESA_SHADER_COMPUTE);
3996
3997 const unsigned bit_size = nir_dest_bit_size(instr->dest);
3998 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3999 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
4000 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
4001 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4002
4003 /* Make dest unsigned because that's what the temporary will be */
4004 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4005
4006 /* Read the vector */
4007 if (nir_intrinsic_align(instr) >= 4) {
4008 assert(nir_dest_bit_size(instr->dest) == 32);
4009 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4010 fs_inst *inst =
4011 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4012 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4013 inst->size_written = instr->num_components * dispatch_width * 4;
4014 } else {
4015 assert(nir_dest_bit_size(instr->dest) <= 32);
4016 assert(nir_dest_num_components(instr->dest) == 1);
4017 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4018
4019 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4020 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4021 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4022 bld.MOV(dest, subscript(read_result, dest.type, 0));
4023 }
4024 break;
4025 }
4026
4027 case nir_intrinsic_store_shared: {
4028 assert(devinfo->gen >= 7);
4029 assert(stage == MESA_SHADER_COMPUTE);
4030
4031 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4032 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4033 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
4034 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4035 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4036
4037 fs_reg data = get_nir_src(instr->src[0]);
4038 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4039
4040 assert(nir_intrinsic_write_mask(instr) ==
4041 (1u << instr->num_components) - 1);
4042 if (nir_intrinsic_align(instr) >= 4) {
4043 assert(nir_src_bit_size(instr->src[0]) == 32);
4044 assert(nir_src_num_components(instr->src[0]) <= 4);
4045 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4046 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4047 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4048 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4049 } else {
4050 assert(nir_src_bit_size(instr->src[0]) <= 32);
4051 assert(nir_src_num_components(instr->src[0]) == 1);
4052 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4053
4054 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4055 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4056
4057 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4058 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4059 }
4060 break;
4061 }
4062
4063 default:
4064 nir_emit_intrinsic(bld, instr);
4065 break;
4066 }
4067 }
4068
4069 static fs_reg
4070 brw_nir_reduction_op_identity(const fs_builder &bld,
4071 nir_op op, brw_reg_type type)
4072 {
4073 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
4074 switch (type_sz(type)) {
4075 case 2:
4076 assert(type != BRW_REGISTER_TYPE_HF);
4077 return retype(brw_imm_uw(value.u16), type);
4078 case 4:
4079 return retype(brw_imm_ud(value.u32), type);
4080 case 8:
4081 if (type == BRW_REGISTER_TYPE_DF)
4082 return setup_imm_df(bld, value.f64);
4083 else
4084 return retype(brw_imm_u64(value.u64), type);
4085 default:
4086 unreachable("Invalid type size");
4087 }
4088 }
4089
4090 static opcode
4091 brw_op_for_nir_reduction_op(nir_op op)
4092 {
4093 switch (op) {
4094 case nir_op_iadd: return BRW_OPCODE_ADD;
4095 case nir_op_fadd: return BRW_OPCODE_ADD;
4096 case nir_op_imul: return BRW_OPCODE_MUL;
4097 case nir_op_fmul: return BRW_OPCODE_MUL;
4098 case nir_op_imin: return BRW_OPCODE_SEL;
4099 case nir_op_umin: return BRW_OPCODE_SEL;
4100 case nir_op_fmin: return BRW_OPCODE_SEL;
4101 case nir_op_imax: return BRW_OPCODE_SEL;
4102 case nir_op_umax: return BRW_OPCODE_SEL;
4103 case nir_op_fmax: return BRW_OPCODE_SEL;
4104 case nir_op_iand: return BRW_OPCODE_AND;
4105 case nir_op_ior: return BRW_OPCODE_OR;
4106 case nir_op_ixor: return BRW_OPCODE_XOR;
4107 default:
4108 unreachable("Invalid reduction operation");
4109 }
4110 }
4111
4112 static brw_conditional_mod
4113 brw_cond_mod_for_nir_reduction_op(nir_op op)
4114 {
4115 switch (op) {
4116 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
4117 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
4118 case nir_op_imul: return BRW_CONDITIONAL_NONE;
4119 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
4120 case nir_op_imin: return BRW_CONDITIONAL_L;
4121 case nir_op_umin: return BRW_CONDITIONAL_L;
4122 case nir_op_fmin: return BRW_CONDITIONAL_L;
4123 case nir_op_imax: return BRW_CONDITIONAL_GE;
4124 case nir_op_umax: return BRW_CONDITIONAL_GE;
4125 case nir_op_fmax: return BRW_CONDITIONAL_GE;
4126 case nir_op_iand: return BRW_CONDITIONAL_NONE;
4127 case nir_op_ior: return BRW_CONDITIONAL_NONE;
4128 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
4129 default:
4130 unreachable("Invalid reduction operation");
4131 }
4132 }
4133
4134 fs_reg
4135 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
4136 nir_intrinsic_instr *instr)
4137 {
4138 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
4139
4140 if (stage_prog_data->binding_table.image_start > 0) {
4141 if (image.file == BRW_IMMEDIATE_VALUE) {
4142 image.d += stage_prog_data->binding_table.image_start;
4143 } else {
4144 bld.ADD(image, image,
4145 brw_imm_d(stage_prog_data->binding_table.image_start));
4146 }
4147 }
4148
4149 return bld.emit_uniformize(image);
4150 }
4151
4152 fs_reg
4153 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
4154 nir_intrinsic_instr *instr)
4155 {
4156 /* SSBO stores are weird in that their index is in src[1] */
4157 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
4158
4159 fs_reg surf_index;
4160 if (nir_src_is_const(instr->src[src])) {
4161 unsigned index = stage_prog_data->binding_table.ssbo_start +
4162 nir_src_as_uint(instr->src[src]);
4163 surf_index = brw_imm_ud(index);
4164 } else {
4165 surf_index = vgrf(glsl_type::uint_type);
4166 bld.ADD(surf_index, get_nir_src(instr->src[src]),
4167 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4168 }
4169
4170 return bld.emit_uniformize(surf_index);
4171 }
4172
4173 static unsigned
4174 image_intrinsic_coord_components(nir_intrinsic_instr *instr)
4175 {
4176 switch (nir_intrinsic_image_dim(instr)) {
4177 case GLSL_SAMPLER_DIM_1D:
4178 return 1 + nir_intrinsic_image_array(instr);
4179 case GLSL_SAMPLER_DIM_2D:
4180 case GLSL_SAMPLER_DIM_RECT:
4181 return 2 + nir_intrinsic_image_array(instr);
4182 case GLSL_SAMPLER_DIM_3D:
4183 case GLSL_SAMPLER_DIM_CUBE:
4184 return 3;
4185 case GLSL_SAMPLER_DIM_BUF:
4186 return 1;
4187 case GLSL_SAMPLER_DIM_MS:
4188 return 2 + nir_intrinsic_image_array(instr);
4189 default:
4190 unreachable("Invalid image dimension");
4191 }
4192 }
4193
4194 void
4195 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
4196 {
4197 fs_reg dest;
4198 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4199 dest = get_nir_dest(instr->dest);
4200
4201 switch (instr->intrinsic) {
4202 case nir_intrinsic_image_load:
4203 case nir_intrinsic_image_store:
4204 case nir_intrinsic_image_atomic_add:
4205 case nir_intrinsic_image_atomic_min:
4206 case nir_intrinsic_image_atomic_max:
4207 case nir_intrinsic_image_atomic_and:
4208 case nir_intrinsic_image_atomic_or:
4209 case nir_intrinsic_image_atomic_xor:
4210 case nir_intrinsic_image_atomic_exchange:
4211 case nir_intrinsic_image_atomic_comp_swap:
4212 case nir_intrinsic_bindless_image_load:
4213 case nir_intrinsic_bindless_image_store:
4214 case nir_intrinsic_bindless_image_atomic_add:
4215 case nir_intrinsic_bindless_image_atomic_min:
4216 case nir_intrinsic_bindless_image_atomic_max:
4217 case nir_intrinsic_bindless_image_atomic_and:
4218 case nir_intrinsic_bindless_image_atomic_or:
4219 case nir_intrinsic_bindless_image_atomic_xor:
4220 case nir_intrinsic_bindless_image_atomic_exchange:
4221 case nir_intrinsic_bindless_image_atomic_comp_swap: {
4222 if (stage == MESA_SHADER_FRAGMENT &&
4223 instr->intrinsic != nir_intrinsic_image_load)
4224 brw_wm_prog_data(prog_data)->has_side_effects = true;
4225
4226 /* Get some metadata from the image intrinsic. */
4227 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
4228 const GLenum format = nir_intrinsic_format(instr);
4229
4230 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4231
4232 switch (instr->intrinsic) {
4233 case nir_intrinsic_image_load:
4234 case nir_intrinsic_image_store:
4235 case nir_intrinsic_image_atomic_add:
4236 case nir_intrinsic_image_atomic_min:
4237 case nir_intrinsic_image_atomic_max:
4238 case nir_intrinsic_image_atomic_and:
4239 case nir_intrinsic_image_atomic_or:
4240 case nir_intrinsic_image_atomic_xor:
4241 case nir_intrinsic_image_atomic_exchange:
4242 case nir_intrinsic_image_atomic_comp_swap:
4243 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4244 get_nir_image_intrinsic_image(bld, instr);
4245 break;
4246
4247 default:
4248 /* Bindless */
4249 srcs[SURFACE_LOGICAL_SRC_SURFACE_HANDLE] =
4250 bld.emit_uniformize(get_nir_src(instr->src[0]));
4251 break;
4252 }
4253
4254 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4255 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
4256 brw_imm_ud(image_intrinsic_coord_components(instr));
4257
4258 /* Emit an image load, store or atomic op. */
4259 if (instr->intrinsic == nir_intrinsic_image_load ||
4260 instr->intrinsic == nir_intrinsic_bindless_image_load) {
4261 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4262 fs_inst *inst =
4263 bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
4264 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4265 inst->size_written = instr->num_components * dispatch_width * 4;
4266 } else if (instr->intrinsic == nir_intrinsic_image_store ||
4267 instr->intrinsic == nir_intrinsic_bindless_image_store) {
4268 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4269 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
4270 bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
4271 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4272 } else {
4273 int op;
4274 unsigned num_srcs = info->num_srcs;
4275
4276 switch (instr->intrinsic) {
4277 case nir_intrinsic_image_atomic_add:
4278 case nir_intrinsic_bindless_image_atomic_add:
4279 assert(num_srcs == 4);
4280
4281 op = get_op_for_atomic_add(instr, 3);
4282
4283 if (op != BRW_AOP_ADD)
4284 num_srcs = 3;
4285 break;
4286 case nir_intrinsic_image_atomic_min:
4287 case nir_intrinsic_bindless_image_atomic_min:
4288 assert(format == GL_R32UI || format == GL_R32I);
4289 op = (format == GL_R32I) ? BRW_AOP_IMIN : BRW_AOP_UMIN;
4290 break;
4291 case nir_intrinsic_image_atomic_max:
4292 case nir_intrinsic_bindless_image_atomic_max:
4293 assert(format == GL_R32UI || format == GL_R32I);
4294 op = (format == GL_R32I) ? BRW_AOP_IMAX : BRW_AOP_UMAX;
4295 break;
4296 case nir_intrinsic_image_atomic_and:
4297 case nir_intrinsic_bindless_image_atomic_and:
4298 op = BRW_AOP_AND;
4299 break;
4300 case nir_intrinsic_image_atomic_or:
4301 case nir_intrinsic_bindless_image_atomic_or:
4302 op = BRW_AOP_OR;
4303 break;
4304 case nir_intrinsic_image_atomic_xor:
4305 case nir_intrinsic_bindless_image_atomic_xor:
4306 op = BRW_AOP_XOR;
4307 break;
4308 case nir_intrinsic_image_atomic_exchange:
4309 case nir_intrinsic_bindless_image_atomic_exchange:
4310 op = BRW_AOP_MOV;
4311 break;
4312 case nir_intrinsic_image_atomic_comp_swap:
4313 case nir_intrinsic_bindless_image_atomic_comp_swap:
4314 op = BRW_AOP_CMPWR;
4315 break;
4316 default:
4317 unreachable("Not reachable.");
4318 }
4319
4320 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4321
4322 fs_reg data;
4323 if (num_srcs >= 4)
4324 data = get_nir_src(instr->src[3]);
4325 if (num_srcs >= 5) {
4326 fs_reg tmp = bld.vgrf(data.type, 2);
4327 fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
4328 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4329 data = tmp;
4330 }
4331 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4332
4333 bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
4334 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4335 }
4336 break;
4337 }
4338
4339 case nir_intrinsic_image_size:
4340 case nir_intrinsic_bindless_image_size: {
4341 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
4342 * into will handle the binding table index for us in the geneerator.
4343 * Incidentally, this means that we can handle bindless with exactly the
4344 * same code.
4345 */
4346 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
4347 BRW_REGISTER_TYPE_UD);
4348 image = bld.emit_uniformize(image);
4349
4350 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4351 if (instr->intrinsic == nir_intrinsic_image_size)
4352 srcs[TEX_LOGICAL_SRC_SURFACE] = image;
4353 else
4354 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = image;
4355 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
4356 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
4357 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
4358
4359 /* Since the image size is always uniform, we can just emit a SIMD8
4360 * query instruction and splat the result out.
4361 */
4362 const fs_builder ubld = bld.exec_all().group(8, 0);
4363
4364 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4365 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
4366 tmp, srcs, ARRAY_SIZE(srcs));
4367 inst->size_written = 4 * REG_SIZE;
4368
4369 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
4370 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
4371 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
4372 offset(retype(dest, tmp.type), bld, c),
4373 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
4374 } else {
4375 bld.MOV(offset(retype(dest, tmp.type), bld, c),
4376 component(offset(tmp, ubld, c), 0));
4377 }
4378 }
4379 break;
4380 }
4381
4382 case nir_intrinsic_image_load_raw_intel: {
4383 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4384 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4385 get_nir_image_intrinsic_image(bld, instr);
4386 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4387 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4388 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4389
4390 fs_inst *inst =
4391 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4392 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4393 inst->size_written = instr->num_components * dispatch_width * 4;
4394 break;
4395 }
4396
4397 case nir_intrinsic_image_store_raw_intel: {
4398 if (stage == MESA_SHADER_FRAGMENT)
4399 brw_wm_prog_data(prog_data)->has_side_effects = true;
4400
4401 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4402 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4403 get_nir_image_intrinsic_image(bld, instr);
4404 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4405 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
4406 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4407 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4408
4409 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4410 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4411 break;
4412 }
4413
4414 case nir_intrinsic_group_memory_barrier:
4415 case nir_intrinsic_memory_barrier_shared:
4416 case nir_intrinsic_memory_barrier_atomic_counter:
4417 case nir_intrinsic_memory_barrier_buffer:
4418 case nir_intrinsic_memory_barrier_image:
4419 case nir_intrinsic_memory_barrier: {
4420 bool l3_fence, slm_fence;
4421 if (devinfo->gen >= 11) {
4422 l3_fence = instr->intrinsic != nir_intrinsic_memory_barrier_shared;
4423 slm_fence = instr->intrinsic == nir_intrinsic_group_memory_barrier ||
4424 instr->intrinsic == nir_intrinsic_memory_barrier ||
4425 instr->intrinsic == nir_intrinsic_memory_barrier_shared;
4426 } else {
4427 /* Prior to gen11, we only have one kind of fence. */
4428 l3_fence = true;
4429 slm_fence = false;
4430 }
4431
4432 /* Be conservative in Gen11+ and always stall in a fence. Since there
4433 * are two different fences, and shader might want to synchronize
4434 * between them.
4435 *
4436 * TODO: Improve NIR so that scope and visibility information for the
4437 * barriers is available here to make a better decision.
4438 *
4439 * TODO: When emitting more than one fence, it might help emit all
4440 * the fences first and then generate the stall moves.
4441 */
4442 const bool stall = devinfo->gen >= 11;
4443
4444 const fs_builder ubld = bld.group(8, 0);
4445 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4446
4447 if (l3_fence) {
4448 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
4449 brw_vec8_grf(0, 0), brw_imm_ud(stall),
4450 /* bti */ brw_imm_ud(0))
4451 ->size_written = 2 * REG_SIZE;
4452 }
4453
4454 if (slm_fence) {
4455 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
4456 brw_vec8_grf(0, 0), brw_imm_ud(stall),
4457 brw_imm_ud(GEN7_BTI_SLM))
4458 ->size_written = 2 * REG_SIZE;
4459 }
4460
4461 break;
4462 }
4463
4464 case nir_intrinsic_shader_clock: {
4465 /* We cannot do anything if there is an event, so ignore it for now */
4466 const fs_reg shader_clock = get_timestamp(bld);
4467 const fs_reg srcs[] = { component(shader_clock, 0),
4468 component(shader_clock, 1) };
4469 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
4470 break;
4471 }
4472
4473 case nir_intrinsic_image_samples:
4474 /* The driver does not support multi-sampled images. */
4475 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4476 break;
4477
4478 case nir_intrinsic_load_uniform: {
4479 /* Offsets are in bytes but they should always aligned to
4480 * the type size
4481 */
4482 assert(instr->const_index[0] % 4 == 0 ||
4483 instr->const_index[0] % type_sz(dest.type) == 0);
4484
4485 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4486
4487 if (nir_src_is_const(instr->src[0])) {
4488 unsigned load_offset = nir_src_as_uint(instr->src[0]);
4489 assert(load_offset % type_sz(dest.type) == 0);
4490 /* For 16-bit types we add the module of the const_index[0]
4491 * offset to access to not 32-bit aligned element
4492 */
4493 src.offset = load_offset + instr->const_index[0] % 4;
4494
4495 for (unsigned j = 0; j < instr->num_components; j++) {
4496 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4497 }
4498 } else {
4499 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4500 BRW_REGISTER_TYPE_UD);
4501
4502 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4503 * go past the end of the uniform. In order to keep the n'th
4504 * component from running past, we subtract off the size of all but
4505 * one component of the vector.
4506 */
4507 assert(instr->const_index[1] >=
4508 instr->num_components * (int) type_sz(dest.type));
4509 unsigned read_size = instr->const_index[1] -
4510 (instr->num_components - 1) * type_sz(dest.type);
4511
4512 bool supports_64bit_indirects =
4513 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4514
4515 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4516 for (unsigned j = 0; j < instr->num_components; j++) {
4517 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4518 offset(dest, bld, j), offset(src, bld, j),
4519 indirect, brw_imm_ud(read_size));
4520 }
4521 } else {
4522 const unsigned num_mov_indirects =
4523 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4524 /* We read a little bit less per MOV INDIRECT, as they are now
4525 * 32-bits ones instead of 64-bit. Fix read_size then.
4526 */
4527 const unsigned read_size_32bit = read_size -
4528 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4529 for (unsigned j = 0; j < instr->num_components; j++) {
4530 for (unsigned i = 0; i < num_mov_indirects; i++) {
4531 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4532 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4533 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4534 indirect, brw_imm_ud(read_size_32bit));
4535 }
4536 }
4537 }
4538 }
4539 break;
4540 }
4541
4542 case nir_intrinsic_load_ubo: {
4543 fs_reg surf_index;
4544 if (nir_src_is_const(instr->src[0])) {
4545 const unsigned index = stage_prog_data->binding_table.ubo_start +
4546 nir_src_as_uint(instr->src[0]);
4547 surf_index = brw_imm_ud(index);
4548 } else {
4549 /* The block index is not a constant. Evaluate the index expression
4550 * per-channel and add the base UBO index; we have to select a value
4551 * from any live channel.
4552 */
4553 surf_index = vgrf(glsl_type::uint_type);
4554 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4555 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4556 surf_index = bld.emit_uniformize(surf_index);
4557 }
4558
4559 if (!nir_src_is_const(instr->src[1])) {
4560 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4561 BRW_REGISTER_TYPE_UD);
4562
4563 for (int i = 0; i < instr->num_components; i++)
4564 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4565 base_offset, i * type_sz(dest.type));
4566 } else {
4567 /* Even if we are loading doubles, a pull constant load will load
4568 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4569 * need to load a full dvec4 we will have to emit 2 loads. This is
4570 * similar to demote_pull_constants(), except that in that case we
4571 * see individual accesses to each component of the vector and then
4572 * we let CSE deal with duplicate loads. Here we see a vector access
4573 * and we have to split it if necessary.
4574 */
4575 const unsigned type_size = type_sz(dest.type);
4576 const unsigned load_offset = nir_src_as_uint(instr->src[1]);
4577
4578 /* See if we've selected this as a push constant candidate */
4579 if (nir_src_is_const(instr->src[0])) {
4580 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
4581 const unsigned offset_256b = load_offset / 32;
4582
4583 fs_reg push_reg;
4584 for (int i = 0; i < 4; i++) {
4585 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4586 if (range->block == ubo_block &&
4587 offset_256b >= range->start &&
4588 offset_256b < range->start + range->length) {
4589
4590 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4591 push_reg.offset = load_offset - 32 * range->start;
4592 break;
4593 }
4594 }
4595
4596 if (push_reg.file != BAD_FILE) {
4597 for (unsigned i = 0; i < instr->num_components; i++) {
4598 bld.MOV(offset(dest, bld, i),
4599 byte_offset(push_reg, i * type_size));
4600 }
4601 break;
4602 }
4603 }
4604
4605 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4606 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4607 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4608
4609 for (unsigned c = 0; c < instr->num_components;) {
4610 const unsigned base = load_offset + c * type_size;
4611 /* Number of usable components in the next block-aligned load. */
4612 const unsigned count = MIN2(instr->num_components - c,
4613 (block_sz - base % block_sz) / type_size);
4614
4615 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4616 packed_consts, surf_index,
4617 brw_imm_ud(base & ~(block_sz - 1)));
4618
4619 const fs_reg consts =
4620 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4621 dest.type);
4622
4623 for (unsigned d = 0; d < count; d++)
4624 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4625
4626 c += count;
4627 }
4628 }
4629 break;
4630 }
4631
4632 case nir_intrinsic_load_global: {
4633 assert(devinfo->gen >= 8);
4634
4635 if (nir_intrinsic_align(instr) >= 4) {
4636 assert(nir_dest_bit_size(instr->dest) == 32);
4637 fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
4638 dest,
4639 get_nir_src(instr->src[0]), /* Address */
4640 fs_reg(), /* No source data */
4641 brw_imm_ud(instr->num_components));
4642 inst->size_written = instr->num_components *
4643 inst->dst.component_size(inst->exec_size);
4644 } else {
4645 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4646 assert(bit_size <= 32);
4647 assert(nir_dest_num_components(instr->dest) == 1);
4648 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4649 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
4650 tmp,
4651 get_nir_src(instr->src[0]), /* Address */
4652 fs_reg(), /* No source data */
4653 brw_imm_ud(bit_size));
4654 bld.MOV(dest, subscript(tmp, dest.type, 0));
4655 }
4656 break;
4657 }
4658
4659 case nir_intrinsic_store_global:
4660 assert(devinfo->gen >= 8);
4661
4662 if (stage == MESA_SHADER_FRAGMENT)
4663 brw_wm_prog_data(prog_data)->has_side_effects = true;
4664
4665 if (nir_intrinsic_align(instr) >= 4) {
4666 assert(nir_src_bit_size(instr->src[0]) == 32);
4667 bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4668 fs_reg(),
4669 get_nir_src(instr->src[1]), /* Address */
4670 get_nir_src(instr->src[0]), /* Data */
4671 brw_imm_ud(instr->num_components));
4672 } else {
4673 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4674 assert(bit_size <= 32);
4675 assert(nir_src_num_components(instr->src[0]) == 1);
4676 brw_reg_type data_type =
4677 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4678 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4679 bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4680 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4681 fs_reg(),
4682 get_nir_src(instr->src[1]), /* Address */
4683 tmp, /* Data */
4684 brw_imm_ud(nir_src_bit_size(instr->src[0])));
4685 }
4686 break;
4687
4688 case nir_intrinsic_global_atomic_add:
4689 nir_emit_global_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
4690 break;
4691 case nir_intrinsic_global_atomic_imin:
4692 nir_emit_global_atomic(bld, BRW_AOP_IMIN, instr);
4693 break;
4694 case nir_intrinsic_global_atomic_umin:
4695 nir_emit_global_atomic(bld, BRW_AOP_UMIN, instr);
4696 break;
4697 case nir_intrinsic_global_atomic_imax:
4698 nir_emit_global_atomic(bld, BRW_AOP_IMAX, instr);
4699 break;
4700 case nir_intrinsic_global_atomic_umax:
4701 nir_emit_global_atomic(bld, BRW_AOP_UMAX, instr);
4702 break;
4703 case nir_intrinsic_global_atomic_and:
4704 nir_emit_global_atomic(bld, BRW_AOP_AND, instr);
4705 break;
4706 case nir_intrinsic_global_atomic_or:
4707 nir_emit_global_atomic(bld, BRW_AOP_OR, instr);
4708 break;
4709 case nir_intrinsic_global_atomic_xor:
4710 nir_emit_global_atomic(bld, BRW_AOP_XOR, instr);
4711 break;
4712 case nir_intrinsic_global_atomic_exchange:
4713 nir_emit_global_atomic(bld, BRW_AOP_MOV, instr);
4714 break;
4715 case nir_intrinsic_global_atomic_comp_swap:
4716 nir_emit_global_atomic(bld, BRW_AOP_CMPWR, instr);
4717 break;
4718 case nir_intrinsic_global_atomic_fmin:
4719 nir_emit_global_atomic_float(bld, BRW_AOP_FMIN, instr);
4720 break;
4721 case nir_intrinsic_global_atomic_fmax:
4722 nir_emit_global_atomic_float(bld, BRW_AOP_FMAX, instr);
4723 break;
4724 case nir_intrinsic_global_atomic_fcomp_swap:
4725 nir_emit_global_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4726 break;
4727
4728 case nir_intrinsic_load_ssbo: {
4729 assert(devinfo->gen >= 7);
4730
4731 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4732 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4733 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4734 get_nir_ssbo_intrinsic_index(bld, instr);
4735 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4736 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4737
4738 /* Make dest unsigned because that's what the temporary will be */
4739 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4740
4741 /* Read the vector */
4742 if (nir_intrinsic_align(instr) >= 4) {
4743 assert(nir_dest_bit_size(instr->dest) == 32);
4744 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4745 fs_inst *inst =
4746 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4747 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4748 inst->size_written = instr->num_components * dispatch_width * 4;
4749 } else {
4750 assert(nir_dest_bit_size(instr->dest) <= 32);
4751 assert(nir_dest_num_components(instr->dest) == 1);
4752 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4753
4754 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4755 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4756 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4757 bld.MOV(dest, subscript(read_result, dest.type, 0));
4758 }
4759 break;
4760 }
4761
4762 case nir_intrinsic_store_ssbo: {
4763 assert(devinfo->gen >= 7);
4764
4765 if (stage == MESA_SHADER_FRAGMENT)
4766 brw_wm_prog_data(prog_data)->has_side_effects = true;
4767
4768 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4769 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4770 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4771 get_nir_ssbo_intrinsic_index(bld, instr);
4772 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4773 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4774
4775 fs_reg data = get_nir_src(instr->src[0]);
4776 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4777
4778 assert(nir_intrinsic_write_mask(instr) ==
4779 (1u << instr->num_components) - 1);
4780 if (nir_intrinsic_align(instr) >= 4) {
4781 assert(nir_src_bit_size(instr->src[0]) == 32);
4782 assert(nir_src_num_components(instr->src[0]) <= 4);
4783 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4784 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4785 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4786 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4787 } else {
4788 assert(nir_src_bit_size(instr->src[0]) <= 32);
4789 assert(nir_src_num_components(instr->src[0]) == 1);
4790 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4791
4792 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4793 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4794
4795 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4796 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4797 }
4798 break;
4799 }
4800
4801 case nir_intrinsic_store_output: {
4802 fs_reg src = get_nir_src(instr->src[0]);
4803
4804 unsigned store_offset = nir_src_as_uint(instr->src[1]);
4805 unsigned num_components = instr->num_components;
4806 unsigned first_component = nir_intrinsic_component(instr);
4807 if (nir_src_bit_size(instr->src[0]) == 64) {
4808 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4809 num_components *= 2;
4810 }
4811
4812 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4813 4 * store_offset), src.type);
4814 for (unsigned j = 0; j < num_components; j++) {
4815 bld.MOV(offset(new_dest, bld, j + first_component),
4816 offset(src, bld, j));
4817 }
4818 break;
4819 }
4820
4821 case nir_intrinsic_ssbo_atomic_add:
4822 nir_emit_ssbo_atomic(bld, get_op_for_atomic_add(instr, 2), instr);
4823 break;
4824 case nir_intrinsic_ssbo_atomic_imin:
4825 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4826 break;
4827 case nir_intrinsic_ssbo_atomic_umin:
4828 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4829 break;
4830 case nir_intrinsic_ssbo_atomic_imax:
4831 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4832 break;
4833 case nir_intrinsic_ssbo_atomic_umax:
4834 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4835 break;
4836 case nir_intrinsic_ssbo_atomic_and:
4837 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4838 break;
4839 case nir_intrinsic_ssbo_atomic_or:
4840 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4841 break;
4842 case nir_intrinsic_ssbo_atomic_xor:
4843 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4844 break;
4845 case nir_intrinsic_ssbo_atomic_exchange:
4846 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4847 break;
4848 case nir_intrinsic_ssbo_atomic_comp_swap:
4849 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4850 break;
4851 case nir_intrinsic_ssbo_atomic_fmin:
4852 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMIN, instr);
4853 break;
4854 case nir_intrinsic_ssbo_atomic_fmax:
4855 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMAX, instr);
4856 break;
4857 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4858 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4859 break;
4860
4861 case nir_intrinsic_get_buffer_size: {
4862 assert(nir_src_num_components(instr->src[0]) == 1);
4863 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
4864 nir_src_as_uint(instr->src[0]) : 0;
4865
4866 /* A resinfo's sampler message is used to get the buffer size. The
4867 * SIMD8's writeback message consists of four registers and SIMD16's
4868 * writeback message consists of 8 destination registers (two per each
4869 * component). Because we are only interested on the first channel of
4870 * the first returned component, where resinfo returns the buffer size
4871 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4872 * the dispatch width.
4873 */
4874 const fs_builder ubld = bld.exec_all().group(8, 0);
4875 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4876 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4877
4878 /* Set LOD = 0 */
4879 ubld.MOV(src_payload, brw_imm_d(0));
4880
4881 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4882 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4883 src_payload, brw_imm_ud(index));
4884 inst->header_size = 0;
4885 inst->mlen = 1;
4886 inst->size_written = 4 * REG_SIZE;
4887
4888 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4889 *
4890 * "Out-of-bounds checking is always performed at a DWord granularity. If
4891 * any part of the DWord is out-of-bounds then the whole DWord is
4892 * considered out-of-bounds."
4893 *
4894 * This implies that types with size smaller than 4-bytes need to be
4895 * padded if they don't complete the last dword of the buffer. But as we
4896 * need to maintain the original size we need to reverse the padding
4897 * calculation to return the correct size to know the number of elements
4898 * of an unsized array. As we stored in the last two bits of the surface
4899 * size the needed padding for the buffer, we calculate here the
4900 * original buffer_size reversing the surface_size calculation:
4901 *
4902 * surface_size = isl_align(buffer_size, 4) +
4903 * (isl_align(buffer_size) - buffer_size)
4904 *
4905 * buffer_size = surface_size & ~3 - surface_size & 3
4906 */
4907
4908 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4909 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4910 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4911
4912 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4913 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4914 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4915
4916 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4917 break;
4918 }
4919
4920 case nir_intrinsic_load_subgroup_size:
4921 /* This should only happen for fragment shaders because every other case
4922 * is lowered in NIR so we can optimize on it.
4923 */
4924 assert(stage == MESA_SHADER_FRAGMENT);
4925 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(dispatch_width));
4926 break;
4927
4928 case nir_intrinsic_load_subgroup_invocation:
4929 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4930 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4931 break;
4932
4933 case nir_intrinsic_load_subgroup_eq_mask:
4934 case nir_intrinsic_load_subgroup_ge_mask:
4935 case nir_intrinsic_load_subgroup_gt_mask:
4936 case nir_intrinsic_load_subgroup_le_mask:
4937 case nir_intrinsic_load_subgroup_lt_mask:
4938 unreachable("not reached");
4939
4940 case nir_intrinsic_vote_any: {
4941 const fs_builder ubld = bld.exec_all().group(1, 0);
4942
4943 /* The any/all predicates do not consider channel enables. To prevent
4944 * dead channels from affecting the result, we initialize the flag with
4945 * with the identity value for the logical operation.
4946 */
4947 if (dispatch_width == 32) {
4948 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4949 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4950 brw_imm_ud(0));
4951 } else {
4952 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4953 }
4954 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4955
4956 /* For some reason, the any/all predicates don't work properly with
4957 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4958 * doesn't read the correct subset of the flag register and you end up
4959 * getting garbage in the second half. Work around this by using a pair
4960 * of 1-wide MOVs and scattering the result.
4961 */
4962 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4963 ubld.MOV(res1, brw_imm_d(0));
4964 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4965 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4966 BRW_PREDICATE_ALIGN1_ANY32H,
4967 ubld.MOV(res1, brw_imm_d(-1)));
4968
4969 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4970 break;
4971 }
4972 case nir_intrinsic_vote_all: {
4973 const fs_builder ubld = bld.exec_all().group(1, 0);
4974
4975 /* The any/all predicates do not consider channel enables. To prevent
4976 * dead channels from affecting the result, we initialize the flag with
4977 * with the identity value for the logical operation.
4978 */
4979 if (dispatch_width == 32) {
4980 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4981 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4982 brw_imm_ud(0xffffffff));
4983 } else {
4984 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4985 }
4986 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4987
4988 /* For some reason, the any/all predicates don't work properly with
4989 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4990 * doesn't read the correct subset of the flag register and you end up
4991 * getting garbage in the second half. Work around this by using a pair
4992 * of 1-wide MOVs and scattering the result.
4993 */
4994 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4995 ubld.MOV(res1, brw_imm_d(0));
4996 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4997 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4998 BRW_PREDICATE_ALIGN1_ALL32H,
4999 ubld.MOV(res1, brw_imm_d(-1)));
5000
5001 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
5002 break;
5003 }
5004 case nir_intrinsic_vote_feq:
5005 case nir_intrinsic_vote_ieq: {
5006 fs_reg value = get_nir_src(instr->src[0]);
5007 if (instr->intrinsic == nir_intrinsic_vote_feq) {
5008 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
5009 value.type = bit_size == 8 ? BRW_REGISTER_TYPE_B :
5010 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
5011 }
5012
5013 fs_reg uniformized = bld.emit_uniformize(value);
5014 const fs_builder ubld = bld.exec_all().group(1, 0);
5015
5016 /* The any/all predicates do not consider channel enables. To prevent
5017 * dead channels from affecting the result, we initialize the flag with
5018 * with the identity value for the logical operation.
5019 */
5020 if (dispatch_width == 32) {
5021 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
5022 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
5023 brw_imm_ud(0xffffffff));
5024 } else {
5025 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
5026 }
5027 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
5028
5029 /* For some reason, the any/all predicates don't work properly with
5030 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
5031 * doesn't read the correct subset of the flag register and you end up
5032 * getting garbage in the second half. Work around this by using a pair
5033 * of 1-wide MOVs and scattering the result.
5034 */
5035 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
5036 ubld.MOV(res1, brw_imm_d(0));
5037 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
5038 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
5039 BRW_PREDICATE_ALIGN1_ALL32H,
5040 ubld.MOV(res1, brw_imm_d(-1)));
5041
5042 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
5043 break;
5044 }
5045
5046 case nir_intrinsic_ballot: {
5047 const fs_reg value = retype(get_nir_src(instr->src[0]),
5048 BRW_REGISTER_TYPE_UD);
5049 struct brw_reg flag = brw_flag_reg(0, 0);
5050 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
5051 * as f0.0. This is a problem for fragment programs as we currently use
5052 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
5053 * programs yet so this isn't a problem. When we do, something will
5054 * have to change.
5055 */
5056 if (dispatch_width == 32)
5057 flag.type = BRW_REGISTER_TYPE_UD;
5058
5059 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
5060 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
5061
5062 if (instr->dest.ssa.bit_size > 32) {
5063 dest.type = BRW_REGISTER_TYPE_UQ;
5064 } else {
5065 dest.type = BRW_REGISTER_TYPE_UD;
5066 }
5067 bld.MOV(dest, flag);
5068 break;
5069 }
5070
5071 case nir_intrinsic_read_invocation: {
5072 const fs_reg value = get_nir_src(instr->src[0]);
5073 const fs_reg invocation = get_nir_src(instr->src[1]);
5074 fs_reg tmp = bld.vgrf(value.type);
5075
5076 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
5077 bld.emit_uniformize(invocation));
5078
5079 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
5080 break;
5081 }
5082
5083 case nir_intrinsic_read_first_invocation: {
5084 const fs_reg value = get_nir_src(instr->src[0]);
5085 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
5086 break;
5087 }
5088
5089 case nir_intrinsic_shuffle: {
5090 const fs_reg value = get_nir_src(instr->src[0]);
5091 const fs_reg index = get_nir_src(instr->src[1]);
5092
5093 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
5094 break;
5095 }
5096
5097 case nir_intrinsic_first_invocation: {
5098 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
5099 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
5100 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
5101 fs_reg(component(tmp, 0)));
5102 break;
5103 }
5104
5105 case nir_intrinsic_quad_broadcast: {
5106 const fs_reg value = get_nir_src(instr->src[0]);
5107 const unsigned index = nir_src_as_uint(instr->src[1]);
5108
5109 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
5110 value, brw_imm_ud(index), brw_imm_ud(4));
5111 break;
5112 }
5113
5114 case nir_intrinsic_quad_swap_horizontal: {
5115 const fs_reg value = get_nir_src(instr->src[0]);
5116 const fs_reg tmp = bld.vgrf(value.type);
5117 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
5118
5119 const fs_reg src_left = horiz_stride(value, 2);
5120 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
5121 const fs_reg tmp_left = horiz_stride(tmp, 2);
5122 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
5123
5124 ubld.MOV(tmp_left, src_right);
5125 ubld.MOV(tmp_right, src_left);
5126
5127 bld.MOV(retype(dest, value.type), tmp);
5128 break;
5129 }
5130
5131 case nir_intrinsic_quad_swap_vertical: {
5132 const fs_reg value = get_nir_src(instr->src[0]);
5133 if (nir_src_bit_size(instr->src[0]) == 32) {
5134 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
5135 const fs_reg tmp = bld.vgrf(value.type);
5136 const fs_builder ubld = bld.exec_all();
5137 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
5138 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
5139 bld.MOV(retype(dest, value.type), tmp);
5140 } else {
5141 /* For larger data types, we have to either emit dispatch_width many
5142 * MOVs or else fall back to doing indirects.
5143 */
5144 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5145 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5146 brw_imm_w(0x2));
5147 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
5148 }
5149 break;
5150 }
5151
5152 case nir_intrinsic_quad_swap_diagonal: {
5153 const fs_reg value = get_nir_src(instr->src[0]);
5154 if (nir_src_bit_size(instr->src[0]) == 32) {
5155 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
5156 const fs_reg tmp = bld.vgrf(value.type);
5157 const fs_builder ubld = bld.exec_all();
5158 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
5159 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
5160 bld.MOV(retype(dest, value.type), tmp);
5161 } else {
5162 /* For larger data types, we have to either emit dispatch_width many
5163 * MOVs or else fall back to doing indirects.
5164 */
5165 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5166 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5167 brw_imm_w(0x3));
5168 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
5169 }
5170 break;
5171 }
5172
5173 case nir_intrinsic_reduce: {
5174 fs_reg src = get_nir_src(instr->src[0]);
5175 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
5176 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
5177 if (cluster_size == 0 || cluster_size > dispatch_width)
5178 cluster_size = dispatch_width;
5179
5180 /* Figure out the source type */
5181 src.type = brw_type_for_nir_type(devinfo,
5182 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
5183 nir_src_bit_size(instr->src[0])));
5184
5185 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
5186 opcode brw_op = brw_op_for_nir_reduction_op(redop);
5187 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
5188
5189 /* Set up a register for all of our scratching around and initialize it
5190 * to reduction operation's identity value.
5191 */
5192 fs_reg scan = bld.vgrf(src.type);
5193 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
5194
5195 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
5196
5197 dest.type = src.type;
5198 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
5199 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
5200 * the distance between clusters is at least 2 GRFs. In this case,
5201 * we don't need the weird striding of the CLUSTER_BROADCAST
5202 * instruction and can just do regular MOVs.
5203 */
5204 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
5205 const unsigned groups =
5206 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
5207 const unsigned group_size = dispatch_width / groups;
5208 for (unsigned i = 0; i < groups; i++) {
5209 const unsigned cluster = (i * group_size) / cluster_size;
5210 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
5211 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
5212 component(scan, comp));
5213 }
5214 } else {
5215 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
5216 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
5217 }
5218 break;
5219 }
5220
5221 case nir_intrinsic_inclusive_scan:
5222 case nir_intrinsic_exclusive_scan: {
5223 fs_reg src = get_nir_src(instr->src[0]);
5224 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
5225
5226 /* Figure out the source type */
5227 src.type = brw_type_for_nir_type(devinfo,
5228 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
5229 nir_src_bit_size(instr->src[0])));
5230
5231 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
5232 opcode brw_op = brw_op_for_nir_reduction_op(redop);
5233 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
5234
5235 /* Set up a register for all of our scratching around and initialize it
5236 * to reduction operation's identity value.
5237 */
5238 fs_reg scan = bld.vgrf(src.type);
5239 const fs_builder allbld = bld.exec_all();
5240 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
5241
5242 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
5243 /* Exclusive scan is a bit harder because we have to do an annoying
5244 * shift of the contents before we can begin. To make things worse,
5245 * we can't do this with a normal stride; we have to use indirects.
5246 */
5247 fs_reg shifted = bld.vgrf(src.type);
5248 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5249 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5250 brw_imm_w(-1));
5251 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
5252 allbld.group(1, 0).MOV(component(shifted, 0), identity);
5253 scan = shifted;
5254 }
5255
5256 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
5257
5258 bld.MOV(retype(dest, src.type), scan);
5259 break;
5260 }
5261
5262 case nir_intrinsic_begin_invocation_interlock: {
5263 const fs_builder ubld = bld.group(8, 0);
5264 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5265
5266 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp, brw_vec8_grf(0, 0))
5267 ->size_written = 2 * REG_SIZE;
5268 break;
5269 }
5270
5271 case nir_intrinsic_end_invocation_interlock: {
5272 /* For endInvocationInterlock(), we need to insert a memory fence which
5273 * stalls in the shader until the memory transactions prior to that
5274 * fence are complete. This ensures that the shader does not end before
5275 * any writes from its critical section have landed. Otherwise, you can
5276 * end up with a case where the next invocation on that pixel properly
5277 * stalls for previous FS invocation on its pixel to complete but
5278 * doesn't actually wait for the dataport memory transactions from that
5279 * thread to land before submitting its own.
5280 */
5281 const fs_builder ubld = bld.group(8, 0);
5282 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5283 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
5284 brw_vec8_grf(0, 0), brw_imm_ud(1), brw_imm_ud(0))
5285 ->size_written = 2 * REG_SIZE;
5286 break;
5287 }
5288
5289 default:
5290 unreachable("unknown intrinsic");
5291 }
5292 }
5293
5294 void
5295 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
5296 int op, nir_intrinsic_instr *instr)
5297 {
5298 if (stage == MESA_SHADER_FRAGMENT)
5299 brw_wm_prog_data(prog_data)->has_side_effects = true;
5300
5301 /* The BTI untyped atomic messages only support 32-bit atomics. If you
5302 * just look at the big table of messages in the Vol 7 of the SKL PRM, they
5303 * appear to exist. However, if you look at Vol 2a, there are no message
5304 * descriptors provided for Qword atomic ops except for A64 messages.
5305 */
5306 assert(nir_dest_bit_size(instr->dest) == 32);
5307
5308 fs_reg dest;
5309 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5310 dest = get_nir_dest(instr->dest);
5311
5312 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5313 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5314 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5315 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5316 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5317
5318 fs_reg data;
5319 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5320 data = get_nir_src(instr->src[2]);
5321
5322 if (op == BRW_AOP_CMPWR) {
5323 fs_reg tmp = bld.vgrf(data.type, 2);
5324 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5325 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5326 data = tmp;
5327 }
5328 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5329
5330 /* Emit the actual atomic operation */
5331
5332 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5333 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5334 }
5335
5336 void
5337 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
5338 int op, nir_intrinsic_instr *instr)
5339 {
5340 if (stage == MESA_SHADER_FRAGMENT)
5341 brw_wm_prog_data(prog_data)->has_side_effects = true;
5342
5343 fs_reg dest;
5344 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5345 dest = get_nir_dest(instr->dest);
5346
5347 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5348 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5349 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5350 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5351 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5352
5353 fs_reg data = get_nir_src(instr->src[2]);
5354 if (op == BRW_AOP_FCMPWR) {
5355 fs_reg tmp = bld.vgrf(data.type, 2);
5356 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5357 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5358 data = tmp;
5359 }
5360 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5361
5362 /* Emit the actual atomic operation */
5363
5364 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5365 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5366 }
5367
5368 void
5369 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
5370 int op, nir_intrinsic_instr *instr)
5371 {
5372 fs_reg dest;
5373 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5374 dest = get_nir_dest(instr->dest);
5375
5376 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5377 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5378 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5379 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5380
5381 fs_reg data;
5382 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5383 data = get_nir_src(instr->src[1]);
5384 if (op == BRW_AOP_CMPWR) {
5385 fs_reg tmp = bld.vgrf(data.type, 2);
5386 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5387 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5388 data = tmp;
5389 }
5390 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5391
5392 /* Get the offset */
5393 if (nir_src_is_const(instr->src[0])) {
5394 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5395 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5396 } else {
5397 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5398 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5399 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5400 brw_imm_ud(instr->const_index[0]));
5401 }
5402
5403 /* Emit the actual atomic operation operation */
5404
5405 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5406 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5407 }
5408
5409 void
5410 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
5411 int op, nir_intrinsic_instr *instr)
5412 {
5413 fs_reg dest;
5414 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5415 dest = get_nir_dest(instr->dest);
5416
5417 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5418 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5419 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5420 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5421
5422 fs_reg data = get_nir_src(instr->src[1]);
5423 if (op == BRW_AOP_FCMPWR) {
5424 fs_reg tmp = bld.vgrf(data.type, 2);
5425 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5426 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5427 data = tmp;
5428 }
5429 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5430
5431 /* Get the offset */
5432 if (nir_src_is_const(instr->src[0])) {
5433 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5434 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5435 } else {
5436 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5437 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5438 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5439 brw_imm_ud(instr->const_index[0]));
5440 }
5441
5442 /* Emit the actual atomic operation operation */
5443
5444 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5445 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5446 }
5447
5448 void
5449 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
5450 int op, nir_intrinsic_instr *instr)
5451 {
5452 if (stage == MESA_SHADER_FRAGMENT)
5453 brw_wm_prog_data(prog_data)->has_side_effects = true;
5454
5455 fs_reg dest;
5456 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5457 dest = get_nir_dest(instr->dest);
5458
5459 fs_reg addr = get_nir_src(instr->src[0]);
5460
5461 fs_reg data;
5462 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5463 data = get_nir_src(instr->src[1]);
5464
5465 if (op == BRW_AOP_CMPWR) {
5466 fs_reg tmp = bld.vgrf(data.type, 2);
5467 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5468 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5469 data = tmp;
5470 }
5471
5472 if (nir_dest_bit_size(instr->dest) == 64) {
5473 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL,
5474 dest, addr, data, brw_imm_ud(op));
5475 } else {
5476 assert(nir_dest_bit_size(instr->dest) == 32);
5477 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5478 dest, addr, data, brw_imm_ud(op));
5479 }
5480 }
5481
5482 void
5483 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
5484 int op, nir_intrinsic_instr *instr)
5485 {
5486 if (stage == MESA_SHADER_FRAGMENT)
5487 brw_wm_prog_data(prog_data)->has_side_effects = true;
5488
5489 assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
5490 fs_reg dest = get_nir_dest(instr->dest);
5491
5492 fs_reg addr = get_nir_src(instr->src[0]);
5493
5494 assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
5495 fs_reg data = get_nir_src(instr->src[1]);
5496
5497 if (op == BRW_AOP_FCMPWR) {
5498 fs_reg tmp = bld.vgrf(data.type, 2);
5499 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5500 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5501 data = tmp;
5502 }
5503
5504 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5505 dest, addr, data, brw_imm_ud(op));
5506 }
5507
5508 void
5509 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
5510 {
5511 unsigned texture = instr->texture_index;
5512 unsigned sampler = instr->sampler_index;
5513
5514 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
5515
5516 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
5517 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
5518
5519 int lod_components = 0;
5520
5521 /* The hardware requires a LOD for buffer textures */
5522 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
5523 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
5524
5525 uint32_t header_bits = 0;
5526 for (unsigned i = 0; i < instr->num_srcs; i++) {
5527 fs_reg src = get_nir_src(instr->src[i].src);
5528 switch (instr->src[i].src_type) {
5529 case nir_tex_src_bias:
5530 srcs[TEX_LOGICAL_SRC_LOD] =
5531 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5532 break;
5533 case nir_tex_src_comparator:
5534 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
5535 break;
5536 case nir_tex_src_coord:
5537 switch (instr->op) {
5538 case nir_texop_txf:
5539 case nir_texop_txf_ms:
5540 case nir_texop_txf_ms_mcs:
5541 case nir_texop_samples_identical:
5542 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
5543 break;
5544 default:
5545 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
5546 break;
5547 }
5548 break;
5549 case nir_tex_src_ddx:
5550 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5551 lod_components = nir_tex_instr_src_size(instr, i);
5552 break;
5553 case nir_tex_src_ddy:
5554 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5555 break;
5556 case nir_tex_src_lod:
5557 switch (instr->op) {
5558 case nir_texop_txs:
5559 srcs[TEX_LOGICAL_SRC_LOD] =
5560 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5561 break;
5562 case nir_texop_txf:
5563 srcs[TEX_LOGICAL_SRC_LOD] =
5564 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5565 break;
5566 default:
5567 srcs[TEX_LOGICAL_SRC_LOD] =
5568 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5569 break;
5570 }
5571 break;
5572 case nir_tex_src_min_lod:
5573 srcs[TEX_LOGICAL_SRC_MIN_LOD] =
5574 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5575 break;
5576 case nir_tex_src_ms_index:
5577 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5578 break;
5579
5580 case nir_tex_src_offset: {
5581 uint32_t offset_bits = 0;
5582 if (brw_texture_offset(instr, i, &offset_bits)) {
5583 header_bits |= offset_bits;
5584 } else {
5585 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5586 retype(src, BRW_REGISTER_TYPE_D);
5587 }
5588 break;
5589 }
5590
5591 case nir_tex_src_projector:
5592 unreachable("should be lowered");
5593
5594 case nir_tex_src_texture_offset: {
5595 /* Emit code to evaluate the actual indexing expression */
5596 fs_reg tmp = vgrf(glsl_type::uint_type);
5597 bld.ADD(tmp, src, brw_imm_ud(texture));
5598 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5599 break;
5600 }
5601
5602 case nir_tex_src_sampler_offset: {
5603 /* Emit code to evaluate the actual indexing expression */
5604 fs_reg tmp = vgrf(glsl_type::uint_type);
5605 bld.ADD(tmp, src, brw_imm_ud(sampler));
5606 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5607 break;
5608 }
5609
5610 case nir_tex_src_texture_handle:
5611 assert(nir_tex_instr_src_index(instr, nir_tex_src_texture_offset) == -1);
5612 srcs[TEX_LOGICAL_SRC_SURFACE] = fs_reg();
5613 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = bld.emit_uniformize(src);
5614 break;
5615
5616 case nir_tex_src_sampler_handle:
5617 assert(nir_tex_instr_src_index(instr, nir_tex_src_sampler_offset) == -1);
5618 srcs[TEX_LOGICAL_SRC_SAMPLER] = fs_reg();
5619 srcs[TEX_LOGICAL_SRC_SAMPLER_HANDLE] = bld.emit_uniformize(src);
5620 break;
5621
5622 case nir_tex_src_ms_mcs:
5623 assert(instr->op == nir_texop_txf_ms);
5624 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5625 break;
5626
5627 case nir_tex_src_plane: {
5628 const uint32_t plane = nir_src_as_uint(instr->src[i].src);
5629 const uint32_t texture_index =
5630 instr->texture_index +
5631 stage_prog_data->binding_table.plane_start[plane] -
5632 stage_prog_data->binding_table.texture_start;
5633
5634 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5635 break;
5636 }
5637
5638 default:
5639 unreachable("unknown texture source");
5640 }
5641 }
5642
5643 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5644 (instr->op == nir_texop_txf_ms ||
5645 instr->op == nir_texop_samples_identical)) {
5646 if (devinfo->gen >= 7 &&
5647 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5648 srcs[TEX_LOGICAL_SRC_MCS] =
5649 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5650 instr->coord_components,
5651 srcs[TEX_LOGICAL_SRC_SURFACE],
5652 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE]);
5653 } else {
5654 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5655 }
5656 }
5657
5658 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5659 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5660
5661 enum opcode opcode;
5662 switch (instr->op) {
5663 case nir_texop_tex:
5664 opcode = SHADER_OPCODE_TEX_LOGICAL;
5665 break;
5666 case nir_texop_txb:
5667 opcode = FS_OPCODE_TXB_LOGICAL;
5668 break;
5669 case nir_texop_txl:
5670 opcode = SHADER_OPCODE_TXL_LOGICAL;
5671 break;
5672 case nir_texop_txd:
5673 opcode = SHADER_OPCODE_TXD_LOGICAL;
5674 break;
5675 case nir_texop_txf:
5676 opcode = SHADER_OPCODE_TXF_LOGICAL;
5677 break;
5678 case nir_texop_txf_ms:
5679 if ((key_tex->msaa_16 & (1 << sampler)))
5680 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5681 else
5682 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5683 break;
5684 case nir_texop_txf_ms_mcs:
5685 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5686 break;
5687 case nir_texop_query_levels:
5688 case nir_texop_txs:
5689 opcode = SHADER_OPCODE_TXS_LOGICAL;
5690 break;
5691 case nir_texop_lod:
5692 opcode = SHADER_OPCODE_LOD_LOGICAL;
5693 break;
5694 case nir_texop_tg4:
5695 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5696 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5697 else
5698 opcode = SHADER_OPCODE_TG4_LOGICAL;
5699 break;
5700 case nir_texop_texture_samples:
5701 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5702 break;
5703 case nir_texop_samples_identical: {
5704 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5705
5706 /* If mcs is an immediate value, it means there is no MCS. In that case
5707 * just return false.
5708 */
5709 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5710 bld.MOV(dst, brw_imm_ud(0u));
5711 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5712 fs_reg tmp = vgrf(glsl_type::uint_type);
5713 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5714 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5715 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5716 } else {
5717 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5718 BRW_CONDITIONAL_EQ);
5719 }
5720 return;
5721 }
5722 default:
5723 unreachable("unknown texture opcode");
5724 }
5725
5726 if (instr->op == nir_texop_tg4) {
5727 if (instr->component == 1 &&
5728 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5729 /* gather4 sampler is broken for green channel on RG32F --
5730 * we must ask for blue instead.
5731 */
5732 header_bits |= 2 << 16;
5733 } else {
5734 header_bits |= instr->component << 16;
5735 }
5736 }
5737
5738 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5739 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5740 inst->offset = header_bits;
5741
5742 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5743 if (devinfo->gen >= 9 &&
5744 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5745 unsigned write_mask = instr->dest.is_ssa ?
5746 nir_ssa_def_components_read(&instr->dest.ssa):
5747 (1 << dest_size) - 1;
5748 assert(write_mask != 0); /* dead code should have been eliminated */
5749 inst->size_written = util_last_bit(write_mask) *
5750 inst->dst.component_size(inst->exec_size);
5751 } else {
5752 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5753 }
5754
5755 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5756 inst->shadow_compare = true;
5757
5758 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5759 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5760
5761 fs_reg nir_dest[4];
5762 for (unsigned i = 0; i < dest_size; i++)
5763 nir_dest[i] = offset(dst, bld, i);
5764
5765 if (instr->op == nir_texop_query_levels) {
5766 /* # levels is in .w */
5767 nir_dest[0] = offset(dst, bld, 3);
5768 } else if (instr->op == nir_texop_txs &&
5769 dest_size >= 3 && devinfo->gen < 7) {
5770 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5771 fs_reg depth = offset(dst, bld, 2);
5772 nir_dest[2] = vgrf(glsl_type::int_type);
5773 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5774 }
5775
5776 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5777 }
5778
5779 void
5780 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5781 {
5782 switch (instr->type) {
5783 case nir_jump_break:
5784 bld.emit(BRW_OPCODE_BREAK);
5785 break;
5786 case nir_jump_continue:
5787 bld.emit(BRW_OPCODE_CONTINUE);
5788 break;
5789 case nir_jump_return:
5790 default:
5791 unreachable("unknown jump");
5792 }
5793 }
5794
5795 /*
5796 * This helper takes a source register and un/shuffles it into the destination
5797 * register.
5798 *
5799 * If source type size is smaller than destination type size the operation
5800 * needed is a component shuffle. The opposite case would be an unshuffle. If
5801 * source/destination type size is equal a shuffle is done that would be
5802 * equivalent to a simple MOV.
5803 *
5804 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5805 * components .xyz 16-bit vector on SIMD8 would be.
5806 *
5807 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5808 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5809 *
5810 * This helper will return the following 2 32-bit components with the 16-bit
5811 * values shuffled:
5812 *
5813 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5814 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5815 *
5816 * For unshuffle, the example would be the opposite, a 64-bit type source
5817 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5818 * would be:
5819 *
5820 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5821 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5822 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5823 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5824 *
5825 * The returned result would be the following 4 32-bit components unshuffled:
5826 *
5827 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5828 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5829 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5830 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5831 *
5832 * - Source and destination register must not be overlapped.
5833 * - components units are measured in terms of the smaller type between
5834 * source and destination because we are un/shuffling the smaller
5835 * components from/into the bigger ones.
5836 * - first_component parameter allows skipping source components.
5837 */
5838 void
5839 shuffle_src_to_dst(const fs_builder &bld,
5840 const fs_reg &dst,
5841 const fs_reg &src,
5842 uint32_t first_component,
5843 uint32_t components)
5844 {
5845 if (type_sz(src.type) == type_sz(dst.type)) {
5846 assert(!regions_overlap(dst,
5847 type_sz(dst.type) * bld.dispatch_width() * components,
5848 offset(src, bld, first_component),
5849 type_sz(src.type) * bld.dispatch_width() * components));
5850 for (unsigned i = 0; i < components; i++) {
5851 bld.MOV(retype(offset(dst, bld, i), src.type),
5852 offset(src, bld, i + first_component));
5853 }
5854 } else if (type_sz(src.type) < type_sz(dst.type)) {
5855 /* Source is shuffled into destination */
5856 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5857 assert(!regions_overlap(dst,
5858 type_sz(dst.type) * bld.dispatch_width() *
5859 DIV_ROUND_UP(components, size_ratio),
5860 offset(src, bld, first_component),
5861 type_sz(src.type) * bld.dispatch_width() * components));
5862
5863 brw_reg_type shuffle_type =
5864 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5865 BRW_REGISTER_TYPE_D);
5866 for (unsigned i = 0; i < components; i++) {
5867 fs_reg shuffle_component_i =
5868 subscript(offset(dst, bld, i / size_ratio),
5869 shuffle_type, i % size_ratio);
5870 bld.MOV(shuffle_component_i,
5871 retype(offset(src, bld, i + first_component), shuffle_type));
5872 }
5873 } else {
5874 /* Source is unshuffled into destination */
5875 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5876 assert(!regions_overlap(dst,
5877 type_sz(dst.type) * bld.dispatch_width() * components,
5878 offset(src, bld, first_component / size_ratio),
5879 type_sz(src.type) * bld.dispatch_width() *
5880 DIV_ROUND_UP(components + (first_component % size_ratio),
5881 size_ratio)));
5882
5883 brw_reg_type shuffle_type =
5884 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5885 BRW_REGISTER_TYPE_D);
5886 for (unsigned i = 0; i < components; i++) {
5887 fs_reg shuffle_component_i =
5888 subscript(offset(src, bld, (first_component + i) / size_ratio),
5889 shuffle_type, (first_component + i) % size_ratio);
5890 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5891 shuffle_component_i);
5892 }
5893 }
5894 }
5895
5896 void
5897 shuffle_from_32bit_read(const fs_builder &bld,
5898 const fs_reg &dst,
5899 const fs_reg &src,
5900 uint32_t first_component,
5901 uint32_t components)
5902 {
5903 assert(type_sz(src.type) == 4);
5904
5905 /* This function takes components in units of the destination type while
5906 * shuffle_src_to_dst takes components in units of the smallest type
5907 */
5908 if (type_sz(dst.type) > 4) {
5909 assert(type_sz(dst.type) == 8);
5910 first_component *= 2;
5911 components *= 2;
5912 }
5913
5914 shuffle_src_to_dst(bld, dst, src, first_component, components);
5915 }
5916
5917 fs_reg
5918 shuffle_for_32bit_write(const fs_builder &bld,
5919 const fs_reg &src,
5920 uint32_t first_component,
5921 uint32_t components)
5922 {
5923 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5924 DIV_ROUND_UP (components * type_sz(src.type), 4));
5925 /* This function takes components in units of the source type while
5926 * shuffle_src_to_dst takes components in units of the smallest type
5927 */
5928 if (type_sz(src.type) > 4) {
5929 assert(type_sz(src.type) == 8);
5930 first_component *= 2;
5931 components *= 2;
5932 }
5933
5934 shuffle_src_to_dst(bld, dst, src, first_component, components);
5935
5936 return dst;
5937 }
5938
5939 fs_reg
5940 setup_imm_df(const fs_builder &bld, double v)
5941 {
5942 const struct gen_device_info *devinfo = bld.shader->devinfo;
5943 assert(devinfo->gen >= 7);
5944
5945 if (devinfo->gen >= 8)
5946 return brw_imm_df(v);
5947
5948 /* gen7.5 does not support DF immediates straighforward but the DIM
5949 * instruction allows to set the 64-bit immediate value.
5950 */
5951 if (devinfo->is_haswell) {
5952 const fs_builder ubld = bld.exec_all().group(1, 0);
5953 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5954 ubld.DIM(dst, brw_imm_df(v));
5955 return component(dst, 0);
5956 }
5957
5958 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5959 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5960 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5961 *
5962 * Alternatively, we could also produce a normal VGRF (without stride 0)
5963 * by writing to all the channels in the VGRF, however, that would hit the
5964 * gen7 bug where we have to split writes that span more than 1 register
5965 * into instructions with a width of 4 (otherwise the write to the second
5966 * register written runs into an execmask hardware bug) which isn't very
5967 * nice.
5968 */
5969 union {
5970 double d;
5971 struct {
5972 uint32_t i1;
5973 uint32_t i2;
5974 };
5975 } di;
5976
5977 di.d = v;
5978
5979 const fs_builder ubld = bld.exec_all().group(1, 0);
5980 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5981 ubld.MOV(tmp, brw_imm_ud(di.i1));
5982 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5983
5984 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5985 }
5986
5987 fs_reg
5988 setup_imm_b(const fs_builder &bld, int8_t v)
5989 {
5990 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5991 bld.MOV(tmp, brw_imm_w(v));
5992 return tmp;
5993 }
5994
5995 fs_reg
5996 setup_imm_ub(const fs_builder &bld, uint8_t v)
5997 {
5998 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5999 bld.MOV(tmp, brw_imm_uw(v));
6000 return tmp;
6001 }