59d9926606b21b5d3e8eac03186c3546806902df
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "nir_search_helpers.h"
28 #include "util/u_math.h"
29 #include "util/bitscan.h"
30
31 using namespace brw;
32
33 void
34 fs_visitor::emit_nir_code()
35 {
36 /* emit the arrays used for inputs and outputs - load/store intrinsics will
37 * be converted to reads/writes of these arrays
38 */
39 nir_setup_outputs();
40 nir_setup_uniforms();
41 nir_emit_system_values();
42
43 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
44 }
45
46 void
47 fs_visitor::nir_setup_outputs()
48 {
49 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
50 return;
51
52 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
53
54 /* Calculate the size of output registers in a separate pass, before
55 * allocating them. With ARB_enhanced_layouts, multiple output variables
56 * may occupy the same slot, but have different type sizes.
57 */
58 nir_foreach_variable(var, &nir->outputs) {
59 const int loc = var->data.driver_location;
60 const unsigned var_vec4s =
61 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
62 : type_size_vec4(var->type, true);
63 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
64 }
65
66 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
67 if (vec4s[loc] == 0) {
68 loc++;
69 continue;
70 }
71
72 unsigned reg_size = vec4s[loc];
73
74 /* Check if there are any ranges that start within this range and extend
75 * past it. If so, include them in this allocation.
76 */
77 for (unsigned i = 1; i < reg_size; i++)
78 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
79
80 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
81 for (unsigned i = 0; i < reg_size; i++)
82 outputs[loc + i] = offset(reg, bld, 4 * i);
83
84 loc += reg_size;
85 }
86 }
87
88 void
89 fs_visitor::nir_setup_uniforms()
90 {
91 /* Only the first compile gets to set up uniforms. */
92 if (push_constant_loc) {
93 assert(pull_constant_loc);
94 return;
95 }
96
97 uniforms = nir->num_uniforms / 4;
98
99 if (stage == MESA_SHADER_COMPUTE) {
100 /* Add a uniform for the thread local id. It must be the last uniform
101 * on the list.
102 */
103 assert(uniforms == prog_data->nr_params);
104 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
105 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
106 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
107 }
108 }
109
110 static bool
111 emit_system_values_block(nir_block *block, fs_visitor *v)
112 {
113 fs_reg *reg;
114
115 nir_foreach_instr(instr, block) {
116 if (instr->type != nir_instr_type_intrinsic)
117 continue;
118
119 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
120 switch (intrin->intrinsic) {
121 case nir_intrinsic_load_vertex_id:
122 case nir_intrinsic_load_base_vertex:
123 unreachable("should be lowered by nir_lower_system_values().");
124
125 case nir_intrinsic_load_vertex_id_zero_base:
126 case nir_intrinsic_load_is_indexed_draw:
127 case nir_intrinsic_load_first_vertex:
128 case nir_intrinsic_load_instance_id:
129 case nir_intrinsic_load_base_instance:
130 case nir_intrinsic_load_draw_id:
131 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
132
133 case nir_intrinsic_load_invocation_id:
134 if (v->stage == MESA_SHADER_TESS_CTRL)
135 break;
136 assert(v->stage == MESA_SHADER_GEOMETRY);
137 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
138 if (reg->file == BAD_FILE) {
139 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
140 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
141 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
142 abld.SHR(iid, g1, brw_imm_ud(27u));
143 *reg = iid;
144 }
145 break;
146
147 case nir_intrinsic_load_sample_pos:
148 assert(v->stage == MESA_SHADER_FRAGMENT);
149 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
150 if (reg->file == BAD_FILE)
151 *reg = *v->emit_samplepos_setup();
152 break;
153
154 case nir_intrinsic_load_sample_id:
155 assert(v->stage == MESA_SHADER_FRAGMENT);
156 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
157 if (reg->file == BAD_FILE)
158 *reg = *v->emit_sampleid_setup();
159 break;
160
161 case nir_intrinsic_load_sample_mask_in:
162 assert(v->stage == MESA_SHADER_FRAGMENT);
163 assert(v->devinfo->gen >= 7);
164 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
165 if (reg->file == BAD_FILE)
166 *reg = *v->emit_samplemaskin_setup();
167 break;
168
169 case nir_intrinsic_load_work_group_id:
170 assert(v->stage == MESA_SHADER_COMPUTE);
171 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
172 if (reg->file == BAD_FILE)
173 *reg = *v->emit_cs_work_group_id_setup();
174 break;
175
176 case nir_intrinsic_load_helper_invocation:
177 assert(v->stage == MESA_SHADER_FRAGMENT);
178 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
179 if (reg->file == BAD_FILE) {
180 const fs_builder abld =
181 v->bld.annotate("gl_HelperInvocation", NULL);
182
183 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
184 * pixel mask is in g1.7 of the thread payload.
185 *
186 * We move the per-channel pixel enable bit to the low bit of each
187 * channel by shifting the byte containing the pixel mask by the
188 * vector immediate 0x76543210UV.
189 *
190 * The region of <1,8,0> reads only 1 byte (the pixel masks for
191 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
192 * masks for 2 and 3) in SIMD16.
193 */
194 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
195
196 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
197 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
198 hbld.SHR(offset(shifted, hbld, i),
199 stride(retype(brw_vec1_grf(1 + i, 7),
200 BRW_REGISTER_TYPE_UB),
201 1, 8, 0),
202 brw_imm_v(0x76543210));
203 }
204
205 /* A set bit in the pixel mask means the channel is enabled, but
206 * that is the opposite of gl_HelperInvocation so we need to invert
207 * the mask.
208 *
209 * The negate source-modifier bit of logical instructions on Gen8+
210 * performs 1's complement negation, so we can use that instead of
211 * a NOT instruction.
212 */
213 fs_reg inverted = negate(shifted);
214 if (v->devinfo->gen < 8) {
215 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
216 abld.NOT(inverted, shifted);
217 }
218
219 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
220 * with 1 and negating.
221 */
222 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
223 abld.AND(anded, inverted, brw_imm_uw(1));
224
225 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
226 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
227 *reg = dst;
228 }
229 break;
230
231 default:
232 break;
233 }
234 }
235
236 return true;
237 }
238
239 void
240 fs_visitor::nir_emit_system_values()
241 {
242 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
243 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
244 nir_system_values[i] = fs_reg();
245 }
246
247 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
248 * never end up using it.
249 */
250 {
251 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
252 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
253 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
254
255 const fs_builder allbld8 = abld.group(8, 0).exec_all();
256 allbld8.MOV(reg, brw_imm_v(0x76543210));
257 if (dispatch_width > 8)
258 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
259 if (dispatch_width > 16) {
260 const fs_builder allbld16 = abld.group(16, 0).exec_all();
261 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
262 }
263 }
264
265 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
266 nir_foreach_block(block, impl)
267 emit_system_values_block(block, this);
268 }
269
270 /*
271 * Returns a type based on a reference_type (word, float, half-float) and a
272 * given bit_size.
273 *
274 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
275 *
276 * @FIXME: 64-bit return types are always DF on integer types to maintain
277 * compability with uses of DF previously to the introduction of int64
278 * support.
279 */
280 static brw_reg_type
281 brw_reg_type_from_bit_size(const unsigned bit_size,
282 const brw_reg_type reference_type)
283 {
284 switch(reference_type) {
285 case BRW_REGISTER_TYPE_HF:
286 case BRW_REGISTER_TYPE_F:
287 case BRW_REGISTER_TYPE_DF:
288 switch(bit_size) {
289 case 16:
290 return BRW_REGISTER_TYPE_HF;
291 case 32:
292 return BRW_REGISTER_TYPE_F;
293 case 64:
294 return BRW_REGISTER_TYPE_DF;
295 default:
296 unreachable("Invalid bit size");
297 }
298 case BRW_REGISTER_TYPE_B:
299 case BRW_REGISTER_TYPE_W:
300 case BRW_REGISTER_TYPE_D:
301 case BRW_REGISTER_TYPE_Q:
302 switch(bit_size) {
303 case 8:
304 return BRW_REGISTER_TYPE_B;
305 case 16:
306 return BRW_REGISTER_TYPE_W;
307 case 32:
308 return BRW_REGISTER_TYPE_D;
309 case 64:
310 return BRW_REGISTER_TYPE_Q;
311 default:
312 unreachable("Invalid bit size");
313 }
314 case BRW_REGISTER_TYPE_UB:
315 case BRW_REGISTER_TYPE_UW:
316 case BRW_REGISTER_TYPE_UD:
317 case BRW_REGISTER_TYPE_UQ:
318 switch(bit_size) {
319 case 8:
320 return BRW_REGISTER_TYPE_UB;
321 case 16:
322 return BRW_REGISTER_TYPE_UW;
323 case 32:
324 return BRW_REGISTER_TYPE_UD;
325 case 64:
326 return BRW_REGISTER_TYPE_UQ;
327 default:
328 unreachable("Invalid bit size");
329 }
330 default:
331 unreachable("Unknown type");
332 }
333 }
334
335 void
336 fs_visitor::nir_emit_impl(nir_function_impl *impl)
337 {
338 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
339 for (unsigned i = 0; i < impl->reg_alloc; i++) {
340 nir_locals[i] = fs_reg();
341 }
342
343 foreach_list_typed(nir_register, reg, node, &impl->registers) {
344 unsigned array_elems =
345 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
346 unsigned size = array_elems * reg->num_components;
347 const brw_reg_type reg_type = reg->bit_size == 8 ? BRW_REGISTER_TYPE_B :
348 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
349 nir_locals[reg->index] = bld.vgrf(reg_type, size);
350 }
351
352 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
353 impl->ssa_alloc);
354
355 nir_emit_cf_list(&impl->body);
356 }
357
358 void
359 fs_visitor::nir_emit_cf_list(exec_list *list)
360 {
361 exec_list_validate(list);
362 foreach_list_typed(nir_cf_node, node, node, list) {
363 switch (node->type) {
364 case nir_cf_node_if:
365 nir_emit_if(nir_cf_node_as_if(node));
366 break;
367
368 case nir_cf_node_loop:
369 nir_emit_loop(nir_cf_node_as_loop(node));
370 break;
371
372 case nir_cf_node_block:
373 nir_emit_block(nir_cf_node_as_block(node));
374 break;
375
376 default:
377 unreachable("Invalid CFG node block");
378 }
379 }
380 }
381
382 void
383 fs_visitor::nir_emit_if(nir_if *if_stmt)
384 {
385 bool invert;
386 fs_reg cond_reg;
387
388 /* If the condition has the form !other_condition, use other_condition as
389 * the source, but invert the predicate on the if instruction.
390 */
391 nir_alu_instr *cond = nir_src_as_alu_instr(if_stmt->condition);
392 if (cond != NULL && cond->op == nir_op_inot) {
393 assert(!cond->src[0].negate);
394 assert(!cond->src[0].abs);
395
396 invert = true;
397 cond_reg = get_nir_src(cond->src[0].src);
398 } else {
399 invert = false;
400 cond_reg = get_nir_src(if_stmt->condition);
401 }
402
403 /* first, put the condition into f0 */
404 fs_inst *inst = bld.MOV(bld.null_reg_d(),
405 retype(cond_reg, BRW_REGISTER_TYPE_D));
406 inst->conditional_mod = BRW_CONDITIONAL_NZ;
407
408 bld.IF(BRW_PREDICATE_NORMAL)->predicate_inverse = invert;
409
410 nir_emit_cf_list(&if_stmt->then_list);
411
412 /* note: if the else is empty, dead CF elimination will remove it */
413 bld.emit(BRW_OPCODE_ELSE);
414
415 nir_emit_cf_list(&if_stmt->else_list);
416
417 bld.emit(BRW_OPCODE_ENDIF);
418
419 if (devinfo->gen < 7)
420 limit_dispatch_width(16, "Non-uniform control flow unsupported "
421 "in SIMD32 mode.");
422 }
423
424 void
425 fs_visitor::nir_emit_loop(nir_loop *loop)
426 {
427 bld.emit(BRW_OPCODE_DO);
428
429 nir_emit_cf_list(&loop->body);
430
431 bld.emit(BRW_OPCODE_WHILE);
432
433 if (devinfo->gen < 7)
434 limit_dispatch_width(16, "Non-uniform control flow unsupported "
435 "in SIMD32 mode.");
436 }
437
438 void
439 fs_visitor::nir_emit_block(nir_block *block)
440 {
441 nir_foreach_instr(instr, block) {
442 nir_emit_instr(instr);
443 }
444 }
445
446 void
447 fs_visitor::nir_emit_instr(nir_instr *instr)
448 {
449 const fs_builder abld = bld.annotate(NULL, instr);
450
451 switch (instr->type) {
452 case nir_instr_type_alu:
453 nir_emit_alu(abld, nir_instr_as_alu(instr));
454 break;
455
456 case nir_instr_type_deref:
457 /* Derefs can exist for images but they do nothing */
458 break;
459
460 case nir_instr_type_intrinsic:
461 switch (stage) {
462 case MESA_SHADER_VERTEX:
463 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
464 break;
465 case MESA_SHADER_TESS_CTRL:
466 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
467 break;
468 case MESA_SHADER_TESS_EVAL:
469 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
470 break;
471 case MESA_SHADER_GEOMETRY:
472 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
473 break;
474 case MESA_SHADER_FRAGMENT:
475 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
476 break;
477 case MESA_SHADER_COMPUTE:
478 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
479 break;
480 default:
481 unreachable("unsupported shader stage");
482 }
483 break;
484
485 case nir_instr_type_tex:
486 nir_emit_texture(abld, nir_instr_as_tex(instr));
487 break;
488
489 case nir_instr_type_load_const:
490 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
491 break;
492
493 case nir_instr_type_ssa_undef:
494 /* We create a new VGRF for undefs on every use (by handling
495 * them in get_nir_src()), rather than for each definition.
496 * This helps register coalescing eliminate MOVs from undef.
497 */
498 break;
499
500 case nir_instr_type_jump:
501 nir_emit_jump(abld, nir_instr_as_jump(instr));
502 break;
503
504 default:
505 unreachable("unknown instruction type");
506 }
507 }
508
509 /**
510 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
511 * match instr.
512 */
513 bool
514 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
515 const fs_reg &result)
516 {
517 if (!instr->src[0].src.is_ssa ||
518 !instr->src[0].src.ssa->parent_instr)
519 return false;
520
521 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
522 return false;
523
524 nir_alu_instr *src0 =
525 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
526
527 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
528 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
529 return false;
530
531 /* If either opcode has source modifiers, bail.
532 *
533 * TODO: We can potentially handle source modifiers if both of the opcodes
534 * we're combining are signed integers.
535 */
536 if (instr->src[0].abs || instr->src[0].negate ||
537 src0->src[0].abs || src0->src[0].negate)
538 return false;
539
540 unsigned element = nir_src_as_uint(src0->src[1].src);
541
542 /* Element type to extract.*/
543 const brw_reg_type type = brw_int_type(
544 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
545 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
546
547 fs_reg op0 = get_nir_src(src0->src[0].src);
548 op0.type = brw_type_for_nir_type(devinfo,
549 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
550 nir_src_bit_size(src0->src[0].src)));
551 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
552
553 set_saturate(instr->dest.saturate,
554 bld.MOV(result, subscript(op0, type, element)));
555 return true;
556 }
557
558 bool
559 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
560 const fs_reg &result)
561 {
562 nir_intrinsic_instr *src0 = nir_src_as_intrinsic(instr->src[0].src);
563 if (src0 == NULL || src0->intrinsic != nir_intrinsic_load_front_face)
564 return false;
565
566 if (!nir_src_is_const(instr->src[1].src) ||
567 !nir_src_is_const(instr->src[2].src))
568 return false;
569
570 const float value1 = nir_src_as_float(instr->src[1].src);
571 const float value2 = nir_src_as_float(instr->src[2].src);
572 if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
573 return false;
574
575 /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
576 assert(value1 == -value2);
577
578 fs_reg tmp = vgrf(glsl_type::int_type);
579
580 if (devinfo->gen >= 6) {
581 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
582 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
583
584 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
585 *
586 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
587 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
588 *
589 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
590 *
591 * This negation looks like it's safe in practice, because bits 0:4 will
592 * surely be TRIANGLES
593 */
594
595 if (value1 == -1.0f) {
596 g0.negate = true;
597 }
598
599 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
600 g0, brw_imm_uw(0x3f80));
601 } else {
602 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
603 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
604
605 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
606 *
607 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
608 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
609 *
610 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
611 *
612 * This negation looks like it's safe in practice, because bits 0:4 will
613 * surely be TRIANGLES
614 */
615
616 if (value1 == -1.0f) {
617 g1_6.negate = true;
618 }
619
620 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
621 }
622 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
623
624 return true;
625 }
626
627 static void
628 emit_find_msb_using_lzd(const fs_builder &bld,
629 const fs_reg &result,
630 const fs_reg &src,
631 bool is_signed)
632 {
633 fs_inst *inst;
634 fs_reg temp = src;
635
636 if (is_signed) {
637 /* LZD of an absolute value source almost always does the right
638 * thing. There are two problem values:
639 *
640 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
641 * 0. However, findMSB(int(0x80000000)) == 30.
642 *
643 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
644 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
645 *
646 * For a value of zero or negative one, -1 will be returned.
647 *
648 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
649 * findMSB(-(1<<x)) should return x-1.
650 *
651 * For all negative number cases, including 0x80000000 and
652 * 0xffffffff, the correct value is obtained from LZD if instead of
653 * negating the (already negative) value the logical-not is used. A
654 * conditonal logical-not can be achieved in two instructions.
655 */
656 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
657
658 bld.ASR(temp, src, brw_imm_d(31));
659 bld.XOR(temp, temp, src);
660 }
661
662 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
663 retype(temp, BRW_REGISTER_TYPE_UD));
664
665 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
666 * from the LSB side. Subtract the result from 31 to convert the MSB
667 * count into an LSB count. If no bits are set, LZD will return 32.
668 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
669 */
670 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
671 inst->src[0].negate = true;
672 }
673
674 static brw_rnd_mode
675 brw_rnd_mode_from_nir_op (const nir_op op) {
676 switch (op) {
677 case nir_op_f2f16_rtz:
678 return BRW_RND_MODE_RTZ;
679 case nir_op_f2f16_rtne:
680 return BRW_RND_MODE_RTNE;
681 default:
682 unreachable("Operation doesn't support rounding mode");
683 }
684 }
685
686 fs_reg
687 fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
688 nir_alu_instr *instr,
689 fs_reg *op,
690 bool need_dest)
691 {
692 fs_reg result =
693 need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
694
695 result.type = brw_type_for_nir_type(devinfo,
696 (nir_alu_type)(nir_op_infos[instr->op].output_type |
697 nir_dest_bit_size(instr->dest.dest)));
698
699 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
700 op[i] = get_nir_src(instr->src[i].src);
701 op[i].type = brw_type_for_nir_type(devinfo,
702 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
703 nir_src_bit_size(instr->src[i].src)));
704 op[i].abs = instr->src[i].abs;
705 op[i].negate = instr->src[i].negate;
706 }
707
708 /* Move and vecN instrutions may still be vectored. Return the raw,
709 * vectored source and destination so that fs_visitor::nir_emit_alu can
710 * handle it. Other callers should not have to handle these kinds of
711 * instructions.
712 */
713 switch (instr->op) {
714 case nir_op_imov:
715 case nir_op_fmov:
716 case nir_op_vec2:
717 case nir_op_vec3:
718 case nir_op_vec4:
719 return result;
720 default:
721 break;
722 }
723
724 /* At this point, we have dealt with any instruction that operates on
725 * more than a single channel. Therefore, we can just adjust the source
726 * and destination registers for that channel and emit the instruction.
727 */
728 unsigned channel = 0;
729 if (nir_op_infos[instr->op].output_size == 0) {
730 /* Since NIR is doing the scalarizing for us, we should only ever see
731 * vectorized operations with a single channel.
732 */
733 assert(util_bitcount(instr->dest.write_mask) == 1);
734 channel = ffs(instr->dest.write_mask) - 1;
735
736 result = offset(result, bld, channel);
737 }
738
739 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
740 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
741 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
742 }
743
744 return result;
745 }
746
747 void
748 fs_visitor::resolve_inot_sources(const fs_builder &bld, nir_alu_instr *instr,
749 fs_reg *op)
750 {
751 for (unsigned i = 0; i < 2; i++) {
752 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[i].src);
753
754 if (inot_instr != NULL && inot_instr->op == nir_op_inot &&
755 !inot_instr->src[0].abs && !inot_instr->src[0].negate) {
756 /* The source of the inot is now the source of instr. */
757 prepare_alu_destination_and_sources(bld, inot_instr, &op[i], false);
758
759 assert(!op[i].negate);
760 op[i].negate = true;
761 } else {
762 op[i] = resolve_source_modifiers(op[i]);
763 }
764 }
765 }
766
767 bool
768 fs_visitor::try_emit_b2fi_of_inot(const fs_builder &bld,
769 fs_reg result,
770 nir_alu_instr *instr)
771 {
772 if (devinfo->gen < 6 || devinfo->gen >= 12)
773 return false;
774
775 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[0].src);
776
777 if (inot_instr == NULL || inot_instr->op != nir_op_inot)
778 return false;
779
780 /* HF is also possible as a destination on BDW+. For nir_op_b2i, the set
781 * of valid size-changing combinations is a bit more complex.
782 *
783 * The source restriction is just because I was lazy about generating the
784 * constant below.
785 */
786 if (nir_dest_bit_size(instr->dest.dest) != 32 ||
787 nir_src_bit_size(inot_instr->src[0].src) != 32)
788 return false;
789
790 /* b2[fi](inot(a)) maps a=0 => 1, a=-1 => 0. Since a can only be 0 or -1,
791 * this is float(1 + a).
792 */
793 fs_reg op;
794
795 prepare_alu_destination_and_sources(bld, inot_instr, &op, false);
796
797 /* Ignore the saturate modifier, if there is one. The result of the
798 * arithmetic can only be 0 or 1, so the clamping will do nothing anyway.
799 */
800 bld.ADD(result, op, brw_imm_d(1));
801
802 return true;
803 }
804
805 /**
806 * Emit code for nir_op_fsign possibly fused with a nir_op_fmul
807 *
808 * If \c instr is not the \c nir_op_fsign, then \c fsign_src is the index of
809 * the source of \c instr that is a \c nir_op_fsign.
810 */
811 void
812 fs_visitor::emit_fsign(const fs_builder &bld, const nir_alu_instr *instr,
813 fs_reg result, fs_reg *op, unsigned fsign_src)
814 {
815 fs_inst *inst;
816
817 assert(instr->op == nir_op_fsign || instr->op == nir_op_fmul);
818 assert(fsign_src < nir_op_infos[instr->op].num_inputs);
819
820 if (instr->op != nir_op_fsign) {
821 const nir_alu_instr *const fsign_instr =
822 nir_src_as_alu_instr(instr->src[fsign_src].src);
823
824 assert(!fsign_instr->dest.saturate);
825
826 /* op[fsign_src] has the nominal result of the fsign, and op[1 -
827 * fsign_src] has the other multiply source. This must be rearranged so
828 * that op[0] is the source of the fsign op[1] is the other multiply
829 * source.
830 */
831 if (fsign_src != 0)
832 op[1] = op[0];
833
834 op[0] = get_nir_src(fsign_instr->src[0].src);
835
836 const nir_alu_type t =
837 (nir_alu_type)(nir_op_infos[instr->op].input_types[0] |
838 nir_src_bit_size(fsign_instr->src[0].src));
839
840 op[0].type = brw_type_for_nir_type(devinfo, t);
841 op[0].abs = fsign_instr->src[0].abs;
842 op[0].negate = fsign_instr->src[0].negate;
843
844 unsigned channel = 0;
845 if (nir_op_infos[instr->op].output_size == 0) {
846 /* Since NIR is doing the scalarizing for us, we should only ever see
847 * vectorized operations with a single channel.
848 */
849 assert(util_bitcount(instr->dest.write_mask) == 1);
850 channel = ffs(instr->dest.write_mask) - 1;
851 }
852
853 op[0] = offset(op[0], bld, fsign_instr->src[0].swizzle[channel]);
854 } else {
855 assert(!instr->dest.saturate);
856 }
857
858 if (op[0].abs) {
859 /* Straightforward since the source can be assumed to be either strictly
860 * >= 0 or strictly <= 0 depending on the setting of the negate flag.
861 */
862 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
863
864 if (instr->op == nir_op_fsign) {
865 inst = (op[0].negate)
866 ? bld.MOV(result, brw_imm_f(-1.0f))
867 : bld.MOV(result, brw_imm_f(1.0f));
868 } else {
869 op[1].negate = (op[0].negate != op[1].negate);
870 inst = bld.MOV(result, op[1]);
871 }
872
873 set_predicate(BRW_PREDICATE_NORMAL, inst);
874 } else if (type_sz(op[0].type) == 2) {
875 /* AND(val, 0x8000) gives the sign bit.
876 *
877 * Predicated OR ORs 1.0 (0x3c00) with the sign bit if val is not zero.
878 */
879 fs_reg zero = retype(brw_imm_uw(0), BRW_REGISTER_TYPE_HF);
880 bld.CMP(bld.null_reg_f(), op[0], zero, BRW_CONDITIONAL_NZ);
881
882 op[0].type = BRW_REGISTER_TYPE_UW;
883 result.type = BRW_REGISTER_TYPE_UW;
884 bld.AND(result, op[0], brw_imm_uw(0x8000u));
885
886 if (instr->op == nir_op_fsign)
887 inst = bld.OR(result, result, brw_imm_uw(0x3c00u));
888 else {
889 /* Use XOR here to get the result sign correct. */
890 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UW));
891 }
892
893 inst->predicate = BRW_PREDICATE_NORMAL;
894 } else if (type_sz(op[0].type) == 4) {
895 /* AND(val, 0x80000000) gives the sign bit.
896 *
897 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
898 * zero.
899 */
900 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
901
902 op[0].type = BRW_REGISTER_TYPE_UD;
903 result.type = BRW_REGISTER_TYPE_UD;
904 bld.AND(result, op[0], brw_imm_ud(0x80000000u));
905
906 if (instr->op == nir_op_fsign)
907 inst = bld.OR(result, result, brw_imm_ud(0x3f800000u));
908 else {
909 /* Use XOR here to get the result sign correct. */
910 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UD));
911 }
912
913 inst->predicate = BRW_PREDICATE_NORMAL;
914 } else {
915 /* For doubles we do the same but we need to consider:
916 *
917 * - 2-src instructions can't operate with 64-bit immediates
918 * - The sign is encoded in the high 32-bit of each DF
919 * - We need to produce a DF result.
920 */
921
922 fs_reg zero = vgrf(glsl_type::double_type);
923 bld.MOV(zero, setup_imm_df(bld, 0.0));
924 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
925
926 bld.MOV(result, zero);
927
928 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
929 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
930 brw_imm_ud(0x80000000u));
931
932 if (instr->op == nir_op_fsign) {
933 set_predicate(BRW_PREDICATE_NORMAL,
934 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
935 } else {
936 /* This could be done better in some cases. If the scale is an
937 * immediate with the low 32-bits all 0, emitting a separate XOR and
938 * OR would allow an algebraic optimization to remove the OR. There
939 * are currently zero instances of fsign(double(x))*IMM in shader-db
940 * or any test suite, so it is hard to care at this time.
941 */
942 fs_reg result_int64 = retype(result, BRW_REGISTER_TYPE_UQ);
943 inst = bld.XOR(result_int64, result_int64,
944 retype(op[1], BRW_REGISTER_TYPE_UQ));
945 }
946 }
947 }
948
949 /**
950 * Deteremine whether sources of a nir_op_fmul can be fused with a nir_op_fsign
951 *
952 * Checks the operands of a \c nir_op_fmul to determine whether or not
953 * \c emit_fsign could fuse the multiplication with the \c sign() calculation.
954 *
955 * \param instr The multiplication instruction
956 *
957 * \param fsign_src The source of \c instr that may or may not be a
958 * \c nir_op_fsign
959 */
960 static bool
961 can_fuse_fmul_fsign(nir_alu_instr *instr, unsigned fsign_src)
962 {
963 assert(instr->op == nir_op_fmul);
964
965 nir_alu_instr *const fsign_instr =
966 nir_src_as_alu_instr(instr->src[fsign_src].src);
967
968 /* Rules:
969 *
970 * 1. instr->src[fsign_src] must be a nir_op_fsign.
971 * 2. The nir_op_fsign can only be used by this multiplication.
972 * 3. The source that is the nir_op_fsign does not have source modifiers.
973 * \c emit_fsign only examines the source modifiers of the source of the
974 * \c nir_op_fsign.
975 *
976 * The nir_op_fsign must also not have the saturate modifier, but steps
977 * have already been taken (in nir_opt_algebraic) to ensure that.
978 */
979 return fsign_instr != NULL && fsign_instr->op == nir_op_fsign &&
980 is_used_once(fsign_instr) &&
981 !instr->src[fsign_src].abs && !instr->src[fsign_src].negate;
982 }
983
984 void
985 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
986 {
987 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
988 fs_inst *inst;
989
990 fs_reg op[4];
991 fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, true);
992
993 switch (instr->op) {
994 case nir_op_imov:
995 case nir_op_fmov:
996 case nir_op_vec2:
997 case nir_op_vec3:
998 case nir_op_vec4: {
999 fs_reg temp = result;
1000 bool need_extra_copy = false;
1001 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1002 if (!instr->src[i].src.is_ssa &&
1003 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
1004 need_extra_copy = true;
1005 temp = bld.vgrf(result.type, 4);
1006 break;
1007 }
1008 }
1009
1010 for (unsigned i = 0; i < 4; i++) {
1011 if (!(instr->dest.write_mask & (1 << i)))
1012 continue;
1013
1014 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
1015 inst = bld.MOV(offset(temp, bld, i),
1016 offset(op[0], bld, instr->src[0].swizzle[i]));
1017 } else {
1018 inst = bld.MOV(offset(temp, bld, i),
1019 offset(op[i], bld, instr->src[i].swizzle[0]));
1020 }
1021 inst->saturate = instr->dest.saturate;
1022 }
1023
1024 /* In this case the source and destination registers were the same,
1025 * so we need to insert an extra set of moves in order to deal with
1026 * any swizzling.
1027 */
1028 if (need_extra_copy) {
1029 for (unsigned i = 0; i < 4; i++) {
1030 if (!(instr->dest.write_mask & (1 << i)))
1031 continue;
1032
1033 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
1034 }
1035 }
1036 return;
1037 }
1038
1039 case nir_op_i2f32:
1040 case nir_op_u2f32:
1041 if (optimize_extract_to_float(instr, result))
1042 return;
1043 inst = bld.MOV(result, op[0]);
1044 inst->saturate = instr->dest.saturate;
1045 break;
1046
1047 case nir_op_f2f16_rtne:
1048 case nir_op_f2f16_rtz:
1049 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1050 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
1051 /* fallthrough */
1052 case nir_op_f2f16:
1053 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
1054 * on the HW gen, it is a special hw opcode or just a MOV, and
1055 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
1056 *
1057 * But if we want to use that opcode, we need to provide support on
1058 * different optimizations and lowerings. As right now HF support is
1059 * only for gen8+, it will be better to use directly the MOV, and use
1060 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
1061 */
1062 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1063 inst = bld.MOV(result, op[0]);
1064 inst->saturate = instr->dest.saturate;
1065 break;
1066
1067 case nir_op_b2i8:
1068 case nir_op_b2i16:
1069 case nir_op_b2i32:
1070 case nir_op_b2i64:
1071 case nir_op_b2f16:
1072 case nir_op_b2f32:
1073 case nir_op_b2f64:
1074 if (try_emit_b2fi_of_inot(bld, result, instr))
1075 break;
1076 op[0].type = BRW_REGISTER_TYPE_D;
1077 op[0].negate = !op[0].negate;
1078 /* fallthrough */
1079 case nir_op_i2f64:
1080 case nir_op_i2i64:
1081 case nir_op_u2f64:
1082 case nir_op_u2u64:
1083 case nir_op_f2f64:
1084 case nir_op_f2i64:
1085 case nir_op_f2u64:
1086 case nir_op_i2i32:
1087 case nir_op_u2u32:
1088 case nir_op_f2f32:
1089 case nir_op_f2i32:
1090 case nir_op_f2u32:
1091 case nir_op_i2f16:
1092 case nir_op_i2i16:
1093 case nir_op_u2f16:
1094 case nir_op_u2u16:
1095 case nir_op_f2i16:
1096 case nir_op_f2u16:
1097 case nir_op_i2i8:
1098 case nir_op_u2u8:
1099 case nir_op_f2i8:
1100 case nir_op_f2u8:
1101 if (result.type == BRW_REGISTER_TYPE_B ||
1102 result.type == BRW_REGISTER_TYPE_UB ||
1103 result.type == BRW_REGISTER_TYPE_HF)
1104 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1105
1106 if (op[0].type == BRW_REGISTER_TYPE_B ||
1107 op[0].type == BRW_REGISTER_TYPE_UB ||
1108 op[0].type == BRW_REGISTER_TYPE_HF)
1109 assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
1110
1111 inst = bld.MOV(result, op[0]);
1112 inst->saturate = instr->dest.saturate;
1113 break;
1114
1115 case nir_op_fsign:
1116 emit_fsign(bld, instr, result, op, 0);
1117 break;
1118
1119 case nir_op_frcp:
1120 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
1121 inst->saturate = instr->dest.saturate;
1122 break;
1123
1124 case nir_op_fexp2:
1125 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
1126 inst->saturate = instr->dest.saturate;
1127 break;
1128
1129 case nir_op_flog2:
1130 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
1131 inst->saturate = instr->dest.saturate;
1132 break;
1133
1134 case nir_op_fsin:
1135 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
1136 inst->saturate = instr->dest.saturate;
1137 break;
1138
1139 case nir_op_fcos:
1140 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
1141 inst->saturate = instr->dest.saturate;
1142 break;
1143
1144 case nir_op_fddx:
1145 if (fs_key->high_quality_derivatives) {
1146 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1147 } else {
1148 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1149 }
1150 inst->saturate = instr->dest.saturate;
1151 break;
1152 case nir_op_fddx_fine:
1153 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1154 inst->saturate = instr->dest.saturate;
1155 break;
1156 case nir_op_fddx_coarse:
1157 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1158 inst->saturate = instr->dest.saturate;
1159 break;
1160 case nir_op_fddy:
1161 if (fs_key->high_quality_derivatives) {
1162 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1163 } else {
1164 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1165 }
1166 inst->saturate = instr->dest.saturate;
1167 break;
1168 case nir_op_fddy_fine:
1169 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1170 inst->saturate = instr->dest.saturate;
1171 break;
1172 case nir_op_fddy_coarse:
1173 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1174 inst->saturate = instr->dest.saturate;
1175 break;
1176
1177 case nir_op_iadd:
1178 case nir_op_fadd:
1179 inst = bld.ADD(result, op[0], op[1]);
1180 inst->saturate = instr->dest.saturate;
1181 break;
1182
1183 case nir_op_uadd_sat:
1184 inst = bld.ADD(result, op[0], op[1]);
1185 inst->saturate = true;
1186 break;
1187
1188 case nir_op_fmul:
1189 for (unsigned i = 0; i < 2; i++) {
1190 if (can_fuse_fmul_fsign(instr, i)) {
1191 emit_fsign(bld, instr, result, op, i);
1192 return;
1193 }
1194 }
1195
1196 inst = bld.MUL(result, op[0], op[1]);
1197 inst->saturate = instr->dest.saturate;
1198 break;
1199
1200 case nir_op_imul_2x32_64:
1201 case nir_op_umul_2x32_64:
1202 bld.MUL(result, op[0], op[1]);
1203 break;
1204
1205 case nir_op_imul:
1206 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1207 bld.MUL(result, op[0], op[1]);
1208 break;
1209
1210 case nir_op_imul_high:
1211 case nir_op_umul_high:
1212 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1213 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1214 break;
1215
1216 case nir_op_idiv:
1217 case nir_op_udiv:
1218 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1219 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1220 break;
1221
1222 case nir_op_uadd_carry:
1223 unreachable("Should have been lowered by carry_to_arith().");
1224
1225 case nir_op_usub_borrow:
1226 unreachable("Should have been lowered by borrow_to_arith().");
1227
1228 case nir_op_umod:
1229 case nir_op_irem:
1230 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1231 * appears that our hardware just does the right thing for signed
1232 * remainder.
1233 */
1234 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1235 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1236 break;
1237
1238 case nir_op_imod: {
1239 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1240 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1241
1242 /* Math instructions don't support conditional mod */
1243 inst = bld.MOV(bld.null_reg_d(), result);
1244 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1245
1246 /* Now, we need to determine if signs of the sources are different.
1247 * When we XOR the sources, the top bit is 0 if they are the same and 1
1248 * if they are different. We can then use a conditional modifier to
1249 * turn that into a predicate. This leads us to an XOR.l instruction.
1250 *
1251 * Technically, according to the PRM, you're not allowed to use .l on a
1252 * XOR instruction. However, emperical experiments and Curro's reading
1253 * of the simulator source both indicate that it's safe.
1254 */
1255 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1256 inst = bld.XOR(tmp, op[0], op[1]);
1257 inst->predicate = BRW_PREDICATE_NORMAL;
1258 inst->conditional_mod = BRW_CONDITIONAL_L;
1259
1260 /* If the result of the initial remainder operation is non-zero and the
1261 * two sources have different signs, add in a copy of op[1] to get the
1262 * final integer modulus value.
1263 */
1264 inst = bld.ADD(result, result, op[1]);
1265 inst->predicate = BRW_PREDICATE_NORMAL;
1266 break;
1267 }
1268
1269 case nir_op_flt32:
1270 case nir_op_fge32:
1271 case nir_op_feq32:
1272 case nir_op_fne32: {
1273 fs_reg dest = result;
1274
1275 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1276 if (bit_size != 32)
1277 dest = bld.vgrf(op[0].type, 1);
1278
1279 brw_conditional_mod cond;
1280 switch (instr->op) {
1281 case nir_op_flt32:
1282 cond = BRW_CONDITIONAL_L;
1283 break;
1284 case nir_op_fge32:
1285 cond = BRW_CONDITIONAL_GE;
1286 break;
1287 case nir_op_feq32:
1288 cond = BRW_CONDITIONAL_Z;
1289 break;
1290 case nir_op_fne32:
1291 cond = BRW_CONDITIONAL_NZ;
1292 break;
1293 default:
1294 unreachable("bad opcode");
1295 }
1296
1297 bld.CMP(dest, op[0], op[1], cond);
1298
1299 if (bit_size > 32) {
1300 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1301 } else if(bit_size < 32) {
1302 /* When we convert the result to 32-bit we need to be careful and do
1303 * it as a signed conversion to get sign extension (for 32-bit true)
1304 */
1305 const brw_reg_type src_type =
1306 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1307
1308 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1309 }
1310 break;
1311 }
1312
1313 case nir_op_ilt32:
1314 case nir_op_ult32:
1315 case nir_op_ige32:
1316 case nir_op_uge32:
1317 case nir_op_ieq32:
1318 case nir_op_ine32: {
1319 fs_reg dest = result;
1320
1321 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1322 if (bit_size != 32)
1323 dest = bld.vgrf(op[0].type, 1);
1324
1325 brw_conditional_mod cond;
1326 switch (instr->op) {
1327 case nir_op_ilt32:
1328 case nir_op_ult32:
1329 cond = BRW_CONDITIONAL_L;
1330 break;
1331 case nir_op_ige32:
1332 case nir_op_uge32:
1333 cond = BRW_CONDITIONAL_GE;
1334 break;
1335 case nir_op_ieq32:
1336 cond = BRW_CONDITIONAL_Z;
1337 break;
1338 case nir_op_ine32:
1339 cond = BRW_CONDITIONAL_NZ;
1340 break;
1341 default:
1342 unreachable("bad opcode");
1343 }
1344 bld.CMP(dest, op[0], op[1], cond);
1345
1346 if (bit_size > 32) {
1347 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1348 } else if (bit_size < 32) {
1349 /* When we convert the result to 32-bit we need to be careful and do
1350 * it as a signed conversion to get sign extension (for 32-bit true)
1351 */
1352 const brw_reg_type src_type =
1353 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1354
1355 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1356 }
1357 break;
1358 }
1359
1360 case nir_op_inot:
1361 if (devinfo->gen >= 8) {
1362 nir_alu_instr *inot_src_instr = nir_src_as_alu_instr(instr->src[0].src);
1363
1364 if (inot_src_instr != NULL &&
1365 (inot_src_instr->op == nir_op_ior ||
1366 inot_src_instr->op == nir_op_ixor ||
1367 inot_src_instr->op == nir_op_iand) &&
1368 !inot_src_instr->src[0].abs &&
1369 !inot_src_instr->src[0].negate &&
1370 !inot_src_instr->src[1].abs &&
1371 !inot_src_instr->src[1].negate) {
1372 /* The sources of the source logical instruction are now the
1373 * sources of the instruction that will be generated.
1374 */
1375 prepare_alu_destination_and_sources(bld, inot_src_instr, op, false);
1376 resolve_inot_sources(bld, inot_src_instr, op);
1377
1378 /* Smash all of the sources and destination to be signed. This
1379 * doesn't matter for the operation of the instruction, but cmod
1380 * propagation fails on unsigned sources with negation (due to
1381 * fs_inst::can_do_cmod returning false).
1382 */
1383 result.type =
1384 brw_type_for_nir_type(devinfo,
1385 (nir_alu_type)(nir_type_int |
1386 nir_dest_bit_size(instr->dest.dest)));
1387 op[0].type =
1388 brw_type_for_nir_type(devinfo,
1389 (nir_alu_type)(nir_type_int |
1390 nir_src_bit_size(inot_src_instr->src[0].src)));
1391 op[1].type =
1392 brw_type_for_nir_type(devinfo,
1393 (nir_alu_type)(nir_type_int |
1394 nir_src_bit_size(inot_src_instr->src[1].src)));
1395
1396 /* For XOR, only invert one of the sources. Arbitrarily choose
1397 * the first source.
1398 */
1399 op[0].negate = !op[0].negate;
1400 if (inot_src_instr->op != nir_op_ixor)
1401 op[1].negate = !op[1].negate;
1402
1403 switch (inot_src_instr->op) {
1404 case nir_op_ior:
1405 bld.AND(result, op[0], op[1]);
1406 return;
1407
1408 case nir_op_iand:
1409 bld.OR(result, op[0], op[1]);
1410 return;
1411
1412 case nir_op_ixor:
1413 bld.XOR(result, op[0], op[1]);
1414 return;
1415
1416 default:
1417 unreachable("impossible opcode");
1418 }
1419 }
1420 op[0] = resolve_source_modifiers(op[0]);
1421 }
1422 bld.NOT(result, op[0]);
1423 break;
1424 case nir_op_ixor:
1425 if (devinfo->gen >= 8) {
1426 resolve_inot_sources(bld, instr, op);
1427 }
1428 bld.XOR(result, op[0], op[1]);
1429 break;
1430 case nir_op_ior:
1431 if (devinfo->gen >= 8) {
1432 resolve_inot_sources(bld, instr, op);
1433 }
1434 bld.OR(result, op[0], op[1]);
1435 break;
1436 case nir_op_iand:
1437 if (devinfo->gen >= 8) {
1438 resolve_inot_sources(bld, instr, op);
1439 }
1440 bld.AND(result, op[0], op[1]);
1441 break;
1442
1443 case nir_op_fdot2:
1444 case nir_op_fdot3:
1445 case nir_op_fdot4:
1446 case nir_op_b32all_fequal2:
1447 case nir_op_b32all_iequal2:
1448 case nir_op_b32all_fequal3:
1449 case nir_op_b32all_iequal3:
1450 case nir_op_b32all_fequal4:
1451 case nir_op_b32all_iequal4:
1452 case nir_op_b32any_fnequal2:
1453 case nir_op_b32any_inequal2:
1454 case nir_op_b32any_fnequal3:
1455 case nir_op_b32any_inequal3:
1456 case nir_op_b32any_fnequal4:
1457 case nir_op_b32any_inequal4:
1458 unreachable("Lowered by nir_lower_alu_reductions");
1459
1460 case nir_op_fnoise1_1:
1461 case nir_op_fnoise1_2:
1462 case nir_op_fnoise1_3:
1463 case nir_op_fnoise1_4:
1464 case nir_op_fnoise2_1:
1465 case nir_op_fnoise2_2:
1466 case nir_op_fnoise2_3:
1467 case nir_op_fnoise2_4:
1468 case nir_op_fnoise3_1:
1469 case nir_op_fnoise3_2:
1470 case nir_op_fnoise3_3:
1471 case nir_op_fnoise3_4:
1472 case nir_op_fnoise4_1:
1473 case nir_op_fnoise4_2:
1474 case nir_op_fnoise4_3:
1475 case nir_op_fnoise4_4:
1476 unreachable("not reached: should be handled by lower_noise");
1477
1478 case nir_op_ldexp:
1479 unreachable("not reached: should be handled by ldexp_to_arith()");
1480
1481 case nir_op_fsqrt:
1482 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1483 inst->saturate = instr->dest.saturate;
1484 break;
1485
1486 case nir_op_frsq:
1487 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1488 inst->saturate = instr->dest.saturate;
1489 break;
1490
1491 case nir_op_i2b32:
1492 case nir_op_f2b32: {
1493 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1494 if (bit_size == 64) {
1495 /* two-argument instructions can't take 64-bit immediates */
1496 fs_reg zero;
1497 fs_reg tmp;
1498
1499 if (instr->op == nir_op_f2b32) {
1500 zero = vgrf(glsl_type::double_type);
1501 tmp = vgrf(glsl_type::double_type);
1502 bld.MOV(zero, setup_imm_df(bld, 0.0));
1503 } else {
1504 zero = vgrf(glsl_type::int64_t_type);
1505 tmp = vgrf(glsl_type::int64_t_type);
1506 bld.MOV(zero, brw_imm_q(0));
1507 }
1508
1509 /* A SIMD16 execution needs to be split in two instructions, so use
1510 * a vgrf instead of the flag register as dst so instruction splitting
1511 * works
1512 */
1513 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1514 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1515 } else {
1516 fs_reg zero;
1517 if (bit_size == 32) {
1518 zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1519 } else {
1520 assert(bit_size == 16);
1521 zero = instr->op == nir_op_f2b32 ?
1522 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1523 }
1524 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1525 }
1526 break;
1527 }
1528
1529 case nir_op_ftrunc:
1530 inst = bld.RNDZ(result, op[0]);
1531 inst->saturate = instr->dest.saturate;
1532 break;
1533
1534 case nir_op_fceil: {
1535 op[0].negate = !op[0].negate;
1536 fs_reg temp = vgrf(glsl_type::float_type);
1537 bld.RNDD(temp, op[0]);
1538 temp.negate = true;
1539 inst = bld.MOV(result, temp);
1540 inst->saturate = instr->dest.saturate;
1541 break;
1542 }
1543 case nir_op_ffloor:
1544 inst = bld.RNDD(result, op[0]);
1545 inst->saturate = instr->dest.saturate;
1546 break;
1547 case nir_op_ffract:
1548 inst = bld.FRC(result, op[0]);
1549 inst->saturate = instr->dest.saturate;
1550 break;
1551 case nir_op_fround_even:
1552 inst = bld.RNDE(result, op[0]);
1553 inst->saturate = instr->dest.saturate;
1554 break;
1555
1556 case nir_op_fquantize2f16: {
1557 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1558 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1559 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1560
1561 /* The destination stride must be at least as big as the source stride. */
1562 tmp16.type = BRW_REGISTER_TYPE_W;
1563 tmp16.stride = 2;
1564
1565 /* Check for denormal */
1566 fs_reg abs_src0 = op[0];
1567 abs_src0.abs = true;
1568 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1569 BRW_CONDITIONAL_L);
1570 /* Get the appropriately signed zero */
1571 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1572 retype(op[0], BRW_REGISTER_TYPE_UD),
1573 brw_imm_ud(0x80000000));
1574 /* Do the actual F32 -> F16 -> F32 conversion */
1575 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1576 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1577 /* Select that or zero based on normal status */
1578 inst = bld.SEL(result, zero, tmp32);
1579 inst->predicate = BRW_PREDICATE_NORMAL;
1580 inst->saturate = instr->dest.saturate;
1581 break;
1582 }
1583
1584 case nir_op_imin:
1585 case nir_op_umin:
1586 case nir_op_fmin:
1587 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1588 inst->saturate = instr->dest.saturate;
1589 break;
1590
1591 case nir_op_imax:
1592 case nir_op_umax:
1593 case nir_op_fmax:
1594 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1595 inst->saturate = instr->dest.saturate;
1596 break;
1597
1598 case nir_op_pack_snorm_2x16:
1599 case nir_op_pack_snorm_4x8:
1600 case nir_op_pack_unorm_2x16:
1601 case nir_op_pack_unorm_4x8:
1602 case nir_op_unpack_snorm_2x16:
1603 case nir_op_unpack_snorm_4x8:
1604 case nir_op_unpack_unorm_2x16:
1605 case nir_op_unpack_unorm_4x8:
1606 case nir_op_unpack_half_2x16:
1607 case nir_op_pack_half_2x16:
1608 unreachable("not reached: should be handled by lower_packing_builtins");
1609
1610 case nir_op_unpack_half_2x16_split_x:
1611 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1612 subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1613 inst->saturate = instr->dest.saturate;
1614 break;
1615 case nir_op_unpack_half_2x16_split_y:
1616 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1617 subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1618 inst->saturate = instr->dest.saturate;
1619 break;
1620
1621 case nir_op_pack_64_2x32_split:
1622 case nir_op_pack_32_2x16_split:
1623 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1624 break;
1625
1626 case nir_op_unpack_64_2x32_split_x:
1627 case nir_op_unpack_64_2x32_split_y: {
1628 if (instr->op == nir_op_unpack_64_2x32_split_x)
1629 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1630 else
1631 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1632 break;
1633 }
1634
1635 case nir_op_unpack_32_2x16_split_x:
1636 case nir_op_unpack_32_2x16_split_y: {
1637 if (instr->op == nir_op_unpack_32_2x16_split_x)
1638 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1639 else
1640 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1641 break;
1642 }
1643
1644 case nir_op_fpow:
1645 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1646 inst->saturate = instr->dest.saturate;
1647 break;
1648
1649 case nir_op_bitfield_reverse:
1650 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1651 bld.BFREV(result, op[0]);
1652 break;
1653
1654 case nir_op_bit_count:
1655 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1656 bld.CBIT(result, op[0]);
1657 break;
1658
1659 case nir_op_ufind_msb: {
1660 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1661 emit_find_msb_using_lzd(bld, result, op[0], false);
1662 break;
1663 }
1664
1665 case nir_op_ifind_msb: {
1666 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1667
1668 if (devinfo->gen < 7) {
1669 emit_find_msb_using_lzd(bld, result, op[0], true);
1670 } else {
1671 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1672
1673 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1674 * count from the LSB side. If FBH didn't return an error
1675 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1676 * count into an LSB count.
1677 */
1678 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1679
1680 inst = bld.ADD(result, result, brw_imm_d(31));
1681 inst->predicate = BRW_PREDICATE_NORMAL;
1682 inst->src[0].negate = true;
1683 }
1684 break;
1685 }
1686
1687 case nir_op_find_lsb:
1688 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1689
1690 if (devinfo->gen < 7) {
1691 fs_reg temp = vgrf(glsl_type::int_type);
1692
1693 /* (x & -x) generates a value that consists of only the LSB of x.
1694 * For all powers of 2, findMSB(y) == findLSB(y).
1695 */
1696 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1697 fs_reg negated_src = src;
1698
1699 /* One must be negated, and the other must be non-negated. It
1700 * doesn't matter which is which.
1701 */
1702 negated_src.negate = true;
1703 src.negate = false;
1704
1705 bld.AND(temp, src, negated_src);
1706 emit_find_msb_using_lzd(bld, result, temp, false);
1707 } else {
1708 bld.FBL(result, op[0]);
1709 }
1710 break;
1711
1712 case nir_op_ubitfield_extract:
1713 case nir_op_ibitfield_extract:
1714 unreachable("should have been lowered");
1715 case nir_op_ubfe:
1716 case nir_op_ibfe:
1717 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1718 bld.BFE(result, op[2], op[1], op[0]);
1719 break;
1720 case nir_op_bfm:
1721 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1722 bld.BFI1(result, op[0], op[1]);
1723 break;
1724 case nir_op_bfi:
1725 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1726 bld.BFI2(result, op[0], op[1], op[2]);
1727 break;
1728
1729 case nir_op_bitfield_insert:
1730 unreachable("not reached: should have been lowered");
1731
1732 case nir_op_ishl:
1733 bld.SHL(result, op[0], op[1]);
1734 break;
1735 case nir_op_ishr:
1736 bld.ASR(result, op[0], op[1]);
1737 break;
1738 case nir_op_ushr:
1739 bld.SHR(result, op[0], op[1]);
1740 break;
1741
1742 case nir_op_pack_half_2x16_split:
1743 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1744 break;
1745
1746 case nir_op_ffma:
1747 inst = bld.MAD(result, op[2], op[1], op[0]);
1748 inst->saturate = instr->dest.saturate;
1749 break;
1750
1751 case nir_op_flrp:
1752 inst = bld.LRP(result, op[0], op[1], op[2]);
1753 inst->saturate = instr->dest.saturate;
1754 break;
1755
1756 case nir_op_b32csel:
1757 if (optimize_frontfacing_ternary(instr, result))
1758 return;
1759
1760 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1761 inst = bld.SEL(result, op[1], op[2]);
1762 inst->predicate = BRW_PREDICATE_NORMAL;
1763 break;
1764
1765 case nir_op_extract_u8:
1766 case nir_op_extract_i8: {
1767 unsigned byte = nir_src_as_uint(instr->src[1].src);
1768
1769 /* The PRMs say:
1770 *
1771 * BDW+
1772 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1773 * Use two instructions and a word or DWord intermediate integer type.
1774 */
1775 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1776 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1777
1778 if (instr->op == nir_op_extract_i8) {
1779 /* If we need to sign extend, extract to a word first */
1780 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1781 bld.MOV(w_temp, subscript(op[0], type, byte));
1782 bld.MOV(result, w_temp);
1783 } else if (byte & 1) {
1784 /* Extract the high byte from the word containing the desired byte
1785 * offset.
1786 */
1787 bld.SHR(result,
1788 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1789 brw_imm_uw(8));
1790 } else {
1791 /* Otherwise use an AND with 0xff and a word type */
1792 bld.AND(result,
1793 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1794 brw_imm_uw(0xff));
1795 }
1796 } else {
1797 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1798 bld.MOV(result, subscript(op[0], type, byte));
1799 }
1800 break;
1801 }
1802
1803 case nir_op_extract_u16:
1804 case nir_op_extract_i16: {
1805 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1806 unsigned word = nir_src_as_uint(instr->src[1].src);
1807 bld.MOV(result, subscript(op[0], type, word));
1808 break;
1809 }
1810
1811 default:
1812 unreachable("unhandled instruction");
1813 }
1814
1815 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1816 * to sign extend the low bit to 0/~0
1817 */
1818 if (devinfo->gen <= 5 &&
1819 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1820 fs_reg masked = vgrf(glsl_type::int_type);
1821 bld.AND(masked, result, brw_imm_d(1));
1822 masked.negate = true;
1823 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1824 }
1825 }
1826
1827 void
1828 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1829 nir_load_const_instr *instr)
1830 {
1831 const brw_reg_type reg_type =
1832 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1833 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1834
1835 switch (instr->def.bit_size) {
1836 case 8:
1837 for (unsigned i = 0; i < instr->def.num_components; i++)
1838 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value[i].i8));
1839 break;
1840
1841 case 16:
1842 for (unsigned i = 0; i < instr->def.num_components; i++)
1843 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value[i].i16));
1844 break;
1845
1846 case 32:
1847 for (unsigned i = 0; i < instr->def.num_components; i++)
1848 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value[i].i32));
1849 break;
1850
1851 case 64:
1852 assert(devinfo->gen >= 7);
1853 if (devinfo->gen == 7) {
1854 /* We don't get 64-bit integer types until gen8 */
1855 for (unsigned i = 0; i < instr->def.num_components; i++) {
1856 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1857 setup_imm_df(bld, instr->value[i].f64));
1858 }
1859 } else {
1860 for (unsigned i = 0; i < instr->def.num_components; i++)
1861 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value[i].i64));
1862 }
1863 break;
1864
1865 default:
1866 unreachable("Invalid bit size");
1867 }
1868
1869 nir_ssa_values[instr->def.index] = reg;
1870 }
1871
1872 fs_reg
1873 fs_visitor::get_nir_src(const nir_src &src)
1874 {
1875 fs_reg reg;
1876 if (src.is_ssa) {
1877 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1878 const brw_reg_type reg_type =
1879 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1880 reg = bld.vgrf(reg_type, src.ssa->num_components);
1881 } else {
1882 reg = nir_ssa_values[src.ssa->index];
1883 }
1884 } else {
1885 /* We don't handle indirects on locals */
1886 assert(src.reg.indirect == NULL);
1887 reg = offset(nir_locals[src.reg.reg->index], bld,
1888 src.reg.base_offset * src.reg.reg->num_components);
1889 }
1890
1891 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1892 /* The only 64-bit type available on gen7 is DF, so use that. */
1893 reg.type = BRW_REGISTER_TYPE_DF;
1894 } else {
1895 /* To avoid floating-point denorm flushing problems, set the type by
1896 * default to an integer type - instructions that need floating point
1897 * semantics will set this to F if they need to
1898 */
1899 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1900 BRW_REGISTER_TYPE_D);
1901 }
1902
1903 return reg;
1904 }
1905
1906 /**
1907 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1908 *
1909 * This function should not be called on any value which may be 64 bits.
1910 * We could theoretically support 64-bit on gen8+ but we choose not to
1911 * because it wouldn't work in general (no gen7 support) and there are
1912 * enough restrictions in 64-bit immediates that you can't take the return
1913 * value and treat it the same as the result of get_nir_src().
1914 */
1915 fs_reg
1916 fs_visitor::get_nir_src_imm(const nir_src &src)
1917 {
1918 assert(nir_src_bit_size(src) == 32);
1919 return nir_src_is_const(src) ?
1920 fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
1921 }
1922
1923 fs_reg
1924 fs_visitor::get_nir_dest(const nir_dest &dest)
1925 {
1926 if (dest.is_ssa) {
1927 const brw_reg_type reg_type =
1928 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1929 dest.ssa.bit_size == 8 ?
1930 BRW_REGISTER_TYPE_D :
1931 BRW_REGISTER_TYPE_F);
1932 nir_ssa_values[dest.ssa.index] =
1933 bld.vgrf(reg_type, dest.ssa.num_components);
1934 return nir_ssa_values[dest.ssa.index];
1935 } else {
1936 /* We don't handle indirects on locals */
1937 assert(dest.reg.indirect == NULL);
1938 return offset(nir_locals[dest.reg.reg->index], bld,
1939 dest.reg.base_offset * dest.reg.reg->num_components);
1940 }
1941 }
1942
1943 void
1944 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1945 unsigned wr_mask)
1946 {
1947 for (unsigned i = 0; i < 4; i++) {
1948 if (!((wr_mask >> i) & 1))
1949 continue;
1950
1951 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1952 new_inst->dst = offset(new_inst->dst, bld, i);
1953 for (unsigned j = 0; j < new_inst->sources; j++)
1954 if (new_inst->src[j].file == VGRF)
1955 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1956
1957 bld.emit(new_inst);
1958 }
1959 }
1960
1961 static fs_inst *
1962 emit_pixel_interpolater_send(const fs_builder &bld,
1963 enum opcode opcode,
1964 const fs_reg &dst,
1965 const fs_reg &src,
1966 const fs_reg &desc,
1967 glsl_interp_mode interpolation)
1968 {
1969 struct brw_wm_prog_data *wm_prog_data =
1970 brw_wm_prog_data(bld.shader->stage_prog_data);
1971
1972 fs_inst *inst = bld.emit(opcode, dst, src, desc);
1973 /* 2 floats per slot returned */
1974 inst->size_written = 2 * dst.component_size(inst->exec_size);
1975 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1976
1977 wm_prog_data->pulls_bary = true;
1978
1979 return inst;
1980 }
1981
1982 /**
1983 * Computes 1 << x, given a D/UD register containing some value x.
1984 */
1985 static fs_reg
1986 intexp2(const fs_builder &bld, const fs_reg &x)
1987 {
1988 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1989
1990 fs_reg result = bld.vgrf(x.type, 1);
1991 fs_reg one = bld.vgrf(x.type, 1);
1992
1993 bld.MOV(one, retype(brw_imm_d(1), one.type));
1994 bld.SHL(result, one, x);
1995 return result;
1996 }
1997
1998 void
1999 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
2000 {
2001 assert(stage == MESA_SHADER_GEOMETRY);
2002
2003 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2004
2005 if (gs_compile->control_data_header_size_bits == 0)
2006 return;
2007
2008 /* We can only do EndPrimitive() functionality when the control data
2009 * consists of cut bits. Fortunately, the only time it isn't is when the
2010 * output type is points, in which case EndPrimitive() is a no-op.
2011 */
2012 if (gs_prog_data->control_data_format !=
2013 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
2014 return;
2015 }
2016
2017 /* Cut bits use one bit per vertex. */
2018 assert(gs_compile->control_data_bits_per_vertex == 1);
2019
2020 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2021 vertex_count.type = BRW_REGISTER_TYPE_UD;
2022
2023 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
2024 * vertex n, 0 otherwise. So all we need to do here is mark bit
2025 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
2026 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
2027 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
2028 *
2029 * Note that if EndPrimitive() is called before emitting any vertices, this
2030 * will cause us to set bit 31 of the control_data_bits register to 1.
2031 * That's fine because:
2032 *
2033 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
2034 * output, so the hardware will ignore cut bit 31.
2035 *
2036 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
2037 * last vertex, so setting cut bit 31 has no effect (since the primitive
2038 * is automatically ended when the GS terminates).
2039 *
2040 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
2041 * control_data_bits register to 0 when the first vertex is emitted.
2042 */
2043
2044 const fs_builder abld = bld.annotate("end primitive");
2045
2046 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
2047 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2048 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2049 fs_reg mask = intexp2(abld, prev_count);
2050 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2051 * attention to the lower 5 bits of its second source argument, so on this
2052 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
2053 * ((vertex_count - 1) % 32).
2054 */
2055 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2056 }
2057
2058 void
2059 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
2060 {
2061 assert(stage == MESA_SHADER_GEOMETRY);
2062 assert(gs_compile->control_data_bits_per_vertex != 0);
2063
2064 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2065
2066 const fs_builder abld = bld.annotate("emit control data bits");
2067 const fs_builder fwa_bld = bld.exec_all();
2068
2069 /* We use a single UD register to accumulate control data bits (32 bits
2070 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
2071 * at a time.
2072 *
2073 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
2074 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
2075 * use the Channel Mask phase to enable/disable which DWord within that
2076 * group to write. (Remember, different SIMD8 channels may have emitted
2077 * different numbers of vertices, so we may need per-slot offsets.)
2078 *
2079 * Channel masking presents an annoying problem: we may have to replicate
2080 * the data up to 4 times:
2081 *
2082 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
2083 *
2084 * To avoid penalizing shaders that emit a small number of vertices, we
2085 * can avoid these sometimes: if the size of the control data header is
2086 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
2087 * land in the same 128-bit group, so we can skip per-slot offsets.
2088 *
2089 * Similarly, if the control data header is <= 32 bits, there is only one
2090 * DWord, so we can skip channel masks.
2091 */
2092 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
2093
2094 fs_reg channel_mask, per_slot_offset;
2095
2096 if (gs_compile->control_data_header_size_bits > 32) {
2097 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2098 channel_mask = vgrf(glsl_type::uint_type);
2099 }
2100
2101 if (gs_compile->control_data_header_size_bits > 128) {
2102 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
2103 per_slot_offset = vgrf(glsl_type::uint_type);
2104 }
2105
2106 /* Figure out which DWord we're trying to write to using the formula:
2107 *
2108 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
2109 *
2110 * Since bits_per_vertex is a power of two, and is known at compile
2111 * time, this can be optimized to:
2112 *
2113 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
2114 */
2115 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
2116 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2117 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2118 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2119 unsigned log2_bits_per_vertex =
2120 util_last_bit(gs_compile->control_data_bits_per_vertex);
2121 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
2122
2123 if (per_slot_offset.file != BAD_FILE) {
2124 /* Set the per-slot offset to dword_index / 4, so that we'll write to
2125 * the appropriate OWord within the control data header.
2126 */
2127 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
2128 }
2129
2130 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
2131 * write to the appropriate DWORD within the OWORD.
2132 */
2133 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2134 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
2135 channel_mask = intexp2(fwa_bld, channel);
2136 /* Then the channel masks need to be in bits 23:16. */
2137 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
2138 }
2139
2140 /* Store the control data bits in the message payload and send it. */
2141 unsigned mlen = 2;
2142 if (channel_mask.file != BAD_FILE)
2143 mlen += 4; /* channel masks, plus 3 extra copies of the data */
2144 if (per_slot_offset.file != BAD_FILE)
2145 mlen++;
2146
2147 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2148 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2149 unsigned i = 0;
2150 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2151 if (per_slot_offset.file != BAD_FILE)
2152 sources[i++] = per_slot_offset;
2153 if (channel_mask.file != BAD_FILE)
2154 sources[i++] = channel_mask;
2155 while (i < mlen) {
2156 sources[i++] = this->control_data_bits;
2157 }
2158
2159 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2160 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2161 inst->mlen = mlen;
2162 /* We need to increment Global Offset by 256-bits to make room for
2163 * Broadwell's extra "Vertex Count" payload at the beginning of the
2164 * URB entry. Since this is an OWord message, Global Offset is counted
2165 * in 128-bit units, so we must set it to 2.
2166 */
2167 if (gs_prog_data->static_vertex_count == -1)
2168 inst->offset = 2;
2169 }
2170
2171 void
2172 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2173 unsigned stream_id)
2174 {
2175 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2176
2177 /* Note: we are calling this *before* increasing vertex_count, so
2178 * this->vertex_count == vertex_count - 1 in the formula above.
2179 */
2180
2181 /* Stream mode uses 2 bits per vertex */
2182 assert(gs_compile->control_data_bits_per_vertex == 2);
2183
2184 /* Must be a valid stream */
2185 assert(stream_id < MAX_VERTEX_STREAMS);
2186
2187 /* Control data bits are initialized to 0 so we don't have to set any
2188 * bits when sending vertices to stream 0.
2189 */
2190 if (stream_id == 0)
2191 return;
2192
2193 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2194
2195 /* reg::sid = stream_id */
2196 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2197 abld.MOV(sid, brw_imm_ud(stream_id));
2198
2199 /* reg:shift_count = 2 * (vertex_count - 1) */
2200 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2201 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2202
2203 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2204 * attention to the lower 5 bits of its second source argument, so on this
2205 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2206 * stream_id << ((2 * (vertex_count - 1)) % 32).
2207 */
2208 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2209 abld.SHL(mask, sid, shift_count);
2210 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2211 }
2212
2213 void
2214 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2215 unsigned stream_id)
2216 {
2217 assert(stage == MESA_SHADER_GEOMETRY);
2218
2219 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2220
2221 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2222 vertex_count.type = BRW_REGISTER_TYPE_UD;
2223
2224 /* Haswell and later hardware ignores the "Render Stream Select" bits
2225 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2226 * and instead sends all primitives down the pipeline for rasterization.
2227 * If the SOL stage is enabled, "Render Stream Select" is honored and
2228 * primitives bound to non-zero streams are discarded after stream output.
2229 *
2230 * Since the only purpose of primives sent to non-zero streams is to
2231 * be recorded by transform feedback, we can simply discard all geometry
2232 * bound to these streams when transform feedback is disabled.
2233 */
2234 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2235 return;
2236
2237 /* If we're outputting 32 control data bits or less, then we can wait
2238 * until the shader is over to output them all. Otherwise we need to
2239 * output them as we go. Now is the time to do it, since we're about to
2240 * output the vertex_count'th vertex, so it's guaranteed that the
2241 * control data bits associated with the (vertex_count - 1)th vertex are
2242 * correct.
2243 */
2244 if (gs_compile->control_data_header_size_bits > 32) {
2245 const fs_builder abld =
2246 bld.annotate("emit vertex: emit control data bits");
2247
2248 /* Only emit control data bits if we've finished accumulating a batch
2249 * of 32 bits. This is the case when:
2250 *
2251 * (vertex_count * bits_per_vertex) % 32 == 0
2252 *
2253 * (in other words, when the last 5 bits of vertex_count *
2254 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2255 * integer n (which is always the case, since bits_per_vertex is
2256 * always 1 or 2), this is equivalent to requiring that the last 5-n
2257 * bits of vertex_count are 0:
2258 *
2259 * vertex_count & (2^(5-n) - 1) == 0
2260 *
2261 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2262 * equivalent to:
2263 *
2264 * vertex_count & (32 / bits_per_vertex - 1) == 0
2265 *
2266 * TODO: If vertex_count is an immediate, we could do some of this math
2267 * at compile time...
2268 */
2269 fs_inst *inst =
2270 abld.AND(bld.null_reg_d(), vertex_count,
2271 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2272 inst->conditional_mod = BRW_CONDITIONAL_Z;
2273
2274 abld.IF(BRW_PREDICATE_NORMAL);
2275 /* If vertex_count is 0, then no control data bits have been
2276 * accumulated yet, so we can skip emitting them.
2277 */
2278 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2279 BRW_CONDITIONAL_NEQ);
2280 abld.IF(BRW_PREDICATE_NORMAL);
2281 emit_gs_control_data_bits(vertex_count);
2282 abld.emit(BRW_OPCODE_ENDIF);
2283
2284 /* Reset control_data_bits to 0 so we can start accumulating a new
2285 * batch.
2286 *
2287 * Note: in the case where vertex_count == 0, this neutralizes the
2288 * effect of any call to EndPrimitive() that the shader may have
2289 * made before outputting its first vertex.
2290 */
2291 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2292 inst->force_writemask_all = true;
2293 abld.emit(BRW_OPCODE_ENDIF);
2294 }
2295
2296 emit_urb_writes(vertex_count);
2297
2298 /* In stream mode we have to set control data bits for all vertices
2299 * unless we have disabled control data bits completely (which we do
2300 * do for GL_POINTS outputs that don't use streams).
2301 */
2302 if (gs_compile->control_data_header_size_bits > 0 &&
2303 gs_prog_data->control_data_format ==
2304 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2305 set_gs_stream_control_data_bits(vertex_count, stream_id);
2306 }
2307 }
2308
2309 void
2310 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2311 const nir_src &vertex_src,
2312 unsigned base_offset,
2313 const nir_src &offset_src,
2314 unsigned num_components,
2315 unsigned first_component)
2316 {
2317 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2318 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2319
2320 /* TODO: figure out push input layout for invocations == 1 */
2321 /* TODO: make this work with 64-bit inputs */
2322 if (gs_prog_data->invocations == 1 &&
2323 type_sz(dst.type) <= 4 &&
2324 nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2325 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2326 int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2327 nir_src_as_uint(vertex_src) * push_reg_count;
2328 for (unsigned i = 0; i < num_components; i++) {
2329 bld.MOV(offset(dst, bld, i),
2330 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2331 }
2332 return;
2333 }
2334
2335 /* Resort to the pull model. Ensure the VUE handles are provided. */
2336 assert(gs_prog_data->base.include_vue_handles);
2337
2338 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2339 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2340
2341 if (gs_prog_data->invocations == 1) {
2342 if (nir_src_is_const(vertex_src)) {
2343 /* The vertex index is constant; just select the proper URB handle. */
2344 icp_handle =
2345 retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2346 BRW_REGISTER_TYPE_UD);
2347 } else {
2348 /* The vertex index is non-constant. We need to use indirect
2349 * addressing to fetch the proper URB handle.
2350 *
2351 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2352 * indicating that channel <n> should read the handle from
2353 * DWord <n>. We convert that to bytes by multiplying by 4.
2354 *
2355 * Next, we convert the vertex index to bytes by multiplying
2356 * by 32 (shifting by 5), and add the two together. This is
2357 * the final indirect byte offset.
2358 */
2359 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2360 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2361 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2362 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2363
2364 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2365 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2366 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2367 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2368 /* Convert vertex_index to bytes (multiply by 32) */
2369 bld.SHL(vertex_offset_bytes,
2370 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2371 brw_imm_ud(5u));
2372 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2373
2374 /* Use first_icp_handle as the base offset. There is one register
2375 * of URB handles per vertex, so inform the register allocator that
2376 * we might read up to nir->info.gs.vertices_in registers.
2377 */
2378 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2379 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2380 fs_reg(icp_offset_bytes),
2381 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2382 }
2383 } else {
2384 assert(gs_prog_data->invocations > 1);
2385
2386 if (nir_src_is_const(vertex_src)) {
2387 unsigned vertex = nir_src_as_uint(vertex_src);
2388 assert(devinfo->gen >= 9 || vertex <= 5);
2389 bld.MOV(icp_handle,
2390 retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2391 BRW_REGISTER_TYPE_UD));
2392 } else {
2393 /* The vertex index is non-constant. We need to use indirect
2394 * addressing to fetch the proper URB handle.
2395 *
2396 */
2397 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2398
2399 /* Convert vertex_index to bytes (multiply by 4) */
2400 bld.SHL(icp_offset_bytes,
2401 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2402 brw_imm_ud(2u));
2403
2404 /* Use first_icp_handle as the base offset. There is one DWord
2405 * of URB handles per vertex, so inform the register allocator that
2406 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2407 */
2408 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2409 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2410 fs_reg(icp_offset_bytes),
2411 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2412 REG_SIZE));
2413 }
2414 }
2415
2416 fs_inst *inst;
2417
2418 fs_reg tmp_dst = dst;
2419 fs_reg indirect_offset = get_nir_src(offset_src);
2420 unsigned num_iterations = 1;
2421 unsigned orig_num_components = num_components;
2422
2423 if (type_sz(dst.type) == 8) {
2424 if (num_components > 2) {
2425 num_iterations = 2;
2426 num_components = 2;
2427 }
2428 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2429 tmp_dst = tmp;
2430 first_component = first_component / 2;
2431 }
2432
2433 for (unsigned iter = 0; iter < num_iterations; iter++) {
2434 if (nir_src_is_const(offset_src)) {
2435 /* Constant indexing - use global offset. */
2436 if (first_component != 0) {
2437 unsigned read_components = num_components + first_component;
2438 fs_reg tmp = bld.vgrf(dst.type, read_components);
2439 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2440 inst->size_written = read_components *
2441 tmp.component_size(inst->exec_size);
2442 for (unsigned i = 0; i < num_components; i++) {
2443 bld.MOV(offset(tmp_dst, bld, i),
2444 offset(tmp, bld, i + first_component));
2445 }
2446 } else {
2447 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2448 icp_handle);
2449 inst->size_written = num_components *
2450 tmp_dst.component_size(inst->exec_size);
2451 }
2452 inst->offset = base_offset + nir_src_as_uint(offset_src);
2453 inst->mlen = 1;
2454 } else {
2455 /* Indirect indexing - use per-slot offsets as well. */
2456 const fs_reg srcs[] = { icp_handle, indirect_offset };
2457 unsigned read_components = num_components + first_component;
2458 fs_reg tmp = bld.vgrf(dst.type, read_components);
2459 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2460 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2461 if (first_component != 0) {
2462 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2463 payload);
2464 inst->size_written = read_components *
2465 tmp.component_size(inst->exec_size);
2466 for (unsigned i = 0; i < num_components; i++) {
2467 bld.MOV(offset(tmp_dst, bld, i),
2468 offset(tmp, bld, i + first_component));
2469 }
2470 } else {
2471 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2472 payload);
2473 inst->size_written = num_components *
2474 tmp_dst.component_size(inst->exec_size);
2475 }
2476 inst->offset = base_offset;
2477 inst->mlen = 2;
2478 }
2479
2480 if (type_sz(dst.type) == 8) {
2481 shuffle_from_32bit_read(bld,
2482 offset(dst, bld, iter * 2),
2483 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2484 0,
2485 num_components);
2486 }
2487
2488 if (num_iterations > 1) {
2489 num_components = orig_num_components - 2;
2490 if(nir_src_is_const(offset_src)) {
2491 base_offset++;
2492 } else {
2493 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2494 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2495 indirect_offset = new_indirect;
2496 }
2497 }
2498 }
2499 }
2500
2501 fs_reg
2502 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2503 {
2504 nir_src *offset_src = nir_get_io_offset_src(instr);
2505
2506 if (nir_src_is_const(*offset_src)) {
2507 /* The only constant offset we should find is 0. brw_nir.c's
2508 * add_const_offset_to_base() will fold other constant offsets
2509 * into instr->const_index[0].
2510 */
2511 assert(nir_src_as_uint(*offset_src) == 0);
2512 return fs_reg();
2513 }
2514
2515 return get_nir_src(*offset_src);
2516 }
2517
2518 void
2519 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2520 nir_intrinsic_instr *instr)
2521 {
2522 assert(stage == MESA_SHADER_VERTEX);
2523
2524 fs_reg dest;
2525 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2526 dest = get_nir_dest(instr->dest);
2527
2528 switch (instr->intrinsic) {
2529 case nir_intrinsic_load_vertex_id:
2530 case nir_intrinsic_load_base_vertex:
2531 unreachable("should be lowered by nir_lower_system_values()");
2532
2533 case nir_intrinsic_load_input: {
2534 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2535 unsigned first_component = nir_intrinsic_component(instr);
2536 unsigned num_components = instr->num_components;
2537
2538 src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2539
2540 if (type_sz(dest.type) == 8)
2541 first_component /= 2;
2542
2543 /* For 16-bit support maybe a temporary will be needed to copy from
2544 * the ATTR file.
2545 */
2546 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2547 first_component, num_components);
2548 break;
2549 }
2550
2551 case nir_intrinsic_load_vertex_id_zero_base:
2552 case nir_intrinsic_load_instance_id:
2553 case nir_intrinsic_load_base_instance:
2554 case nir_intrinsic_load_draw_id:
2555 case nir_intrinsic_load_first_vertex:
2556 case nir_intrinsic_load_is_indexed_draw:
2557 unreachable("lowered by brw_nir_lower_vs_inputs");
2558
2559 default:
2560 nir_emit_intrinsic(bld, instr);
2561 break;
2562 }
2563 }
2564
2565 void
2566 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2567 nir_intrinsic_instr *instr)
2568 {
2569 assert(stage == MESA_SHADER_TESS_CTRL);
2570 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2571 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2572
2573 fs_reg dst;
2574 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2575 dst = get_nir_dest(instr->dest);
2576
2577 switch (instr->intrinsic) {
2578 case nir_intrinsic_load_primitive_id:
2579 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2580 break;
2581 case nir_intrinsic_load_invocation_id:
2582 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2583 break;
2584 case nir_intrinsic_load_patch_vertices_in:
2585 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2586 brw_imm_d(tcs_key->input_vertices));
2587 break;
2588
2589 case nir_intrinsic_barrier: {
2590 if (tcs_prog_data->instances == 1)
2591 break;
2592
2593 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2594 fs_reg m0_2 = component(m0, 2);
2595
2596 const fs_builder chanbld = bld.exec_all().group(1, 0);
2597
2598 /* Zero the message header */
2599 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2600
2601 if (devinfo->gen < 11) {
2602 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2603 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2604 brw_imm_ud(INTEL_MASK(16, 13)));
2605
2606 /* Shift it up to bits 27:24. */
2607 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2608 } else {
2609 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2610 brw_imm_ud(INTEL_MASK(30, 24)));
2611 }
2612
2613 /* Set the Barrier Count and the enable bit */
2614 if (devinfo->gen < 11) {
2615 chanbld.OR(m0_2, m0_2,
2616 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2617 } else {
2618 chanbld.OR(m0_2, m0_2,
2619 brw_imm_ud(tcs_prog_data->instances << 8 | (1 << 15)));
2620 }
2621
2622 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2623 break;
2624 }
2625
2626 case nir_intrinsic_load_input:
2627 unreachable("nir_lower_io should never give us these.");
2628 break;
2629
2630 case nir_intrinsic_load_per_vertex_input: {
2631 fs_reg indirect_offset = get_indirect_offset(instr);
2632 unsigned imm_offset = instr->const_index[0];
2633
2634 const nir_src &vertex_src = instr->src[0];
2635
2636 fs_inst *inst;
2637
2638 fs_reg icp_handle;
2639
2640 if (nir_src_is_const(vertex_src)) {
2641 /* Emit a MOV to resolve <0,1,0> regioning. */
2642 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2643 unsigned vertex = nir_src_as_uint(vertex_src);
2644 bld.MOV(icp_handle,
2645 retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2646 BRW_REGISTER_TYPE_UD));
2647 } else if (tcs_prog_data->instances == 1 &&
2648 nir_src_as_intrinsic(vertex_src) != NULL &&
2649 nir_src_as_intrinsic(vertex_src)->intrinsic == nir_intrinsic_load_invocation_id) {
2650 /* For the common case of only 1 instance, an array index of
2651 * gl_InvocationID means reading g1. Skip all the indirect work.
2652 */
2653 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2654 } else {
2655 /* The vertex index is non-constant. We need to use indirect
2656 * addressing to fetch the proper URB handle.
2657 */
2658 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2659
2660 /* Each ICP handle is a single DWord (4 bytes) */
2661 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2662 bld.SHL(vertex_offset_bytes,
2663 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2664 brw_imm_ud(2u));
2665
2666 /* Start at g1. We might read up to 4 registers. */
2667 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2668 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2669 brw_imm_ud(4 * REG_SIZE));
2670 }
2671
2672 /* We can only read two double components with each URB read, so
2673 * we send two read messages in that case, each one loading up to
2674 * two double components.
2675 */
2676 unsigned num_iterations = 1;
2677 unsigned num_components = instr->num_components;
2678 unsigned first_component = nir_intrinsic_component(instr);
2679 fs_reg orig_dst = dst;
2680 if (type_sz(dst.type) == 8) {
2681 first_component = first_component / 2;
2682 if (instr->num_components > 2) {
2683 num_iterations = 2;
2684 num_components = 2;
2685 }
2686
2687 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2688 dst = tmp;
2689 }
2690
2691 for (unsigned iter = 0; iter < num_iterations; iter++) {
2692 if (indirect_offset.file == BAD_FILE) {
2693 /* Constant indexing - use global offset. */
2694 if (first_component != 0) {
2695 unsigned read_components = num_components + first_component;
2696 fs_reg tmp = bld.vgrf(dst.type, read_components);
2697 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2698 for (unsigned i = 0; i < num_components; i++) {
2699 bld.MOV(offset(dst, bld, i),
2700 offset(tmp, bld, i + first_component));
2701 }
2702 } else {
2703 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2704 }
2705 inst->offset = imm_offset;
2706 inst->mlen = 1;
2707 } else {
2708 /* Indirect indexing - use per-slot offsets as well. */
2709 const fs_reg srcs[] = { icp_handle, indirect_offset };
2710 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2711 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2712 if (first_component != 0) {
2713 unsigned read_components = num_components + first_component;
2714 fs_reg tmp = bld.vgrf(dst.type, read_components);
2715 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2716 payload);
2717 for (unsigned i = 0; i < num_components; i++) {
2718 bld.MOV(offset(dst, bld, i),
2719 offset(tmp, bld, i + first_component));
2720 }
2721 } else {
2722 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2723 payload);
2724 }
2725 inst->offset = imm_offset;
2726 inst->mlen = 2;
2727 }
2728 inst->size_written = (num_components + first_component) *
2729 inst->dst.component_size(inst->exec_size);
2730
2731 /* If we are reading 64-bit data using 32-bit read messages we need
2732 * build proper 64-bit data elements by shuffling the low and high
2733 * 32-bit components around like we do for other things like UBOs
2734 * or SSBOs.
2735 */
2736 if (type_sz(dst.type) == 8) {
2737 shuffle_from_32bit_read(bld,
2738 offset(orig_dst, bld, iter * 2),
2739 retype(dst, BRW_REGISTER_TYPE_D),
2740 0, num_components);
2741 }
2742
2743 /* Copy the temporary to the destination to deal with writemasking.
2744 *
2745 * Also attempt to deal with gl_PointSize being in the .w component.
2746 */
2747 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2748 assert(type_sz(dst.type) < 8);
2749 inst->dst = bld.vgrf(dst.type, 4);
2750 inst->size_written = 4 * REG_SIZE;
2751 bld.MOV(dst, offset(inst->dst, bld, 3));
2752 }
2753
2754 /* If we are loading double data and we need a second read message
2755 * adjust the write offset
2756 */
2757 if (num_iterations > 1) {
2758 num_components = instr->num_components - 2;
2759 imm_offset++;
2760 }
2761 }
2762 break;
2763 }
2764
2765 case nir_intrinsic_load_output:
2766 case nir_intrinsic_load_per_vertex_output: {
2767 fs_reg indirect_offset = get_indirect_offset(instr);
2768 unsigned imm_offset = instr->const_index[0];
2769 unsigned first_component = nir_intrinsic_component(instr);
2770
2771 fs_inst *inst;
2772 if (indirect_offset.file == BAD_FILE) {
2773 /* Replicate the patch handle to all enabled channels */
2774 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2775 bld.MOV(patch_handle,
2776 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2777
2778 {
2779 if (first_component != 0) {
2780 unsigned read_components =
2781 instr->num_components + first_component;
2782 fs_reg tmp = bld.vgrf(dst.type, read_components);
2783 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2784 patch_handle);
2785 inst->size_written = read_components * REG_SIZE;
2786 for (unsigned i = 0; i < instr->num_components; i++) {
2787 bld.MOV(offset(dst, bld, i),
2788 offset(tmp, bld, i + first_component));
2789 }
2790 } else {
2791 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2792 patch_handle);
2793 inst->size_written = instr->num_components * REG_SIZE;
2794 }
2795 inst->offset = imm_offset;
2796 inst->mlen = 1;
2797 }
2798 } else {
2799 /* Indirect indexing - use per-slot offsets as well. */
2800 const fs_reg srcs[] = {
2801 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2802 indirect_offset
2803 };
2804 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2805 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2806 if (first_component != 0) {
2807 unsigned read_components =
2808 instr->num_components + first_component;
2809 fs_reg tmp = bld.vgrf(dst.type, read_components);
2810 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2811 payload);
2812 inst->size_written = read_components * REG_SIZE;
2813 for (unsigned i = 0; i < instr->num_components; i++) {
2814 bld.MOV(offset(dst, bld, i),
2815 offset(tmp, bld, i + first_component));
2816 }
2817 } else {
2818 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2819 payload);
2820 inst->size_written = instr->num_components * REG_SIZE;
2821 }
2822 inst->offset = imm_offset;
2823 inst->mlen = 2;
2824 }
2825 break;
2826 }
2827
2828 case nir_intrinsic_store_output:
2829 case nir_intrinsic_store_per_vertex_output: {
2830 fs_reg value = get_nir_src(instr->src[0]);
2831 bool is_64bit = (instr->src[0].is_ssa ?
2832 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2833 fs_reg indirect_offset = get_indirect_offset(instr);
2834 unsigned imm_offset = instr->const_index[0];
2835 unsigned mask = instr->const_index[1];
2836 unsigned header_regs = 0;
2837 fs_reg srcs[7];
2838 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2839
2840 if (indirect_offset.file != BAD_FILE) {
2841 srcs[header_regs++] = indirect_offset;
2842 }
2843
2844 if (mask == 0)
2845 break;
2846
2847 unsigned num_components = util_last_bit(mask);
2848 enum opcode opcode;
2849
2850 /* We can only pack two 64-bit components in a single message, so send
2851 * 2 messages if we have more components
2852 */
2853 unsigned num_iterations = 1;
2854 unsigned iter_components = num_components;
2855 unsigned first_component = nir_intrinsic_component(instr);
2856 if (is_64bit) {
2857 first_component = first_component / 2;
2858 if (instr->num_components > 2) {
2859 num_iterations = 2;
2860 iter_components = 2;
2861 }
2862 }
2863
2864 mask = mask << first_component;
2865
2866 for (unsigned iter = 0; iter < num_iterations; iter++) {
2867 if (!is_64bit && mask != WRITEMASK_XYZW) {
2868 srcs[header_regs++] = brw_imm_ud(mask << 16);
2869 opcode = indirect_offset.file != BAD_FILE ?
2870 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2871 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2872 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2873 /* Expand the 64-bit mask to 32-bit channels. We only handle
2874 * two channels in each iteration, so we only care about X/Y.
2875 */
2876 unsigned mask32 = 0;
2877 if (mask & WRITEMASK_X)
2878 mask32 |= WRITEMASK_XY;
2879 if (mask & WRITEMASK_Y)
2880 mask32 |= WRITEMASK_ZW;
2881
2882 /* If the mask does not include any of the channels X or Y there
2883 * is nothing to do in this iteration. Move on to the next couple
2884 * of 64-bit channels.
2885 */
2886 if (!mask32) {
2887 mask >>= 2;
2888 imm_offset++;
2889 continue;
2890 }
2891
2892 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2893 opcode = indirect_offset.file != BAD_FILE ?
2894 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2895 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2896 } else {
2897 opcode = indirect_offset.file != BAD_FILE ?
2898 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2899 SHADER_OPCODE_URB_WRITE_SIMD8;
2900 }
2901
2902 for (unsigned i = 0; i < iter_components; i++) {
2903 if (!(mask & (1 << (i + first_component))))
2904 continue;
2905
2906 if (!is_64bit) {
2907 srcs[header_regs + i + first_component] = offset(value, bld, i);
2908 } else {
2909 /* We need to shuffle the 64-bit data to match the layout
2910 * expected by our 32-bit URB write messages. We use a temporary
2911 * for that.
2912 */
2913 unsigned channel = iter * 2 + i;
2914 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
2915
2916 srcs[header_regs + (i + first_component) * 2] = dest;
2917 srcs[header_regs + (i + first_component) * 2 + 1] =
2918 offset(dest, bld, 1);
2919 }
2920 }
2921
2922 unsigned mlen =
2923 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2924 (is_64bit ? 2 * first_component : first_component);
2925 fs_reg payload =
2926 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2927 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2928
2929 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2930 inst->offset = imm_offset;
2931 inst->mlen = mlen;
2932
2933 /* If this is a 64-bit attribute, select the next two 64-bit channels
2934 * to be handled in the next iteration.
2935 */
2936 if (is_64bit) {
2937 mask >>= 2;
2938 imm_offset++;
2939 }
2940 }
2941 break;
2942 }
2943
2944 default:
2945 nir_emit_intrinsic(bld, instr);
2946 break;
2947 }
2948 }
2949
2950 void
2951 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2952 nir_intrinsic_instr *instr)
2953 {
2954 assert(stage == MESA_SHADER_TESS_EVAL);
2955 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2956
2957 fs_reg dest;
2958 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2959 dest = get_nir_dest(instr->dest);
2960
2961 switch (instr->intrinsic) {
2962 case nir_intrinsic_load_primitive_id:
2963 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2964 break;
2965 case nir_intrinsic_load_tess_coord:
2966 /* gl_TessCoord is part of the payload in g1-3 */
2967 for (unsigned i = 0; i < 3; i++) {
2968 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2969 }
2970 break;
2971
2972 case nir_intrinsic_load_input:
2973 case nir_intrinsic_load_per_vertex_input: {
2974 fs_reg indirect_offset = get_indirect_offset(instr);
2975 unsigned imm_offset = instr->const_index[0];
2976 unsigned first_component = nir_intrinsic_component(instr);
2977
2978 if (type_sz(dest.type) == 8) {
2979 first_component = first_component / 2;
2980 }
2981
2982 fs_inst *inst;
2983 if (indirect_offset.file == BAD_FILE) {
2984 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2985 * which is 16 registers (since each holds 2 vec4 slots).
2986 */
2987 unsigned slot_count = 1;
2988 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2989 slot_count++;
2990
2991 const unsigned max_push_slots = 32;
2992 if (imm_offset + slot_count <= max_push_slots) {
2993 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2994 for (int i = 0; i < instr->num_components; i++) {
2995 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2996 i + first_component;
2997 bld.MOV(offset(dest, bld, i), component(src, comp));
2998 }
2999
3000 tes_prog_data->base.urb_read_length =
3001 MAX2(tes_prog_data->base.urb_read_length,
3002 DIV_ROUND_UP(imm_offset + slot_count, 2));
3003 } else {
3004 /* Replicate the patch handle to all enabled channels */
3005 const fs_reg srcs[] = {
3006 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
3007 };
3008 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
3009 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
3010
3011 if (first_component != 0) {
3012 unsigned read_components =
3013 instr->num_components + first_component;
3014 fs_reg tmp = bld.vgrf(dest.type, read_components);
3015 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
3016 patch_handle);
3017 inst->size_written = read_components * REG_SIZE;
3018 for (unsigned i = 0; i < instr->num_components; i++) {
3019 bld.MOV(offset(dest, bld, i),
3020 offset(tmp, bld, i + first_component));
3021 }
3022 } else {
3023 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
3024 patch_handle);
3025 inst->size_written = instr->num_components * REG_SIZE;
3026 }
3027 inst->mlen = 1;
3028 inst->offset = imm_offset;
3029 }
3030 } else {
3031 /* Indirect indexing - use per-slot offsets as well. */
3032
3033 /* We can only read two double components with each URB read, so
3034 * we send two read messages in that case, each one loading up to
3035 * two double components.
3036 */
3037 unsigned num_iterations = 1;
3038 unsigned num_components = instr->num_components;
3039 fs_reg orig_dest = dest;
3040 if (type_sz(dest.type) == 8) {
3041 if (instr->num_components > 2) {
3042 num_iterations = 2;
3043 num_components = 2;
3044 }
3045 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
3046 dest = tmp;
3047 }
3048
3049 for (unsigned iter = 0; iter < num_iterations; iter++) {
3050 const fs_reg srcs[] = {
3051 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
3052 indirect_offset
3053 };
3054 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3055 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
3056
3057 if (first_component != 0) {
3058 unsigned read_components =
3059 num_components + first_component;
3060 fs_reg tmp = bld.vgrf(dest.type, read_components);
3061 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
3062 payload);
3063 for (unsigned i = 0; i < num_components; i++) {
3064 bld.MOV(offset(dest, bld, i),
3065 offset(tmp, bld, i + first_component));
3066 }
3067 } else {
3068 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
3069 payload);
3070 }
3071 inst->mlen = 2;
3072 inst->offset = imm_offset;
3073 inst->size_written = (num_components + first_component) *
3074 inst->dst.component_size(inst->exec_size);
3075
3076 /* If we are reading 64-bit data using 32-bit read messages we need
3077 * build proper 64-bit data elements by shuffling the low and high
3078 * 32-bit components around like we do for other things like UBOs
3079 * or SSBOs.
3080 */
3081 if (type_sz(dest.type) == 8) {
3082 shuffle_from_32bit_read(bld,
3083 offset(orig_dest, bld, iter * 2),
3084 retype(dest, BRW_REGISTER_TYPE_D),
3085 0, num_components);
3086 }
3087
3088 /* If we are loading double data and we need a second read message
3089 * adjust the offset
3090 */
3091 if (num_iterations > 1) {
3092 num_components = instr->num_components - 2;
3093 imm_offset++;
3094 }
3095 }
3096 }
3097 break;
3098 }
3099 default:
3100 nir_emit_intrinsic(bld, instr);
3101 break;
3102 }
3103 }
3104
3105 void
3106 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3107 nir_intrinsic_instr *instr)
3108 {
3109 assert(stage == MESA_SHADER_GEOMETRY);
3110 fs_reg indirect_offset;
3111
3112 fs_reg dest;
3113 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3114 dest = get_nir_dest(instr->dest);
3115
3116 switch (instr->intrinsic) {
3117 case nir_intrinsic_load_primitive_id:
3118 assert(stage == MESA_SHADER_GEOMETRY);
3119 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3120 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3121 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3122 break;
3123
3124 case nir_intrinsic_load_input:
3125 unreachable("load_input intrinsics are invalid for the GS stage");
3126
3127 case nir_intrinsic_load_per_vertex_input:
3128 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3129 instr->src[1], instr->num_components,
3130 nir_intrinsic_component(instr));
3131 break;
3132
3133 case nir_intrinsic_emit_vertex_with_counter:
3134 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3135 break;
3136
3137 case nir_intrinsic_end_primitive_with_counter:
3138 emit_gs_end_primitive(instr->src[0]);
3139 break;
3140
3141 case nir_intrinsic_set_vertex_count:
3142 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3143 break;
3144
3145 case nir_intrinsic_load_invocation_id: {
3146 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3147 assert(val.file != BAD_FILE);
3148 dest.type = val.type;
3149 bld.MOV(dest, val);
3150 break;
3151 }
3152
3153 default:
3154 nir_emit_intrinsic(bld, instr);
3155 break;
3156 }
3157 }
3158
3159 /**
3160 * Fetch the current render target layer index.
3161 */
3162 static fs_reg
3163 fetch_render_target_array_index(const fs_builder &bld)
3164 {
3165 if (bld.shader->devinfo->gen >= 6) {
3166 /* The render target array index is provided in the thread payload as
3167 * bits 26:16 of r0.0.
3168 */
3169 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3170 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3171 brw_imm_uw(0x7ff));
3172 return idx;
3173 } else {
3174 /* Pre-SNB we only ever render into the first layer of the framebuffer
3175 * since layered rendering is not implemented.
3176 */
3177 return brw_imm_ud(0);
3178 }
3179 }
3180
3181 /**
3182 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3183 * framebuffer at the current fragment coordinates and sample index.
3184 */
3185 fs_inst *
3186 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3187 unsigned target)
3188 {
3189 const struct gen_device_info *devinfo = bld.shader->devinfo;
3190
3191 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3192 const brw_wm_prog_key *wm_key =
3193 reinterpret_cast<const brw_wm_prog_key *>(key);
3194 assert(!wm_key->coherent_fb_fetch);
3195 const struct brw_wm_prog_data *wm_prog_data =
3196 brw_wm_prog_data(stage_prog_data);
3197
3198 /* Calculate the surface index relative to the start of the texture binding
3199 * table block, since that's what the texturing messages expect.
3200 */
3201 const unsigned surface = target +
3202 wm_prog_data->binding_table.render_target_read_start -
3203 wm_prog_data->base.binding_table.texture_start;
3204
3205 /* Calculate the fragment coordinates. */
3206 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3207 bld.MOV(offset(coords, bld, 0), pixel_x);
3208 bld.MOV(offset(coords, bld, 1), pixel_y);
3209 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3210
3211 /* Calculate the sample index and MCS payload when multisampling. Luckily
3212 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3213 * shouldn't be necessary to recompile based on whether the framebuffer is
3214 * CMS or UMS.
3215 */
3216 if (wm_key->multisample_fbo &&
3217 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3218 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3219
3220 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3221 const fs_reg mcs = wm_key->multisample_fbo ?
3222 emit_mcs_fetch(coords, 3, brw_imm_ud(surface), fs_reg()) : fs_reg();
3223
3224 /* Use either a normal or a CMS texel fetch message depending on whether
3225 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3226 * message just in case the framebuffer uses 16x multisampling, it should
3227 * be equivalent to the normal CMS fetch for lower multisampling modes.
3228 */
3229 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3230 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3231 SHADER_OPCODE_TXF_CMS_LOGICAL;
3232
3233 /* Emit the instruction. */
3234 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3235 srcs[TEX_LOGICAL_SRC_COORDINATE] = coords;
3236 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0);
3237 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample;
3238 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
3239 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3240 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
3241 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
3242 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0);
3243
3244 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3245 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3246
3247 return inst;
3248 }
3249
3250 /**
3251 * Actual coherent framebuffer read implemented using the native render target
3252 * read message. Requires SKL+.
3253 */
3254 static fs_inst *
3255 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3256 {
3257 assert(bld.shader->devinfo->gen >= 9);
3258 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3259 inst->target = target;
3260 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3261
3262 return inst;
3263 }
3264
3265 static fs_reg
3266 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3267 {
3268 if (n && regs[0].file != BAD_FILE) {
3269 return regs[0];
3270
3271 } else {
3272 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3273
3274 for (unsigned i = 0; i < n; i++)
3275 regs[i] = tmp;
3276
3277 return tmp;
3278 }
3279 }
3280
3281 static fs_reg
3282 alloc_frag_output(fs_visitor *v, unsigned location)
3283 {
3284 assert(v->stage == MESA_SHADER_FRAGMENT);
3285 const brw_wm_prog_key *const key =
3286 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3287 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3288 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3289
3290 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3291 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3292
3293 else if (l == FRAG_RESULT_COLOR)
3294 return alloc_temporary(v->bld, 4, v->outputs,
3295 MAX2(key->nr_color_regions, 1));
3296
3297 else if (l == FRAG_RESULT_DEPTH)
3298 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3299
3300 else if (l == FRAG_RESULT_STENCIL)
3301 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3302
3303 else if (l == FRAG_RESULT_SAMPLE_MASK)
3304 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3305
3306 else if (l >= FRAG_RESULT_DATA0 &&
3307 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3308 return alloc_temporary(v->bld, 4,
3309 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3310
3311 else
3312 unreachable("Invalid location");
3313 }
3314
3315 void
3316 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3317 nir_intrinsic_instr *instr)
3318 {
3319 assert(stage == MESA_SHADER_FRAGMENT);
3320
3321 fs_reg dest;
3322 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3323 dest = get_nir_dest(instr->dest);
3324
3325 switch (instr->intrinsic) {
3326 case nir_intrinsic_load_front_face:
3327 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3328 *emit_frontfacing_interpolation());
3329 break;
3330
3331 case nir_intrinsic_load_sample_pos: {
3332 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3333 assert(sample_pos.file != BAD_FILE);
3334 dest.type = sample_pos.type;
3335 bld.MOV(dest, sample_pos);
3336 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3337 break;
3338 }
3339
3340 case nir_intrinsic_load_layer_id:
3341 dest.type = BRW_REGISTER_TYPE_UD;
3342 bld.MOV(dest, fetch_render_target_array_index(bld));
3343 break;
3344
3345 case nir_intrinsic_load_helper_invocation:
3346 case nir_intrinsic_load_sample_mask_in:
3347 case nir_intrinsic_load_sample_id: {
3348 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3349 fs_reg val = nir_system_values[sv];
3350 assert(val.file != BAD_FILE);
3351 dest.type = val.type;
3352 bld.MOV(dest, val);
3353 break;
3354 }
3355
3356 case nir_intrinsic_store_output: {
3357 const fs_reg src = get_nir_src(instr->src[0]);
3358 const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3359 const unsigned location = nir_intrinsic_base(instr) +
3360 SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3361 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3362 src.type);
3363
3364 for (unsigned j = 0; j < instr->num_components; j++)
3365 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3366 offset(src, bld, j));
3367
3368 break;
3369 }
3370
3371 case nir_intrinsic_load_output: {
3372 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3373 BRW_NIR_FRAG_OUTPUT_LOCATION);
3374 assert(l >= FRAG_RESULT_DATA0);
3375 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3376 const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3377 const fs_reg tmp = bld.vgrf(dest.type, 4);
3378
3379 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3380 emit_coherent_fb_read(bld, tmp, target);
3381 else
3382 emit_non_coherent_fb_read(bld, tmp, target);
3383
3384 for (unsigned j = 0; j < instr->num_components; j++) {
3385 bld.MOV(offset(dest, bld, j),
3386 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3387 }
3388
3389 break;
3390 }
3391
3392 case nir_intrinsic_discard:
3393 case nir_intrinsic_discard_if: {
3394 /* We track our discarded pixels in f0.1. By predicating on it, we can
3395 * update just the flag bits that aren't yet discarded. If there's no
3396 * condition, we emit a CMP of g0 != g0, so all currently executing
3397 * channels will get turned off.
3398 */
3399 fs_inst *cmp;
3400 if (instr->intrinsic == nir_intrinsic_discard_if) {
3401 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3402 brw_imm_d(0), BRW_CONDITIONAL_Z);
3403 } else {
3404 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3405 BRW_REGISTER_TYPE_UW));
3406 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3407 }
3408 cmp->predicate = BRW_PREDICATE_NORMAL;
3409 cmp->flag_subreg = 1;
3410
3411 if (devinfo->gen >= 6) {
3412 emit_discard_jump();
3413 }
3414
3415 limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3416 break;
3417 }
3418
3419 case nir_intrinsic_load_input: {
3420 /* load_input is only used for flat inputs */
3421 unsigned base = nir_intrinsic_base(instr);
3422 unsigned comp = nir_intrinsic_component(instr);
3423 unsigned num_components = instr->num_components;
3424 fs_reg orig_dest = dest;
3425 enum brw_reg_type type = dest.type;
3426
3427 /* Special case fields in the VUE header */
3428 if (base == VARYING_SLOT_LAYER)
3429 comp = 1;
3430 else if (base == VARYING_SLOT_VIEWPORT)
3431 comp = 2;
3432
3433 if (nir_dest_bit_size(instr->dest) == 64) {
3434 /* const_index is in 32-bit type size units that could not be aligned
3435 * with DF. We need to read the double vector as if it was a float
3436 * vector of twice the number of components to fetch the right data.
3437 */
3438 type = BRW_REGISTER_TYPE_F;
3439 num_components *= 2;
3440 dest = bld.vgrf(type, num_components);
3441 }
3442
3443 for (unsigned int i = 0; i < num_components; i++) {
3444 bld.MOV(offset(retype(dest, type), bld, i),
3445 retype(component(interp_reg(base, comp + i), 3), type));
3446 }
3447
3448 if (nir_dest_bit_size(instr->dest) == 64) {
3449 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3450 instr->num_components);
3451 }
3452 break;
3453 }
3454
3455 case nir_intrinsic_load_barycentric_pixel:
3456 case nir_intrinsic_load_barycentric_centroid:
3457 case nir_intrinsic_load_barycentric_sample:
3458 /* Do nothing - load_interpolated_input handling will handle it later. */
3459 break;
3460
3461 case nir_intrinsic_load_barycentric_at_sample: {
3462 const glsl_interp_mode interpolation =
3463 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3464
3465 if (nir_src_is_const(instr->src[0])) {
3466 unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3467
3468 emit_pixel_interpolater_send(bld,
3469 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3470 dest,
3471 fs_reg(), /* src */
3472 brw_imm_ud(msg_data),
3473 interpolation);
3474 } else {
3475 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3476 BRW_REGISTER_TYPE_UD);
3477
3478 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3479 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3480 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3481 bld.exec_all().group(1, 0)
3482 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3483 emit_pixel_interpolater_send(bld,
3484 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3485 dest,
3486 fs_reg(), /* src */
3487 msg_data,
3488 interpolation);
3489 } else {
3490 /* Make a loop that sends a message to the pixel interpolater
3491 * for the sample number in each live channel. If there are
3492 * multiple channels with the same sample number then these
3493 * will be handled simultaneously with a single interation of
3494 * the loop.
3495 */
3496 bld.emit(BRW_OPCODE_DO);
3497
3498 /* Get the next live sample number into sample_id_reg */
3499 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3500
3501 /* Set the flag register so that we can perform the send
3502 * message on all channels that have the same sample number
3503 */
3504 bld.CMP(bld.null_reg_ud(),
3505 sample_src, sample_id,
3506 BRW_CONDITIONAL_EQ);
3507 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3508 bld.exec_all().group(1, 0)
3509 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3510 fs_inst *inst =
3511 emit_pixel_interpolater_send(bld,
3512 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3513 dest,
3514 fs_reg(), /* src */
3515 component(msg_data, 0),
3516 interpolation);
3517 set_predicate(BRW_PREDICATE_NORMAL, inst);
3518
3519 /* Continue the loop if there are any live channels left */
3520 set_predicate_inv(BRW_PREDICATE_NORMAL,
3521 true, /* inverse */
3522 bld.emit(BRW_OPCODE_WHILE));
3523 }
3524 }
3525 break;
3526 }
3527
3528 case nir_intrinsic_load_barycentric_at_offset: {
3529 const glsl_interp_mode interpolation =
3530 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3531
3532 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3533
3534 if (const_offset) {
3535 assert(nir_src_bit_size(instr->src[0]) == 32);
3536 unsigned off_x = MIN2((int)(const_offset[0].f32 * 16), 7) & 0xf;
3537 unsigned off_y = MIN2((int)(const_offset[1].f32 * 16), 7) & 0xf;
3538
3539 emit_pixel_interpolater_send(bld,
3540 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3541 dest,
3542 fs_reg(), /* src */
3543 brw_imm_ud(off_x | (off_y << 4)),
3544 interpolation);
3545 } else {
3546 fs_reg src = vgrf(glsl_type::ivec2_type);
3547 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3548 BRW_REGISTER_TYPE_F);
3549 for (int i = 0; i < 2; i++) {
3550 fs_reg temp = vgrf(glsl_type::float_type);
3551 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3552 fs_reg itemp = vgrf(glsl_type::int_type);
3553 /* float to int */
3554 bld.MOV(itemp, temp);
3555
3556 /* Clamp the upper end of the range to +7/16.
3557 * ARB_gpu_shader5 requires that we support a maximum offset
3558 * of +0.5, which isn't representable in a S0.4 value -- if
3559 * we didn't clamp it, we'd end up with -8/16, which is the
3560 * opposite of what the shader author wanted.
3561 *
3562 * This is legal due to ARB_gpu_shader5's quantization
3563 * rules:
3564 *
3565 * "Not all values of <offset> may be supported; x and y
3566 * offsets may be rounded to fixed-point values with the
3567 * number of fraction bits given by the
3568 * implementation-dependent constant
3569 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3570 */
3571 set_condmod(BRW_CONDITIONAL_L,
3572 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3573 }
3574
3575 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3576 emit_pixel_interpolater_send(bld,
3577 opcode,
3578 dest,
3579 src,
3580 brw_imm_ud(0u),
3581 interpolation);
3582 }
3583 break;
3584 }
3585
3586 case nir_intrinsic_load_interpolated_input: {
3587 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3588 emit_fragcoord_interpolation(dest);
3589 break;
3590 }
3591
3592 assert(instr->src[0].ssa &&
3593 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3594 nir_intrinsic_instr *bary_intrinsic =
3595 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3596 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3597 enum glsl_interp_mode interp_mode =
3598 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3599 fs_reg dst_xy;
3600
3601 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3602 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3603 /* Use the result of the PI message */
3604 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3605 } else {
3606 /* Use the delta_xy values computed from the payload */
3607 enum brw_barycentric_mode bary =
3608 brw_barycentric_mode(interp_mode, bary_intrin);
3609
3610 dst_xy = this->delta_xy[bary];
3611 }
3612
3613 for (unsigned int i = 0; i < instr->num_components; i++) {
3614 fs_reg interp =
3615 interp_reg(nir_intrinsic_base(instr),
3616 nir_intrinsic_component(instr) + i);
3617 interp.type = BRW_REGISTER_TYPE_F;
3618 dest.type = BRW_REGISTER_TYPE_F;
3619
3620 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3621 fs_reg tmp = vgrf(glsl_type::float_type);
3622 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3623 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3624 } else {
3625 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3626 }
3627 }
3628 break;
3629 }
3630
3631 default:
3632 nir_emit_intrinsic(bld, instr);
3633 break;
3634 }
3635 }
3636
3637 static int
3638 get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
3639 {
3640 if (nir_src_is_const(instr->src[src])) {
3641 int64_t add_val = nir_src_as_int(instr->src[src]);
3642 if (add_val == 1)
3643 return BRW_AOP_INC;
3644 else if (add_val == -1)
3645 return BRW_AOP_DEC;
3646 }
3647
3648 return BRW_AOP_ADD;
3649 }
3650
3651 void
3652 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3653 nir_intrinsic_instr *instr)
3654 {
3655 assert(stage == MESA_SHADER_COMPUTE);
3656 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3657
3658 fs_reg dest;
3659 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3660 dest = get_nir_dest(instr->dest);
3661
3662 switch (instr->intrinsic) {
3663 case nir_intrinsic_barrier:
3664 emit_barrier();
3665 cs_prog_data->uses_barrier = true;
3666 break;
3667
3668 case nir_intrinsic_load_subgroup_id:
3669 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3670 break;
3671
3672 case nir_intrinsic_load_local_invocation_id:
3673 case nir_intrinsic_load_work_group_id: {
3674 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3675 fs_reg val = nir_system_values[sv];
3676 assert(val.file != BAD_FILE);
3677 dest.type = val.type;
3678 for (unsigned i = 0; i < 3; i++)
3679 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3680 break;
3681 }
3682
3683 case nir_intrinsic_load_num_work_groups: {
3684 const unsigned surface =
3685 cs_prog_data->binding_table.work_groups_start;
3686
3687 cs_prog_data->uses_num_work_groups = true;
3688
3689 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3690 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3691 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3692 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1); /* num components */
3693
3694 /* Read the 3 GLuint components of gl_NumWorkGroups */
3695 for (unsigned i = 0; i < 3; i++) {
3696 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(i << 2);
3697 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3698 offset(dest, bld, i), srcs, SURFACE_LOGICAL_NUM_SRCS);
3699 }
3700 break;
3701 }
3702
3703 case nir_intrinsic_shared_atomic_add:
3704 nir_emit_shared_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
3705 break;
3706 case nir_intrinsic_shared_atomic_imin:
3707 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3708 break;
3709 case nir_intrinsic_shared_atomic_umin:
3710 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3711 break;
3712 case nir_intrinsic_shared_atomic_imax:
3713 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3714 break;
3715 case nir_intrinsic_shared_atomic_umax:
3716 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3717 break;
3718 case nir_intrinsic_shared_atomic_and:
3719 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3720 break;
3721 case nir_intrinsic_shared_atomic_or:
3722 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3723 break;
3724 case nir_intrinsic_shared_atomic_xor:
3725 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3726 break;
3727 case nir_intrinsic_shared_atomic_exchange:
3728 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3729 break;
3730 case nir_intrinsic_shared_atomic_comp_swap:
3731 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3732 break;
3733 case nir_intrinsic_shared_atomic_fmin:
3734 nir_emit_shared_atomic_float(bld, BRW_AOP_FMIN, instr);
3735 break;
3736 case nir_intrinsic_shared_atomic_fmax:
3737 nir_emit_shared_atomic_float(bld, BRW_AOP_FMAX, instr);
3738 break;
3739 case nir_intrinsic_shared_atomic_fcomp_swap:
3740 nir_emit_shared_atomic_float(bld, BRW_AOP_FCMPWR, instr);
3741 break;
3742
3743 case nir_intrinsic_load_shared: {
3744 assert(devinfo->gen >= 7);
3745 assert(stage == MESA_SHADER_COMPUTE);
3746
3747 const unsigned bit_size = nir_dest_bit_size(instr->dest);
3748 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3749 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3750 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
3751 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3752
3753 /* Make dest unsigned because that's what the temporary will be */
3754 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3755
3756 /* Read the vector */
3757 if (nir_intrinsic_align(instr) >= 4) {
3758 assert(nir_dest_bit_size(instr->dest) == 32);
3759 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3760 fs_inst *inst =
3761 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3762 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3763 inst->size_written = instr->num_components * dispatch_width * 4;
3764 } else {
3765 assert(nir_dest_bit_size(instr->dest) <= 32);
3766 assert(nir_dest_num_components(instr->dest) == 1);
3767 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3768
3769 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
3770 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
3771 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
3772 bld.MOV(dest, read_result);
3773 }
3774 break;
3775 }
3776
3777 case nir_intrinsic_store_shared: {
3778 assert(devinfo->gen >= 7);
3779 assert(stage == MESA_SHADER_COMPUTE);
3780
3781 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
3782 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3783 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3784 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3785 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3786
3787 fs_reg data = get_nir_src(instr->src[0]);
3788 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3789
3790 assert(nir_intrinsic_write_mask(instr) ==
3791 (1u << instr->num_components) - 1);
3792 if (nir_intrinsic_align(instr) >= 4) {
3793 assert(nir_src_bit_size(instr->src[0]) == 32);
3794 assert(nir_src_num_components(instr->src[0]) <= 4);
3795 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3796 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3797 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3798 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3799 } else {
3800 assert(nir_src_bit_size(instr->src[0]) <= 32);
3801 assert(nir_src_num_components(instr->src[0]) == 1);
3802 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3803
3804 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3805 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
3806
3807 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
3808 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3809 }
3810 break;
3811 }
3812
3813 default:
3814 nir_emit_intrinsic(bld, instr);
3815 break;
3816 }
3817 }
3818
3819 static fs_reg
3820 brw_nir_reduction_op_identity(const fs_builder &bld,
3821 nir_op op, brw_reg_type type)
3822 {
3823 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3824 switch (type_sz(type)) {
3825 case 2:
3826 assert(type != BRW_REGISTER_TYPE_HF);
3827 return retype(brw_imm_uw(value.u16), type);
3828 case 4:
3829 return retype(brw_imm_ud(value.u32), type);
3830 case 8:
3831 if (type == BRW_REGISTER_TYPE_DF)
3832 return setup_imm_df(bld, value.f64);
3833 else
3834 return retype(brw_imm_u64(value.u64), type);
3835 default:
3836 unreachable("Invalid type size");
3837 }
3838 }
3839
3840 static opcode
3841 brw_op_for_nir_reduction_op(nir_op op)
3842 {
3843 switch (op) {
3844 case nir_op_iadd: return BRW_OPCODE_ADD;
3845 case nir_op_fadd: return BRW_OPCODE_ADD;
3846 case nir_op_imul: return BRW_OPCODE_MUL;
3847 case nir_op_fmul: return BRW_OPCODE_MUL;
3848 case nir_op_imin: return BRW_OPCODE_SEL;
3849 case nir_op_umin: return BRW_OPCODE_SEL;
3850 case nir_op_fmin: return BRW_OPCODE_SEL;
3851 case nir_op_imax: return BRW_OPCODE_SEL;
3852 case nir_op_umax: return BRW_OPCODE_SEL;
3853 case nir_op_fmax: return BRW_OPCODE_SEL;
3854 case nir_op_iand: return BRW_OPCODE_AND;
3855 case nir_op_ior: return BRW_OPCODE_OR;
3856 case nir_op_ixor: return BRW_OPCODE_XOR;
3857 default:
3858 unreachable("Invalid reduction operation");
3859 }
3860 }
3861
3862 static brw_conditional_mod
3863 brw_cond_mod_for_nir_reduction_op(nir_op op)
3864 {
3865 switch (op) {
3866 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3867 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3868 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3869 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3870 case nir_op_imin: return BRW_CONDITIONAL_L;
3871 case nir_op_umin: return BRW_CONDITIONAL_L;
3872 case nir_op_fmin: return BRW_CONDITIONAL_L;
3873 case nir_op_imax: return BRW_CONDITIONAL_GE;
3874 case nir_op_umax: return BRW_CONDITIONAL_GE;
3875 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3876 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3877 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3878 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3879 default:
3880 unreachable("Invalid reduction operation");
3881 }
3882 }
3883
3884 fs_reg
3885 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3886 nir_intrinsic_instr *instr)
3887 {
3888 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3889
3890 if (stage_prog_data->binding_table.image_start > 0) {
3891 if (image.file == BRW_IMMEDIATE_VALUE) {
3892 image.d += stage_prog_data->binding_table.image_start;
3893 } else {
3894 bld.ADD(image, image,
3895 brw_imm_d(stage_prog_data->binding_table.image_start));
3896 }
3897 }
3898
3899 return bld.emit_uniformize(image);
3900 }
3901
3902 fs_reg
3903 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
3904 nir_intrinsic_instr *instr)
3905 {
3906 /* SSBO stores are weird in that their index is in src[1] */
3907 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
3908
3909 fs_reg surf_index;
3910 if (nir_src_is_const(instr->src[src])) {
3911 unsigned index = stage_prog_data->binding_table.ssbo_start +
3912 nir_src_as_uint(instr->src[src]);
3913 surf_index = brw_imm_ud(index);
3914 } else {
3915 surf_index = vgrf(glsl_type::uint_type);
3916 bld.ADD(surf_index, get_nir_src(instr->src[src]),
3917 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3918 }
3919
3920 return bld.emit_uniformize(surf_index);
3921 }
3922
3923 static unsigned
3924 image_intrinsic_coord_components(nir_intrinsic_instr *instr)
3925 {
3926 switch (nir_intrinsic_image_dim(instr)) {
3927 case GLSL_SAMPLER_DIM_1D:
3928 return 1 + nir_intrinsic_image_array(instr);
3929 case GLSL_SAMPLER_DIM_2D:
3930 case GLSL_SAMPLER_DIM_RECT:
3931 return 2 + nir_intrinsic_image_array(instr);
3932 case GLSL_SAMPLER_DIM_3D:
3933 case GLSL_SAMPLER_DIM_CUBE:
3934 return 3;
3935 case GLSL_SAMPLER_DIM_BUF:
3936 return 1;
3937 case GLSL_SAMPLER_DIM_MS:
3938 return 2 + nir_intrinsic_image_array(instr);
3939 default:
3940 unreachable("Invalid image dimension");
3941 }
3942 }
3943
3944 void
3945 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3946 {
3947 fs_reg dest;
3948 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3949 dest = get_nir_dest(instr->dest);
3950
3951 switch (instr->intrinsic) {
3952 case nir_intrinsic_image_load:
3953 case nir_intrinsic_image_store:
3954 case nir_intrinsic_image_atomic_add:
3955 case nir_intrinsic_image_atomic_min:
3956 case nir_intrinsic_image_atomic_max:
3957 case nir_intrinsic_image_atomic_and:
3958 case nir_intrinsic_image_atomic_or:
3959 case nir_intrinsic_image_atomic_xor:
3960 case nir_intrinsic_image_atomic_exchange:
3961 case nir_intrinsic_image_atomic_comp_swap:
3962 case nir_intrinsic_bindless_image_load:
3963 case nir_intrinsic_bindless_image_store:
3964 case nir_intrinsic_bindless_image_atomic_add:
3965 case nir_intrinsic_bindless_image_atomic_min:
3966 case nir_intrinsic_bindless_image_atomic_max:
3967 case nir_intrinsic_bindless_image_atomic_and:
3968 case nir_intrinsic_bindless_image_atomic_or:
3969 case nir_intrinsic_bindless_image_atomic_xor:
3970 case nir_intrinsic_bindless_image_atomic_exchange:
3971 case nir_intrinsic_bindless_image_atomic_comp_swap: {
3972 if (stage == MESA_SHADER_FRAGMENT &&
3973 instr->intrinsic != nir_intrinsic_image_load)
3974 brw_wm_prog_data(prog_data)->has_side_effects = true;
3975
3976 /* Get some metadata from the image intrinsic. */
3977 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3978 const GLenum format = nir_intrinsic_format(instr);
3979
3980 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3981
3982 switch (instr->intrinsic) {
3983 case nir_intrinsic_image_load:
3984 case nir_intrinsic_image_store:
3985 case nir_intrinsic_image_atomic_add:
3986 case nir_intrinsic_image_atomic_min:
3987 case nir_intrinsic_image_atomic_max:
3988 case nir_intrinsic_image_atomic_and:
3989 case nir_intrinsic_image_atomic_or:
3990 case nir_intrinsic_image_atomic_xor:
3991 case nir_intrinsic_image_atomic_exchange:
3992 case nir_intrinsic_image_atomic_comp_swap:
3993 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
3994 get_nir_image_intrinsic_image(bld, instr);
3995 break;
3996
3997 default:
3998 /* Bindless */
3999 srcs[SURFACE_LOGICAL_SRC_SURFACE_HANDLE] =
4000 bld.emit_uniformize(get_nir_src(instr->src[0]));
4001 break;
4002 }
4003
4004 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4005 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
4006 brw_imm_ud(image_intrinsic_coord_components(instr));
4007
4008 /* Emit an image load, store or atomic op. */
4009 if (instr->intrinsic == nir_intrinsic_image_load ||
4010 instr->intrinsic == nir_intrinsic_bindless_image_load) {
4011 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4012 fs_inst *inst =
4013 bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
4014 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4015 inst->size_written = instr->num_components * dispatch_width * 4;
4016 } else if (instr->intrinsic == nir_intrinsic_image_store ||
4017 instr->intrinsic == nir_intrinsic_bindless_image_store) {
4018 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4019 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
4020 bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
4021 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4022 } else {
4023 int op;
4024 unsigned num_srcs = info->num_srcs;
4025
4026 switch (instr->intrinsic) {
4027 case nir_intrinsic_image_atomic_add:
4028 case nir_intrinsic_bindless_image_atomic_add:
4029 assert(num_srcs == 4);
4030
4031 op = get_op_for_atomic_add(instr, 3);
4032
4033 if (op != BRW_AOP_ADD)
4034 num_srcs = 3;
4035 break;
4036 case nir_intrinsic_image_atomic_min:
4037 case nir_intrinsic_bindless_image_atomic_min:
4038 assert(format == GL_R32UI || format == GL_R32I);
4039 op = (format == GL_R32I) ? BRW_AOP_IMIN : BRW_AOP_UMIN;
4040 break;
4041 case nir_intrinsic_image_atomic_max:
4042 case nir_intrinsic_bindless_image_atomic_max:
4043 assert(format == GL_R32UI || format == GL_R32I);
4044 op = (format == GL_R32I) ? BRW_AOP_IMAX : BRW_AOP_UMAX;
4045 break;
4046 case nir_intrinsic_image_atomic_and:
4047 case nir_intrinsic_bindless_image_atomic_and:
4048 op = BRW_AOP_AND;
4049 break;
4050 case nir_intrinsic_image_atomic_or:
4051 case nir_intrinsic_bindless_image_atomic_or:
4052 op = BRW_AOP_OR;
4053 break;
4054 case nir_intrinsic_image_atomic_xor:
4055 case nir_intrinsic_bindless_image_atomic_xor:
4056 op = BRW_AOP_XOR;
4057 break;
4058 case nir_intrinsic_image_atomic_exchange:
4059 case nir_intrinsic_bindless_image_atomic_exchange:
4060 op = BRW_AOP_MOV;
4061 break;
4062 case nir_intrinsic_image_atomic_comp_swap:
4063 case nir_intrinsic_bindless_image_atomic_comp_swap:
4064 op = BRW_AOP_CMPWR;
4065 break;
4066 default:
4067 unreachable("Not reachable.");
4068 }
4069
4070 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4071
4072 fs_reg data;
4073 if (num_srcs >= 4)
4074 data = get_nir_src(instr->src[3]);
4075 if (num_srcs >= 5) {
4076 fs_reg tmp = bld.vgrf(data.type, 2);
4077 fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
4078 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4079 data = tmp;
4080 }
4081 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4082
4083 bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
4084 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4085 }
4086 break;
4087 }
4088
4089 case nir_intrinsic_image_size:
4090 case nir_intrinsic_bindless_image_size: {
4091 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
4092 * into will handle the binding table index for us in the geneerator.
4093 * Incidentally, this means that we can handle bindless with exactly the
4094 * same code.
4095 */
4096 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
4097 BRW_REGISTER_TYPE_UD);
4098 image = bld.emit_uniformize(image);
4099
4100 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4101 if (instr->intrinsic == nir_intrinsic_image_size)
4102 srcs[TEX_LOGICAL_SRC_SURFACE] = image;
4103 else
4104 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = image;
4105 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
4106 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
4107 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
4108
4109 /* Since the image size is always uniform, we can just emit a SIMD8
4110 * query instruction and splat the result out.
4111 */
4112 const fs_builder ubld = bld.exec_all().group(8, 0);
4113
4114 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4115 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
4116 tmp, srcs, ARRAY_SIZE(srcs));
4117 inst->size_written = 4 * REG_SIZE;
4118
4119 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
4120 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
4121 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
4122 offset(retype(dest, tmp.type), bld, c),
4123 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
4124 } else {
4125 bld.MOV(offset(retype(dest, tmp.type), bld, c),
4126 component(offset(tmp, ubld, c), 0));
4127 }
4128 }
4129 break;
4130 }
4131
4132 case nir_intrinsic_image_load_raw_intel: {
4133 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4134 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4135 get_nir_image_intrinsic_image(bld, instr);
4136 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4137 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4138 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4139
4140 fs_inst *inst =
4141 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4142 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4143 inst->size_written = instr->num_components * dispatch_width * 4;
4144 break;
4145 }
4146
4147 case nir_intrinsic_image_store_raw_intel: {
4148 if (stage == MESA_SHADER_FRAGMENT)
4149 brw_wm_prog_data(prog_data)->has_side_effects = true;
4150
4151 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4152 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4153 get_nir_image_intrinsic_image(bld, instr);
4154 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4155 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
4156 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4157 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4158
4159 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4160 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4161 break;
4162 }
4163
4164 case nir_intrinsic_group_memory_barrier:
4165 case nir_intrinsic_memory_barrier_shared:
4166 case nir_intrinsic_memory_barrier_atomic_counter:
4167 case nir_intrinsic_memory_barrier_buffer:
4168 case nir_intrinsic_memory_barrier_image:
4169 case nir_intrinsic_memory_barrier: {
4170 const fs_builder ubld = bld.group(8, 0);
4171 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4172 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
4173 ->size_written = 2 * REG_SIZE;
4174 break;
4175 }
4176
4177 case nir_intrinsic_shader_clock: {
4178 /* We cannot do anything if there is an event, so ignore it for now */
4179 const fs_reg shader_clock = get_timestamp(bld);
4180 const fs_reg srcs[] = { component(shader_clock, 0),
4181 component(shader_clock, 1) };
4182 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
4183 break;
4184 }
4185
4186 case nir_intrinsic_image_samples:
4187 /* The driver does not support multi-sampled images. */
4188 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4189 break;
4190
4191 case nir_intrinsic_load_uniform: {
4192 /* Offsets are in bytes but they should always aligned to
4193 * the type size
4194 */
4195 assert(instr->const_index[0] % 4 == 0 ||
4196 instr->const_index[0] % type_sz(dest.type) == 0);
4197
4198 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4199
4200 if (nir_src_is_const(instr->src[0])) {
4201 unsigned load_offset = nir_src_as_uint(instr->src[0]);
4202 assert(load_offset % type_sz(dest.type) == 0);
4203 /* For 16-bit types we add the module of the const_index[0]
4204 * offset to access to not 32-bit aligned element
4205 */
4206 src.offset = load_offset + instr->const_index[0] % 4;
4207
4208 for (unsigned j = 0; j < instr->num_components; j++) {
4209 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4210 }
4211 } else {
4212 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4213 BRW_REGISTER_TYPE_UD);
4214
4215 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4216 * go past the end of the uniform. In order to keep the n'th
4217 * component from running past, we subtract off the size of all but
4218 * one component of the vector.
4219 */
4220 assert(instr->const_index[1] >=
4221 instr->num_components * (int) type_sz(dest.type));
4222 unsigned read_size = instr->const_index[1] -
4223 (instr->num_components - 1) * type_sz(dest.type);
4224
4225 bool supports_64bit_indirects =
4226 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4227
4228 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4229 for (unsigned j = 0; j < instr->num_components; j++) {
4230 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4231 offset(dest, bld, j), offset(src, bld, j),
4232 indirect, brw_imm_ud(read_size));
4233 }
4234 } else {
4235 const unsigned num_mov_indirects =
4236 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4237 /* We read a little bit less per MOV INDIRECT, as they are now
4238 * 32-bits ones instead of 64-bit. Fix read_size then.
4239 */
4240 const unsigned read_size_32bit = read_size -
4241 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4242 for (unsigned j = 0; j < instr->num_components; j++) {
4243 for (unsigned i = 0; i < num_mov_indirects; i++) {
4244 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4245 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4246 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4247 indirect, brw_imm_ud(read_size_32bit));
4248 }
4249 }
4250 }
4251 }
4252 break;
4253 }
4254
4255 case nir_intrinsic_load_ubo: {
4256 fs_reg surf_index;
4257 if (nir_src_is_const(instr->src[0])) {
4258 const unsigned index = stage_prog_data->binding_table.ubo_start +
4259 nir_src_as_uint(instr->src[0]);
4260 surf_index = brw_imm_ud(index);
4261 } else {
4262 /* The block index is not a constant. Evaluate the index expression
4263 * per-channel and add the base UBO index; we have to select a value
4264 * from any live channel.
4265 */
4266 surf_index = vgrf(glsl_type::uint_type);
4267 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4268 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4269 surf_index = bld.emit_uniformize(surf_index);
4270 }
4271
4272 if (!nir_src_is_const(instr->src[1])) {
4273 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4274 BRW_REGISTER_TYPE_UD);
4275
4276 for (int i = 0; i < instr->num_components; i++)
4277 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4278 base_offset, i * type_sz(dest.type));
4279 } else {
4280 /* Even if we are loading doubles, a pull constant load will load
4281 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4282 * need to load a full dvec4 we will have to emit 2 loads. This is
4283 * similar to demote_pull_constants(), except that in that case we
4284 * see individual accesses to each component of the vector and then
4285 * we let CSE deal with duplicate loads. Here we see a vector access
4286 * and we have to split it if necessary.
4287 */
4288 const unsigned type_size = type_sz(dest.type);
4289 const unsigned load_offset = nir_src_as_uint(instr->src[1]);
4290
4291 /* See if we've selected this as a push constant candidate */
4292 if (nir_src_is_const(instr->src[0])) {
4293 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
4294 const unsigned offset_256b = load_offset / 32;
4295
4296 fs_reg push_reg;
4297 for (int i = 0; i < 4; i++) {
4298 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4299 if (range->block == ubo_block &&
4300 offset_256b >= range->start &&
4301 offset_256b < range->start + range->length) {
4302
4303 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4304 push_reg.offset = load_offset - 32 * range->start;
4305 break;
4306 }
4307 }
4308
4309 if (push_reg.file != BAD_FILE) {
4310 for (unsigned i = 0; i < instr->num_components; i++) {
4311 bld.MOV(offset(dest, bld, i),
4312 byte_offset(push_reg, i * type_size));
4313 }
4314 break;
4315 }
4316 }
4317
4318 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4319 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4320 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4321
4322 for (unsigned c = 0; c < instr->num_components;) {
4323 const unsigned base = load_offset + c * type_size;
4324 /* Number of usable components in the next block-aligned load. */
4325 const unsigned count = MIN2(instr->num_components - c,
4326 (block_sz - base % block_sz) / type_size);
4327
4328 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4329 packed_consts, surf_index,
4330 brw_imm_ud(base & ~(block_sz - 1)));
4331
4332 const fs_reg consts =
4333 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4334 dest.type);
4335
4336 for (unsigned d = 0; d < count; d++)
4337 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4338
4339 c += count;
4340 }
4341 }
4342 break;
4343 }
4344
4345 case nir_intrinsic_load_global: {
4346 assert(devinfo->gen >= 8);
4347
4348 if (nir_intrinsic_align(instr) >= 4) {
4349 assert(nir_dest_bit_size(instr->dest) == 32);
4350 fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
4351 dest,
4352 get_nir_src(instr->src[0]), /* Address */
4353 fs_reg(), /* No source data */
4354 brw_imm_ud(instr->num_components));
4355 inst->size_written = instr->num_components *
4356 inst->dst.component_size(inst->exec_size);
4357 } else {
4358 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4359 assert(bit_size <= 32);
4360 assert(nir_dest_num_components(instr->dest) == 1);
4361 brw_reg_type data_type =
4362 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4363 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4364 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
4365 tmp,
4366 get_nir_src(instr->src[0]), /* Address */
4367 fs_reg(), /* No source data */
4368 brw_imm_ud(bit_size));
4369 bld.MOV(retype(dest, data_type), tmp);
4370 }
4371 break;
4372 }
4373
4374 case nir_intrinsic_store_global:
4375 assert(devinfo->gen >= 8);
4376
4377 if (stage == MESA_SHADER_FRAGMENT)
4378 brw_wm_prog_data(prog_data)->has_side_effects = true;
4379
4380 if (nir_intrinsic_align(instr) >= 4) {
4381 assert(nir_src_bit_size(instr->src[0]) == 32);
4382 bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4383 fs_reg(),
4384 get_nir_src(instr->src[1]), /* Address */
4385 get_nir_src(instr->src[0]), /* Data */
4386 brw_imm_ud(instr->num_components));
4387 } else {
4388 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4389 assert(bit_size <= 32);
4390 assert(nir_src_num_components(instr->src[0]) == 1);
4391 brw_reg_type data_type =
4392 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4393 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4394 bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4395 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4396 fs_reg(),
4397 get_nir_src(instr->src[1]), /* Address */
4398 tmp, /* Data */
4399 brw_imm_ud(nir_src_bit_size(instr->src[0])));
4400 }
4401 break;
4402
4403 case nir_intrinsic_global_atomic_add:
4404 nir_emit_global_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
4405 break;
4406 case nir_intrinsic_global_atomic_imin:
4407 nir_emit_global_atomic(bld, BRW_AOP_IMIN, instr);
4408 break;
4409 case nir_intrinsic_global_atomic_umin:
4410 nir_emit_global_atomic(bld, BRW_AOP_UMIN, instr);
4411 break;
4412 case nir_intrinsic_global_atomic_imax:
4413 nir_emit_global_atomic(bld, BRW_AOP_IMAX, instr);
4414 break;
4415 case nir_intrinsic_global_atomic_umax:
4416 nir_emit_global_atomic(bld, BRW_AOP_UMAX, instr);
4417 break;
4418 case nir_intrinsic_global_atomic_and:
4419 nir_emit_global_atomic(bld, BRW_AOP_AND, instr);
4420 break;
4421 case nir_intrinsic_global_atomic_or:
4422 nir_emit_global_atomic(bld, BRW_AOP_OR, instr);
4423 break;
4424 case nir_intrinsic_global_atomic_xor:
4425 nir_emit_global_atomic(bld, BRW_AOP_XOR, instr);
4426 break;
4427 case nir_intrinsic_global_atomic_exchange:
4428 nir_emit_global_atomic(bld, BRW_AOP_MOV, instr);
4429 break;
4430 case nir_intrinsic_global_atomic_comp_swap:
4431 nir_emit_global_atomic(bld, BRW_AOP_CMPWR, instr);
4432 break;
4433 case nir_intrinsic_global_atomic_fmin:
4434 nir_emit_global_atomic_float(bld, BRW_AOP_FMIN, instr);
4435 break;
4436 case nir_intrinsic_global_atomic_fmax:
4437 nir_emit_global_atomic_float(bld, BRW_AOP_FMAX, instr);
4438 break;
4439 case nir_intrinsic_global_atomic_fcomp_swap:
4440 nir_emit_global_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4441 break;
4442
4443 case nir_intrinsic_load_ssbo: {
4444 assert(devinfo->gen >= 7);
4445
4446 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4447 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4448 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4449 get_nir_ssbo_intrinsic_index(bld, instr);
4450 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4451 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4452
4453 /* Make dest unsigned because that's what the temporary will be */
4454 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4455
4456 /* Read the vector */
4457 if (nir_intrinsic_align(instr) >= 4) {
4458 assert(nir_dest_bit_size(instr->dest) == 32);
4459 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4460 fs_inst *inst =
4461 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4462 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4463 inst->size_written = instr->num_components * dispatch_width * 4;
4464 } else {
4465 assert(nir_dest_bit_size(instr->dest) <= 32);
4466 assert(nir_dest_num_components(instr->dest) == 1);
4467 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4468
4469 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4470 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4471 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4472 bld.MOV(dest, read_result);
4473 }
4474 break;
4475 }
4476
4477 case nir_intrinsic_store_ssbo: {
4478 assert(devinfo->gen >= 7);
4479
4480 if (stage == MESA_SHADER_FRAGMENT)
4481 brw_wm_prog_data(prog_data)->has_side_effects = true;
4482
4483 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4484 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4485 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4486 get_nir_ssbo_intrinsic_index(bld, instr);
4487 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4488 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4489
4490 fs_reg data = get_nir_src(instr->src[0]);
4491 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4492
4493 assert(nir_intrinsic_write_mask(instr) ==
4494 (1u << instr->num_components) - 1);
4495 if (nir_intrinsic_align(instr) >= 4) {
4496 assert(nir_src_bit_size(instr->src[0]) == 32);
4497 assert(nir_src_num_components(instr->src[0]) <= 4);
4498 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4499 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4500 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4501 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4502 } else {
4503 assert(nir_src_bit_size(instr->src[0]) <= 32);
4504 assert(nir_src_num_components(instr->src[0]) == 1);
4505 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4506
4507 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4508 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4509
4510 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4511 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4512 }
4513 break;
4514 }
4515
4516 case nir_intrinsic_store_output: {
4517 fs_reg src = get_nir_src(instr->src[0]);
4518
4519 unsigned store_offset = nir_src_as_uint(instr->src[1]);
4520 unsigned num_components = instr->num_components;
4521 unsigned first_component = nir_intrinsic_component(instr);
4522 if (nir_src_bit_size(instr->src[0]) == 64) {
4523 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4524 num_components *= 2;
4525 }
4526
4527 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4528 4 * store_offset), src.type);
4529 for (unsigned j = 0; j < num_components; j++) {
4530 bld.MOV(offset(new_dest, bld, j + first_component),
4531 offset(src, bld, j));
4532 }
4533 break;
4534 }
4535
4536 case nir_intrinsic_ssbo_atomic_add:
4537 nir_emit_ssbo_atomic(bld, get_op_for_atomic_add(instr, 2), instr);
4538 break;
4539 case nir_intrinsic_ssbo_atomic_imin:
4540 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4541 break;
4542 case nir_intrinsic_ssbo_atomic_umin:
4543 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4544 break;
4545 case nir_intrinsic_ssbo_atomic_imax:
4546 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4547 break;
4548 case nir_intrinsic_ssbo_atomic_umax:
4549 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4550 break;
4551 case nir_intrinsic_ssbo_atomic_and:
4552 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4553 break;
4554 case nir_intrinsic_ssbo_atomic_or:
4555 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4556 break;
4557 case nir_intrinsic_ssbo_atomic_xor:
4558 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4559 break;
4560 case nir_intrinsic_ssbo_atomic_exchange:
4561 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4562 break;
4563 case nir_intrinsic_ssbo_atomic_comp_swap:
4564 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4565 break;
4566 case nir_intrinsic_ssbo_atomic_fmin:
4567 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMIN, instr);
4568 break;
4569 case nir_intrinsic_ssbo_atomic_fmax:
4570 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMAX, instr);
4571 break;
4572 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4573 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4574 break;
4575
4576 case nir_intrinsic_get_buffer_size: {
4577 assert(nir_src_num_components(instr->src[0]) == 1);
4578 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
4579 nir_src_as_uint(instr->src[0]) : 0;
4580
4581 /* A resinfo's sampler message is used to get the buffer size. The
4582 * SIMD8's writeback message consists of four registers and SIMD16's
4583 * writeback message consists of 8 destination registers (two per each
4584 * component). Because we are only interested on the first channel of
4585 * the first returned component, where resinfo returns the buffer size
4586 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4587 * the dispatch width.
4588 */
4589 const fs_builder ubld = bld.exec_all().group(8, 0);
4590 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4591 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4592
4593 /* Set LOD = 0 */
4594 ubld.MOV(src_payload, brw_imm_d(0));
4595
4596 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4597 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4598 src_payload, brw_imm_ud(index));
4599 inst->header_size = 0;
4600 inst->mlen = 1;
4601 inst->size_written = 4 * REG_SIZE;
4602
4603 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4604 *
4605 * "Out-of-bounds checking is always performed at a DWord granularity. If
4606 * any part of the DWord is out-of-bounds then the whole DWord is
4607 * considered out-of-bounds."
4608 *
4609 * This implies that types with size smaller than 4-bytes need to be
4610 * padded if they don't complete the last dword of the buffer. But as we
4611 * need to maintain the original size we need to reverse the padding
4612 * calculation to return the correct size to know the number of elements
4613 * of an unsized array. As we stored in the last two bits of the surface
4614 * size the needed padding for the buffer, we calculate here the
4615 * original buffer_size reversing the surface_size calculation:
4616 *
4617 * surface_size = isl_align(buffer_size, 4) +
4618 * (isl_align(buffer_size) - buffer_size)
4619 *
4620 * buffer_size = surface_size & ~3 - surface_size & 3
4621 */
4622
4623 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4624 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4625 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4626
4627 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4628 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4629 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4630
4631 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4632 break;
4633 }
4634
4635 case nir_intrinsic_load_subgroup_invocation:
4636 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4637 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4638 break;
4639
4640 case nir_intrinsic_load_subgroup_eq_mask:
4641 case nir_intrinsic_load_subgroup_ge_mask:
4642 case nir_intrinsic_load_subgroup_gt_mask:
4643 case nir_intrinsic_load_subgroup_le_mask:
4644 case nir_intrinsic_load_subgroup_lt_mask:
4645 unreachable("not reached");
4646
4647 case nir_intrinsic_vote_any: {
4648 const fs_builder ubld = bld.exec_all().group(1, 0);
4649
4650 /* The any/all predicates do not consider channel enables. To prevent
4651 * dead channels from affecting the result, we initialize the flag with
4652 * with the identity value for the logical operation.
4653 */
4654 if (dispatch_width == 32) {
4655 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4656 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4657 brw_imm_ud(0));
4658 } else {
4659 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4660 }
4661 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4662
4663 /* For some reason, the any/all predicates don't work properly with
4664 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4665 * doesn't read the correct subset of the flag register and you end up
4666 * getting garbage in the second half. Work around this by using a pair
4667 * of 1-wide MOVs and scattering the result.
4668 */
4669 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4670 ubld.MOV(res1, brw_imm_d(0));
4671 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4672 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4673 BRW_PREDICATE_ALIGN1_ANY32H,
4674 ubld.MOV(res1, brw_imm_d(-1)));
4675
4676 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4677 break;
4678 }
4679 case nir_intrinsic_vote_all: {
4680 const fs_builder ubld = bld.exec_all().group(1, 0);
4681
4682 /* The any/all predicates do not consider channel enables. To prevent
4683 * dead channels from affecting the result, we initialize the flag with
4684 * with the identity value for the logical operation.
4685 */
4686 if (dispatch_width == 32) {
4687 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4688 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4689 brw_imm_ud(0xffffffff));
4690 } else {
4691 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4692 }
4693 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4694
4695 /* For some reason, the any/all predicates don't work properly with
4696 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4697 * doesn't read the correct subset of the flag register and you end up
4698 * getting garbage in the second half. Work around this by using a pair
4699 * of 1-wide MOVs and scattering the result.
4700 */
4701 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4702 ubld.MOV(res1, brw_imm_d(0));
4703 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4704 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4705 BRW_PREDICATE_ALIGN1_ALL32H,
4706 ubld.MOV(res1, brw_imm_d(-1)));
4707
4708 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4709 break;
4710 }
4711 case nir_intrinsic_vote_feq:
4712 case nir_intrinsic_vote_ieq: {
4713 fs_reg value = get_nir_src(instr->src[0]);
4714 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4715 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4716 value.type = bit_size == 8 ? BRW_REGISTER_TYPE_B :
4717 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4718 }
4719
4720 fs_reg uniformized = bld.emit_uniformize(value);
4721 const fs_builder ubld = bld.exec_all().group(1, 0);
4722
4723 /* The any/all predicates do not consider channel enables. To prevent
4724 * dead channels from affecting the result, we initialize the flag with
4725 * with the identity value for the logical operation.
4726 */
4727 if (dispatch_width == 32) {
4728 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4729 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4730 brw_imm_ud(0xffffffff));
4731 } else {
4732 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4733 }
4734 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4735
4736 /* For some reason, the any/all predicates don't work properly with
4737 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4738 * doesn't read the correct subset of the flag register and you end up
4739 * getting garbage in the second half. Work around this by using a pair
4740 * of 1-wide MOVs and scattering the result.
4741 */
4742 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4743 ubld.MOV(res1, brw_imm_d(0));
4744 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4745 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4746 BRW_PREDICATE_ALIGN1_ALL32H,
4747 ubld.MOV(res1, brw_imm_d(-1)));
4748
4749 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4750 break;
4751 }
4752
4753 case nir_intrinsic_ballot: {
4754 const fs_reg value = retype(get_nir_src(instr->src[0]),
4755 BRW_REGISTER_TYPE_UD);
4756 struct brw_reg flag = brw_flag_reg(0, 0);
4757 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4758 * as f0.0. This is a problem for fragment programs as we currently use
4759 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4760 * programs yet so this isn't a problem. When we do, something will
4761 * have to change.
4762 */
4763 if (dispatch_width == 32)
4764 flag.type = BRW_REGISTER_TYPE_UD;
4765
4766 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4767 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4768
4769 if (instr->dest.ssa.bit_size > 32) {
4770 dest.type = BRW_REGISTER_TYPE_UQ;
4771 } else {
4772 dest.type = BRW_REGISTER_TYPE_UD;
4773 }
4774 bld.MOV(dest, flag);
4775 break;
4776 }
4777
4778 case nir_intrinsic_read_invocation: {
4779 const fs_reg value = get_nir_src(instr->src[0]);
4780 const fs_reg invocation = get_nir_src(instr->src[1]);
4781 fs_reg tmp = bld.vgrf(value.type);
4782
4783 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4784 bld.emit_uniformize(invocation));
4785
4786 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4787 break;
4788 }
4789
4790 case nir_intrinsic_read_first_invocation: {
4791 const fs_reg value = get_nir_src(instr->src[0]);
4792 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4793 break;
4794 }
4795
4796 case nir_intrinsic_shuffle: {
4797 const fs_reg value = get_nir_src(instr->src[0]);
4798 const fs_reg index = get_nir_src(instr->src[1]);
4799
4800 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4801 break;
4802 }
4803
4804 case nir_intrinsic_first_invocation: {
4805 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4806 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4807 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4808 fs_reg(component(tmp, 0)));
4809 break;
4810 }
4811
4812 case nir_intrinsic_quad_broadcast: {
4813 const fs_reg value = get_nir_src(instr->src[0]);
4814 const unsigned index = nir_src_as_uint(instr->src[1]);
4815
4816 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4817 value, brw_imm_ud(index), brw_imm_ud(4));
4818 break;
4819 }
4820
4821 case nir_intrinsic_quad_swap_horizontal: {
4822 const fs_reg value = get_nir_src(instr->src[0]);
4823 const fs_reg tmp = bld.vgrf(value.type);
4824 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4825
4826 const fs_reg src_left = horiz_stride(value, 2);
4827 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4828 const fs_reg tmp_left = horiz_stride(tmp, 2);
4829 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4830
4831 ubld.MOV(tmp_left, src_right);
4832 ubld.MOV(tmp_right, src_left);
4833
4834 bld.MOV(retype(dest, value.type), tmp);
4835 break;
4836 }
4837
4838 case nir_intrinsic_quad_swap_vertical: {
4839 const fs_reg value = get_nir_src(instr->src[0]);
4840 if (nir_src_bit_size(instr->src[0]) == 32) {
4841 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4842 const fs_reg tmp = bld.vgrf(value.type);
4843 const fs_builder ubld = bld.exec_all();
4844 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4845 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4846 bld.MOV(retype(dest, value.type), tmp);
4847 } else {
4848 /* For larger data types, we have to either emit dispatch_width many
4849 * MOVs or else fall back to doing indirects.
4850 */
4851 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4852 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4853 brw_imm_w(0x2));
4854 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4855 }
4856 break;
4857 }
4858
4859 case nir_intrinsic_quad_swap_diagonal: {
4860 const fs_reg value = get_nir_src(instr->src[0]);
4861 if (nir_src_bit_size(instr->src[0]) == 32) {
4862 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4863 const fs_reg tmp = bld.vgrf(value.type);
4864 const fs_builder ubld = bld.exec_all();
4865 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4866 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4867 bld.MOV(retype(dest, value.type), tmp);
4868 } else {
4869 /* For larger data types, we have to either emit dispatch_width many
4870 * MOVs or else fall back to doing indirects.
4871 */
4872 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4873 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4874 brw_imm_w(0x3));
4875 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4876 }
4877 break;
4878 }
4879
4880 case nir_intrinsic_reduce: {
4881 fs_reg src = get_nir_src(instr->src[0]);
4882 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4883 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4884 if (cluster_size == 0 || cluster_size > dispatch_width)
4885 cluster_size = dispatch_width;
4886
4887 /* Figure out the source type */
4888 src.type = brw_type_for_nir_type(devinfo,
4889 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4890 nir_src_bit_size(instr->src[0])));
4891
4892 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4893 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4894 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4895
4896 /* Set up a register for all of our scratching around and initialize it
4897 * to reduction operation's identity value.
4898 */
4899 fs_reg scan = bld.vgrf(src.type);
4900 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4901
4902 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4903
4904 dest.type = src.type;
4905 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4906 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4907 * the distance between clusters is at least 2 GRFs. In this case,
4908 * we don't need the weird striding of the CLUSTER_BROADCAST
4909 * instruction and can just do regular MOVs.
4910 */
4911 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4912 const unsigned groups =
4913 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4914 const unsigned group_size = dispatch_width / groups;
4915 for (unsigned i = 0; i < groups; i++) {
4916 const unsigned cluster = (i * group_size) / cluster_size;
4917 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4918 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4919 component(scan, comp));
4920 }
4921 } else {
4922 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4923 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4924 }
4925 break;
4926 }
4927
4928 case nir_intrinsic_inclusive_scan:
4929 case nir_intrinsic_exclusive_scan: {
4930 fs_reg src = get_nir_src(instr->src[0]);
4931 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4932
4933 /* Figure out the source type */
4934 src.type = brw_type_for_nir_type(devinfo,
4935 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4936 nir_src_bit_size(instr->src[0])));
4937
4938 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4939 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4940 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4941
4942 /* Set up a register for all of our scratching around and initialize it
4943 * to reduction operation's identity value.
4944 */
4945 fs_reg scan = bld.vgrf(src.type);
4946 const fs_builder allbld = bld.exec_all();
4947 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4948
4949 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4950 /* Exclusive scan is a bit harder because we have to do an annoying
4951 * shift of the contents before we can begin. To make things worse,
4952 * we can't do this with a normal stride; we have to use indirects.
4953 */
4954 fs_reg shifted = bld.vgrf(src.type);
4955 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4956 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4957 brw_imm_w(-1));
4958 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4959 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4960 scan = shifted;
4961 }
4962
4963 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4964
4965 bld.MOV(retype(dest, src.type), scan);
4966 break;
4967 }
4968
4969 case nir_intrinsic_begin_invocation_interlock: {
4970 const fs_builder ubld = bld.group(8, 0);
4971 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4972
4973 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp)->size_written = 2 *
4974 REG_SIZE;
4975
4976 break;
4977 }
4978
4979 case nir_intrinsic_end_invocation_interlock: {
4980 /* We don't need to do anything here */
4981 break;
4982 }
4983
4984 default:
4985 unreachable("unknown intrinsic");
4986 }
4987 }
4988
4989 void
4990 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4991 int op, nir_intrinsic_instr *instr)
4992 {
4993 if (stage == MESA_SHADER_FRAGMENT)
4994 brw_wm_prog_data(prog_data)->has_side_effects = true;
4995
4996 /* The BTI untyped atomic messages only support 32-bit atomics. If you
4997 * just look at the big table of messages in the Vol 7 of the SKL PRM, they
4998 * appear to exist. However, if you look at Vol 2a, there are no message
4999 * descriptors provided for Qword atomic ops except for A64 messages.
5000 */
5001 assert(nir_dest_bit_size(instr->dest) == 32);
5002
5003 fs_reg dest;
5004 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5005 dest = get_nir_dest(instr->dest);
5006
5007 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5008 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5009 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5010 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5011 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5012
5013 fs_reg data;
5014 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5015 data = get_nir_src(instr->src[2]);
5016
5017 if (op == BRW_AOP_CMPWR) {
5018 fs_reg tmp = bld.vgrf(data.type, 2);
5019 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5020 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5021 data = tmp;
5022 }
5023 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5024
5025 /* Emit the actual atomic operation */
5026
5027 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5028 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5029 }
5030
5031 void
5032 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
5033 int op, nir_intrinsic_instr *instr)
5034 {
5035 if (stage == MESA_SHADER_FRAGMENT)
5036 brw_wm_prog_data(prog_data)->has_side_effects = true;
5037
5038 fs_reg dest;
5039 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5040 dest = get_nir_dest(instr->dest);
5041
5042 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5043 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5044 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5045 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5046 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5047
5048 fs_reg data = get_nir_src(instr->src[2]);
5049 if (op == BRW_AOP_FCMPWR) {
5050 fs_reg tmp = bld.vgrf(data.type, 2);
5051 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5052 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5053 data = tmp;
5054 }
5055 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5056
5057 /* Emit the actual atomic operation */
5058
5059 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5060 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5061 }
5062
5063 void
5064 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
5065 int op, nir_intrinsic_instr *instr)
5066 {
5067 fs_reg dest;
5068 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5069 dest = get_nir_dest(instr->dest);
5070
5071 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5072 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5073 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5074 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5075
5076 fs_reg data;
5077 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5078 data = get_nir_src(instr->src[1]);
5079 if (op == BRW_AOP_CMPWR) {
5080 fs_reg tmp = bld.vgrf(data.type, 2);
5081 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5082 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5083 data = tmp;
5084 }
5085 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5086
5087 /* Get the offset */
5088 if (nir_src_is_const(instr->src[0])) {
5089 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5090 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5091 } else {
5092 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5093 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5094 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5095 brw_imm_ud(instr->const_index[0]));
5096 }
5097
5098 /* Emit the actual atomic operation operation */
5099
5100 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5101 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5102 }
5103
5104 void
5105 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
5106 int op, nir_intrinsic_instr *instr)
5107 {
5108 fs_reg dest;
5109 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5110 dest = get_nir_dest(instr->dest);
5111
5112 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5113 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5114 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5115 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5116
5117 fs_reg data = get_nir_src(instr->src[1]);
5118 if (op == BRW_AOP_FCMPWR) {
5119 fs_reg tmp = bld.vgrf(data.type, 2);
5120 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5121 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5122 data = tmp;
5123 }
5124 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5125
5126 /* Get the offset */
5127 if (nir_src_is_const(instr->src[0])) {
5128 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5129 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5130 } else {
5131 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5132 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5133 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5134 brw_imm_ud(instr->const_index[0]));
5135 }
5136
5137 /* Emit the actual atomic operation operation */
5138
5139 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5140 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5141 }
5142
5143 void
5144 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
5145 int op, nir_intrinsic_instr *instr)
5146 {
5147 if (stage == MESA_SHADER_FRAGMENT)
5148 brw_wm_prog_data(prog_data)->has_side_effects = true;
5149
5150 fs_reg dest;
5151 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5152 dest = get_nir_dest(instr->dest);
5153
5154 fs_reg addr = get_nir_src(instr->src[0]);
5155
5156 fs_reg data;
5157 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5158 data = get_nir_src(instr->src[1]);
5159
5160 if (op == BRW_AOP_CMPWR) {
5161 fs_reg tmp = bld.vgrf(data.type, 2);
5162 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5163 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5164 data = tmp;
5165 }
5166
5167 if (nir_dest_bit_size(instr->dest) == 64) {
5168 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL,
5169 dest, addr, data, brw_imm_ud(op));
5170 } else {
5171 assert(nir_dest_bit_size(instr->dest) == 32);
5172 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5173 dest, addr, data, brw_imm_ud(op));
5174 }
5175 }
5176
5177 void
5178 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
5179 int op, nir_intrinsic_instr *instr)
5180 {
5181 if (stage == MESA_SHADER_FRAGMENT)
5182 brw_wm_prog_data(prog_data)->has_side_effects = true;
5183
5184 assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
5185 fs_reg dest = get_nir_dest(instr->dest);
5186
5187 fs_reg addr = get_nir_src(instr->src[0]);
5188
5189 assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
5190 fs_reg data = get_nir_src(instr->src[1]);
5191
5192 if (op == BRW_AOP_FCMPWR) {
5193 fs_reg tmp = bld.vgrf(data.type, 2);
5194 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5195 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5196 data = tmp;
5197 }
5198
5199 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5200 dest, addr, data, brw_imm_ud(op));
5201 }
5202
5203 void
5204 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
5205 {
5206 unsigned texture = instr->texture_index;
5207 unsigned sampler = instr->sampler_index;
5208
5209 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
5210
5211 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
5212 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
5213
5214 int lod_components = 0;
5215
5216 /* The hardware requires a LOD for buffer textures */
5217 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
5218 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
5219
5220 uint32_t header_bits = 0;
5221 for (unsigned i = 0; i < instr->num_srcs; i++) {
5222 fs_reg src = get_nir_src(instr->src[i].src);
5223 switch (instr->src[i].src_type) {
5224 case nir_tex_src_bias:
5225 srcs[TEX_LOGICAL_SRC_LOD] =
5226 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5227 break;
5228 case nir_tex_src_comparator:
5229 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
5230 break;
5231 case nir_tex_src_coord:
5232 switch (instr->op) {
5233 case nir_texop_txf:
5234 case nir_texop_txf_ms:
5235 case nir_texop_txf_ms_mcs:
5236 case nir_texop_samples_identical:
5237 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
5238 break;
5239 default:
5240 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
5241 break;
5242 }
5243 break;
5244 case nir_tex_src_ddx:
5245 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5246 lod_components = nir_tex_instr_src_size(instr, i);
5247 break;
5248 case nir_tex_src_ddy:
5249 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5250 break;
5251 case nir_tex_src_lod:
5252 switch (instr->op) {
5253 case nir_texop_txs:
5254 srcs[TEX_LOGICAL_SRC_LOD] =
5255 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5256 break;
5257 case nir_texop_txf:
5258 srcs[TEX_LOGICAL_SRC_LOD] =
5259 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5260 break;
5261 default:
5262 srcs[TEX_LOGICAL_SRC_LOD] =
5263 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5264 break;
5265 }
5266 break;
5267 case nir_tex_src_min_lod:
5268 srcs[TEX_LOGICAL_SRC_MIN_LOD] =
5269 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5270 break;
5271 case nir_tex_src_ms_index:
5272 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5273 break;
5274
5275 case nir_tex_src_offset: {
5276 uint32_t offset_bits = 0;
5277 if (brw_texture_offset(instr, i, &offset_bits)) {
5278 header_bits |= offset_bits;
5279 } else {
5280 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5281 retype(src, BRW_REGISTER_TYPE_D);
5282 }
5283 break;
5284 }
5285
5286 case nir_tex_src_projector:
5287 unreachable("should be lowered");
5288
5289 case nir_tex_src_texture_offset: {
5290 /* Emit code to evaluate the actual indexing expression */
5291 fs_reg tmp = vgrf(glsl_type::uint_type);
5292 bld.ADD(tmp, src, brw_imm_ud(texture));
5293 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5294 break;
5295 }
5296
5297 case nir_tex_src_sampler_offset: {
5298 /* Emit code to evaluate the actual indexing expression */
5299 fs_reg tmp = vgrf(glsl_type::uint_type);
5300 bld.ADD(tmp, src, brw_imm_ud(sampler));
5301 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5302 break;
5303 }
5304
5305 case nir_tex_src_texture_handle:
5306 assert(nir_tex_instr_src_index(instr, nir_tex_src_texture_offset) == -1);
5307 srcs[TEX_LOGICAL_SRC_SURFACE] = fs_reg();
5308 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = bld.emit_uniformize(src);
5309 break;
5310
5311 case nir_tex_src_sampler_handle:
5312 assert(nir_tex_instr_src_index(instr, nir_tex_src_sampler_offset) == -1);
5313 srcs[TEX_LOGICAL_SRC_SAMPLER] = fs_reg();
5314 srcs[TEX_LOGICAL_SRC_SAMPLER_HANDLE] = bld.emit_uniformize(src);
5315 break;
5316
5317 case nir_tex_src_ms_mcs:
5318 assert(instr->op == nir_texop_txf_ms);
5319 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5320 break;
5321
5322 case nir_tex_src_plane: {
5323 const uint32_t plane = nir_src_as_uint(instr->src[i].src);
5324 const uint32_t texture_index =
5325 instr->texture_index +
5326 stage_prog_data->binding_table.plane_start[plane] -
5327 stage_prog_data->binding_table.texture_start;
5328
5329 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5330 break;
5331 }
5332
5333 default:
5334 unreachable("unknown texture source");
5335 }
5336 }
5337
5338 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5339 (instr->op == nir_texop_txf_ms ||
5340 instr->op == nir_texop_samples_identical)) {
5341 if (devinfo->gen >= 7 &&
5342 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5343 srcs[TEX_LOGICAL_SRC_MCS] =
5344 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5345 instr->coord_components,
5346 srcs[TEX_LOGICAL_SRC_SURFACE],
5347 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE]);
5348 } else {
5349 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5350 }
5351 }
5352
5353 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5354 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5355
5356 bool shader_supports_implicit_lod = stage == MESA_SHADER_FRAGMENT ||
5357 (stage == MESA_SHADER_COMPUTE &&
5358 nir->info.cs.derivative_group != DERIVATIVE_GROUP_NONE);
5359
5360 enum opcode opcode;
5361 switch (instr->op) {
5362 case nir_texop_tex:
5363 opcode = shader_supports_implicit_lod ?
5364 SHADER_OPCODE_TEX_LOGICAL : SHADER_OPCODE_TXL_LOGICAL;
5365 break;
5366 case nir_texop_txb:
5367 opcode = FS_OPCODE_TXB_LOGICAL;
5368 break;
5369 case nir_texop_txl:
5370 opcode = SHADER_OPCODE_TXL_LOGICAL;
5371 break;
5372 case nir_texop_txd:
5373 opcode = SHADER_OPCODE_TXD_LOGICAL;
5374 break;
5375 case nir_texop_txf:
5376 opcode = SHADER_OPCODE_TXF_LOGICAL;
5377 break;
5378 case nir_texop_txf_ms:
5379 if ((key_tex->msaa_16 & (1 << sampler)))
5380 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5381 else
5382 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5383 break;
5384 case nir_texop_txf_ms_mcs:
5385 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5386 break;
5387 case nir_texop_query_levels:
5388 case nir_texop_txs:
5389 opcode = SHADER_OPCODE_TXS_LOGICAL;
5390 break;
5391 case nir_texop_lod:
5392 opcode = SHADER_OPCODE_LOD_LOGICAL;
5393 break;
5394 case nir_texop_tg4:
5395 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5396 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5397 else
5398 opcode = SHADER_OPCODE_TG4_LOGICAL;
5399 break;
5400 case nir_texop_texture_samples:
5401 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5402 break;
5403 case nir_texop_samples_identical: {
5404 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5405
5406 /* If mcs is an immediate value, it means there is no MCS. In that case
5407 * just return false.
5408 */
5409 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5410 bld.MOV(dst, brw_imm_ud(0u));
5411 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5412 fs_reg tmp = vgrf(glsl_type::uint_type);
5413 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5414 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5415 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5416 } else {
5417 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5418 BRW_CONDITIONAL_EQ);
5419 }
5420 return;
5421 }
5422 default:
5423 unreachable("unknown texture opcode");
5424 }
5425
5426 if (instr->op == nir_texop_tg4) {
5427 if (instr->component == 1 &&
5428 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5429 /* gather4 sampler is broken for green channel on RG32F --
5430 * we must ask for blue instead.
5431 */
5432 header_bits |= 2 << 16;
5433 } else {
5434 header_bits |= instr->component << 16;
5435 }
5436 }
5437
5438 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5439 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5440 inst->offset = header_bits;
5441
5442 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5443 if (devinfo->gen >= 9 &&
5444 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5445 unsigned write_mask = instr->dest.is_ssa ?
5446 nir_ssa_def_components_read(&instr->dest.ssa):
5447 (1 << dest_size) - 1;
5448 assert(write_mask != 0); /* dead code should have been eliminated */
5449 inst->size_written = util_last_bit(write_mask) *
5450 inst->dst.component_size(inst->exec_size);
5451 } else {
5452 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5453 }
5454
5455 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5456 inst->shadow_compare = true;
5457
5458 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5459 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5460
5461 fs_reg nir_dest[4];
5462 for (unsigned i = 0; i < dest_size; i++)
5463 nir_dest[i] = offset(dst, bld, i);
5464
5465 if (instr->op == nir_texop_query_levels) {
5466 /* # levels is in .w */
5467 nir_dest[0] = offset(dst, bld, 3);
5468 } else if (instr->op == nir_texop_txs &&
5469 dest_size >= 3 && devinfo->gen < 7) {
5470 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5471 fs_reg depth = offset(dst, bld, 2);
5472 nir_dest[2] = vgrf(glsl_type::int_type);
5473 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5474 }
5475
5476 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5477 }
5478
5479 void
5480 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5481 {
5482 switch (instr->type) {
5483 case nir_jump_break:
5484 bld.emit(BRW_OPCODE_BREAK);
5485 break;
5486 case nir_jump_continue:
5487 bld.emit(BRW_OPCODE_CONTINUE);
5488 break;
5489 case nir_jump_return:
5490 default:
5491 unreachable("unknown jump");
5492 }
5493 }
5494
5495 /*
5496 * This helper takes a source register and un/shuffles it into the destination
5497 * register.
5498 *
5499 * If source type size is smaller than destination type size the operation
5500 * needed is a component shuffle. The opposite case would be an unshuffle. If
5501 * source/destination type size is equal a shuffle is done that would be
5502 * equivalent to a simple MOV.
5503 *
5504 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5505 * components .xyz 16-bit vector on SIMD8 would be.
5506 *
5507 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5508 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5509 *
5510 * This helper will return the following 2 32-bit components with the 16-bit
5511 * values shuffled:
5512 *
5513 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5514 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5515 *
5516 * For unshuffle, the example would be the opposite, a 64-bit type source
5517 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5518 * would be:
5519 *
5520 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5521 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5522 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5523 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5524 *
5525 * The returned result would be the following 4 32-bit components unshuffled:
5526 *
5527 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5528 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5529 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5530 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5531 *
5532 * - Source and destination register must not be overlapped.
5533 * - components units are measured in terms of the smaller type between
5534 * source and destination because we are un/shuffling the smaller
5535 * components from/into the bigger ones.
5536 * - first_component parameter allows skipping source components.
5537 */
5538 void
5539 shuffle_src_to_dst(const fs_builder &bld,
5540 const fs_reg &dst,
5541 const fs_reg &src,
5542 uint32_t first_component,
5543 uint32_t components)
5544 {
5545 if (type_sz(src.type) == type_sz(dst.type)) {
5546 assert(!regions_overlap(dst,
5547 type_sz(dst.type) * bld.dispatch_width() * components,
5548 offset(src, bld, first_component),
5549 type_sz(src.type) * bld.dispatch_width() * components));
5550 for (unsigned i = 0; i < components; i++) {
5551 bld.MOV(retype(offset(dst, bld, i), src.type),
5552 offset(src, bld, i + first_component));
5553 }
5554 } else if (type_sz(src.type) < type_sz(dst.type)) {
5555 /* Source is shuffled into destination */
5556 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5557 assert(!regions_overlap(dst,
5558 type_sz(dst.type) * bld.dispatch_width() *
5559 DIV_ROUND_UP(components, size_ratio),
5560 offset(src, bld, first_component),
5561 type_sz(src.type) * bld.dispatch_width() * components));
5562
5563 brw_reg_type shuffle_type =
5564 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5565 BRW_REGISTER_TYPE_D);
5566 for (unsigned i = 0; i < components; i++) {
5567 fs_reg shuffle_component_i =
5568 subscript(offset(dst, bld, i / size_ratio),
5569 shuffle_type, i % size_ratio);
5570 bld.MOV(shuffle_component_i,
5571 retype(offset(src, bld, i + first_component), shuffle_type));
5572 }
5573 } else {
5574 /* Source is unshuffled into destination */
5575 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5576 assert(!regions_overlap(dst,
5577 type_sz(dst.type) * bld.dispatch_width() * components,
5578 offset(src, bld, first_component / size_ratio),
5579 type_sz(src.type) * bld.dispatch_width() *
5580 DIV_ROUND_UP(components + (first_component % size_ratio),
5581 size_ratio)));
5582
5583 brw_reg_type shuffle_type =
5584 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5585 BRW_REGISTER_TYPE_D);
5586 for (unsigned i = 0; i < components; i++) {
5587 fs_reg shuffle_component_i =
5588 subscript(offset(src, bld, (first_component + i) / size_ratio),
5589 shuffle_type, (first_component + i) % size_ratio);
5590 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5591 shuffle_component_i);
5592 }
5593 }
5594 }
5595
5596 void
5597 shuffle_from_32bit_read(const fs_builder &bld,
5598 const fs_reg &dst,
5599 const fs_reg &src,
5600 uint32_t first_component,
5601 uint32_t components)
5602 {
5603 assert(type_sz(src.type) == 4);
5604
5605 /* This function takes components in units of the destination type while
5606 * shuffle_src_to_dst takes components in units of the smallest type
5607 */
5608 if (type_sz(dst.type) > 4) {
5609 assert(type_sz(dst.type) == 8);
5610 first_component *= 2;
5611 components *= 2;
5612 }
5613
5614 shuffle_src_to_dst(bld, dst, src, first_component, components);
5615 }
5616
5617 fs_reg
5618 shuffle_for_32bit_write(const fs_builder &bld,
5619 const fs_reg &src,
5620 uint32_t first_component,
5621 uint32_t components)
5622 {
5623 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5624 DIV_ROUND_UP (components * type_sz(src.type), 4));
5625 /* This function takes components in units of the source type while
5626 * shuffle_src_to_dst takes components in units of the smallest type
5627 */
5628 if (type_sz(src.type) > 4) {
5629 assert(type_sz(src.type) == 8);
5630 first_component *= 2;
5631 components *= 2;
5632 }
5633
5634 shuffle_src_to_dst(bld, dst, src, first_component, components);
5635
5636 return dst;
5637 }
5638
5639 fs_reg
5640 setup_imm_df(const fs_builder &bld, double v)
5641 {
5642 const struct gen_device_info *devinfo = bld.shader->devinfo;
5643 assert(devinfo->gen >= 7);
5644
5645 if (devinfo->gen >= 8)
5646 return brw_imm_df(v);
5647
5648 /* gen7.5 does not support DF immediates straighforward but the DIM
5649 * instruction allows to set the 64-bit immediate value.
5650 */
5651 if (devinfo->is_haswell) {
5652 const fs_builder ubld = bld.exec_all().group(1, 0);
5653 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5654 ubld.DIM(dst, brw_imm_df(v));
5655 return component(dst, 0);
5656 }
5657
5658 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5659 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5660 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5661 *
5662 * Alternatively, we could also produce a normal VGRF (without stride 0)
5663 * by writing to all the channels in the VGRF, however, that would hit the
5664 * gen7 bug where we have to split writes that span more than 1 register
5665 * into instructions with a width of 4 (otherwise the write to the second
5666 * register written runs into an execmask hardware bug) which isn't very
5667 * nice.
5668 */
5669 union {
5670 double d;
5671 struct {
5672 uint32_t i1;
5673 uint32_t i2;
5674 };
5675 } di;
5676
5677 di.d = v;
5678
5679 const fs_builder ubld = bld.exec_all().group(1, 0);
5680 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5681 ubld.MOV(tmp, brw_imm_ud(di.i1));
5682 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5683
5684 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5685 }
5686
5687 fs_reg
5688 setup_imm_b(const fs_builder &bld, int8_t v)
5689 {
5690 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5691 bld.MOV(tmp, brw_imm_w(v));
5692 return tmp;
5693 }
5694
5695 fs_reg
5696 setup_imm_ub(const fs_builder &bld, uint8_t v)
5697 {
5698 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5699 bld.MOV(tmp, brw_imm_uw(v));
5700 return tmp;
5701 }