intel/fs: Use shuffle_for_32bit_write for 16-bits store_ssbo
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_fs_surface_builder.h"
27 #include "brw_nir.h"
28
29 using namespace brw;
30 using namespace brw::surface_access;
31
32 void
33 fs_visitor::emit_nir_code()
34 {
35 /* emit the arrays used for inputs and outputs - load/store intrinsics will
36 * be converted to reads/writes of these arrays
37 */
38 nir_setup_outputs();
39 nir_setup_uniforms();
40 nir_emit_system_values();
41
42 /* get the main function and emit it */
43 nir_foreach_function(function, nir) {
44 assert(strcmp(function->name, "main") == 0);
45 assert(function->impl);
46 nir_emit_impl(function->impl);
47 }
48 }
49
50 void
51 fs_visitor::nir_setup_outputs()
52 {
53 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
54 return;
55
56 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
57
58 /* Calculate the size of output registers in a separate pass, before
59 * allocating them. With ARB_enhanced_layouts, multiple output variables
60 * may occupy the same slot, but have different type sizes.
61 */
62 nir_foreach_variable(var, &nir->outputs) {
63 const int loc = var->data.driver_location;
64 const unsigned var_vec4s =
65 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
66 : type_size_vec4(var->type);
67 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
68 }
69
70 nir_foreach_variable(var, &nir->outputs) {
71 const int loc = var->data.driver_location;
72 if (outputs[loc].file == BAD_FILE) {
73 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * vec4s[loc]);
74 for (unsigned i = 0; i < vec4s[loc]; i++) {
75 outputs[loc + i] = offset(reg, bld, 4 * i);
76 }
77 }
78 }
79 }
80
81 void
82 fs_visitor::nir_setup_uniforms()
83 {
84 /* Only the first compile gets to set up uniforms. */
85 if (push_constant_loc) {
86 assert(pull_constant_loc);
87 return;
88 }
89
90 uniforms = nir->num_uniforms / 4;
91
92 if (stage == MESA_SHADER_COMPUTE) {
93 /* Add a uniform for the thread local id. It must be the last uniform
94 * on the list.
95 */
96 assert(uniforms == prog_data->nr_params);
97 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
98 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
99 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
100 }
101 }
102
103 static bool
104 emit_system_values_block(nir_block *block, fs_visitor *v)
105 {
106 fs_reg *reg;
107
108 nir_foreach_instr(instr, block) {
109 if (instr->type != nir_instr_type_intrinsic)
110 continue;
111
112 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
113 switch (intrin->intrinsic) {
114 case nir_intrinsic_load_vertex_id:
115 case nir_intrinsic_load_base_vertex:
116 unreachable("should be lowered by nir_lower_system_values().");
117
118 case nir_intrinsic_load_vertex_id_zero_base:
119 case nir_intrinsic_load_is_indexed_draw:
120 case nir_intrinsic_load_first_vertex:
121 case nir_intrinsic_load_instance_id:
122 case nir_intrinsic_load_base_instance:
123 case nir_intrinsic_load_draw_id:
124 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
125
126 case nir_intrinsic_load_invocation_id:
127 if (v->stage == MESA_SHADER_TESS_CTRL)
128 break;
129 assert(v->stage == MESA_SHADER_GEOMETRY);
130 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
131 if (reg->file == BAD_FILE) {
132 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
133 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
134 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
135 abld.SHR(iid, g1, brw_imm_ud(27u));
136 *reg = iid;
137 }
138 break;
139
140 case nir_intrinsic_load_sample_pos:
141 assert(v->stage == MESA_SHADER_FRAGMENT);
142 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
143 if (reg->file == BAD_FILE)
144 *reg = *v->emit_samplepos_setup();
145 break;
146
147 case nir_intrinsic_load_sample_id:
148 assert(v->stage == MESA_SHADER_FRAGMENT);
149 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
150 if (reg->file == BAD_FILE)
151 *reg = *v->emit_sampleid_setup();
152 break;
153
154 case nir_intrinsic_load_sample_mask_in:
155 assert(v->stage == MESA_SHADER_FRAGMENT);
156 assert(v->devinfo->gen >= 7);
157 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
158 if (reg->file == BAD_FILE)
159 *reg = *v->emit_samplemaskin_setup();
160 break;
161
162 case nir_intrinsic_load_work_group_id:
163 assert(v->stage == MESA_SHADER_COMPUTE);
164 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
165 if (reg->file == BAD_FILE)
166 *reg = *v->emit_cs_work_group_id_setup();
167 break;
168
169 case nir_intrinsic_load_helper_invocation:
170 assert(v->stage == MESA_SHADER_FRAGMENT);
171 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
172 if (reg->file == BAD_FILE) {
173 const fs_builder abld =
174 v->bld.annotate("gl_HelperInvocation", NULL);
175
176 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
177 * pixel mask is in g1.7 of the thread payload.
178 *
179 * We move the per-channel pixel enable bit to the low bit of each
180 * channel by shifting the byte containing the pixel mask by the
181 * vector immediate 0x76543210UV.
182 *
183 * The region of <1,8,0> reads only 1 byte (the pixel masks for
184 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
185 * masks for 2 and 3) in SIMD16.
186 */
187 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
188 abld.SHR(shifted,
189 stride(byte_offset(retype(brw_vec1_grf(1, 0),
190 BRW_REGISTER_TYPE_UB), 28),
191 1, 8, 0),
192 brw_imm_v(0x76543210));
193
194 /* A set bit in the pixel mask means the channel is enabled, but
195 * that is the opposite of gl_HelperInvocation so we need to invert
196 * the mask.
197 *
198 * The negate source-modifier bit of logical instructions on Gen8+
199 * performs 1's complement negation, so we can use that instead of
200 * a NOT instruction.
201 */
202 fs_reg inverted = negate(shifted);
203 if (v->devinfo->gen < 8) {
204 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
205 abld.NOT(inverted, shifted);
206 }
207
208 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
209 * with 1 and negating.
210 */
211 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
212 abld.AND(anded, inverted, brw_imm_uw(1));
213
214 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
215 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
216 *reg = dst;
217 }
218 break;
219
220 default:
221 break;
222 }
223 }
224
225 return true;
226 }
227
228 void
229 fs_visitor::nir_emit_system_values()
230 {
231 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
232 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
233 nir_system_values[i] = fs_reg();
234 }
235
236 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
237 * never end up using it.
238 */
239 {
240 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
241 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
242 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
243
244 const fs_builder allbld8 = abld.group(8, 0).exec_all();
245 allbld8.MOV(reg, brw_imm_v(0x76543210));
246 if (dispatch_width > 8)
247 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
248 if (dispatch_width > 16) {
249 const fs_builder allbld16 = abld.group(16, 0).exec_all();
250 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
251 }
252 }
253
254 nir_foreach_function(function, nir) {
255 assert(strcmp(function->name, "main") == 0);
256 assert(function->impl);
257 nir_foreach_block(block, function->impl) {
258 emit_system_values_block(block, this);
259 }
260 }
261 }
262
263 /*
264 * Returns a type based on a reference_type (word, float, half-float) and a
265 * given bit_size.
266 *
267 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
268 *
269 * @FIXME: 64-bit return types are always DF on integer types to maintain
270 * compability with uses of DF previously to the introduction of int64
271 * support.
272 */
273 static brw_reg_type
274 brw_reg_type_from_bit_size(const unsigned bit_size,
275 const brw_reg_type reference_type)
276 {
277 switch(reference_type) {
278 case BRW_REGISTER_TYPE_HF:
279 case BRW_REGISTER_TYPE_F:
280 case BRW_REGISTER_TYPE_DF:
281 switch(bit_size) {
282 case 16:
283 return BRW_REGISTER_TYPE_HF;
284 case 32:
285 return BRW_REGISTER_TYPE_F;
286 case 64:
287 return BRW_REGISTER_TYPE_DF;
288 default:
289 unreachable("Invalid bit size");
290 }
291 case BRW_REGISTER_TYPE_W:
292 case BRW_REGISTER_TYPE_D:
293 case BRW_REGISTER_TYPE_Q:
294 switch(bit_size) {
295 case 16:
296 return BRW_REGISTER_TYPE_W;
297 case 32:
298 return BRW_REGISTER_TYPE_D;
299 case 64:
300 return BRW_REGISTER_TYPE_Q;
301 default:
302 unreachable("Invalid bit size");
303 }
304 case BRW_REGISTER_TYPE_UW:
305 case BRW_REGISTER_TYPE_UD:
306 case BRW_REGISTER_TYPE_UQ:
307 switch(bit_size) {
308 case 16:
309 return BRW_REGISTER_TYPE_UW;
310 case 32:
311 return BRW_REGISTER_TYPE_UD;
312 case 64:
313 return BRW_REGISTER_TYPE_UQ;
314 default:
315 unreachable("Invalid bit size");
316 }
317 default:
318 unreachable("Unknown type");
319 }
320 }
321
322 void
323 fs_visitor::nir_emit_impl(nir_function_impl *impl)
324 {
325 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
326 for (unsigned i = 0; i < impl->reg_alloc; i++) {
327 nir_locals[i] = fs_reg();
328 }
329
330 foreach_list_typed(nir_register, reg, node, &impl->registers) {
331 unsigned array_elems =
332 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
333 unsigned size = array_elems * reg->num_components;
334 const brw_reg_type reg_type =
335 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
336 nir_locals[reg->index] = bld.vgrf(reg_type, size);
337 }
338
339 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
340 impl->ssa_alloc);
341
342 nir_emit_cf_list(&impl->body);
343 }
344
345 void
346 fs_visitor::nir_emit_cf_list(exec_list *list)
347 {
348 exec_list_validate(list);
349 foreach_list_typed(nir_cf_node, node, node, list) {
350 switch (node->type) {
351 case nir_cf_node_if:
352 nir_emit_if(nir_cf_node_as_if(node));
353 break;
354
355 case nir_cf_node_loop:
356 nir_emit_loop(nir_cf_node_as_loop(node));
357 break;
358
359 case nir_cf_node_block:
360 nir_emit_block(nir_cf_node_as_block(node));
361 break;
362
363 default:
364 unreachable("Invalid CFG node block");
365 }
366 }
367 }
368
369 void
370 fs_visitor::nir_emit_if(nir_if *if_stmt)
371 {
372 /* first, put the condition into f0 */
373 fs_inst *inst = bld.MOV(bld.null_reg_d(),
374 retype(get_nir_src(if_stmt->condition),
375 BRW_REGISTER_TYPE_D));
376 inst->conditional_mod = BRW_CONDITIONAL_NZ;
377
378 bld.IF(BRW_PREDICATE_NORMAL);
379
380 nir_emit_cf_list(&if_stmt->then_list);
381
382 /* note: if the else is empty, dead CF elimination will remove it */
383 bld.emit(BRW_OPCODE_ELSE);
384
385 nir_emit_cf_list(&if_stmt->else_list);
386
387 bld.emit(BRW_OPCODE_ENDIF);
388 }
389
390 void
391 fs_visitor::nir_emit_loop(nir_loop *loop)
392 {
393 bld.emit(BRW_OPCODE_DO);
394
395 nir_emit_cf_list(&loop->body);
396
397 bld.emit(BRW_OPCODE_WHILE);
398 }
399
400 void
401 fs_visitor::nir_emit_block(nir_block *block)
402 {
403 nir_foreach_instr(instr, block) {
404 nir_emit_instr(instr);
405 }
406 }
407
408 void
409 fs_visitor::nir_emit_instr(nir_instr *instr)
410 {
411 const fs_builder abld = bld.annotate(NULL, instr);
412
413 switch (instr->type) {
414 case nir_instr_type_alu:
415 nir_emit_alu(abld, nir_instr_as_alu(instr));
416 break;
417
418 case nir_instr_type_intrinsic:
419 switch (stage) {
420 case MESA_SHADER_VERTEX:
421 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
422 break;
423 case MESA_SHADER_TESS_CTRL:
424 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
425 break;
426 case MESA_SHADER_TESS_EVAL:
427 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
428 break;
429 case MESA_SHADER_GEOMETRY:
430 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
431 break;
432 case MESA_SHADER_FRAGMENT:
433 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
434 break;
435 case MESA_SHADER_COMPUTE:
436 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
437 break;
438 default:
439 unreachable("unsupported shader stage");
440 }
441 break;
442
443 case nir_instr_type_tex:
444 nir_emit_texture(abld, nir_instr_as_tex(instr));
445 break;
446
447 case nir_instr_type_load_const:
448 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
449 break;
450
451 case nir_instr_type_ssa_undef:
452 /* We create a new VGRF for undefs on every use (by handling
453 * them in get_nir_src()), rather than for each definition.
454 * This helps register coalescing eliminate MOVs from undef.
455 */
456 break;
457
458 case nir_instr_type_jump:
459 nir_emit_jump(abld, nir_instr_as_jump(instr));
460 break;
461
462 default:
463 unreachable("unknown instruction type");
464 }
465 }
466
467 /**
468 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
469 * match instr.
470 */
471 bool
472 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
473 const fs_reg &result)
474 {
475 if (!instr->src[0].src.is_ssa ||
476 !instr->src[0].src.ssa->parent_instr)
477 return false;
478
479 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
480 return false;
481
482 nir_alu_instr *src0 =
483 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
484
485 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
486 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
487 return false;
488
489 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
490 assert(element != NULL);
491
492 /* Element type to extract.*/
493 const brw_reg_type type = brw_int_type(
494 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
495 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
496
497 fs_reg op0 = get_nir_src(src0->src[0].src);
498 op0.type = brw_type_for_nir_type(devinfo,
499 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
500 nir_src_bit_size(src0->src[0].src)));
501 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
502
503 set_saturate(instr->dest.saturate,
504 bld.MOV(result, subscript(op0, type, element->u32[0])));
505 return true;
506 }
507
508 bool
509 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
510 const fs_reg &result)
511 {
512 if (!instr->src[0].src.is_ssa ||
513 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
514 return false;
515
516 nir_intrinsic_instr *src0 =
517 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
518
519 if (src0->intrinsic != nir_intrinsic_load_front_face)
520 return false;
521
522 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
523 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
524 return false;
525
526 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
527 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
528 return false;
529
530 fs_reg tmp = vgrf(glsl_type::int_type);
531
532 if (devinfo->gen >= 6) {
533 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
534 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
535
536 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
537 *
538 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
539 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
540 *
541 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
542 *
543 * This negation looks like it's safe in practice, because bits 0:4 will
544 * surely be TRIANGLES
545 */
546
547 if (value1->f32[0] == -1.0f) {
548 g0.negate = true;
549 }
550
551 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
552 g0, brw_imm_uw(0x3f80));
553 } else {
554 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
555 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
556
557 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
558 *
559 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
560 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
561 *
562 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
563 *
564 * This negation looks like it's safe in practice, because bits 0:4 will
565 * surely be TRIANGLES
566 */
567
568 if (value1->f32[0] == -1.0f) {
569 g1_6.negate = true;
570 }
571
572 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
573 }
574 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
575
576 return true;
577 }
578
579 static void
580 emit_find_msb_using_lzd(const fs_builder &bld,
581 const fs_reg &result,
582 const fs_reg &src,
583 bool is_signed)
584 {
585 fs_inst *inst;
586 fs_reg temp = src;
587
588 if (is_signed) {
589 /* LZD of an absolute value source almost always does the right
590 * thing. There are two problem values:
591 *
592 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
593 * 0. However, findMSB(int(0x80000000)) == 30.
594 *
595 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
596 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
597 *
598 * For a value of zero or negative one, -1 will be returned.
599 *
600 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
601 * findMSB(-(1<<x)) should return x-1.
602 *
603 * For all negative number cases, including 0x80000000 and
604 * 0xffffffff, the correct value is obtained from LZD if instead of
605 * negating the (already negative) value the logical-not is used. A
606 * conditonal logical-not can be achieved in two instructions.
607 */
608 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
609
610 bld.ASR(temp, src, brw_imm_d(31));
611 bld.XOR(temp, temp, src);
612 }
613
614 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
615 retype(temp, BRW_REGISTER_TYPE_UD));
616
617 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
618 * from the LSB side. Subtract the result from 31 to convert the MSB
619 * count into an LSB count. If no bits are set, LZD will return 32.
620 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
621 */
622 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
623 inst->src[0].negate = true;
624 }
625
626 static brw_rnd_mode
627 brw_rnd_mode_from_nir_op (const nir_op op) {
628 switch (op) {
629 case nir_op_f2f16_rtz:
630 return BRW_RND_MODE_RTZ;
631 case nir_op_f2f16_rtne:
632 return BRW_RND_MODE_RTNE;
633 default:
634 unreachable("Operation doesn't support rounding mode");
635 }
636 }
637
638 void
639 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
640 {
641 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
642 fs_inst *inst;
643
644 fs_reg result = get_nir_dest(instr->dest.dest);
645 result.type = brw_type_for_nir_type(devinfo,
646 (nir_alu_type)(nir_op_infos[instr->op].output_type |
647 nir_dest_bit_size(instr->dest.dest)));
648
649 fs_reg op[4];
650 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
651 op[i] = get_nir_src(instr->src[i].src);
652 op[i].type = brw_type_for_nir_type(devinfo,
653 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
654 nir_src_bit_size(instr->src[i].src)));
655 op[i].abs = instr->src[i].abs;
656 op[i].negate = instr->src[i].negate;
657 }
658
659 /* We get a bunch of mov's out of the from_ssa pass and they may still
660 * be vectorized. We'll handle them as a special-case. We'll also
661 * handle vecN here because it's basically the same thing.
662 */
663 switch (instr->op) {
664 case nir_op_imov:
665 case nir_op_fmov:
666 case nir_op_vec2:
667 case nir_op_vec3:
668 case nir_op_vec4: {
669 fs_reg temp = result;
670 bool need_extra_copy = false;
671 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
672 if (!instr->src[i].src.is_ssa &&
673 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
674 need_extra_copy = true;
675 temp = bld.vgrf(result.type, 4);
676 break;
677 }
678 }
679
680 for (unsigned i = 0; i < 4; i++) {
681 if (!(instr->dest.write_mask & (1 << i)))
682 continue;
683
684 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
685 inst = bld.MOV(offset(temp, bld, i),
686 offset(op[0], bld, instr->src[0].swizzle[i]));
687 } else {
688 inst = bld.MOV(offset(temp, bld, i),
689 offset(op[i], bld, instr->src[i].swizzle[0]));
690 }
691 inst->saturate = instr->dest.saturate;
692 }
693
694 /* In this case the source and destination registers were the same,
695 * so we need to insert an extra set of moves in order to deal with
696 * any swizzling.
697 */
698 if (need_extra_copy) {
699 for (unsigned i = 0; i < 4; i++) {
700 if (!(instr->dest.write_mask & (1 << i)))
701 continue;
702
703 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
704 }
705 }
706 return;
707 }
708 default:
709 break;
710 }
711
712 /* At this point, we have dealt with any instruction that operates on
713 * more than a single channel. Therefore, we can just adjust the source
714 * and destination registers for that channel and emit the instruction.
715 */
716 unsigned channel = 0;
717 if (nir_op_infos[instr->op].output_size == 0) {
718 /* Since NIR is doing the scalarizing for us, we should only ever see
719 * vectorized operations with a single channel.
720 */
721 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
722 channel = ffs(instr->dest.write_mask) - 1;
723
724 result = offset(result, bld, channel);
725 }
726
727 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
728 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
729 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
730 }
731
732 switch (instr->op) {
733 case nir_op_i2f32:
734 case nir_op_u2f32:
735 if (optimize_extract_to_float(instr, result))
736 return;
737 inst = bld.MOV(result, op[0]);
738 inst->saturate = instr->dest.saturate;
739 break;
740
741 case nir_op_f2f16_rtne:
742 case nir_op_f2f16_rtz:
743 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
744 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
745 /* fallthrough */
746
747 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
748 * on the HW gen, it is a special hw opcode or just a MOV, and
749 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
750 *
751 * But if we want to use that opcode, we need to provide support on
752 * different optimizations and lowerings. As right now HF support is
753 * only for gen8+, it will be better to use directly the MOV, and use
754 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
755 */
756
757 case nir_op_f2f16_undef:
758 inst = bld.MOV(result, op[0]);
759 inst->saturate = instr->dest.saturate;
760 break;
761
762 case nir_op_f2f64:
763 case nir_op_f2i64:
764 case nir_op_f2u64:
765 case nir_op_i2f64:
766 case nir_op_i2i64:
767 case nir_op_u2f64:
768 case nir_op_u2u64:
769 /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
770 *
771 * "When source or destination is 64b (...), regioning in Align1
772 * must follow these rules:
773 *
774 * 1. Source and destination horizontal stride must be aligned to
775 * the same qword.
776 * (...)"
777 *
778 * This means that conversions from bit-sizes smaller than 64-bit to
779 * 64-bit need to have the source data elements aligned to 64-bit.
780 * This restriction does not apply to BDW and later.
781 */
782 if (nir_dest_bit_size(instr->dest.dest) == 64 &&
783 nir_src_bit_size(instr->src[0].src) < 64 &&
784 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
785 fs_reg tmp = bld.vgrf(result.type, 1);
786 tmp = subscript(tmp, op[0].type, 0);
787 inst = bld.MOV(tmp, op[0]);
788 inst = bld.MOV(result, tmp);
789 inst->saturate = instr->dest.saturate;
790 break;
791 }
792 /* fallthrough */
793 case nir_op_f2f32:
794 case nir_op_f2i32:
795 case nir_op_f2u32:
796 case nir_op_f2i16:
797 case nir_op_f2u16:
798 case nir_op_i2i32:
799 case nir_op_u2u32:
800 case nir_op_i2i16:
801 case nir_op_u2u16:
802 case nir_op_i2f16:
803 case nir_op_u2f16:
804 inst = bld.MOV(result, op[0]);
805 inst->saturate = instr->dest.saturate;
806 break;
807
808 case nir_op_fsign: {
809 if (op[0].abs) {
810 /* Straightforward since the source can be assumed to be
811 * non-negative.
812 */
813 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
814 set_predicate(BRW_PREDICATE_NORMAL, bld.MOV(result, brw_imm_f(1.0f)));
815
816 } else if (type_sz(op[0].type) < 8) {
817 /* AND(val, 0x80000000) gives the sign bit.
818 *
819 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
820 * zero.
821 */
822 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
823
824 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
825 op[0].type = BRW_REGISTER_TYPE_UD;
826 result.type = BRW_REGISTER_TYPE_UD;
827 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
828
829 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
830 inst->predicate = BRW_PREDICATE_NORMAL;
831 if (instr->dest.saturate) {
832 inst = bld.MOV(result, result);
833 inst->saturate = true;
834 }
835 } else {
836 /* For doubles we do the same but we need to consider:
837 *
838 * - 2-src instructions can't operate with 64-bit immediates
839 * - The sign is encoded in the high 32-bit of each DF
840 * - We need to produce a DF result.
841 */
842
843 fs_reg zero = vgrf(glsl_type::double_type);
844 bld.MOV(zero, setup_imm_df(bld, 0.0));
845 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
846
847 bld.MOV(result, zero);
848
849 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
850 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
851 brw_imm_ud(0x80000000u));
852
853 set_predicate(BRW_PREDICATE_NORMAL,
854 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
855
856 if (instr->dest.saturate) {
857 inst = bld.MOV(result, result);
858 inst->saturate = true;
859 }
860 }
861 break;
862 }
863
864 case nir_op_isign: {
865 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
866 * -> non-negative val generates 0x00000000.
867 * Predicated OR sets 1 if val is positive.
868 */
869 uint32_t bit_size = nir_dest_bit_size(instr->dest.dest);
870 assert(bit_size == 32 || bit_size == 16);
871
872 fs_reg zero = bit_size == 32 ? brw_imm_d(0) : brw_imm_w(0);
873 fs_reg one = bit_size == 32 ? brw_imm_d(1) : brw_imm_w(1);
874 fs_reg shift = bit_size == 32 ? brw_imm_d(31) : brw_imm_w(15);
875
876 bld.CMP(bld.null_reg_d(), op[0], zero, BRW_CONDITIONAL_G);
877 bld.ASR(result, op[0], shift);
878 inst = bld.OR(result, result, one);
879 inst->predicate = BRW_PREDICATE_NORMAL;
880 break;
881 }
882
883 case nir_op_frcp:
884 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
885 inst->saturate = instr->dest.saturate;
886 break;
887
888 case nir_op_fexp2:
889 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
890 inst->saturate = instr->dest.saturate;
891 break;
892
893 case nir_op_flog2:
894 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
895 inst->saturate = instr->dest.saturate;
896 break;
897
898 case nir_op_fsin:
899 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
900 inst->saturate = instr->dest.saturate;
901 break;
902
903 case nir_op_fcos:
904 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
905 inst->saturate = instr->dest.saturate;
906 break;
907
908 case nir_op_fddx:
909 if (fs_key->high_quality_derivatives) {
910 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
911 } else {
912 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
913 }
914 inst->saturate = instr->dest.saturate;
915 break;
916 case nir_op_fddx_fine:
917 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
918 inst->saturate = instr->dest.saturate;
919 break;
920 case nir_op_fddx_coarse:
921 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
922 inst->saturate = instr->dest.saturate;
923 break;
924 case nir_op_fddy:
925 if (fs_key->high_quality_derivatives) {
926 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
927 } else {
928 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
929 }
930 inst->saturate = instr->dest.saturate;
931 break;
932 case nir_op_fddy_fine:
933 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
934 inst->saturate = instr->dest.saturate;
935 break;
936 case nir_op_fddy_coarse:
937 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
938 inst->saturate = instr->dest.saturate;
939 break;
940
941 case nir_op_iadd:
942 case nir_op_fadd:
943 inst = bld.ADD(result, op[0], op[1]);
944 inst->saturate = instr->dest.saturate;
945 break;
946
947 case nir_op_fmul:
948 inst = bld.MUL(result, op[0], op[1]);
949 inst->saturate = instr->dest.saturate;
950 break;
951
952 case nir_op_imul:
953 assert(nir_dest_bit_size(instr->dest.dest) < 64);
954 bld.MUL(result, op[0], op[1]);
955 break;
956
957 case nir_op_imul_high:
958 case nir_op_umul_high:
959 assert(nir_dest_bit_size(instr->dest.dest) < 64);
960 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
961 break;
962
963 case nir_op_idiv:
964 case nir_op_udiv:
965 assert(nir_dest_bit_size(instr->dest.dest) < 64);
966 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
967 break;
968
969 case nir_op_uadd_carry:
970 unreachable("Should have been lowered by carry_to_arith().");
971
972 case nir_op_usub_borrow:
973 unreachable("Should have been lowered by borrow_to_arith().");
974
975 case nir_op_umod:
976 case nir_op_irem:
977 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
978 * appears that our hardware just does the right thing for signed
979 * remainder.
980 */
981 assert(nir_dest_bit_size(instr->dest.dest) < 64);
982 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
983 break;
984
985 case nir_op_imod: {
986 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
987 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
988
989 /* Math instructions don't support conditional mod */
990 inst = bld.MOV(bld.null_reg_d(), result);
991 inst->conditional_mod = BRW_CONDITIONAL_NZ;
992
993 /* Now, we need to determine if signs of the sources are different.
994 * When we XOR the sources, the top bit is 0 if they are the same and 1
995 * if they are different. We can then use a conditional modifier to
996 * turn that into a predicate. This leads us to an XOR.l instruction.
997 *
998 * Technically, according to the PRM, you're not allowed to use .l on a
999 * XOR instruction. However, emperical experiments and Curro's reading
1000 * of the simulator source both indicate that it's safe.
1001 */
1002 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1003 inst = bld.XOR(tmp, op[0], op[1]);
1004 inst->predicate = BRW_PREDICATE_NORMAL;
1005 inst->conditional_mod = BRW_CONDITIONAL_L;
1006
1007 /* If the result of the initial remainder operation is non-zero and the
1008 * two sources have different signs, add in a copy of op[1] to get the
1009 * final integer modulus value.
1010 */
1011 inst = bld.ADD(result, result, op[1]);
1012 inst->predicate = BRW_PREDICATE_NORMAL;
1013 break;
1014 }
1015
1016 case nir_op_flt:
1017 case nir_op_fge:
1018 case nir_op_feq:
1019 case nir_op_fne: {
1020 fs_reg dest = result;
1021
1022 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1023 if (bit_size != 32)
1024 dest = bld.vgrf(op[0].type, 1);
1025
1026 brw_conditional_mod cond;
1027 switch (instr->op) {
1028 case nir_op_flt:
1029 cond = BRW_CONDITIONAL_L;
1030 break;
1031 case nir_op_fge:
1032 cond = BRW_CONDITIONAL_GE;
1033 break;
1034 case nir_op_feq:
1035 cond = BRW_CONDITIONAL_Z;
1036 break;
1037 case nir_op_fne:
1038 cond = BRW_CONDITIONAL_NZ;
1039 break;
1040 default:
1041 unreachable("bad opcode");
1042 }
1043
1044 bld.CMP(dest, op[0], op[1], cond);
1045
1046 if (bit_size > 32) {
1047 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1048 } else if(bit_size < 32) {
1049 /* When we convert the result to 32-bit we need to be careful and do
1050 * it as a signed conversion to get sign extension (for 32-bit true)
1051 */
1052 const brw_reg_type src_type =
1053 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1054
1055 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1056 }
1057 break;
1058 }
1059
1060 case nir_op_ilt:
1061 case nir_op_ult:
1062 case nir_op_ige:
1063 case nir_op_uge:
1064 case nir_op_ieq:
1065 case nir_op_ine: {
1066 fs_reg dest = result;
1067
1068 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1069 if (bit_size != 32)
1070 dest = bld.vgrf(op[0].type, 1);
1071
1072 brw_conditional_mod cond;
1073 switch (instr->op) {
1074 case nir_op_ilt:
1075 case nir_op_ult:
1076 cond = BRW_CONDITIONAL_L;
1077 break;
1078 case nir_op_ige:
1079 case nir_op_uge:
1080 cond = BRW_CONDITIONAL_GE;
1081 break;
1082 case nir_op_ieq:
1083 cond = BRW_CONDITIONAL_Z;
1084 break;
1085 case nir_op_ine:
1086 cond = BRW_CONDITIONAL_NZ;
1087 break;
1088 default:
1089 unreachable("bad opcode");
1090 }
1091 bld.CMP(dest, op[0], op[1], cond);
1092
1093 if (bit_size > 32) {
1094 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1095 } else if (bit_size < 32) {
1096 /* When we convert the result to 32-bit we need to be careful and do
1097 * it as a signed conversion to get sign extension (for 32-bit true)
1098 */
1099 const brw_reg_type src_type =
1100 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1101
1102 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1103 }
1104 break;
1105 }
1106
1107 case nir_op_inot:
1108 if (devinfo->gen >= 8) {
1109 op[0] = resolve_source_modifiers(op[0]);
1110 }
1111 bld.NOT(result, op[0]);
1112 break;
1113 case nir_op_ixor:
1114 if (devinfo->gen >= 8) {
1115 op[0] = resolve_source_modifiers(op[0]);
1116 op[1] = resolve_source_modifiers(op[1]);
1117 }
1118 bld.XOR(result, op[0], op[1]);
1119 break;
1120 case nir_op_ior:
1121 if (devinfo->gen >= 8) {
1122 op[0] = resolve_source_modifiers(op[0]);
1123 op[1] = resolve_source_modifiers(op[1]);
1124 }
1125 bld.OR(result, op[0], op[1]);
1126 break;
1127 case nir_op_iand:
1128 if (devinfo->gen >= 8) {
1129 op[0] = resolve_source_modifiers(op[0]);
1130 op[1] = resolve_source_modifiers(op[1]);
1131 }
1132 bld.AND(result, op[0], op[1]);
1133 break;
1134
1135 case nir_op_fdot2:
1136 case nir_op_fdot3:
1137 case nir_op_fdot4:
1138 case nir_op_ball_fequal2:
1139 case nir_op_ball_iequal2:
1140 case nir_op_ball_fequal3:
1141 case nir_op_ball_iequal3:
1142 case nir_op_ball_fequal4:
1143 case nir_op_ball_iequal4:
1144 case nir_op_bany_fnequal2:
1145 case nir_op_bany_inequal2:
1146 case nir_op_bany_fnequal3:
1147 case nir_op_bany_inequal3:
1148 case nir_op_bany_fnequal4:
1149 case nir_op_bany_inequal4:
1150 unreachable("Lowered by nir_lower_alu_reductions");
1151
1152 case nir_op_fnoise1_1:
1153 case nir_op_fnoise1_2:
1154 case nir_op_fnoise1_3:
1155 case nir_op_fnoise1_4:
1156 case nir_op_fnoise2_1:
1157 case nir_op_fnoise2_2:
1158 case nir_op_fnoise2_3:
1159 case nir_op_fnoise2_4:
1160 case nir_op_fnoise3_1:
1161 case nir_op_fnoise3_2:
1162 case nir_op_fnoise3_3:
1163 case nir_op_fnoise3_4:
1164 case nir_op_fnoise4_1:
1165 case nir_op_fnoise4_2:
1166 case nir_op_fnoise4_3:
1167 case nir_op_fnoise4_4:
1168 unreachable("not reached: should be handled by lower_noise");
1169
1170 case nir_op_ldexp:
1171 unreachable("not reached: should be handled by ldexp_to_arith()");
1172
1173 case nir_op_fsqrt:
1174 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1175 inst->saturate = instr->dest.saturate;
1176 break;
1177
1178 case nir_op_frsq:
1179 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1180 inst->saturate = instr->dest.saturate;
1181 break;
1182
1183 case nir_op_b2i:
1184 case nir_op_b2f:
1185 bld.MOV(result, negate(op[0]));
1186 break;
1187
1188 case nir_op_i2b:
1189 case nir_op_f2b: {
1190 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1191 if (bit_size == 64) {
1192 /* two-argument instructions can't take 64-bit immediates */
1193 fs_reg zero;
1194 fs_reg tmp;
1195
1196 if (instr->op == nir_op_f2b) {
1197 zero = vgrf(glsl_type::double_type);
1198 tmp = vgrf(glsl_type::double_type);
1199 bld.MOV(zero, setup_imm_df(bld, 0.0));
1200 } else {
1201 zero = vgrf(glsl_type::int64_t_type);
1202 tmp = vgrf(glsl_type::int64_t_type);
1203 bld.MOV(zero, brw_imm_q(0));
1204 }
1205
1206 /* A SIMD16 execution needs to be split in two instructions, so use
1207 * a vgrf instead of the flag register as dst so instruction splitting
1208 * works
1209 */
1210 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1211 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1212 } else {
1213 fs_reg zero;
1214 if (bit_size == 32) {
1215 zero = instr->op == nir_op_f2b ? brw_imm_f(0.0f) : brw_imm_d(0);
1216 } else {
1217 assert(bit_size == 16);
1218 zero = instr->op == nir_op_f2b ?
1219 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1220 }
1221 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1222 }
1223 break;
1224 }
1225
1226 case nir_op_ftrunc:
1227 inst = bld.RNDZ(result, op[0]);
1228 inst->saturate = instr->dest.saturate;
1229 break;
1230
1231 case nir_op_fceil: {
1232 op[0].negate = !op[0].negate;
1233 fs_reg temp = vgrf(glsl_type::float_type);
1234 bld.RNDD(temp, op[0]);
1235 temp.negate = true;
1236 inst = bld.MOV(result, temp);
1237 inst->saturate = instr->dest.saturate;
1238 break;
1239 }
1240 case nir_op_ffloor:
1241 inst = bld.RNDD(result, op[0]);
1242 inst->saturate = instr->dest.saturate;
1243 break;
1244 case nir_op_ffract:
1245 inst = bld.FRC(result, op[0]);
1246 inst->saturate = instr->dest.saturate;
1247 break;
1248 case nir_op_fround_even:
1249 inst = bld.RNDE(result, op[0]);
1250 inst->saturate = instr->dest.saturate;
1251 break;
1252
1253 case nir_op_fquantize2f16: {
1254 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1255 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1256 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1257
1258 /* The destination stride must be at least as big as the source stride. */
1259 tmp16.type = BRW_REGISTER_TYPE_W;
1260 tmp16.stride = 2;
1261
1262 /* Check for denormal */
1263 fs_reg abs_src0 = op[0];
1264 abs_src0.abs = true;
1265 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1266 BRW_CONDITIONAL_L);
1267 /* Get the appropriately signed zero */
1268 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1269 retype(op[0], BRW_REGISTER_TYPE_UD),
1270 brw_imm_ud(0x80000000));
1271 /* Do the actual F32 -> F16 -> F32 conversion */
1272 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1273 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1274 /* Select that or zero based on normal status */
1275 inst = bld.SEL(result, zero, tmp32);
1276 inst->predicate = BRW_PREDICATE_NORMAL;
1277 inst->saturate = instr->dest.saturate;
1278 break;
1279 }
1280
1281 case nir_op_imin:
1282 case nir_op_umin:
1283 case nir_op_fmin:
1284 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1285 inst->saturate = instr->dest.saturate;
1286 break;
1287
1288 case nir_op_imax:
1289 case nir_op_umax:
1290 case nir_op_fmax:
1291 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1292 inst->saturate = instr->dest.saturate;
1293 break;
1294
1295 case nir_op_pack_snorm_2x16:
1296 case nir_op_pack_snorm_4x8:
1297 case nir_op_pack_unorm_2x16:
1298 case nir_op_pack_unorm_4x8:
1299 case nir_op_unpack_snorm_2x16:
1300 case nir_op_unpack_snorm_4x8:
1301 case nir_op_unpack_unorm_2x16:
1302 case nir_op_unpack_unorm_4x8:
1303 case nir_op_unpack_half_2x16:
1304 case nir_op_pack_half_2x16:
1305 unreachable("not reached: should be handled by lower_packing_builtins");
1306
1307 case nir_op_unpack_half_2x16_split_x:
1308 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1309 inst->saturate = instr->dest.saturate;
1310 break;
1311 case nir_op_unpack_half_2x16_split_y:
1312 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1313 inst->saturate = instr->dest.saturate;
1314 break;
1315
1316 case nir_op_pack_64_2x32_split:
1317 case nir_op_pack_32_2x16_split:
1318 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1319 break;
1320
1321 case nir_op_unpack_64_2x32_split_x:
1322 case nir_op_unpack_64_2x32_split_y: {
1323 if (instr->op == nir_op_unpack_64_2x32_split_x)
1324 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1325 else
1326 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1327 break;
1328 }
1329
1330 case nir_op_unpack_32_2x16_split_x:
1331 case nir_op_unpack_32_2x16_split_y: {
1332 if (instr->op == nir_op_unpack_32_2x16_split_x)
1333 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1334 else
1335 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1336 break;
1337 }
1338
1339 case nir_op_fpow:
1340 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1341 inst->saturate = instr->dest.saturate;
1342 break;
1343
1344 case nir_op_bitfield_reverse:
1345 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1346 bld.BFREV(result, op[0]);
1347 break;
1348
1349 case nir_op_bit_count:
1350 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1351 bld.CBIT(result, op[0]);
1352 break;
1353
1354 case nir_op_ufind_msb: {
1355 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1356 emit_find_msb_using_lzd(bld, result, op[0], false);
1357 break;
1358 }
1359
1360 case nir_op_ifind_msb: {
1361 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1362
1363 if (devinfo->gen < 7) {
1364 emit_find_msb_using_lzd(bld, result, op[0], true);
1365 } else {
1366 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1367
1368 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1369 * count from the LSB side. If FBH didn't return an error
1370 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1371 * count into an LSB count.
1372 */
1373 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1374
1375 inst = bld.ADD(result, result, brw_imm_d(31));
1376 inst->predicate = BRW_PREDICATE_NORMAL;
1377 inst->src[0].negate = true;
1378 }
1379 break;
1380 }
1381
1382 case nir_op_find_lsb:
1383 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1384
1385 if (devinfo->gen < 7) {
1386 fs_reg temp = vgrf(glsl_type::int_type);
1387
1388 /* (x & -x) generates a value that consists of only the LSB of x.
1389 * For all powers of 2, findMSB(y) == findLSB(y).
1390 */
1391 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1392 fs_reg negated_src = src;
1393
1394 /* One must be negated, and the other must be non-negated. It
1395 * doesn't matter which is which.
1396 */
1397 negated_src.negate = true;
1398 src.negate = false;
1399
1400 bld.AND(temp, src, negated_src);
1401 emit_find_msb_using_lzd(bld, result, temp, false);
1402 } else {
1403 bld.FBL(result, op[0]);
1404 }
1405 break;
1406
1407 case nir_op_ubitfield_extract:
1408 case nir_op_ibitfield_extract:
1409 unreachable("should have been lowered");
1410 case nir_op_ubfe:
1411 case nir_op_ibfe:
1412 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1413 bld.BFE(result, op[2], op[1], op[0]);
1414 break;
1415 case nir_op_bfm:
1416 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1417 bld.BFI1(result, op[0], op[1]);
1418 break;
1419 case nir_op_bfi:
1420 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1421 bld.BFI2(result, op[0], op[1], op[2]);
1422 break;
1423
1424 case nir_op_bitfield_insert:
1425 unreachable("not reached: should have been lowered");
1426
1427 case nir_op_ishl:
1428 case nir_op_ishr:
1429 case nir_op_ushr: {
1430 fs_reg shift_count = op[1];
1431
1432 if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1433 if (op[1].file == VGRF &&
1434 (result.type == BRW_REGISTER_TYPE_Q ||
1435 result.type == BRW_REGISTER_TYPE_UQ)) {
1436 shift_count = fs_reg(VGRF, alloc.allocate(dispatch_width / 4),
1437 BRW_REGISTER_TYPE_UD);
1438 shift_count.stride = 2;
1439 bld.MOV(shift_count, op[1]);
1440 }
1441 }
1442
1443 switch (instr->op) {
1444 case nir_op_ishl:
1445 bld.SHL(result, op[0], shift_count);
1446 break;
1447 case nir_op_ishr:
1448 bld.ASR(result, op[0], shift_count);
1449 break;
1450 case nir_op_ushr:
1451 bld.SHR(result, op[0], shift_count);
1452 break;
1453 default:
1454 unreachable("not reached");
1455 }
1456 break;
1457 }
1458
1459 case nir_op_pack_half_2x16_split:
1460 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1461 break;
1462
1463 case nir_op_ffma:
1464 inst = bld.MAD(result, op[2], op[1], op[0]);
1465 inst->saturate = instr->dest.saturate;
1466 break;
1467
1468 case nir_op_flrp:
1469 inst = bld.LRP(result, op[0], op[1], op[2]);
1470 inst->saturate = instr->dest.saturate;
1471 break;
1472
1473 case nir_op_bcsel:
1474 if (optimize_frontfacing_ternary(instr, result))
1475 return;
1476
1477 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1478 inst = bld.SEL(result, op[1], op[2]);
1479 inst->predicate = BRW_PREDICATE_NORMAL;
1480 break;
1481
1482 case nir_op_extract_u8:
1483 case nir_op_extract_i8: {
1484 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1485 assert(byte != NULL);
1486
1487 /* The PRMs say:
1488 *
1489 * BDW+
1490 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1491 * Use two instructions and a word or DWord intermediate integer type.
1492 */
1493 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1494 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1495
1496 if (instr->op == nir_op_extract_i8) {
1497 /* If we need to sign extend, extract to a word first */
1498 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1499 bld.MOV(w_temp, subscript(op[0], type, byte->u32[0]));
1500 bld.MOV(result, w_temp);
1501 } else {
1502 /* Otherwise use an AND with 0xff and a word type */
1503 bld.AND(result, subscript(op[0], type, byte->u32[0] / 2), brw_imm_uw(0xff));
1504 }
1505 } else {
1506 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1507 bld.MOV(result, subscript(op[0], type, byte->u32[0]));
1508 }
1509 break;
1510 }
1511
1512 case nir_op_extract_u16:
1513 case nir_op_extract_i16: {
1514 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1515 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1516 assert(word != NULL);
1517 bld.MOV(result, subscript(op[0], type, word->u32[0]));
1518 break;
1519 }
1520
1521 default:
1522 unreachable("unhandled instruction");
1523 }
1524
1525 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1526 * to sign extend the low bit to 0/~0
1527 */
1528 if (devinfo->gen <= 5 &&
1529 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1530 fs_reg masked = vgrf(glsl_type::int_type);
1531 bld.AND(masked, result, brw_imm_d(1));
1532 masked.negate = true;
1533 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1534 }
1535 }
1536
1537 void
1538 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1539 nir_load_const_instr *instr)
1540 {
1541 const brw_reg_type reg_type =
1542 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1543 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1544
1545 switch (instr->def.bit_size) {
1546 case 16:
1547 for (unsigned i = 0; i < instr->def.num_components; i++)
1548 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value.i16[i]));
1549 break;
1550
1551 case 32:
1552 for (unsigned i = 0; i < instr->def.num_components; i++)
1553 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1554 break;
1555
1556 case 64:
1557 assert(devinfo->gen >= 7);
1558 if (devinfo->gen == 7) {
1559 /* We don't get 64-bit integer types until gen8 */
1560 for (unsigned i = 0; i < instr->def.num_components; i++) {
1561 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1562 setup_imm_df(bld, instr->value.f64[i]));
1563 }
1564 } else {
1565 for (unsigned i = 0; i < instr->def.num_components; i++)
1566 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1567 }
1568 break;
1569
1570 default:
1571 unreachable("Invalid bit size");
1572 }
1573
1574 nir_ssa_values[instr->def.index] = reg;
1575 }
1576
1577 fs_reg
1578 fs_visitor::get_nir_src(const nir_src &src)
1579 {
1580 fs_reg reg;
1581 if (src.is_ssa) {
1582 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1583 const brw_reg_type reg_type =
1584 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1585 reg = bld.vgrf(reg_type, src.ssa->num_components);
1586 } else {
1587 reg = nir_ssa_values[src.ssa->index];
1588 }
1589 } else {
1590 /* We don't handle indirects on locals */
1591 assert(src.reg.indirect == NULL);
1592 reg = offset(nir_locals[src.reg.reg->index], bld,
1593 src.reg.base_offset * src.reg.reg->num_components);
1594 }
1595
1596 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1597 /* The only 64-bit type available on gen7 is DF, so use that. */
1598 reg.type = BRW_REGISTER_TYPE_DF;
1599 } else {
1600 /* To avoid floating-point denorm flushing problems, set the type by
1601 * default to an integer type - instructions that need floating point
1602 * semantics will set this to F if they need to
1603 */
1604 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1605 BRW_REGISTER_TYPE_D);
1606 }
1607
1608 return reg;
1609 }
1610
1611 /**
1612 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1613 *
1614 * This function should not be called on any value which may be 64 bits.
1615 * We could theoretically support 64-bit on gen8+ but we choose not to
1616 * because it wouldn't work in general (no gen7 support) and there are
1617 * enough restrictions in 64-bit immediates that you can't take the return
1618 * value and treat it the same as the result of get_nir_src().
1619 */
1620 fs_reg
1621 fs_visitor::get_nir_src_imm(const nir_src &src)
1622 {
1623 nir_const_value *val = nir_src_as_const_value(src);
1624 assert(nir_src_bit_size(src) == 32);
1625 return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1626 }
1627
1628 fs_reg
1629 fs_visitor::get_nir_dest(const nir_dest &dest)
1630 {
1631 if (dest.is_ssa) {
1632 const brw_reg_type reg_type =
1633 brw_reg_type_from_bit_size(dest.ssa.bit_size, BRW_REGISTER_TYPE_F);
1634 nir_ssa_values[dest.ssa.index] =
1635 bld.vgrf(reg_type, dest.ssa.num_components);
1636 return nir_ssa_values[dest.ssa.index];
1637 } else {
1638 /* We don't handle indirects on locals */
1639 assert(dest.reg.indirect == NULL);
1640 return offset(nir_locals[dest.reg.reg->index], bld,
1641 dest.reg.base_offset * dest.reg.reg->num_components);
1642 }
1643 }
1644
1645 fs_reg
1646 fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
1647 {
1648 fs_reg image(UNIFORM, deref->var->data.driver_location / 4,
1649 BRW_REGISTER_TYPE_UD);
1650 fs_reg indirect;
1651 unsigned indirect_max = 0;
1652
1653 for (const nir_deref *tail = &deref->deref; tail->child;
1654 tail = tail->child) {
1655 const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
1656 assert(tail->child->deref_type == nir_deref_type_array);
1657 const unsigned size = glsl_get_length(tail->type);
1658 const unsigned element_size = type_size_scalar(deref_array->deref.type);
1659 const unsigned base = MIN2(deref_array->base_offset, size - 1);
1660 image = offset(image, bld, base * element_size);
1661
1662 if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
1663 fs_reg tmp = vgrf(glsl_type::uint_type);
1664
1665 /* Accessing an invalid surface index with the dataport can result
1666 * in a hang. According to the spec "if the index used to
1667 * select an individual element is negative or greater than or
1668 * equal to the size of the array, the results of the operation
1669 * are undefined but may not lead to termination" -- which is one
1670 * of the possible outcomes of the hang. Clamp the index to
1671 * prevent access outside of the array bounds.
1672 */
1673 bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
1674 BRW_REGISTER_TYPE_UD),
1675 brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
1676
1677 indirect_max += element_size * (tail->type->length - 1);
1678
1679 bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4));
1680 if (indirect.file == BAD_FILE) {
1681 indirect = tmp;
1682 } else {
1683 bld.ADD(indirect, indirect, tmp);
1684 }
1685 }
1686 }
1687
1688 if (indirect.file == BAD_FILE) {
1689 return image;
1690 } else {
1691 /* Emit a pile of MOVs to load the uniform into a temporary. The
1692 * dead-code elimination pass will get rid of what we don't use.
1693 */
1694 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
1695 for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
1696 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
1697 offset(tmp, bld, j), offset(image, bld, j),
1698 indirect, brw_imm_ud((indirect_max + 1) * 4));
1699 }
1700 return tmp;
1701 }
1702 }
1703
1704 void
1705 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1706 unsigned wr_mask)
1707 {
1708 for (unsigned i = 0; i < 4; i++) {
1709 if (!((wr_mask >> i) & 1))
1710 continue;
1711
1712 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1713 new_inst->dst = offset(new_inst->dst, bld, i);
1714 for (unsigned j = 0; j < new_inst->sources; j++)
1715 if (new_inst->src[j].file == VGRF)
1716 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1717
1718 bld.emit(new_inst);
1719 }
1720 }
1721
1722 /**
1723 * Get the matching channel register datatype for an image intrinsic of the
1724 * specified GLSL image type.
1725 */
1726 static brw_reg_type
1727 get_image_base_type(const glsl_type *type)
1728 {
1729 switch ((glsl_base_type)type->sampled_type) {
1730 case GLSL_TYPE_UINT:
1731 return BRW_REGISTER_TYPE_UD;
1732 case GLSL_TYPE_INT:
1733 return BRW_REGISTER_TYPE_D;
1734 case GLSL_TYPE_FLOAT:
1735 return BRW_REGISTER_TYPE_F;
1736 default:
1737 unreachable("Not reached.");
1738 }
1739 }
1740
1741 /**
1742 * Get the appropriate atomic op for an image atomic intrinsic.
1743 */
1744 static unsigned
1745 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1746 {
1747 switch (op) {
1748 case nir_intrinsic_image_var_atomic_add:
1749 return BRW_AOP_ADD;
1750 case nir_intrinsic_image_var_atomic_min:
1751 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1752 BRW_AOP_IMIN : BRW_AOP_UMIN);
1753 case nir_intrinsic_image_var_atomic_max:
1754 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1755 BRW_AOP_IMAX : BRW_AOP_UMAX);
1756 case nir_intrinsic_image_var_atomic_and:
1757 return BRW_AOP_AND;
1758 case nir_intrinsic_image_var_atomic_or:
1759 return BRW_AOP_OR;
1760 case nir_intrinsic_image_var_atomic_xor:
1761 return BRW_AOP_XOR;
1762 case nir_intrinsic_image_var_atomic_exchange:
1763 return BRW_AOP_MOV;
1764 case nir_intrinsic_image_var_atomic_comp_swap:
1765 return BRW_AOP_CMPWR;
1766 default:
1767 unreachable("Not reachable.");
1768 }
1769 }
1770
1771 static fs_inst *
1772 emit_pixel_interpolater_send(const fs_builder &bld,
1773 enum opcode opcode,
1774 const fs_reg &dst,
1775 const fs_reg &src,
1776 const fs_reg &desc,
1777 glsl_interp_mode interpolation)
1778 {
1779 struct brw_wm_prog_data *wm_prog_data =
1780 brw_wm_prog_data(bld.shader->stage_prog_data);
1781 fs_inst *inst;
1782 fs_reg payload;
1783 int mlen;
1784
1785 if (src.file == BAD_FILE) {
1786 /* Dummy payload */
1787 payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
1788 mlen = 1;
1789 } else {
1790 payload = src;
1791 mlen = 2 * bld.dispatch_width() / 8;
1792 }
1793
1794 inst = bld.emit(opcode, dst, payload, desc);
1795 inst->mlen = mlen;
1796 /* 2 floats per slot returned */
1797 inst->size_written = 2 * dst.component_size(inst->exec_size);
1798 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1799
1800 wm_prog_data->pulls_bary = true;
1801
1802 return inst;
1803 }
1804
1805 /**
1806 * Computes 1 << x, given a D/UD register containing some value x.
1807 */
1808 static fs_reg
1809 intexp2(const fs_builder &bld, const fs_reg &x)
1810 {
1811 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1812
1813 fs_reg result = bld.vgrf(x.type, 1);
1814 fs_reg one = bld.vgrf(x.type, 1);
1815
1816 bld.MOV(one, retype(brw_imm_d(1), one.type));
1817 bld.SHL(result, one, x);
1818 return result;
1819 }
1820
1821 void
1822 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1823 {
1824 assert(stage == MESA_SHADER_GEOMETRY);
1825
1826 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1827
1828 if (gs_compile->control_data_header_size_bits == 0)
1829 return;
1830
1831 /* We can only do EndPrimitive() functionality when the control data
1832 * consists of cut bits. Fortunately, the only time it isn't is when the
1833 * output type is points, in which case EndPrimitive() is a no-op.
1834 */
1835 if (gs_prog_data->control_data_format !=
1836 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1837 return;
1838 }
1839
1840 /* Cut bits use one bit per vertex. */
1841 assert(gs_compile->control_data_bits_per_vertex == 1);
1842
1843 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1844 vertex_count.type = BRW_REGISTER_TYPE_UD;
1845
1846 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1847 * vertex n, 0 otherwise. So all we need to do here is mark bit
1848 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1849 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1850 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1851 *
1852 * Note that if EndPrimitive() is called before emitting any vertices, this
1853 * will cause us to set bit 31 of the control_data_bits register to 1.
1854 * That's fine because:
1855 *
1856 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1857 * output, so the hardware will ignore cut bit 31.
1858 *
1859 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1860 * last vertex, so setting cut bit 31 has no effect (since the primitive
1861 * is automatically ended when the GS terminates).
1862 *
1863 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1864 * control_data_bits register to 0 when the first vertex is emitted.
1865 */
1866
1867 const fs_builder abld = bld.annotate("end primitive");
1868
1869 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1870 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1871 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1872 fs_reg mask = intexp2(abld, prev_count);
1873 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1874 * attention to the lower 5 bits of its second source argument, so on this
1875 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1876 * ((vertex_count - 1) % 32).
1877 */
1878 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1879 }
1880
1881 void
1882 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1883 {
1884 assert(stage == MESA_SHADER_GEOMETRY);
1885 assert(gs_compile->control_data_bits_per_vertex != 0);
1886
1887 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1888
1889 const fs_builder abld = bld.annotate("emit control data bits");
1890 const fs_builder fwa_bld = bld.exec_all();
1891
1892 /* We use a single UD register to accumulate control data bits (32 bits
1893 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1894 * at a time.
1895 *
1896 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1897 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1898 * use the Channel Mask phase to enable/disable which DWord within that
1899 * group to write. (Remember, different SIMD8 channels may have emitted
1900 * different numbers of vertices, so we may need per-slot offsets.)
1901 *
1902 * Channel masking presents an annoying problem: we may have to replicate
1903 * the data up to 4 times:
1904 *
1905 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1906 *
1907 * To avoid penalizing shaders that emit a small number of vertices, we
1908 * can avoid these sometimes: if the size of the control data header is
1909 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1910 * land in the same 128-bit group, so we can skip per-slot offsets.
1911 *
1912 * Similarly, if the control data header is <= 32 bits, there is only one
1913 * DWord, so we can skip channel masks.
1914 */
1915 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1916
1917 fs_reg channel_mask, per_slot_offset;
1918
1919 if (gs_compile->control_data_header_size_bits > 32) {
1920 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1921 channel_mask = vgrf(glsl_type::uint_type);
1922 }
1923
1924 if (gs_compile->control_data_header_size_bits > 128) {
1925 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1926 per_slot_offset = vgrf(glsl_type::uint_type);
1927 }
1928
1929 /* Figure out which DWord we're trying to write to using the formula:
1930 *
1931 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1932 *
1933 * Since bits_per_vertex is a power of two, and is known at compile
1934 * time, this can be optimized to:
1935 *
1936 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1937 */
1938 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1939 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1940 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1941 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1942 unsigned log2_bits_per_vertex =
1943 util_last_bit(gs_compile->control_data_bits_per_vertex);
1944 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1945
1946 if (per_slot_offset.file != BAD_FILE) {
1947 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1948 * the appropriate OWord within the control data header.
1949 */
1950 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1951 }
1952
1953 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1954 * write to the appropriate DWORD within the OWORD.
1955 */
1956 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1957 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1958 channel_mask = intexp2(fwa_bld, channel);
1959 /* Then the channel masks need to be in bits 23:16. */
1960 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1961 }
1962
1963 /* Store the control data bits in the message payload and send it. */
1964 int mlen = 2;
1965 if (channel_mask.file != BAD_FILE)
1966 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1967 if (per_slot_offset.file != BAD_FILE)
1968 mlen++;
1969
1970 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1971 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1972 int i = 0;
1973 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1974 if (per_slot_offset.file != BAD_FILE)
1975 sources[i++] = per_slot_offset;
1976 if (channel_mask.file != BAD_FILE)
1977 sources[i++] = channel_mask;
1978 while (i < mlen) {
1979 sources[i++] = this->control_data_bits;
1980 }
1981
1982 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1983 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1984 inst->mlen = mlen;
1985 /* We need to increment Global Offset by 256-bits to make room for
1986 * Broadwell's extra "Vertex Count" payload at the beginning of the
1987 * URB entry. Since this is an OWord message, Global Offset is counted
1988 * in 128-bit units, so we must set it to 2.
1989 */
1990 if (gs_prog_data->static_vertex_count == -1)
1991 inst->offset = 2;
1992 }
1993
1994 void
1995 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1996 unsigned stream_id)
1997 {
1998 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1999
2000 /* Note: we are calling this *before* increasing vertex_count, so
2001 * this->vertex_count == vertex_count - 1 in the formula above.
2002 */
2003
2004 /* Stream mode uses 2 bits per vertex */
2005 assert(gs_compile->control_data_bits_per_vertex == 2);
2006
2007 /* Must be a valid stream */
2008 assert(stream_id < MAX_VERTEX_STREAMS);
2009
2010 /* Control data bits are initialized to 0 so we don't have to set any
2011 * bits when sending vertices to stream 0.
2012 */
2013 if (stream_id == 0)
2014 return;
2015
2016 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2017
2018 /* reg::sid = stream_id */
2019 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2020 abld.MOV(sid, brw_imm_ud(stream_id));
2021
2022 /* reg:shift_count = 2 * (vertex_count - 1) */
2023 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2024 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2025
2026 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2027 * attention to the lower 5 bits of its second source argument, so on this
2028 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2029 * stream_id << ((2 * (vertex_count - 1)) % 32).
2030 */
2031 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2032 abld.SHL(mask, sid, shift_count);
2033 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2034 }
2035
2036 void
2037 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2038 unsigned stream_id)
2039 {
2040 assert(stage == MESA_SHADER_GEOMETRY);
2041
2042 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2043
2044 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2045 vertex_count.type = BRW_REGISTER_TYPE_UD;
2046
2047 /* Haswell and later hardware ignores the "Render Stream Select" bits
2048 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2049 * and instead sends all primitives down the pipeline for rasterization.
2050 * If the SOL stage is enabled, "Render Stream Select" is honored and
2051 * primitives bound to non-zero streams are discarded after stream output.
2052 *
2053 * Since the only purpose of primives sent to non-zero streams is to
2054 * be recorded by transform feedback, we can simply discard all geometry
2055 * bound to these streams when transform feedback is disabled.
2056 */
2057 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2058 return;
2059
2060 /* If we're outputting 32 control data bits or less, then we can wait
2061 * until the shader is over to output them all. Otherwise we need to
2062 * output them as we go. Now is the time to do it, since we're about to
2063 * output the vertex_count'th vertex, so it's guaranteed that the
2064 * control data bits associated with the (vertex_count - 1)th vertex are
2065 * correct.
2066 */
2067 if (gs_compile->control_data_header_size_bits > 32) {
2068 const fs_builder abld =
2069 bld.annotate("emit vertex: emit control data bits");
2070
2071 /* Only emit control data bits if we've finished accumulating a batch
2072 * of 32 bits. This is the case when:
2073 *
2074 * (vertex_count * bits_per_vertex) % 32 == 0
2075 *
2076 * (in other words, when the last 5 bits of vertex_count *
2077 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2078 * integer n (which is always the case, since bits_per_vertex is
2079 * always 1 or 2), this is equivalent to requiring that the last 5-n
2080 * bits of vertex_count are 0:
2081 *
2082 * vertex_count & (2^(5-n) - 1) == 0
2083 *
2084 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2085 * equivalent to:
2086 *
2087 * vertex_count & (32 / bits_per_vertex - 1) == 0
2088 *
2089 * TODO: If vertex_count is an immediate, we could do some of this math
2090 * at compile time...
2091 */
2092 fs_inst *inst =
2093 abld.AND(bld.null_reg_d(), vertex_count,
2094 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2095 inst->conditional_mod = BRW_CONDITIONAL_Z;
2096
2097 abld.IF(BRW_PREDICATE_NORMAL);
2098 /* If vertex_count is 0, then no control data bits have been
2099 * accumulated yet, so we can skip emitting them.
2100 */
2101 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2102 BRW_CONDITIONAL_NEQ);
2103 abld.IF(BRW_PREDICATE_NORMAL);
2104 emit_gs_control_data_bits(vertex_count);
2105 abld.emit(BRW_OPCODE_ENDIF);
2106
2107 /* Reset control_data_bits to 0 so we can start accumulating a new
2108 * batch.
2109 *
2110 * Note: in the case where vertex_count == 0, this neutralizes the
2111 * effect of any call to EndPrimitive() that the shader may have
2112 * made before outputting its first vertex.
2113 */
2114 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2115 inst->force_writemask_all = true;
2116 abld.emit(BRW_OPCODE_ENDIF);
2117 }
2118
2119 emit_urb_writes(vertex_count);
2120
2121 /* In stream mode we have to set control data bits for all vertices
2122 * unless we have disabled control data bits completely (which we do
2123 * do for GL_POINTS outputs that don't use streams).
2124 */
2125 if (gs_compile->control_data_header_size_bits > 0 &&
2126 gs_prog_data->control_data_format ==
2127 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2128 set_gs_stream_control_data_bits(vertex_count, stream_id);
2129 }
2130 }
2131
2132 void
2133 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2134 const nir_src &vertex_src,
2135 unsigned base_offset,
2136 const nir_src &offset_src,
2137 unsigned num_components,
2138 unsigned first_component)
2139 {
2140 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2141
2142 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2143 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
2144 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2145
2146 /* TODO: figure out push input layout for invocations == 1 */
2147 /* TODO: make this work with 64-bit inputs */
2148 if (gs_prog_data->invocations == 1 &&
2149 type_sz(dst.type) <= 4 &&
2150 offset_const != NULL && vertex_const != NULL &&
2151 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
2152 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
2153 vertex_const->u32[0] * push_reg_count;
2154 for (unsigned i = 0; i < num_components; i++) {
2155 bld.MOV(offset(dst, bld, i),
2156 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2157 }
2158 return;
2159 }
2160
2161 /* Resort to the pull model. Ensure the VUE handles are provided. */
2162 assert(gs_prog_data->base.include_vue_handles);
2163
2164 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2165 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2166
2167 if (gs_prog_data->invocations == 1) {
2168 if (vertex_const) {
2169 /* The vertex index is constant; just select the proper URB handle. */
2170 icp_handle =
2171 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
2172 BRW_REGISTER_TYPE_UD);
2173 } else {
2174 /* The vertex index is non-constant. We need to use indirect
2175 * addressing to fetch the proper URB handle.
2176 *
2177 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2178 * indicating that channel <n> should read the handle from
2179 * DWord <n>. We convert that to bytes by multiplying by 4.
2180 *
2181 * Next, we convert the vertex index to bytes by multiplying
2182 * by 32 (shifting by 5), and add the two together. This is
2183 * the final indirect byte offset.
2184 */
2185 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2186 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2187 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2188 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2189
2190 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2191 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2192 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2193 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2194 /* Convert vertex_index to bytes (multiply by 32) */
2195 bld.SHL(vertex_offset_bytes,
2196 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2197 brw_imm_ud(5u));
2198 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2199
2200 /* Use first_icp_handle as the base offset. There is one register
2201 * of URB handles per vertex, so inform the register allocator that
2202 * we might read up to nir->info.gs.vertices_in registers.
2203 */
2204 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2205 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2206 fs_reg(icp_offset_bytes),
2207 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2208 }
2209 } else {
2210 assert(gs_prog_data->invocations > 1);
2211
2212 if (vertex_const) {
2213 assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
2214 bld.MOV(icp_handle,
2215 retype(brw_vec1_grf(first_icp_handle +
2216 vertex_const->i32[0] / 8,
2217 vertex_const->i32[0] % 8),
2218 BRW_REGISTER_TYPE_UD));
2219 } else {
2220 /* The vertex index is non-constant. We need to use indirect
2221 * addressing to fetch the proper URB handle.
2222 *
2223 */
2224 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2225
2226 /* Convert vertex_index to bytes (multiply by 4) */
2227 bld.SHL(icp_offset_bytes,
2228 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2229 brw_imm_ud(2u));
2230
2231 /* Use first_icp_handle as the base offset. There is one DWord
2232 * of URB handles per vertex, so inform the register allocator that
2233 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2234 */
2235 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2236 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2237 fs_reg(icp_offset_bytes),
2238 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2239 REG_SIZE));
2240 }
2241 }
2242
2243 fs_inst *inst;
2244
2245 fs_reg tmp_dst = dst;
2246 fs_reg indirect_offset = get_nir_src(offset_src);
2247 unsigned num_iterations = 1;
2248 unsigned orig_num_components = num_components;
2249
2250 if (type_sz(dst.type) == 8) {
2251 if (num_components > 2) {
2252 num_iterations = 2;
2253 num_components = 2;
2254 }
2255 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2256 tmp_dst = tmp;
2257 first_component = first_component / 2;
2258 }
2259
2260 for (unsigned iter = 0; iter < num_iterations; iter++) {
2261 if (offset_const) {
2262 /* Constant indexing - use global offset. */
2263 if (first_component != 0) {
2264 unsigned read_components = num_components + first_component;
2265 fs_reg tmp = bld.vgrf(dst.type, read_components);
2266 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2267 inst->size_written = read_components *
2268 tmp.component_size(inst->exec_size);
2269 for (unsigned i = 0; i < num_components; i++) {
2270 bld.MOV(offset(tmp_dst, bld, i),
2271 offset(tmp, bld, i + first_component));
2272 }
2273 } else {
2274 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2275 icp_handle);
2276 inst->size_written = num_components *
2277 tmp_dst.component_size(inst->exec_size);
2278 }
2279 inst->offset = base_offset + offset_const->u32[0];
2280 inst->mlen = 1;
2281 } else {
2282 /* Indirect indexing - use per-slot offsets as well. */
2283 const fs_reg srcs[] = { icp_handle, indirect_offset };
2284 unsigned read_components = num_components + first_component;
2285 fs_reg tmp = bld.vgrf(dst.type, read_components);
2286 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2287 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2288 if (first_component != 0) {
2289 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2290 payload);
2291 inst->size_written = read_components *
2292 tmp.component_size(inst->exec_size);
2293 for (unsigned i = 0; i < num_components; i++) {
2294 bld.MOV(offset(tmp_dst, bld, i),
2295 offset(tmp, bld, i + first_component));
2296 }
2297 } else {
2298 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2299 payload);
2300 inst->size_written = num_components *
2301 tmp_dst.component_size(inst->exec_size);
2302 }
2303 inst->offset = base_offset;
2304 inst->mlen = 2;
2305 }
2306
2307 if (type_sz(dst.type) == 8) {
2308 shuffle_32bit_load_result_to_64bit_data(
2309 bld, tmp_dst, retype(tmp_dst, BRW_REGISTER_TYPE_F), num_components);
2310
2311 for (unsigned c = 0; c < num_components; c++)
2312 bld.MOV(offset(dst, bld, iter * 2 + c), offset(tmp_dst, bld, c));
2313 }
2314
2315 if (num_iterations > 1) {
2316 num_components = orig_num_components - 2;
2317 if(offset_const) {
2318 base_offset++;
2319 } else {
2320 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2321 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2322 indirect_offset = new_indirect;
2323 }
2324 }
2325 }
2326 }
2327
2328 fs_reg
2329 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2330 {
2331 nir_src *offset_src = nir_get_io_offset_src(instr);
2332 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2333
2334 if (const_value) {
2335 /* The only constant offset we should find is 0. brw_nir.c's
2336 * add_const_offset_to_base() will fold other constant offsets
2337 * into instr->const_index[0].
2338 */
2339 assert(const_value->u32[0] == 0);
2340 return fs_reg();
2341 }
2342
2343 return get_nir_src(*offset_src);
2344 }
2345
2346 static void
2347 do_untyped_vector_read(const fs_builder &bld,
2348 const fs_reg dest,
2349 const fs_reg surf_index,
2350 const fs_reg offset_reg,
2351 unsigned num_components)
2352 {
2353 if (type_sz(dest.type) <= 2) {
2354 assert(dest.stride == 1);
2355 boolean is_const_offset = offset_reg.file == BRW_IMMEDIATE_VALUE;
2356
2357 if (is_const_offset) {
2358 uint32_t start = offset_reg.ud & ~3;
2359 uint32_t end = offset_reg.ud + num_components * type_sz(dest.type);
2360 end = ALIGN(end, 4);
2361 assert (end - start <= 16);
2362
2363 /* At this point we have 16-bit component/s that have constant
2364 * offset aligned to 4-bytes that can be read with untyped_reads.
2365 * untyped_read message requires 32-bit aligned offsets.
2366 */
2367 unsigned first_component = (offset_reg.ud & 3) / type_sz(dest.type);
2368 unsigned num_components_32bit = (end - start) / 4;
2369
2370 fs_reg read_result =
2371 emit_untyped_read(bld, surf_index, brw_imm_ud(start),
2372 1 /* dims */,
2373 num_components_32bit,
2374 BRW_PREDICATE_NONE);
2375 shuffle_from_32bit_read(bld, dest, read_result, first_component,
2376 num_components);
2377 } else {
2378 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2379 for (unsigned i = 0; i < num_components; i++) {
2380 if (i == 0) {
2381 bld.MOV(read_offset, offset_reg);
2382 } else {
2383 bld.ADD(read_offset, offset_reg,
2384 brw_imm_ud(i * type_sz(dest.type)));
2385 }
2386 /* Non constant offsets are not guaranteed to be aligned 32-bits
2387 * so they are read using one byte_scattered_read message
2388 * for each component.
2389 */
2390 fs_reg read_result =
2391 emit_byte_scattered_read(bld, surf_index, read_offset,
2392 1 /* dims */, 1,
2393 type_sz(dest.type) * 8 /* bit_size */,
2394 BRW_PREDICATE_NONE);
2395 bld.MOV(offset(dest, bld, i),
2396 subscript (read_result, dest.type, 0));
2397 }
2398 }
2399 } else if (type_sz(dest.type) == 4) {
2400 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2401 1 /* dims */,
2402 num_components,
2403 BRW_PREDICATE_NONE);
2404 read_result.type = dest.type;
2405 for (unsigned i = 0; i < num_components; i++)
2406 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2407 } else if (type_sz(dest.type) == 8) {
2408 /* Reading a dvec, so we need to:
2409 *
2410 * 1. Multiply num_components by 2, to account for the fact that we
2411 * need to read 64-bit components.
2412 * 2. Shuffle the result of the load to form valid 64-bit elements
2413 * 3. Emit a second load (for components z/w) if needed.
2414 */
2415 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2416 bld.MOV(read_offset, offset_reg);
2417
2418 int iters = num_components <= 2 ? 1 : 2;
2419
2420 /* Load the dvec, the first iteration loads components x/y, the second
2421 * iteration, if needed, loads components z/w
2422 */
2423 for (int it = 0; it < iters; it++) {
2424 /* Compute number of components to read in this iteration */
2425 int iter_components = MIN2(2, num_components);
2426 num_components -= iter_components;
2427
2428 /* Read. Since this message reads 32-bit components, we need to
2429 * read twice as many components.
2430 */
2431 fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2432 1 /* dims */,
2433 iter_components * 2,
2434 BRW_PREDICATE_NONE);
2435
2436 /* Shuffle the 32-bit load result into valid 64-bit data */
2437 const fs_reg packed_result = bld.vgrf(dest.type, iter_components);
2438 shuffle_32bit_load_result_to_64bit_data(
2439 bld, packed_result, read_result, iter_components);
2440
2441 /* Move each component to its destination */
2442 read_result = retype(read_result, BRW_REGISTER_TYPE_DF);
2443 for (int c = 0; c < iter_components; c++) {
2444 bld.MOV(offset(dest, bld, it * 2 + c),
2445 offset(packed_result, bld, c));
2446 }
2447
2448 bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2449 }
2450 } else {
2451 unreachable("Unsupported type");
2452 }
2453 }
2454
2455 void
2456 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2457 nir_intrinsic_instr *instr)
2458 {
2459 assert(stage == MESA_SHADER_VERTEX);
2460
2461 fs_reg dest;
2462 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2463 dest = get_nir_dest(instr->dest);
2464
2465 switch (instr->intrinsic) {
2466 case nir_intrinsic_load_vertex_id:
2467 case nir_intrinsic_load_base_vertex:
2468 unreachable("should be lowered by nir_lower_system_values()");
2469
2470 case nir_intrinsic_load_vertex_id_zero_base:
2471 case nir_intrinsic_load_instance_id:
2472 case nir_intrinsic_load_base_instance:
2473 case nir_intrinsic_load_draw_id: {
2474 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2475 fs_reg val = nir_system_values[sv];
2476 assert(val.file != BAD_FILE);
2477 dest.type = val.type;
2478 bld.MOV(dest, val);
2479 break;
2480 }
2481
2482 case nir_intrinsic_load_input: {
2483 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2484 unsigned first_component = nir_intrinsic_component(instr);
2485 unsigned num_components = instr->num_components;
2486
2487 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2488 assert(const_offset && "Indirect input loads not allowed");
2489 src = offset(src, bld, const_offset->u32[0]);
2490
2491 if (type_sz(dest.type) == 8)
2492 first_component /= 2;
2493
2494 for (unsigned j = 0; j < num_components; j++) {
2495 bld.MOV(offset(dest, bld, j), offset(src, bld, j + first_component));
2496 }
2497
2498 if (type_sz(dest.type) == 8) {
2499 shuffle_32bit_load_result_to_64bit_data(bld,
2500 dest,
2501 retype(dest, BRW_REGISTER_TYPE_F),
2502 instr->num_components);
2503 }
2504 break;
2505 }
2506
2507 case nir_intrinsic_load_first_vertex:
2508 case nir_intrinsic_load_is_indexed_draw:
2509 unreachable("lowered by brw_nir_lower_vs_inputs");
2510
2511 default:
2512 nir_emit_intrinsic(bld, instr);
2513 break;
2514 }
2515 }
2516
2517 void
2518 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2519 nir_intrinsic_instr *instr)
2520 {
2521 assert(stage == MESA_SHADER_TESS_CTRL);
2522 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2523 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2524
2525 fs_reg dst;
2526 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2527 dst = get_nir_dest(instr->dest);
2528
2529 switch (instr->intrinsic) {
2530 case nir_intrinsic_load_primitive_id:
2531 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2532 break;
2533 case nir_intrinsic_load_invocation_id:
2534 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2535 break;
2536 case nir_intrinsic_load_patch_vertices_in:
2537 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2538 brw_imm_d(tcs_key->input_vertices));
2539 break;
2540
2541 case nir_intrinsic_barrier: {
2542 if (tcs_prog_data->instances == 1)
2543 break;
2544
2545 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2546 fs_reg m0_2 = component(m0, 2);
2547
2548 const fs_builder chanbld = bld.exec_all().group(1, 0);
2549
2550 /* Zero the message header */
2551 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2552
2553 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2554 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2555 brw_imm_ud(INTEL_MASK(16, 13)));
2556
2557 /* Shift it up to bits 27:24. */
2558 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2559
2560 /* Set the Barrier Count and the enable bit */
2561 chanbld.OR(m0_2, m0_2,
2562 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2563
2564 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2565 break;
2566 }
2567
2568 case nir_intrinsic_load_input:
2569 unreachable("nir_lower_io should never give us these.");
2570 break;
2571
2572 case nir_intrinsic_load_per_vertex_input: {
2573 fs_reg indirect_offset = get_indirect_offset(instr);
2574 unsigned imm_offset = instr->const_index[0];
2575
2576 const nir_src &vertex_src = instr->src[0];
2577 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2578
2579 fs_inst *inst;
2580
2581 fs_reg icp_handle;
2582
2583 if (vertex_const) {
2584 /* Emit a MOV to resolve <0,1,0> regioning. */
2585 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2586 bld.MOV(icp_handle,
2587 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2588 vertex_const->i32[0] & 7),
2589 BRW_REGISTER_TYPE_UD));
2590 } else if (tcs_prog_data->instances == 1 &&
2591 vertex_src.is_ssa &&
2592 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2593 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2594 /* For the common case of only 1 instance, an array index of
2595 * gl_InvocationID means reading g1. Skip all the indirect work.
2596 */
2597 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2598 } else {
2599 /* The vertex index is non-constant. We need to use indirect
2600 * addressing to fetch the proper URB handle.
2601 */
2602 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2603
2604 /* Each ICP handle is a single DWord (4 bytes) */
2605 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2606 bld.SHL(vertex_offset_bytes,
2607 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2608 brw_imm_ud(2u));
2609
2610 /* Start at g1. We might read up to 4 registers. */
2611 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2612 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2613 brw_imm_ud(4 * REG_SIZE));
2614 }
2615
2616 /* We can only read two double components with each URB read, so
2617 * we send two read messages in that case, each one loading up to
2618 * two double components.
2619 */
2620 unsigned num_iterations = 1;
2621 unsigned num_components = instr->num_components;
2622 unsigned first_component = nir_intrinsic_component(instr);
2623 fs_reg orig_dst = dst;
2624 if (type_sz(dst.type) == 8) {
2625 first_component = first_component / 2;
2626 if (instr->num_components > 2) {
2627 num_iterations = 2;
2628 num_components = 2;
2629 }
2630
2631 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2632 dst = tmp;
2633 }
2634
2635 for (unsigned iter = 0; iter < num_iterations; iter++) {
2636 if (indirect_offset.file == BAD_FILE) {
2637 /* Constant indexing - use global offset. */
2638 if (first_component != 0) {
2639 unsigned read_components = num_components + first_component;
2640 fs_reg tmp = bld.vgrf(dst.type, read_components);
2641 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2642 for (unsigned i = 0; i < num_components; i++) {
2643 bld.MOV(offset(dst, bld, i),
2644 offset(tmp, bld, i + first_component));
2645 }
2646 } else {
2647 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2648 }
2649 inst->offset = imm_offset;
2650 inst->mlen = 1;
2651 } else {
2652 /* Indirect indexing - use per-slot offsets as well. */
2653 const fs_reg srcs[] = { icp_handle, indirect_offset };
2654 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2655 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2656 if (first_component != 0) {
2657 unsigned read_components = num_components + first_component;
2658 fs_reg tmp = bld.vgrf(dst.type, read_components);
2659 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2660 payload);
2661 for (unsigned i = 0; i < num_components; i++) {
2662 bld.MOV(offset(dst, bld, i),
2663 offset(tmp, bld, i + first_component));
2664 }
2665 } else {
2666 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2667 payload);
2668 }
2669 inst->offset = imm_offset;
2670 inst->mlen = 2;
2671 }
2672 inst->size_written = (num_components + first_component) *
2673 inst->dst.component_size(inst->exec_size);
2674
2675 /* If we are reading 64-bit data using 32-bit read messages we need
2676 * build proper 64-bit data elements by shuffling the low and high
2677 * 32-bit components around like we do for other things like UBOs
2678 * or SSBOs.
2679 */
2680 if (type_sz(dst.type) == 8) {
2681 shuffle_32bit_load_result_to_64bit_data(
2682 bld, dst, retype(dst, BRW_REGISTER_TYPE_F), num_components);
2683
2684 for (unsigned c = 0; c < num_components; c++) {
2685 bld.MOV(offset(orig_dst, bld, iter * 2 + c),
2686 offset(dst, bld, c));
2687 }
2688 }
2689
2690 /* Copy the temporary to the destination to deal with writemasking.
2691 *
2692 * Also attempt to deal with gl_PointSize being in the .w component.
2693 */
2694 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2695 assert(type_sz(dst.type) < 8);
2696 inst->dst = bld.vgrf(dst.type, 4);
2697 inst->size_written = 4 * REG_SIZE;
2698 bld.MOV(dst, offset(inst->dst, bld, 3));
2699 }
2700
2701 /* If we are loading double data and we need a second read message
2702 * adjust the write offset
2703 */
2704 if (num_iterations > 1) {
2705 num_components = instr->num_components - 2;
2706 imm_offset++;
2707 }
2708 }
2709 break;
2710 }
2711
2712 case nir_intrinsic_load_output:
2713 case nir_intrinsic_load_per_vertex_output: {
2714 fs_reg indirect_offset = get_indirect_offset(instr);
2715 unsigned imm_offset = instr->const_index[0];
2716 unsigned first_component = nir_intrinsic_component(instr);
2717
2718 fs_inst *inst;
2719 if (indirect_offset.file == BAD_FILE) {
2720 /* Replicate the patch handle to all enabled channels */
2721 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2722 bld.MOV(patch_handle,
2723 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2724
2725 {
2726 if (first_component != 0) {
2727 unsigned read_components =
2728 instr->num_components + first_component;
2729 fs_reg tmp = bld.vgrf(dst.type, read_components);
2730 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2731 patch_handle);
2732 inst->size_written = read_components * REG_SIZE;
2733 for (unsigned i = 0; i < instr->num_components; i++) {
2734 bld.MOV(offset(dst, bld, i),
2735 offset(tmp, bld, i + first_component));
2736 }
2737 } else {
2738 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2739 patch_handle);
2740 inst->size_written = instr->num_components * REG_SIZE;
2741 }
2742 inst->offset = imm_offset;
2743 inst->mlen = 1;
2744 }
2745 } else {
2746 /* Indirect indexing - use per-slot offsets as well. */
2747 const fs_reg srcs[] = {
2748 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2749 indirect_offset
2750 };
2751 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2752 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2753 if (first_component != 0) {
2754 unsigned read_components =
2755 instr->num_components + first_component;
2756 fs_reg tmp = bld.vgrf(dst.type, read_components);
2757 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2758 payload);
2759 inst->size_written = read_components * REG_SIZE;
2760 for (unsigned i = 0; i < instr->num_components; i++) {
2761 bld.MOV(offset(dst, bld, i),
2762 offset(tmp, bld, i + first_component));
2763 }
2764 } else {
2765 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2766 payload);
2767 inst->size_written = instr->num_components * REG_SIZE;
2768 }
2769 inst->offset = imm_offset;
2770 inst->mlen = 2;
2771 }
2772 break;
2773 }
2774
2775 case nir_intrinsic_store_output:
2776 case nir_intrinsic_store_per_vertex_output: {
2777 fs_reg value = get_nir_src(instr->src[0]);
2778 bool is_64bit = (instr->src[0].is_ssa ?
2779 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2780 fs_reg indirect_offset = get_indirect_offset(instr);
2781 unsigned imm_offset = instr->const_index[0];
2782 unsigned mask = instr->const_index[1];
2783 unsigned header_regs = 0;
2784 fs_reg srcs[7];
2785 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2786
2787 if (indirect_offset.file != BAD_FILE) {
2788 srcs[header_regs++] = indirect_offset;
2789 }
2790
2791 if (mask == 0)
2792 break;
2793
2794 unsigned num_components = util_last_bit(mask);
2795 enum opcode opcode;
2796
2797 /* We can only pack two 64-bit components in a single message, so send
2798 * 2 messages if we have more components
2799 */
2800 unsigned num_iterations = 1;
2801 unsigned iter_components = num_components;
2802 unsigned first_component = nir_intrinsic_component(instr);
2803 if (is_64bit) {
2804 first_component = first_component / 2;
2805 if (instr->num_components > 2) {
2806 num_iterations = 2;
2807 iter_components = 2;
2808 }
2809 }
2810
2811 mask = mask << first_component;
2812
2813 for (unsigned iter = 0; iter < num_iterations; iter++) {
2814 if (!is_64bit && mask != WRITEMASK_XYZW) {
2815 srcs[header_regs++] = brw_imm_ud(mask << 16);
2816 opcode = indirect_offset.file != BAD_FILE ?
2817 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2818 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2819 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2820 /* Expand the 64-bit mask to 32-bit channels. We only handle
2821 * two channels in each iteration, so we only care about X/Y.
2822 */
2823 unsigned mask32 = 0;
2824 if (mask & WRITEMASK_X)
2825 mask32 |= WRITEMASK_XY;
2826 if (mask & WRITEMASK_Y)
2827 mask32 |= WRITEMASK_ZW;
2828
2829 /* If the mask does not include any of the channels X or Y there
2830 * is nothing to do in this iteration. Move on to the next couple
2831 * of 64-bit channels.
2832 */
2833 if (!mask32) {
2834 mask >>= 2;
2835 imm_offset++;
2836 continue;
2837 }
2838
2839 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2840 opcode = indirect_offset.file != BAD_FILE ?
2841 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2842 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2843 } else {
2844 opcode = indirect_offset.file != BAD_FILE ?
2845 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2846 SHADER_OPCODE_URB_WRITE_SIMD8;
2847 }
2848
2849 for (unsigned i = 0; i < iter_components; i++) {
2850 if (!(mask & (1 << (i + first_component))))
2851 continue;
2852
2853 if (!is_64bit) {
2854 srcs[header_regs + i + first_component] = offset(value, bld, i);
2855 } else {
2856 /* We need to shuffle the 64-bit data to match the layout
2857 * expected by our 32-bit URB write messages. We use a temporary
2858 * for that.
2859 */
2860 unsigned channel = iter * 2 + i;
2861 fs_reg dest = shuffle_64bit_data_for_32bit_write(bld,
2862 offset(value, bld, channel), 1);
2863
2864 srcs[header_regs + (i + first_component) * 2] = dest;
2865 srcs[header_regs + (i + first_component) * 2 + 1] =
2866 offset(dest, bld, 1);
2867 }
2868 }
2869
2870 unsigned mlen =
2871 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2872 (is_64bit ? 2 * first_component : first_component);
2873 fs_reg payload =
2874 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2875 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2876
2877 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2878 inst->offset = imm_offset;
2879 inst->mlen = mlen;
2880
2881 /* If this is a 64-bit attribute, select the next two 64-bit channels
2882 * to be handled in the next iteration.
2883 */
2884 if (is_64bit) {
2885 mask >>= 2;
2886 imm_offset++;
2887 }
2888 }
2889 break;
2890 }
2891
2892 default:
2893 nir_emit_intrinsic(bld, instr);
2894 break;
2895 }
2896 }
2897
2898 void
2899 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2900 nir_intrinsic_instr *instr)
2901 {
2902 assert(stage == MESA_SHADER_TESS_EVAL);
2903 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2904
2905 fs_reg dest;
2906 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2907 dest = get_nir_dest(instr->dest);
2908
2909 switch (instr->intrinsic) {
2910 case nir_intrinsic_load_primitive_id:
2911 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2912 break;
2913 case nir_intrinsic_load_tess_coord:
2914 /* gl_TessCoord is part of the payload in g1-3 */
2915 for (unsigned i = 0; i < 3; i++) {
2916 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2917 }
2918 break;
2919
2920 case nir_intrinsic_load_input:
2921 case nir_intrinsic_load_per_vertex_input: {
2922 fs_reg indirect_offset = get_indirect_offset(instr);
2923 unsigned imm_offset = instr->const_index[0];
2924 unsigned first_component = nir_intrinsic_component(instr);
2925
2926 if (type_sz(dest.type) == 8) {
2927 first_component = first_component / 2;
2928 }
2929
2930 fs_inst *inst;
2931 if (indirect_offset.file == BAD_FILE) {
2932 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2933 * which is 16 registers (since each holds 2 vec4 slots).
2934 */
2935 unsigned slot_count = 1;
2936 if (type_sz(dest.type) == 8 && instr->num_components > 2)
2937 slot_count++;
2938
2939 const unsigned max_push_slots = 32;
2940 if (imm_offset + slot_count <= max_push_slots) {
2941 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2942 for (int i = 0; i < instr->num_components; i++) {
2943 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2944 i + first_component;
2945 bld.MOV(offset(dest, bld, i), component(src, comp));
2946 }
2947
2948 tes_prog_data->base.urb_read_length =
2949 MAX2(tes_prog_data->base.urb_read_length,
2950 DIV_ROUND_UP(imm_offset + slot_count, 2));
2951 } else {
2952 /* Replicate the patch handle to all enabled channels */
2953 const fs_reg srcs[] = {
2954 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2955 };
2956 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2957 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2958
2959 if (first_component != 0) {
2960 unsigned read_components =
2961 instr->num_components + first_component;
2962 fs_reg tmp = bld.vgrf(dest.type, read_components);
2963 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2964 patch_handle);
2965 inst->size_written = read_components * REG_SIZE;
2966 for (unsigned i = 0; i < instr->num_components; i++) {
2967 bld.MOV(offset(dest, bld, i),
2968 offset(tmp, bld, i + first_component));
2969 }
2970 } else {
2971 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2972 patch_handle);
2973 inst->size_written = instr->num_components * REG_SIZE;
2974 }
2975 inst->mlen = 1;
2976 inst->offset = imm_offset;
2977 }
2978 } else {
2979 /* Indirect indexing - use per-slot offsets as well. */
2980
2981 /* We can only read two double components with each URB read, so
2982 * we send two read messages in that case, each one loading up to
2983 * two double components.
2984 */
2985 unsigned num_iterations = 1;
2986 unsigned num_components = instr->num_components;
2987 fs_reg orig_dest = dest;
2988 if (type_sz(dest.type) == 8) {
2989 if (instr->num_components > 2) {
2990 num_iterations = 2;
2991 num_components = 2;
2992 }
2993 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2994 dest = tmp;
2995 }
2996
2997 for (unsigned iter = 0; iter < num_iterations; iter++) {
2998 const fs_reg srcs[] = {
2999 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
3000 indirect_offset
3001 };
3002 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3003 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
3004
3005 if (first_component != 0) {
3006 unsigned read_components =
3007 num_components + first_component;
3008 fs_reg tmp = bld.vgrf(dest.type, read_components);
3009 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
3010 payload);
3011 for (unsigned i = 0; i < num_components; i++) {
3012 bld.MOV(offset(dest, bld, i),
3013 offset(tmp, bld, i + first_component));
3014 }
3015 } else {
3016 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
3017 payload);
3018 }
3019 inst->mlen = 2;
3020 inst->offset = imm_offset;
3021 inst->size_written = (num_components + first_component) *
3022 inst->dst.component_size(inst->exec_size);
3023
3024 /* If we are reading 64-bit data using 32-bit read messages we need
3025 * build proper 64-bit data elements by shuffling the low and high
3026 * 32-bit components around like we do for other things like UBOs
3027 * or SSBOs.
3028 */
3029 if (type_sz(dest.type) == 8) {
3030 shuffle_32bit_load_result_to_64bit_data(
3031 bld, dest, retype(dest, BRW_REGISTER_TYPE_F), num_components);
3032
3033 for (unsigned c = 0; c < num_components; c++) {
3034 bld.MOV(offset(orig_dest, bld, iter * 2 + c),
3035 offset(dest, bld, c));
3036 }
3037 }
3038
3039 /* If we are loading double data and we need a second read message
3040 * adjust the offset
3041 */
3042 if (num_iterations > 1) {
3043 num_components = instr->num_components - 2;
3044 imm_offset++;
3045 }
3046 }
3047 }
3048 break;
3049 }
3050 default:
3051 nir_emit_intrinsic(bld, instr);
3052 break;
3053 }
3054 }
3055
3056 void
3057 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3058 nir_intrinsic_instr *instr)
3059 {
3060 assert(stage == MESA_SHADER_GEOMETRY);
3061 fs_reg indirect_offset;
3062
3063 fs_reg dest;
3064 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3065 dest = get_nir_dest(instr->dest);
3066
3067 switch (instr->intrinsic) {
3068 case nir_intrinsic_load_primitive_id:
3069 assert(stage == MESA_SHADER_GEOMETRY);
3070 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3071 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3072 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3073 break;
3074
3075 case nir_intrinsic_load_input:
3076 unreachable("load_input intrinsics are invalid for the GS stage");
3077
3078 case nir_intrinsic_load_per_vertex_input:
3079 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3080 instr->src[1], instr->num_components,
3081 nir_intrinsic_component(instr));
3082 break;
3083
3084 case nir_intrinsic_emit_vertex_with_counter:
3085 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3086 break;
3087
3088 case nir_intrinsic_end_primitive_with_counter:
3089 emit_gs_end_primitive(instr->src[0]);
3090 break;
3091
3092 case nir_intrinsic_set_vertex_count:
3093 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3094 break;
3095
3096 case nir_intrinsic_load_invocation_id: {
3097 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3098 assert(val.file != BAD_FILE);
3099 dest.type = val.type;
3100 bld.MOV(dest, val);
3101 break;
3102 }
3103
3104 default:
3105 nir_emit_intrinsic(bld, instr);
3106 break;
3107 }
3108 }
3109
3110 /**
3111 * Fetch the current render target layer index.
3112 */
3113 static fs_reg
3114 fetch_render_target_array_index(const fs_builder &bld)
3115 {
3116 if (bld.shader->devinfo->gen >= 6) {
3117 /* The render target array index is provided in the thread payload as
3118 * bits 26:16 of r0.0.
3119 */
3120 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3121 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3122 brw_imm_uw(0x7ff));
3123 return idx;
3124 } else {
3125 /* Pre-SNB we only ever render into the first layer of the framebuffer
3126 * since layered rendering is not implemented.
3127 */
3128 return brw_imm_ud(0);
3129 }
3130 }
3131
3132 /**
3133 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3134 * framebuffer at the current fragment coordinates and sample index.
3135 */
3136 fs_inst *
3137 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3138 unsigned target)
3139 {
3140 const struct gen_device_info *devinfo = bld.shader->devinfo;
3141
3142 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3143 const brw_wm_prog_key *wm_key =
3144 reinterpret_cast<const brw_wm_prog_key *>(key);
3145 assert(!wm_key->coherent_fb_fetch);
3146 const struct brw_wm_prog_data *wm_prog_data =
3147 brw_wm_prog_data(stage_prog_data);
3148
3149 /* Calculate the surface index relative to the start of the texture binding
3150 * table block, since that's what the texturing messages expect.
3151 */
3152 const unsigned surface = target +
3153 wm_prog_data->binding_table.render_target_read_start -
3154 wm_prog_data->base.binding_table.texture_start;
3155
3156 brw_mark_surface_used(
3157 bld.shader->stage_prog_data,
3158 wm_prog_data->binding_table.render_target_read_start + target);
3159
3160 /* Calculate the fragment coordinates. */
3161 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3162 bld.MOV(offset(coords, bld, 0), pixel_x);
3163 bld.MOV(offset(coords, bld, 1), pixel_y);
3164 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3165
3166 /* Calculate the sample index and MCS payload when multisampling. Luckily
3167 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3168 * shouldn't be necessary to recompile based on whether the framebuffer is
3169 * CMS or UMS.
3170 */
3171 if (wm_key->multisample_fbo &&
3172 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3173 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3174
3175 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3176 const fs_reg mcs = wm_key->multisample_fbo ?
3177 emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3178
3179 /* Use either a normal or a CMS texel fetch message depending on whether
3180 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3181 * message just in case the framebuffer uses 16x multisampling, it should
3182 * be equivalent to the normal CMS fetch for lower multisampling modes.
3183 */
3184 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3185 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3186 SHADER_OPCODE_TXF_CMS_LOGICAL;
3187
3188 /* Emit the instruction. */
3189 const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
3190 sample, mcs,
3191 brw_imm_ud(surface), brw_imm_ud(0),
3192 fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
3193 STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
3194
3195 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3196 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3197
3198 return inst;
3199 }
3200
3201 /**
3202 * Actual coherent framebuffer read implemented using the native render target
3203 * read message. Requires SKL+.
3204 */
3205 static fs_inst *
3206 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3207 {
3208 assert(bld.shader->devinfo->gen >= 9);
3209 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3210 inst->target = target;
3211 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3212
3213 return inst;
3214 }
3215
3216 static fs_reg
3217 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3218 {
3219 if (n && regs[0].file != BAD_FILE) {
3220 return regs[0];
3221
3222 } else {
3223 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3224
3225 for (unsigned i = 0; i < n; i++)
3226 regs[i] = tmp;
3227
3228 return tmp;
3229 }
3230 }
3231
3232 static fs_reg
3233 alloc_frag_output(fs_visitor *v, unsigned location)
3234 {
3235 assert(v->stage == MESA_SHADER_FRAGMENT);
3236 const brw_wm_prog_key *const key =
3237 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3238 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3239 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3240
3241 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3242 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3243
3244 else if (l == FRAG_RESULT_COLOR)
3245 return alloc_temporary(v->bld, 4, v->outputs,
3246 MAX2(key->nr_color_regions, 1));
3247
3248 else if (l == FRAG_RESULT_DEPTH)
3249 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3250
3251 else if (l == FRAG_RESULT_STENCIL)
3252 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3253
3254 else if (l == FRAG_RESULT_SAMPLE_MASK)
3255 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3256
3257 else if (l >= FRAG_RESULT_DATA0 &&
3258 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3259 return alloc_temporary(v->bld, 4,
3260 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3261
3262 else
3263 unreachable("Invalid location");
3264 }
3265
3266 void
3267 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3268 nir_intrinsic_instr *instr)
3269 {
3270 assert(stage == MESA_SHADER_FRAGMENT);
3271
3272 fs_reg dest;
3273 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3274 dest = get_nir_dest(instr->dest);
3275
3276 switch (instr->intrinsic) {
3277 case nir_intrinsic_load_front_face:
3278 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3279 *emit_frontfacing_interpolation());
3280 break;
3281
3282 case nir_intrinsic_load_sample_pos: {
3283 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3284 assert(sample_pos.file != BAD_FILE);
3285 dest.type = sample_pos.type;
3286 bld.MOV(dest, sample_pos);
3287 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3288 break;
3289 }
3290
3291 case nir_intrinsic_load_layer_id:
3292 dest.type = BRW_REGISTER_TYPE_UD;
3293 bld.MOV(dest, fetch_render_target_array_index(bld));
3294 break;
3295
3296 case nir_intrinsic_load_helper_invocation:
3297 case nir_intrinsic_load_sample_mask_in:
3298 case nir_intrinsic_load_sample_id: {
3299 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3300 fs_reg val = nir_system_values[sv];
3301 assert(val.file != BAD_FILE);
3302 dest.type = val.type;
3303 bld.MOV(dest, val);
3304 break;
3305 }
3306
3307 case nir_intrinsic_store_output: {
3308 const fs_reg src = get_nir_src(instr->src[0]);
3309 const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3310 assert(const_offset && "Indirect output stores not allowed");
3311 const unsigned location = nir_intrinsic_base(instr) +
3312 SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
3313 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3314 src.type);
3315
3316 for (unsigned j = 0; j < instr->num_components; j++)
3317 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3318 offset(src, bld, j));
3319
3320 break;
3321 }
3322
3323 case nir_intrinsic_load_output: {
3324 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3325 BRW_NIR_FRAG_OUTPUT_LOCATION);
3326 assert(l >= FRAG_RESULT_DATA0);
3327 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3328 assert(const_offset && "Indirect output loads not allowed");
3329 const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
3330 const fs_reg tmp = bld.vgrf(dest.type, 4);
3331
3332 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3333 emit_coherent_fb_read(bld, tmp, target);
3334 else
3335 emit_non_coherent_fb_read(bld, tmp, target);
3336
3337 for (unsigned j = 0; j < instr->num_components; j++) {
3338 bld.MOV(offset(dest, bld, j),
3339 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3340 }
3341
3342 break;
3343 }
3344
3345 case nir_intrinsic_discard:
3346 case nir_intrinsic_discard_if: {
3347 /* We track our discarded pixels in f0.1. By predicating on it, we can
3348 * update just the flag bits that aren't yet discarded. If there's no
3349 * condition, we emit a CMP of g0 != g0, so all currently executing
3350 * channels will get turned off.
3351 */
3352 fs_inst *cmp;
3353 if (instr->intrinsic == nir_intrinsic_discard_if) {
3354 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3355 brw_imm_d(0), BRW_CONDITIONAL_Z);
3356 } else {
3357 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3358 BRW_REGISTER_TYPE_UW));
3359 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3360 }
3361 cmp->predicate = BRW_PREDICATE_NORMAL;
3362 cmp->flag_subreg = 1;
3363
3364 if (devinfo->gen >= 6) {
3365 emit_discard_jump();
3366 }
3367 break;
3368 }
3369
3370 case nir_intrinsic_load_input: {
3371 /* load_input is only used for flat inputs */
3372 unsigned base = nir_intrinsic_base(instr);
3373 unsigned comp = nir_intrinsic_component(instr);
3374 unsigned num_components = instr->num_components;
3375 enum brw_reg_type type = dest.type;
3376
3377 /* Special case fields in the VUE header */
3378 if (base == VARYING_SLOT_LAYER)
3379 comp = 1;
3380 else if (base == VARYING_SLOT_VIEWPORT)
3381 comp = 2;
3382
3383 if (nir_dest_bit_size(instr->dest) == 64) {
3384 /* const_index is in 32-bit type size units that could not be aligned
3385 * with DF. We need to read the double vector as if it was a float
3386 * vector of twice the number of components to fetch the right data.
3387 */
3388 type = BRW_REGISTER_TYPE_F;
3389 num_components *= 2;
3390 }
3391
3392 for (unsigned int i = 0; i < num_components; i++) {
3393 bld.MOV(offset(retype(dest, type), bld, i),
3394 retype(component(interp_reg(base, comp + i), 3), type));
3395 }
3396
3397 if (nir_dest_bit_size(instr->dest) == 64) {
3398 shuffle_32bit_load_result_to_64bit_data(bld,
3399 dest,
3400 retype(dest, type),
3401 instr->num_components);
3402 }
3403 break;
3404 }
3405
3406 case nir_intrinsic_load_barycentric_pixel:
3407 case nir_intrinsic_load_barycentric_centroid:
3408 case nir_intrinsic_load_barycentric_sample:
3409 /* Do nothing - load_interpolated_input handling will handle it later. */
3410 break;
3411
3412 case nir_intrinsic_load_barycentric_at_sample: {
3413 const glsl_interp_mode interpolation =
3414 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3415
3416 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3417
3418 if (const_sample) {
3419 unsigned msg_data = const_sample->i32[0] << 4;
3420
3421 emit_pixel_interpolater_send(bld,
3422 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3423 dest,
3424 fs_reg(), /* src */
3425 brw_imm_ud(msg_data),
3426 interpolation);
3427 } else {
3428 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3429 BRW_REGISTER_TYPE_UD);
3430
3431 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3432 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3433 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3434 bld.exec_all().group(1, 0)
3435 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3436 emit_pixel_interpolater_send(bld,
3437 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3438 dest,
3439 fs_reg(), /* src */
3440 msg_data,
3441 interpolation);
3442 } else {
3443 /* Make a loop that sends a message to the pixel interpolater
3444 * for the sample number in each live channel. If there are
3445 * multiple channels with the same sample number then these
3446 * will be handled simultaneously with a single interation of
3447 * the loop.
3448 */
3449 bld.emit(BRW_OPCODE_DO);
3450
3451 /* Get the next live sample number into sample_id_reg */
3452 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3453
3454 /* Set the flag register so that we can perform the send
3455 * message on all channels that have the same sample number
3456 */
3457 bld.CMP(bld.null_reg_ud(),
3458 sample_src, sample_id,
3459 BRW_CONDITIONAL_EQ);
3460 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3461 bld.exec_all().group(1, 0)
3462 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3463 fs_inst *inst =
3464 emit_pixel_interpolater_send(bld,
3465 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3466 dest,
3467 fs_reg(), /* src */
3468 msg_data,
3469 interpolation);
3470 set_predicate(BRW_PREDICATE_NORMAL, inst);
3471
3472 /* Continue the loop if there are any live channels left */
3473 set_predicate_inv(BRW_PREDICATE_NORMAL,
3474 true, /* inverse */
3475 bld.emit(BRW_OPCODE_WHILE));
3476 }
3477 }
3478 break;
3479 }
3480
3481 case nir_intrinsic_load_barycentric_at_offset: {
3482 const glsl_interp_mode interpolation =
3483 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3484
3485 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3486
3487 if (const_offset) {
3488 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3489 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3490
3491 emit_pixel_interpolater_send(bld,
3492 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3493 dest,
3494 fs_reg(), /* src */
3495 brw_imm_ud(off_x | (off_y << 4)),
3496 interpolation);
3497 } else {
3498 fs_reg src = vgrf(glsl_type::ivec2_type);
3499 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3500 BRW_REGISTER_TYPE_F);
3501 for (int i = 0; i < 2; i++) {
3502 fs_reg temp = vgrf(glsl_type::float_type);
3503 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3504 fs_reg itemp = vgrf(glsl_type::int_type);
3505 /* float to int */
3506 bld.MOV(itemp, temp);
3507
3508 /* Clamp the upper end of the range to +7/16.
3509 * ARB_gpu_shader5 requires that we support a maximum offset
3510 * of +0.5, which isn't representable in a S0.4 value -- if
3511 * we didn't clamp it, we'd end up with -8/16, which is the
3512 * opposite of what the shader author wanted.
3513 *
3514 * This is legal due to ARB_gpu_shader5's quantization
3515 * rules:
3516 *
3517 * "Not all values of <offset> may be supported; x and y
3518 * offsets may be rounded to fixed-point values with the
3519 * number of fraction bits given by the
3520 * implementation-dependent constant
3521 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3522 */
3523 set_condmod(BRW_CONDITIONAL_L,
3524 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3525 }
3526
3527 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3528 emit_pixel_interpolater_send(bld,
3529 opcode,
3530 dest,
3531 src,
3532 brw_imm_ud(0u),
3533 interpolation);
3534 }
3535 break;
3536 }
3537
3538 case nir_intrinsic_load_interpolated_input: {
3539 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3540 emit_fragcoord_interpolation(dest);
3541 break;
3542 }
3543
3544 assert(instr->src[0].ssa &&
3545 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3546 nir_intrinsic_instr *bary_intrinsic =
3547 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3548 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3549 enum glsl_interp_mode interp_mode =
3550 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3551 fs_reg dst_xy;
3552
3553 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3554 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3555 /* Use the result of the PI message */
3556 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3557 } else {
3558 /* Use the delta_xy values computed from the payload */
3559 enum brw_barycentric_mode bary =
3560 brw_barycentric_mode(interp_mode, bary_intrin);
3561
3562 dst_xy = this->delta_xy[bary];
3563 }
3564
3565 for (unsigned int i = 0; i < instr->num_components; i++) {
3566 fs_reg interp =
3567 component(interp_reg(nir_intrinsic_base(instr),
3568 nir_intrinsic_component(instr) + i), 0);
3569 interp.type = BRW_REGISTER_TYPE_F;
3570 dest.type = BRW_REGISTER_TYPE_F;
3571
3572 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3573 fs_reg tmp = vgrf(glsl_type::float_type);
3574 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3575 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3576 } else {
3577 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3578 }
3579 }
3580 break;
3581 }
3582
3583 default:
3584 nir_emit_intrinsic(bld, instr);
3585 break;
3586 }
3587 }
3588
3589 void
3590 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3591 nir_intrinsic_instr *instr)
3592 {
3593 assert(stage == MESA_SHADER_COMPUTE);
3594 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3595
3596 fs_reg dest;
3597 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3598 dest = get_nir_dest(instr->dest);
3599
3600 switch (instr->intrinsic) {
3601 case nir_intrinsic_barrier:
3602 emit_barrier();
3603 cs_prog_data->uses_barrier = true;
3604 break;
3605
3606 case nir_intrinsic_load_subgroup_id:
3607 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3608 break;
3609
3610 case nir_intrinsic_load_local_invocation_id:
3611 case nir_intrinsic_load_work_group_id: {
3612 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3613 fs_reg val = nir_system_values[sv];
3614 assert(val.file != BAD_FILE);
3615 dest.type = val.type;
3616 for (unsigned i = 0; i < 3; i++)
3617 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3618 break;
3619 }
3620
3621 case nir_intrinsic_load_num_work_groups: {
3622 const unsigned surface =
3623 cs_prog_data->binding_table.work_groups_start;
3624
3625 cs_prog_data->uses_num_work_groups = true;
3626
3627 fs_reg surf_index = brw_imm_ud(surface);
3628 brw_mark_surface_used(prog_data, surface);
3629
3630 /* Read the 3 GLuint components of gl_NumWorkGroups */
3631 for (unsigned i = 0; i < 3; i++) {
3632 fs_reg read_result =
3633 emit_untyped_read(bld, surf_index,
3634 brw_imm_ud(i << 2),
3635 1 /* dims */, 1 /* size */,
3636 BRW_PREDICATE_NONE);
3637 read_result.type = dest.type;
3638 bld.MOV(dest, read_result);
3639 dest = offset(dest, bld, 1);
3640 }
3641 break;
3642 }
3643
3644 case nir_intrinsic_shared_atomic_add:
3645 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
3646 break;
3647 case nir_intrinsic_shared_atomic_imin:
3648 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3649 break;
3650 case nir_intrinsic_shared_atomic_umin:
3651 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3652 break;
3653 case nir_intrinsic_shared_atomic_imax:
3654 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3655 break;
3656 case nir_intrinsic_shared_atomic_umax:
3657 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3658 break;
3659 case nir_intrinsic_shared_atomic_and:
3660 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3661 break;
3662 case nir_intrinsic_shared_atomic_or:
3663 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3664 break;
3665 case nir_intrinsic_shared_atomic_xor:
3666 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3667 break;
3668 case nir_intrinsic_shared_atomic_exchange:
3669 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3670 break;
3671 case nir_intrinsic_shared_atomic_comp_swap:
3672 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3673 break;
3674
3675 case nir_intrinsic_load_shared: {
3676 assert(devinfo->gen >= 7);
3677
3678 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3679
3680 /* Get the offset to read from */
3681 fs_reg offset_reg;
3682 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3683 if (const_offset) {
3684 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3685 } else {
3686 offset_reg = vgrf(glsl_type::uint_type);
3687 bld.ADD(offset_reg,
3688 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3689 brw_imm_ud(instr->const_index[0]));
3690 }
3691
3692 /* Read the vector */
3693 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3694 instr->num_components);
3695 break;
3696 }
3697
3698 case nir_intrinsic_store_shared: {
3699 assert(devinfo->gen >= 7);
3700
3701 /* Block index */
3702 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3703
3704 /* Value */
3705 fs_reg val_reg = get_nir_src(instr->src[0]);
3706
3707 /* Writemask */
3708 unsigned writemask = instr->const_index[1];
3709
3710 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3711 * since the untyped writes below operate in units of 32-bits, which
3712 * means that we need to write twice as many components each time.
3713 * Also, we have to suffle 64-bit data to be in the appropriate layout
3714 * expected by our 32-bit write messages.
3715 */
3716 unsigned type_size = 4;
3717 if (nir_src_bit_size(instr->src[0]) == 64) {
3718 type_size = 8;
3719 val_reg = shuffle_64bit_data_for_32bit_write(bld,
3720 val_reg, instr->num_components);
3721 }
3722
3723 unsigned type_slots = type_size / 4;
3724
3725 /* Combine groups of consecutive enabled channels in one write
3726 * message. We use ffs to find the first enabled channel and then ffs on
3727 * the bit-inverse, down-shifted writemask to determine the length of
3728 * the block of enabled bits.
3729 */
3730 while (writemask) {
3731 unsigned first_component = ffs(writemask) - 1;
3732 unsigned length = ffs(~(writemask >> first_component)) - 1;
3733
3734 /* We can't write more than 2 64-bit components at once. Limit the
3735 * length of the write to what we can do and let the next iteration
3736 * handle the rest
3737 */
3738 if (type_size > 4)
3739 length = MIN2(2, length);
3740
3741 fs_reg offset_reg;
3742 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3743 if (const_offset) {
3744 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3745 type_size * first_component);
3746 } else {
3747 offset_reg = vgrf(glsl_type::uint_type);
3748 bld.ADD(offset_reg,
3749 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3750 brw_imm_ud(instr->const_index[0] + type_size * first_component));
3751 }
3752
3753 emit_untyped_write(bld, surf_index, offset_reg,
3754 offset(val_reg, bld, first_component * type_slots),
3755 1 /* dims */, length * type_slots,
3756 BRW_PREDICATE_NONE);
3757
3758 /* Clear the bits in the writemask that we just wrote, then try
3759 * again to see if more channels are left.
3760 */
3761 writemask &= (15 << (first_component + length));
3762 }
3763
3764 break;
3765 }
3766
3767 default:
3768 nir_emit_intrinsic(bld, instr);
3769 break;
3770 }
3771 }
3772
3773 static fs_reg
3774 brw_nir_reduction_op_identity(const fs_builder &bld,
3775 nir_op op, brw_reg_type type)
3776 {
3777 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3778 switch (type_sz(type)) {
3779 case 2:
3780 assert(type != BRW_REGISTER_TYPE_HF);
3781 return retype(brw_imm_uw(value.u16[0]), type);
3782 case 4:
3783 return retype(brw_imm_ud(value.u32[0]), type);
3784 case 8:
3785 if (type == BRW_REGISTER_TYPE_DF)
3786 return setup_imm_df(bld, value.f64[0]);
3787 else
3788 return retype(brw_imm_u64(value.u64[0]), type);
3789 default:
3790 unreachable("Invalid type size");
3791 }
3792 }
3793
3794 static opcode
3795 brw_op_for_nir_reduction_op(nir_op op)
3796 {
3797 switch (op) {
3798 case nir_op_iadd: return BRW_OPCODE_ADD;
3799 case nir_op_fadd: return BRW_OPCODE_ADD;
3800 case nir_op_imul: return BRW_OPCODE_MUL;
3801 case nir_op_fmul: return BRW_OPCODE_MUL;
3802 case nir_op_imin: return BRW_OPCODE_SEL;
3803 case nir_op_umin: return BRW_OPCODE_SEL;
3804 case nir_op_fmin: return BRW_OPCODE_SEL;
3805 case nir_op_imax: return BRW_OPCODE_SEL;
3806 case nir_op_umax: return BRW_OPCODE_SEL;
3807 case nir_op_fmax: return BRW_OPCODE_SEL;
3808 case nir_op_iand: return BRW_OPCODE_AND;
3809 case nir_op_ior: return BRW_OPCODE_OR;
3810 case nir_op_ixor: return BRW_OPCODE_XOR;
3811 default:
3812 unreachable("Invalid reduction operation");
3813 }
3814 }
3815
3816 static brw_conditional_mod
3817 brw_cond_mod_for_nir_reduction_op(nir_op op)
3818 {
3819 switch (op) {
3820 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3821 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3822 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3823 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3824 case nir_op_imin: return BRW_CONDITIONAL_L;
3825 case nir_op_umin: return BRW_CONDITIONAL_L;
3826 case nir_op_fmin: return BRW_CONDITIONAL_L;
3827 case nir_op_imax: return BRW_CONDITIONAL_GE;
3828 case nir_op_umax: return BRW_CONDITIONAL_GE;
3829 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3830 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3831 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3832 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3833 default:
3834 unreachable("Invalid reduction operation");
3835 }
3836 }
3837
3838 void
3839 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3840 {
3841 fs_reg dest;
3842 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3843 dest = get_nir_dest(instr->dest);
3844
3845 switch (instr->intrinsic) {
3846 case nir_intrinsic_image_var_load:
3847 case nir_intrinsic_image_var_store:
3848 case nir_intrinsic_image_var_atomic_add:
3849 case nir_intrinsic_image_var_atomic_min:
3850 case nir_intrinsic_image_var_atomic_max:
3851 case nir_intrinsic_image_var_atomic_and:
3852 case nir_intrinsic_image_var_atomic_or:
3853 case nir_intrinsic_image_var_atomic_xor:
3854 case nir_intrinsic_image_var_atomic_exchange:
3855 case nir_intrinsic_image_var_atomic_comp_swap: {
3856 using namespace image_access;
3857
3858 if (stage == MESA_SHADER_FRAGMENT &&
3859 instr->intrinsic != nir_intrinsic_image_var_load)
3860 brw_wm_prog_data(prog_data)->has_side_effects = true;
3861
3862 /* Get the referenced image variable and type. */
3863 const nir_variable *var = instr->variables[0]->var;
3864 const glsl_type *type = var->type->without_array();
3865 const brw_reg_type base_type = get_image_base_type(type);
3866
3867 /* Get some metadata from the image intrinsic. */
3868 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3869 const unsigned arr_dims = type->sampler_array ? 1 : 0;
3870 const unsigned surf_dims = type->coordinate_components() - arr_dims;
3871 const unsigned format = var->data.image.format;
3872 const unsigned dest_components = nir_intrinsic_dest_components(instr);
3873
3874 /* Get the arguments of the image intrinsic. */
3875 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3876 const fs_reg addr = retype(get_nir_src(instr->src[0]),
3877 BRW_REGISTER_TYPE_UD);
3878 const fs_reg src0 = (info->num_srcs >= 3 ?
3879 retype(get_nir_src(instr->src[2]), base_type) :
3880 fs_reg());
3881 const fs_reg src1 = (info->num_srcs >= 4 ?
3882 retype(get_nir_src(instr->src[3]), base_type) :
3883 fs_reg());
3884 fs_reg tmp;
3885
3886 /* Emit an image load, store or atomic op. */
3887 if (instr->intrinsic == nir_intrinsic_image_var_load)
3888 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
3889
3890 else if (instr->intrinsic == nir_intrinsic_image_var_store)
3891 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims,
3892 var->data.image.write_only ? GL_NONE : format);
3893
3894 else
3895 tmp = emit_image_atomic(bld, image, addr, src0, src1,
3896 surf_dims, arr_dims, dest_components,
3897 get_image_atomic_op(instr->intrinsic, type));
3898
3899 /* Assign the result. */
3900 for (unsigned c = 0; c < dest_components; ++c) {
3901 bld.MOV(offset(retype(dest, base_type), bld, c),
3902 offset(tmp, bld, c));
3903 }
3904 break;
3905 }
3906
3907 case nir_intrinsic_memory_barrier_atomic_counter:
3908 case nir_intrinsic_memory_barrier_buffer:
3909 case nir_intrinsic_memory_barrier_image:
3910 case nir_intrinsic_memory_barrier: {
3911 const fs_builder ubld = bld.group(8, 0);
3912 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3913 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3914 ->size_written = 2 * REG_SIZE;
3915 break;
3916 }
3917
3918 case nir_intrinsic_group_memory_barrier:
3919 case nir_intrinsic_memory_barrier_shared:
3920 /* We treat these workgroup-level barriers as no-ops. This should be
3921 * safe at present and as long as:
3922 *
3923 * - Memory access instructions are not subsequently reordered by the
3924 * compiler back-end.
3925 *
3926 * - All threads from a given compute shader workgroup fit within a
3927 * single subslice and therefore talk to the same HDC shared unit
3928 * what supposedly guarantees ordering and coherency between threads
3929 * from the same workgroup. This may change in the future when we
3930 * start splitting workgroups across multiple subslices.
3931 *
3932 * - The context is not in fault-and-stream mode, which could cause
3933 * memory transactions (including to SLM) prior to the barrier to be
3934 * replayed after the barrier if a pagefault occurs. This shouldn't
3935 * be a problem up to and including SKL because fault-and-stream is
3936 * not usable due to hardware issues, but that's likely to change in
3937 * the future.
3938 */
3939 break;
3940
3941 case nir_intrinsic_shader_clock: {
3942 /* We cannot do anything if there is an event, so ignore it for now */
3943 const fs_reg shader_clock = get_timestamp(bld);
3944 const fs_reg srcs[] = { component(shader_clock, 0),
3945 component(shader_clock, 1) };
3946 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3947 break;
3948 }
3949
3950 case nir_intrinsic_image_var_size: {
3951 /* Get the referenced image variable and type. */
3952 const nir_variable *var = instr->variables[0]->var;
3953 const glsl_type *type = var->type->without_array();
3954
3955 /* Get the size of the image. */
3956 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3957 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
3958
3959 /* For 1DArray image types, the array index is stored in the Z component.
3960 * Fix this by swizzling the Z component to the Y component.
3961 */
3962 const bool is_1d_array_image =
3963 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
3964 type->sampler_array;
3965
3966 /* For CubeArray images, we should count the number of cubes instead
3967 * of the number of faces. Fix it by dividing the (Z component) by 6.
3968 */
3969 const bool is_cube_array_image =
3970 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3971 type->sampler_array;
3972
3973 /* Copy all the components. */
3974 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3975 if ((int)c >= type->coordinate_components()) {
3976 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3977 brw_imm_d(1));
3978 } else if (c == 1 && is_1d_array_image) {
3979 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3980 offset(size, bld, 2));
3981 } else if (c == 2 && is_cube_array_image) {
3982 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3983 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3984 offset(size, bld, c), brw_imm_d(6));
3985 } else {
3986 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3987 offset(size, bld, c));
3988 }
3989 }
3990
3991 break;
3992 }
3993
3994 case nir_intrinsic_image_var_samples:
3995 /* The driver does not support multi-sampled images. */
3996 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
3997 break;
3998
3999 case nir_intrinsic_load_uniform: {
4000 /* Offsets are in bytes but they should always aligned to
4001 * the type size
4002 */
4003 assert(instr->const_index[0] % 4 == 0 ||
4004 instr->const_index[0] % type_sz(dest.type) == 0);
4005
4006 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4007
4008 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4009 if (const_offset) {
4010 assert(const_offset->u32[0] % type_sz(dest.type) == 0);
4011 /* For 16-bit types we add the module of the const_index[0]
4012 * offset to access to not 32-bit aligned element
4013 */
4014 src.offset = const_offset->u32[0] + instr->const_index[0] % 4;
4015
4016 for (unsigned j = 0; j < instr->num_components; j++) {
4017 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4018 }
4019 } else {
4020 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4021 BRW_REGISTER_TYPE_UD);
4022
4023 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4024 * go past the end of the uniform. In order to keep the n'th
4025 * component from running past, we subtract off the size of all but
4026 * one component of the vector.
4027 */
4028 assert(instr->const_index[1] >=
4029 instr->num_components * (int) type_sz(dest.type));
4030 unsigned read_size = instr->const_index[1] -
4031 (instr->num_components - 1) * type_sz(dest.type);
4032
4033 bool supports_64bit_indirects =
4034 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4035
4036 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4037 for (unsigned j = 0; j < instr->num_components; j++) {
4038 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4039 offset(dest, bld, j), offset(src, bld, j),
4040 indirect, brw_imm_ud(read_size));
4041 }
4042 } else {
4043 const unsigned num_mov_indirects =
4044 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4045 /* We read a little bit less per MOV INDIRECT, as they are now
4046 * 32-bits ones instead of 64-bit. Fix read_size then.
4047 */
4048 const unsigned read_size_32bit = read_size -
4049 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4050 for (unsigned j = 0; j < instr->num_components; j++) {
4051 for (unsigned i = 0; i < num_mov_indirects; i++) {
4052 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4053 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4054 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4055 indirect, brw_imm_ud(read_size_32bit));
4056 }
4057 }
4058 }
4059 }
4060 break;
4061 }
4062
4063 case nir_intrinsic_load_ubo: {
4064 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
4065 fs_reg surf_index;
4066
4067 if (const_index) {
4068 const unsigned index = stage_prog_data->binding_table.ubo_start +
4069 const_index->u32[0];
4070 surf_index = brw_imm_ud(index);
4071 brw_mark_surface_used(prog_data, index);
4072 } else {
4073 /* The block index is not a constant. Evaluate the index expression
4074 * per-channel and add the base UBO index; we have to select a value
4075 * from any live channel.
4076 */
4077 surf_index = vgrf(glsl_type::uint_type);
4078 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4079 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4080 surf_index = bld.emit_uniformize(surf_index);
4081
4082 /* Assume this may touch any UBO. It would be nice to provide
4083 * a tighter bound, but the array information is already lowered away.
4084 */
4085 brw_mark_surface_used(prog_data,
4086 stage_prog_data->binding_table.ubo_start +
4087 nir->info.num_ubos - 1);
4088 }
4089
4090 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4091 if (const_offset == NULL) {
4092 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4093 BRW_REGISTER_TYPE_UD);
4094
4095 for (int i = 0; i < instr->num_components; i++)
4096 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4097 base_offset, i * type_sz(dest.type));
4098 } else {
4099 /* Even if we are loading doubles, a pull constant load will load
4100 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4101 * need to load a full dvec4 we will have to emit 2 loads. This is
4102 * similar to demote_pull_constants(), except that in that case we
4103 * see individual accesses to each component of the vector and then
4104 * we let CSE deal with duplicate loads. Here we see a vector access
4105 * and we have to split it if necessary.
4106 */
4107 const unsigned type_size = type_sz(dest.type);
4108
4109 /* See if we've selected this as a push constant candidate */
4110 if (const_index) {
4111 const unsigned ubo_block = const_index->u32[0];
4112 const unsigned offset_256b = const_offset->u32[0] / 32;
4113
4114 fs_reg push_reg;
4115 for (int i = 0; i < 4; i++) {
4116 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4117 if (range->block == ubo_block &&
4118 offset_256b >= range->start &&
4119 offset_256b < range->start + range->length) {
4120
4121 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4122 push_reg.offset = const_offset->u32[0] - 32 * range->start;
4123 break;
4124 }
4125 }
4126
4127 if (push_reg.file != BAD_FILE) {
4128 for (unsigned i = 0; i < instr->num_components; i++) {
4129 bld.MOV(offset(dest, bld, i),
4130 byte_offset(push_reg, i * type_size));
4131 }
4132 break;
4133 }
4134 }
4135
4136 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4137 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4138 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4139
4140 for (unsigned c = 0; c < instr->num_components;) {
4141 const unsigned base = const_offset->u32[0] + c * type_size;
4142 /* Number of usable components in the next block-aligned load. */
4143 const unsigned count = MIN2(instr->num_components - c,
4144 (block_sz - base % block_sz) / type_size);
4145
4146 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4147 packed_consts, surf_index,
4148 brw_imm_ud(base & ~(block_sz - 1)));
4149
4150 const fs_reg consts =
4151 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4152 dest.type);
4153
4154 for (unsigned d = 0; d < count; d++)
4155 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4156
4157 c += count;
4158 }
4159 }
4160 break;
4161 }
4162
4163 case nir_intrinsic_load_ssbo: {
4164 assert(devinfo->gen >= 7);
4165
4166 nir_const_value *const_uniform_block =
4167 nir_src_as_const_value(instr->src[0]);
4168
4169 fs_reg surf_index;
4170 if (const_uniform_block) {
4171 unsigned index = stage_prog_data->binding_table.ssbo_start +
4172 const_uniform_block->u32[0];
4173 surf_index = brw_imm_ud(index);
4174 brw_mark_surface_used(prog_data, index);
4175 } else {
4176 surf_index = vgrf(glsl_type::uint_type);
4177 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4178 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4179
4180 /* Assume this may touch any UBO. It would be nice to provide
4181 * a tighter bound, but the array information is already lowered away.
4182 */
4183 brw_mark_surface_used(prog_data,
4184 stage_prog_data->binding_table.ssbo_start +
4185 nir->info.num_ssbos - 1);
4186 }
4187
4188 fs_reg offset_reg;
4189 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4190 if (const_offset) {
4191 offset_reg = brw_imm_ud(const_offset->u32[0]);
4192 } else {
4193 offset_reg = retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD);
4194 }
4195
4196 /* Read the vector */
4197 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
4198 instr->num_components);
4199
4200 break;
4201 }
4202
4203 case nir_intrinsic_store_ssbo: {
4204 assert(devinfo->gen >= 7);
4205
4206 if (stage == MESA_SHADER_FRAGMENT)
4207 brw_wm_prog_data(prog_data)->has_side_effects = true;
4208
4209 /* Block index */
4210 fs_reg surf_index;
4211 nir_const_value *const_uniform_block =
4212 nir_src_as_const_value(instr->src[1]);
4213 if (const_uniform_block) {
4214 unsigned index = stage_prog_data->binding_table.ssbo_start +
4215 const_uniform_block->u32[0];
4216 surf_index = brw_imm_ud(index);
4217 brw_mark_surface_used(prog_data, index);
4218 } else {
4219 surf_index = vgrf(glsl_type::uint_type);
4220 bld.ADD(surf_index, get_nir_src(instr->src[1]),
4221 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4222
4223 brw_mark_surface_used(prog_data,
4224 stage_prog_data->binding_table.ssbo_start +
4225 nir->info.num_ssbos - 1);
4226 }
4227
4228 /* Value */
4229 fs_reg val_reg = get_nir_src(instr->src[0]);
4230
4231 /* Writemask */
4232 unsigned writemask = instr->const_index[0];
4233
4234 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
4235 * since the untyped writes below operate in units of 32-bits, which
4236 * means that we need to write twice as many components each time.
4237 * Also, we have to suffle 64-bit data to be in the appropriate layout
4238 * expected by our 32-bit write messages.
4239 */
4240 unsigned bit_size = nir_src_bit_size(instr->src[0]);
4241 unsigned type_size = bit_size / 8;
4242
4243 /* Combine groups of consecutive enabled channels in one write
4244 * message. We use ffs to find the first enabled channel and then ffs on
4245 * the bit-inverse, down-shifted writemask to determine the num_components
4246 * of the block of enabled bits.
4247 */
4248 while (writemask) {
4249 unsigned first_component = ffs(writemask) - 1;
4250 unsigned num_components = ffs(~(writemask >> first_component)) - 1;
4251 fs_reg write_src = offset(val_reg, bld, first_component);
4252
4253 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
4254
4255 if (type_size > 4) {
4256 /* We can't write more than 2 64-bit components at once. Limit
4257 * the num_components of the write to what we can do and let the next
4258 * iteration handle the rest.
4259 */
4260 num_components = MIN2(2, num_components);
4261 write_src = shuffle_64bit_data_for_32bit_write(bld, write_src,
4262 num_components);
4263 } else if (type_size < 4) {
4264 assert(type_size == 2);
4265 /* For 16-bit types we pack two consecutive values into a 32-bit
4266 * word and use an untyped write message. For single values or not
4267 * 32-bit-aligned we need to use byte-scattered writes because
4268 * untyped writes works with 32-bit components with 32-bit
4269 * alignment. byte_scattered_write messages only support one
4270 * 16-bit component at a time. As VK_KHR_relaxed_block_layout
4271 * could be enabled we can not guarantee that not constant offsets
4272 * to be 32-bit aligned for 16-bit types. For example an array, of
4273 * 16-bit vec3 with array element stride of 6.
4274 *
4275 * In the case of 32-bit aligned constant offsets if there is
4276 * a 3-components vector we submit one untyped-write message
4277 * of 32-bit (first two components), and one byte-scattered
4278 * write message (the last component).
4279 */
4280
4281 if ( !const_offset || ((const_offset->u32[0] +
4282 type_size * first_component) % 4)) {
4283 /* If we use a .yz writemask we also need to emit 2
4284 * byte-scattered write messages because of y-component not
4285 * being aligned to 32-bit.
4286 */
4287 num_components = 1;
4288 } else if (num_components > 2 && (num_components % 2)) {
4289 /* If there is an odd number of consecutive components we left
4290 * the not paired component for a following emit of length == 1
4291 * with byte_scattered_write.
4292 */
4293 num_components --;
4294 }
4295 /* For num_components == 1 we are also shuffling the component
4296 * because byte scattered writes of 16-bit need values to be dword
4297 * aligned. Shuffling only one component would be the same as
4298 * striding it.
4299 */
4300 write_src = shuffle_for_32bit_write(bld, write_src, 0,
4301 num_components);
4302 }
4303
4304 fs_reg offset_reg;
4305
4306 if (const_offset) {
4307 offset_reg = brw_imm_ud(const_offset->u32[0] +
4308 type_size * first_component);
4309 } else {
4310 offset_reg = vgrf(glsl_type::uint_type);
4311 bld.ADD(offset_reg,
4312 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
4313 brw_imm_ud(type_size * first_component));
4314 }
4315
4316 if (type_size < 4 && num_components == 1) {
4317 assert(type_size == 2);
4318 /* Untyped Surface messages have a fixed 32-bit size, so we need
4319 * to rely on byte scattered in order to write 16-bit elements.
4320 * The byte_scattered_write message needs that every written 16-bit
4321 * type to be aligned 32-bits (stride=2).
4322 */
4323 emit_byte_scattered_write(bld, surf_index, offset_reg,
4324 write_src,
4325 1 /* dims */, 1,
4326 bit_size,
4327 BRW_PREDICATE_NONE);
4328 } else {
4329 assert(num_components * type_size <= 16);
4330 assert((num_components * type_size) % 4 == 0);
4331 assert(offset_reg.file != BRW_IMMEDIATE_VALUE ||
4332 offset_reg.ud % 4 == 0);
4333 unsigned num_slots = (num_components * type_size) / 4;
4334
4335 emit_untyped_write(bld, surf_index, offset_reg,
4336 write_src,
4337 1 /* dims */, num_slots,
4338 BRW_PREDICATE_NONE);
4339 }
4340
4341 /* Clear the bits in the writemask that we just wrote, then try
4342 * again to see if more channels are left.
4343 */
4344 writemask &= (15 << (first_component + num_components));
4345 }
4346 break;
4347 }
4348
4349 case nir_intrinsic_store_output: {
4350 fs_reg src = get_nir_src(instr->src[0]);
4351
4352 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4353 assert(const_offset && "Indirect output stores not allowed");
4354
4355 unsigned num_components = instr->num_components;
4356 unsigned first_component = nir_intrinsic_component(instr);
4357 if (nir_src_bit_size(instr->src[0]) == 64) {
4358 src = shuffle_64bit_data_for_32bit_write(bld, src, num_components);
4359 num_components *= 2;
4360 }
4361
4362 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4363 4 * const_offset->u32[0]), src.type);
4364 for (unsigned j = 0; j < num_components; j++) {
4365 bld.MOV(offset(new_dest, bld, j + first_component),
4366 offset(src, bld, j));
4367 }
4368 break;
4369 }
4370
4371 case nir_intrinsic_ssbo_atomic_add:
4372 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
4373 break;
4374 case nir_intrinsic_ssbo_atomic_imin:
4375 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4376 break;
4377 case nir_intrinsic_ssbo_atomic_umin:
4378 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4379 break;
4380 case nir_intrinsic_ssbo_atomic_imax:
4381 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4382 break;
4383 case nir_intrinsic_ssbo_atomic_umax:
4384 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4385 break;
4386 case nir_intrinsic_ssbo_atomic_and:
4387 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4388 break;
4389 case nir_intrinsic_ssbo_atomic_or:
4390 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4391 break;
4392 case nir_intrinsic_ssbo_atomic_xor:
4393 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4394 break;
4395 case nir_intrinsic_ssbo_atomic_exchange:
4396 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4397 break;
4398 case nir_intrinsic_ssbo_atomic_comp_swap:
4399 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4400 break;
4401
4402 case nir_intrinsic_get_buffer_size: {
4403 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
4404 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
4405
4406 /* A resinfo's sampler message is used to get the buffer size. The
4407 * SIMD8's writeback message consists of four registers and SIMD16's
4408 * writeback message consists of 8 destination registers (two per each
4409 * component). Because we are only interested on the first channel of
4410 * the first returned component, where resinfo returns the buffer size
4411 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4412 * the dispatch width.
4413 */
4414 const fs_builder ubld = bld.exec_all().group(8, 0);
4415 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4416 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4417
4418 /* Set LOD = 0 */
4419 ubld.MOV(src_payload, brw_imm_d(0));
4420
4421 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4422 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4423 src_payload, brw_imm_ud(index));
4424 inst->header_size = 0;
4425 inst->mlen = 1;
4426 inst->size_written = 4 * REG_SIZE;
4427
4428 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4429 *
4430 * "Out-of-bounds checking is always performed at a DWord granularity. If
4431 * any part of the DWord is out-of-bounds then the whole DWord is
4432 * considered out-of-bounds."
4433 *
4434 * This implies that types with size smaller than 4-bytes need to be
4435 * padded if they don't complete the last dword of the buffer. But as we
4436 * need to maintain the original size we need to reverse the padding
4437 * calculation to return the correct size to know the number of elements
4438 * of an unsized array. As we stored in the last two bits of the surface
4439 * size the needed padding for the buffer, we calculate here the
4440 * original buffer_size reversing the surface_size calculation:
4441 *
4442 * surface_size = isl_align(buffer_size, 4) +
4443 * (isl_align(buffer_size) - buffer_size)
4444 *
4445 * buffer_size = surface_size & ~3 - surface_size & 3
4446 */
4447
4448 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4449 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4450 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4451
4452 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4453 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4454 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4455
4456 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4457
4458 brw_mark_surface_used(prog_data, index);
4459 break;
4460 }
4461
4462 case nir_intrinsic_load_subgroup_invocation:
4463 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4464 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4465 break;
4466
4467 case nir_intrinsic_load_subgroup_eq_mask:
4468 case nir_intrinsic_load_subgroup_ge_mask:
4469 case nir_intrinsic_load_subgroup_gt_mask:
4470 case nir_intrinsic_load_subgroup_le_mask:
4471 case nir_intrinsic_load_subgroup_lt_mask:
4472 unreachable("not reached");
4473
4474 case nir_intrinsic_vote_any: {
4475 const fs_builder ubld = bld.exec_all().group(1, 0);
4476
4477 /* The any/all predicates do not consider channel enables. To prevent
4478 * dead channels from affecting the result, we initialize the flag with
4479 * with the identity value for the logical operation.
4480 */
4481 if (dispatch_width == 32) {
4482 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4483 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4484 brw_imm_ud(0));
4485 } else {
4486 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4487 }
4488 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4489
4490 /* For some reason, the any/all predicates don't work properly with
4491 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4492 * doesn't read the correct subset of the flag register and you end up
4493 * getting garbage in the second half. Work around this by using a pair
4494 * of 1-wide MOVs and scattering the result.
4495 */
4496 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4497 ubld.MOV(res1, brw_imm_d(0));
4498 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4499 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4500 BRW_PREDICATE_ALIGN1_ANY32H,
4501 ubld.MOV(res1, brw_imm_d(-1)));
4502
4503 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4504 break;
4505 }
4506 case nir_intrinsic_vote_all: {
4507 const fs_builder ubld = bld.exec_all().group(1, 0);
4508
4509 /* The any/all predicates do not consider channel enables. To prevent
4510 * dead channels from affecting the result, we initialize the flag with
4511 * with the identity value for the logical operation.
4512 */
4513 if (dispatch_width == 32) {
4514 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4515 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4516 brw_imm_ud(0xffffffff));
4517 } else {
4518 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4519 }
4520 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4521
4522 /* For some reason, the any/all predicates don't work properly with
4523 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4524 * doesn't read the correct subset of the flag register and you end up
4525 * getting garbage in the second half. Work around this by using a pair
4526 * of 1-wide MOVs and scattering the result.
4527 */
4528 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4529 ubld.MOV(res1, brw_imm_d(0));
4530 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4531 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4532 BRW_PREDICATE_ALIGN1_ALL32H,
4533 ubld.MOV(res1, brw_imm_d(-1)));
4534
4535 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4536 break;
4537 }
4538 case nir_intrinsic_vote_feq:
4539 case nir_intrinsic_vote_ieq: {
4540 fs_reg value = get_nir_src(instr->src[0]);
4541 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4542 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4543 value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4544 }
4545
4546 fs_reg uniformized = bld.emit_uniformize(value);
4547 const fs_builder ubld = bld.exec_all().group(1, 0);
4548
4549 /* The any/all predicates do not consider channel enables. To prevent
4550 * dead channels from affecting the result, we initialize the flag with
4551 * with the identity value for the logical operation.
4552 */
4553 if (dispatch_width == 32) {
4554 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4555 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4556 brw_imm_ud(0xffffffff));
4557 } else {
4558 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4559 }
4560 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4561
4562 /* For some reason, the any/all predicates don't work properly with
4563 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4564 * doesn't read the correct subset of the flag register and you end up
4565 * getting garbage in the second half. Work around this by using a pair
4566 * of 1-wide MOVs and scattering the result.
4567 */
4568 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4569 ubld.MOV(res1, brw_imm_d(0));
4570 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4571 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4572 BRW_PREDICATE_ALIGN1_ALL32H,
4573 ubld.MOV(res1, brw_imm_d(-1)));
4574
4575 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4576 break;
4577 }
4578
4579 case nir_intrinsic_ballot: {
4580 const fs_reg value = retype(get_nir_src(instr->src[0]),
4581 BRW_REGISTER_TYPE_UD);
4582 struct brw_reg flag = brw_flag_reg(0, 0);
4583 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4584 * as f0.0. This is a problem for fragment programs as we currently use
4585 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4586 * programs yet so this isn't a problem. When we do, something will
4587 * have to change.
4588 */
4589 if (dispatch_width == 32)
4590 flag.type = BRW_REGISTER_TYPE_UD;
4591
4592 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4593 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4594
4595 if (instr->dest.ssa.bit_size > 32) {
4596 dest.type = BRW_REGISTER_TYPE_UQ;
4597 } else {
4598 dest.type = BRW_REGISTER_TYPE_UD;
4599 }
4600 bld.MOV(dest, flag);
4601 break;
4602 }
4603
4604 case nir_intrinsic_read_invocation: {
4605 const fs_reg value = get_nir_src(instr->src[0]);
4606 const fs_reg invocation = get_nir_src(instr->src[1]);
4607 fs_reg tmp = bld.vgrf(value.type);
4608
4609 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4610 bld.emit_uniformize(invocation));
4611
4612 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4613 break;
4614 }
4615
4616 case nir_intrinsic_read_first_invocation: {
4617 const fs_reg value = get_nir_src(instr->src[0]);
4618 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4619 break;
4620 }
4621
4622 case nir_intrinsic_shuffle: {
4623 const fs_reg value = get_nir_src(instr->src[0]);
4624 const fs_reg index = get_nir_src(instr->src[1]);
4625
4626 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4627 break;
4628 }
4629
4630 case nir_intrinsic_first_invocation: {
4631 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4632 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4633 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4634 fs_reg(component(tmp, 0)));
4635 break;
4636 }
4637
4638 case nir_intrinsic_quad_broadcast: {
4639 const fs_reg value = get_nir_src(instr->src[0]);
4640 nir_const_value *index = nir_src_as_const_value(instr->src[1]);
4641 assert(nir_src_bit_size(instr->src[1]) == 32);
4642
4643 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4644 value, brw_imm_ud(index->u32[0]), brw_imm_ud(4));
4645 break;
4646 }
4647
4648 case nir_intrinsic_quad_swap_horizontal: {
4649 const fs_reg value = get_nir_src(instr->src[0]);
4650 const fs_reg tmp = bld.vgrf(value.type);
4651 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4652
4653 const fs_reg src_left = horiz_stride(value, 2);
4654 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4655 const fs_reg tmp_left = horiz_stride(tmp, 2);
4656 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4657
4658 /* From the Cherryview PRM Vol. 7, "Register Region Restrictiosn":
4659 *
4660 * "When source or destination datatype is 64b or operation is
4661 * integer DWord multiply, regioning in Align1 must follow
4662 * these rules:
4663 *
4664 * [...]
4665 *
4666 * 3. Source and Destination offset must be the same, except
4667 * the case of scalar source."
4668 *
4669 * In order to work around this, we have to emit two 32-bit MOVs instead
4670 * of a single 64-bit MOV to do the shuffle.
4671 */
4672 if (type_sz(value.type) > 4 &&
4673 (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
4674 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 0),
4675 subscript(src_right, BRW_REGISTER_TYPE_D, 0));
4676 ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 1),
4677 subscript(src_right, BRW_REGISTER_TYPE_D, 1));
4678 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 0),
4679 subscript(src_left, BRW_REGISTER_TYPE_D, 0));
4680 ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 1),
4681 subscript(src_left, BRW_REGISTER_TYPE_D, 1));
4682 } else {
4683 ubld.MOV(tmp_left, src_right);
4684 ubld.MOV(tmp_right, src_left);
4685 }
4686 bld.MOV(retype(dest, value.type), tmp);
4687 break;
4688 }
4689
4690 case nir_intrinsic_quad_swap_vertical: {
4691 const fs_reg value = get_nir_src(instr->src[0]);
4692 if (nir_src_bit_size(instr->src[0]) == 32) {
4693 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4694 const fs_reg tmp = bld.vgrf(value.type);
4695 const fs_builder ubld = bld.exec_all();
4696 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4697 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4698 bld.MOV(retype(dest, value.type), tmp);
4699 } else {
4700 /* For larger data types, we have to either emit dispatch_width many
4701 * MOVs or else fall back to doing indirects.
4702 */
4703 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4704 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4705 brw_imm_w(0x2));
4706 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4707 }
4708 break;
4709 }
4710
4711 case nir_intrinsic_quad_swap_diagonal: {
4712 const fs_reg value = get_nir_src(instr->src[0]);
4713 if (nir_src_bit_size(instr->src[0]) == 32) {
4714 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4715 const fs_reg tmp = bld.vgrf(value.type);
4716 const fs_builder ubld = bld.exec_all();
4717 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4718 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4719 bld.MOV(retype(dest, value.type), tmp);
4720 } else {
4721 /* For larger data types, we have to either emit dispatch_width many
4722 * MOVs or else fall back to doing indirects.
4723 */
4724 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4725 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4726 brw_imm_w(0x3));
4727 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4728 }
4729 break;
4730 }
4731
4732 case nir_intrinsic_reduce: {
4733 fs_reg src = get_nir_src(instr->src[0]);
4734 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4735 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4736 if (cluster_size == 0 || cluster_size > dispatch_width)
4737 cluster_size = dispatch_width;
4738
4739 /* Figure out the source type */
4740 src.type = brw_type_for_nir_type(devinfo,
4741 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4742 nir_src_bit_size(instr->src[0])));
4743
4744 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4745 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4746 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4747
4748 /* Set up a register for all of our scratching around and initialize it
4749 * to reduction operation's identity value.
4750 */
4751 fs_reg scan = bld.vgrf(src.type);
4752 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4753
4754 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4755
4756 dest.type = src.type;
4757 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4758 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4759 * the distance between clusters is at least 2 GRFs. In this case,
4760 * we don't need the weird striding of the CLUSTER_BROADCAST
4761 * instruction and can just do regular MOVs.
4762 */
4763 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4764 const unsigned groups =
4765 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4766 const unsigned group_size = dispatch_width / groups;
4767 for (unsigned i = 0; i < groups; i++) {
4768 const unsigned cluster = (i * group_size) / cluster_size;
4769 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4770 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4771 component(scan, comp));
4772 }
4773 } else {
4774 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4775 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4776 }
4777 break;
4778 }
4779
4780 case nir_intrinsic_inclusive_scan:
4781 case nir_intrinsic_exclusive_scan: {
4782 fs_reg src = get_nir_src(instr->src[0]);
4783 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4784
4785 /* Figure out the source type */
4786 src.type = brw_type_for_nir_type(devinfo,
4787 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4788 nir_src_bit_size(instr->src[0])));
4789
4790 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4791 opcode brw_op = brw_op_for_nir_reduction_op(redop);
4792 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4793
4794 /* Set up a register for all of our scratching around and initialize it
4795 * to reduction operation's identity value.
4796 */
4797 fs_reg scan = bld.vgrf(src.type);
4798 const fs_builder allbld = bld.exec_all();
4799 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4800
4801 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4802 /* Exclusive scan is a bit harder because we have to do an annoying
4803 * shift of the contents before we can begin. To make things worse,
4804 * we can't do this with a normal stride; we have to use indirects.
4805 */
4806 fs_reg shifted = bld.vgrf(src.type);
4807 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4808 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4809 brw_imm_w(-1));
4810 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4811 allbld.group(1, 0).MOV(component(shifted, 0), identity);
4812 scan = shifted;
4813 }
4814
4815 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4816
4817 bld.MOV(retype(dest, src.type), scan);
4818 break;
4819 }
4820
4821 case nir_intrinsic_begin_invocation_interlock: {
4822 const fs_builder ubld = bld.group(8, 0);
4823 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4824
4825 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp)->size_written = 2 *
4826 REG_SIZE;
4827
4828 break;
4829 }
4830
4831 case nir_intrinsic_end_invocation_interlock: {
4832 /* We don't need to do anything here */
4833 break;
4834 }
4835
4836 default:
4837 unreachable("unknown intrinsic");
4838 }
4839 }
4840
4841 void
4842 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4843 int op, nir_intrinsic_instr *instr)
4844 {
4845 if (stage == MESA_SHADER_FRAGMENT)
4846 brw_wm_prog_data(prog_data)->has_side_effects = true;
4847
4848 fs_reg dest;
4849 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4850 dest = get_nir_dest(instr->dest);
4851
4852 fs_reg surface;
4853 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4854 if (const_surface) {
4855 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4856 const_surface->u32[0];
4857 surface = brw_imm_ud(surf_index);
4858 brw_mark_surface_used(prog_data, surf_index);
4859 } else {
4860 surface = vgrf(glsl_type::uint_type);
4861 bld.ADD(surface, get_nir_src(instr->src[0]),
4862 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4863
4864 /* Assume this may touch any SSBO. This is the same we do for other
4865 * UBO/SSBO accesses with non-constant surface.
4866 */
4867 brw_mark_surface_used(prog_data,
4868 stage_prog_data->binding_table.ssbo_start +
4869 nir->info.num_ssbos - 1);
4870 }
4871
4872 fs_reg offset = get_nir_src(instr->src[1]);
4873 fs_reg data1 = get_nir_src(instr->src[2]);
4874 fs_reg data2;
4875 if (op == BRW_AOP_CMPWR)
4876 data2 = get_nir_src(instr->src[3]);
4877
4878 /* Emit the actual atomic operation */
4879
4880 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4881 data1, data2,
4882 1 /* dims */, 1 /* rsize */,
4883 op,
4884 BRW_PREDICATE_NONE);
4885 dest.type = atomic_result.type;
4886 bld.MOV(dest, atomic_result);
4887 }
4888
4889 void
4890 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4891 int op, nir_intrinsic_instr *instr)
4892 {
4893 fs_reg dest;
4894 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4895 dest = get_nir_dest(instr->dest);
4896
4897 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4898 fs_reg offset;
4899 fs_reg data1 = get_nir_src(instr->src[1]);
4900 fs_reg data2;
4901 if (op == BRW_AOP_CMPWR)
4902 data2 = get_nir_src(instr->src[2]);
4903
4904 /* Get the offset */
4905 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4906 if (const_offset) {
4907 offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4908 } else {
4909 offset = vgrf(glsl_type::uint_type);
4910 bld.ADD(offset,
4911 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4912 brw_imm_ud(instr->const_index[0]));
4913 }
4914
4915 /* Emit the actual atomic operation operation */
4916
4917 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4918 data1, data2,
4919 1 /* dims */, 1 /* rsize */,
4920 op,
4921 BRW_PREDICATE_NONE);
4922 dest.type = atomic_result.type;
4923 bld.MOV(dest, atomic_result);
4924 }
4925
4926 void
4927 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
4928 {
4929 unsigned texture = instr->texture_index;
4930 unsigned sampler = instr->sampler_index;
4931
4932 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4933
4934 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
4935 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
4936
4937 int lod_components = 0;
4938
4939 /* The hardware requires a LOD for buffer textures */
4940 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
4941 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
4942
4943 uint32_t header_bits = 0;
4944 for (unsigned i = 0; i < instr->num_srcs; i++) {
4945 fs_reg src = get_nir_src(instr->src[i].src);
4946 switch (instr->src[i].src_type) {
4947 case nir_tex_src_bias:
4948 srcs[TEX_LOGICAL_SRC_LOD] =
4949 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4950 break;
4951 case nir_tex_src_comparator:
4952 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
4953 break;
4954 case nir_tex_src_coord:
4955 switch (instr->op) {
4956 case nir_texop_txf:
4957 case nir_texop_txf_ms:
4958 case nir_texop_txf_ms_mcs:
4959 case nir_texop_samples_identical:
4960 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
4961 break;
4962 default:
4963 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
4964 break;
4965 }
4966 break;
4967 case nir_tex_src_ddx:
4968 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
4969 lod_components = nir_tex_instr_src_size(instr, i);
4970 break;
4971 case nir_tex_src_ddy:
4972 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
4973 break;
4974 case nir_tex_src_lod:
4975 switch (instr->op) {
4976 case nir_texop_txs:
4977 srcs[TEX_LOGICAL_SRC_LOD] =
4978 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
4979 break;
4980 case nir_texop_txf:
4981 srcs[TEX_LOGICAL_SRC_LOD] =
4982 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
4983 break;
4984 default:
4985 srcs[TEX_LOGICAL_SRC_LOD] =
4986 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4987 break;
4988 }
4989 break;
4990 case nir_tex_src_ms_index:
4991 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
4992 break;
4993
4994 case nir_tex_src_offset: {
4995 nir_const_value *const_offset =
4996 nir_src_as_const_value(instr->src[i].src);
4997 unsigned offset_bits = 0;
4998 if (const_offset &&
4999 brw_texture_offset(const_offset->i32,
5000 nir_tex_instr_src_size(instr, i),
5001 &offset_bits)) {
5002 header_bits |= offset_bits;
5003 } else {
5004 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5005 retype(src, BRW_REGISTER_TYPE_D);
5006 }
5007 break;
5008 }
5009
5010 case nir_tex_src_projector:
5011 unreachable("should be lowered");
5012
5013 case nir_tex_src_texture_offset: {
5014 /* Figure out the highest possible texture index and mark it as used */
5015 uint32_t max_used = texture + instr->texture_array_size - 1;
5016 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
5017 max_used += stage_prog_data->binding_table.gather_texture_start;
5018 } else {
5019 max_used += stage_prog_data->binding_table.texture_start;
5020 }
5021 brw_mark_surface_used(prog_data, max_used);
5022
5023 /* Emit code to evaluate the actual indexing expression */
5024 fs_reg tmp = vgrf(glsl_type::uint_type);
5025 bld.ADD(tmp, src, brw_imm_ud(texture));
5026 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5027 break;
5028 }
5029
5030 case nir_tex_src_sampler_offset: {
5031 /* Emit code to evaluate the actual indexing expression */
5032 fs_reg tmp = vgrf(glsl_type::uint_type);
5033 bld.ADD(tmp, src, brw_imm_ud(sampler));
5034 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5035 break;
5036 }
5037
5038 case nir_tex_src_ms_mcs:
5039 assert(instr->op == nir_texop_txf_ms);
5040 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5041 break;
5042
5043 case nir_tex_src_plane: {
5044 nir_const_value *const_plane =
5045 nir_src_as_const_value(instr->src[i].src);
5046 const uint32_t plane = const_plane->u32[0];
5047 const uint32_t texture_index =
5048 instr->texture_index +
5049 stage_prog_data->binding_table.plane_start[plane] -
5050 stage_prog_data->binding_table.texture_start;
5051
5052 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5053 break;
5054 }
5055
5056 default:
5057 unreachable("unknown texture source");
5058 }
5059 }
5060
5061 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5062 (instr->op == nir_texop_txf_ms ||
5063 instr->op == nir_texop_samples_identical)) {
5064 if (devinfo->gen >= 7 &&
5065 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5066 srcs[TEX_LOGICAL_SRC_MCS] =
5067 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5068 instr->coord_components,
5069 srcs[TEX_LOGICAL_SRC_SURFACE]);
5070 } else {
5071 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5072 }
5073 }
5074
5075 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5076 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5077
5078 enum opcode opcode;
5079 switch (instr->op) {
5080 case nir_texop_tex:
5081 opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
5082 SHADER_OPCODE_TXL_LOGICAL);
5083 break;
5084 case nir_texop_txb:
5085 opcode = FS_OPCODE_TXB_LOGICAL;
5086 break;
5087 case nir_texop_txl:
5088 opcode = SHADER_OPCODE_TXL_LOGICAL;
5089 break;
5090 case nir_texop_txd:
5091 opcode = SHADER_OPCODE_TXD_LOGICAL;
5092 break;
5093 case nir_texop_txf:
5094 opcode = SHADER_OPCODE_TXF_LOGICAL;
5095 break;
5096 case nir_texop_txf_ms:
5097 if ((key_tex->msaa_16 & (1 << sampler)))
5098 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5099 else
5100 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5101 break;
5102 case nir_texop_txf_ms_mcs:
5103 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5104 break;
5105 case nir_texop_query_levels:
5106 case nir_texop_txs:
5107 opcode = SHADER_OPCODE_TXS_LOGICAL;
5108 break;
5109 case nir_texop_lod:
5110 opcode = SHADER_OPCODE_LOD_LOGICAL;
5111 break;
5112 case nir_texop_tg4:
5113 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5114 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5115 else
5116 opcode = SHADER_OPCODE_TG4_LOGICAL;
5117 break;
5118 case nir_texop_texture_samples:
5119 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5120 break;
5121 case nir_texop_samples_identical: {
5122 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5123
5124 /* If mcs is an immediate value, it means there is no MCS. In that case
5125 * just return false.
5126 */
5127 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5128 bld.MOV(dst, brw_imm_ud(0u));
5129 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5130 fs_reg tmp = vgrf(glsl_type::uint_type);
5131 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5132 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5133 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5134 } else {
5135 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5136 BRW_CONDITIONAL_EQ);
5137 }
5138 return;
5139 }
5140 default:
5141 unreachable("unknown texture opcode");
5142 }
5143
5144 if (instr->op == nir_texop_tg4) {
5145 if (instr->component == 1 &&
5146 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5147 /* gather4 sampler is broken for green channel on RG32F --
5148 * we must ask for blue instead.
5149 */
5150 header_bits |= 2 << 16;
5151 } else {
5152 header_bits |= instr->component << 16;
5153 }
5154 }
5155
5156 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5157 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5158 inst->offset = header_bits;
5159
5160 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5161 if (devinfo->gen >= 9 &&
5162 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5163 unsigned write_mask = instr->dest.is_ssa ?
5164 nir_ssa_def_components_read(&instr->dest.ssa):
5165 (1 << dest_size) - 1;
5166 assert(write_mask != 0); /* dead code should have been eliminated */
5167 inst->size_written = util_last_bit(write_mask) *
5168 inst->dst.component_size(inst->exec_size);
5169 } else {
5170 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5171 }
5172
5173 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5174 inst->shadow_compare = true;
5175
5176 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5177 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5178
5179 fs_reg nir_dest[4];
5180 for (unsigned i = 0; i < dest_size; i++)
5181 nir_dest[i] = offset(dst, bld, i);
5182
5183 if (instr->op == nir_texop_query_levels) {
5184 /* # levels is in .w */
5185 nir_dest[0] = offset(dst, bld, 3);
5186 } else if (instr->op == nir_texop_txs &&
5187 dest_size >= 3 && devinfo->gen < 7) {
5188 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5189 fs_reg depth = offset(dst, bld, 2);
5190 nir_dest[2] = vgrf(glsl_type::int_type);
5191 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5192 }
5193
5194 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5195 }
5196
5197 void
5198 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5199 {
5200 switch (instr->type) {
5201 case nir_jump_break:
5202 bld.emit(BRW_OPCODE_BREAK);
5203 break;
5204 case nir_jump_continue:
5205 bld.emit(BRW_OPCODE_CONTINUE);
5206 break;
5207 case nir_jump_return:
5208 default:
5209 unreachable("unknown jump");
5210 }
5211 }
5212
5213 /**
5214 * This helper takes the result of a load operation that reads 32-bit elements
5215 * in this format:
5216 *
5217 * x x x x x x x x
5218 * y y y y y y y y
5219 * z z z z z z z z
5220 * w w w w w w w w
5221 *
5222 * and shuffles the data to get this:
5223 *
5224 * x y x y x y x y
5225 * x y x y x y x y
5226 * z w z w z w z w
5227 * z w z w z w z w
5228 *
5229 * Which is exactly what we want if the load is reading 64-bit components
5230 * like doubles, where x represents the low 32-bit of the x double component
5231 * and y represents the high 32-bit of the x double component (likewise with
5232 * z and w for double component y). The parameter @components represents
5233 * the number of 64-bit components present in @src. This would typically be
5234 * 2 at most, since we can only fit 2 double elements in the result of a
5235 * vec4 load.
5236 *
5237 * Notice that @dst and @src can be the same register.
5238 */
5239 void
5240 shuffle_32bit_load_result_to_64bit_data(const fs_builder &bld,
5241 const fs_reg &dst,
5242 const fs_reg &src,
5243 uint32_t components)
5244 {
5245 assert(type_sz(src.type) == 4);
5246 assert(type_sz(dst.type) == 8);
5247
5248 /* A temporary that we will use to shuffle the 32-bit data of each
5249 * component in the vector into valid 64-bit data. We can't write directly
5250 * to dst because dst can be (and would usually be) the same as src
5251 * and in that case the first MOV in the loop below would overwrite the
5252 * data read in the second MOV.
5253 */
5254 fs_reg tmp = bld.vgrf(dst.type);
5255
5256 for (unsigned i = 0; i < components; i++) {
5257 const fs_reg component_i = offset(src, bld, 2 * i);
5258
5259 bld.MOV(subscript(tmp, src.type, 0), component_i);
5260 bld.MOV(subscript(tmp, src.type, 1), offset(component_i, bld, 1));
5261
5262 bld.MOV(offset(dst, bld, i), tmp);
5263 }
5264 }
5265
5266 void
5267 shuffle_32bit_load_result_to_16bit_data(const fs_builder &bld,
5268 const fs_reg &dst,
5269 const fs_reg &src,
5270 uint32_t first_component,
5271 uint32_t components)
5272 {
5273 assert(type_sz(src.type) == 4);
5274 assert(type_sz(dst.type) == 2);
5275
5276 /* A temporary is used to un-shuffle the 32-bit data of each component in
5277 * into a valid 16-bit vector. We can't write directly to dst because it
5278 * can be the same register as src and in that case the first MOV in the
5279 * loop below would overwrite the data read in the second MOV.
5280 */
5281 fs_reg tmp = retype(bld.vgrf(src.type), dst.type);
5282
5283 for (unsigned i = 0; i < components; i++) {
5284 const fs_reg component_i =
5285 subscript(offset(src, bld, (first_component + i) / 2), dst.type,
5286 (first_component + i) % 2);
5287
5288 bld.MOV(offset(tmp, bld, i % 2), component_i);
5289
5290 if (i % 2) {
5291 bld.MOV(offset(dst, bld, i -1), offset(tmp, bld, 0));
5292 bld.MOV(offset(dst, bld, i), offset(tmp, bld, 1));
5293 }
5294 }
5295 if (components % 2) {
5296 bld.MOV(offset(dst, bld, components - 1), tmp);
5297 }
5298 }
5299
5300 /**
5301 * This helper does the inverse operation of
5302 * SHUFFLE_32BIT_LOAD_RESULT_TO_64BIT_DATA.
5303 *
5304 * We need to do this when we are going to use untyped write messsages that
5305 * operate with 32-bit components in order to arrange our 64-bit data to be
5306 * in the expected layout.
5307 *
5308 * Notice that callers of this function, unlike in the case of the inverse
5309 * operation, would typically need to call this with dst and src being
5310 * different registers, since they would otherwise corrupt the original
5311 * 64-bit data they are about to write. Because of this the function checks
5312 * that the src and dst regions involved in the operation do not overlap.
5313 */
5314 fs_reg
5315 shuffle_64bit_data_for_32bit_write(const fs_builder &bld,
5316 const fs_reg &src,
5317 uint32_t components)
5318 {
5319 assert(type_sz(src.type) == 8);
5320
5321 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D, 2 * components);
5322
5323 for (unsigned i = 0; i < components; i++) {
5324 const fs_reg component_i = offset(src, bld, i);
5325 bld.MOV(offset(dst, bld, 2 * i), subscript(component_i, dst.type, 0));
5326 bld.MOV(offset(dst, bld, 2 * i + 1), subscript(component_i, dst.type, 1));
5327 }
5328
5329 return dst;
5330 }
5331
5332 void
5333 shuffle_16bit_data_for_32bit_write(const fs_builder &bld,
5334 const fs_reg &dst,
5335 const fs_reg &src,
5336 uint32_t components)
5337 {
5338 assert(type_sz(src.type) == 2);
5339 assert(type_sz(dst.type) == 4);
5340
5341 /* A temporary is used to shuffle the 16-bit data of each component in the
5342 * 32-bit data vector. We can't write directly to dst because it can be the
5343 * same register as src and in that case the first MOV in the loop below
5344 * would overwrite the data read in the second MOV.
5345 */
5346 fs_reg tmp = bld.vgrf(dst.type);
5347
5348 for (unsigned i = 0; i < components; i++) {
5349 const fs_reg component_i = offset(src, bld, i);
5350 bld.MOV(subscript(tmp, src.type, i % 2), component_i);
5351 if (i % 2) {
5352 bld.MOV(offset(dst, bld, i / 2), tmp);
5353 }
5354 }
5355 if (components % 2) {
5356 bld.MOV(offset(dst, bld, components / 2), tmp);
5357 }
5358 }
5359
5360 /*
5361 * This helper takes a source register and un/shuffles it into the destination
5362 * register.
5363 *
5364 * If source type size is smaller than destination type size the operation
5365 * needed is a component shuffle. The opposite case would be an unshuffle. If
5366 * source/destination type size is equal a shuffle is done that would be
5367 * equivalent to a simple MOV.
5368 *
5369 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5370 * components .xyz 16-bit vector on SIMD8 would be.
5371 *
5372 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5373 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5374 *
5375 * This helper will return the following 2 32-bit components with the 16-bit
5376 * values shuffled:
5377 *
5378 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5379 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5380 *
5381 * For unshuffle, the example would be the opposite, a 64-bit type source
5382 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5383 * would be:
5384 *
5385 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5386 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5387 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5388 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5389 *
5390 * The returned result would be the following 4 32-bit components unshuffled:
5391 *
5392 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5393 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5394 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5395 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5396 *
5397 * - Source and destination register must not be overlapped.
5398 * - components units are measured in terms of the smaller type between
5399 * source and destination because we are un/shuffling the smaller
5400 * components from/into the bigger ones.
5401 * - first_component parameter allows skipping source components.
5402 */
5403 void
5404 shuffle_src_to_dst(const fs_builder &bld,
5405 const fs_reg &dst,
5406 const fs_reg &src,
5407 uint32_t first_component,
5408 uint32_t components)
5409 {
5410 if (type_sz(src.type) == type_sz(dst.type)) {
5411 assert(!regions_overlap(dst,
5412 type_sz(dst.type) * bld.dispatch_width() * components,
5413 offset(src, bld, first_component),
5414 type_sz(src.type) * bld.dispatch_width() * components));
5415 for (unsigned i = 0; i < components; i++) {
5416 bld.MOV(retype(offset(dst, bld, i), src.type),
5417 offset(src, bld, i + first_component));
5418 }
5419 } else if (type_sz(src.type) < type_sz(dst.type)) {
5420 /* Source is shuffled into destination */
5421 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5422 assert(!regions_overlap(dst,
5423 type_sz(dst.type) * bld.dispatch_width() *
5424 DIV_ROUND_UP(components, size_ratio),
5425 offset(src, bld, first_component),
5426 type_sz(src.type) * bld.dispatch_width() * components));
5427
5428 brw_reg_type shuffle_type =
5429 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5430 BRW_REGISTER_TYPE_D);
5431 for (unsigned i = 0; i < components; i++) {
5432 fs_reg shuffle_component_i =
5433 subscript(offset(dst, bld, i / size_ratio),
5434 shuffle_type, i % size_ratio);
5435 bld.MOV(shuffle_component_i,
5436 retype(offset(src, bld, i + first_component), shuffle_type));
5437 }
5438 } else {
5439 /* Source is unshuffled into destination */
5440 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5441 assert(!regions_overlap(dst,
5442 type_sz(dst.type) * bld.dispatch_width() * components,
5443 offset(src, bld, first_component / size_ratio),
5444 type_sz(src.type) * bld.dispatch_width() *
5445 DIV_ROUND_UP(components + (first_component % size_ratio),
5446 size_ratio)));
5447
5448 brw_reg_type shuffle_type =
5449 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5450 BRW_REGISTER_TYPE_D);
5451 for (unsigned i = 0; i < components; i++) {
5452 fs_reg shuffle_component_i =
5453 subscript(offset(src, bld, (first_component + i) / size_ratio),
5454 shuffle_type, (first_component + i) % size_ratio);
5455 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5456 shuffle_component_i);
5457 }
5458 }
5459 }
5460
5461 void
5462 shuffle_from_32bit_read(const fs_builder &bld,
5463 const fs_reg &dst,
5464 const fs_reg &src,
5465 uint32_t first_component,
5466 uint32_t components)
5467 {
5468 assert(type_sz(src.type) == 4);
5469
5470 /* This function takes components in units of the destination type while
5471 * shuffle_src_to_dst takes components in units of the smallest type
5472 */
5473 if (type_sz(dst.type) > 4) {
5474 assert(type_sz(dst.type) == 8);
5475 first_component *= 2;
5476 components *= 2;
5477 }
5478
5479 shuffle_src_to_dst(bld, dst, src, first_component, components);
5480 }
5481
5482 fs_reg
5483 shuffle_for_32bit_write(const fs_builder &bld,
5484 const fs_reg &src,
5485 uint32_t first_component,
5486 uint32_t components)
5487 {
5488 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5489 DIV_ROUND_UP (components * type_sz(src.type), 4));
5490 /* This function takes components in units of the source type while
5491 * shuffle_src_to_dst takes components in units of the smallest type
5492 */
5493 if (type_sz(src.type) > 4) {
5494 assert(type_sz(src.type) == 8);
5495 first_component *= 2;
5496 components *= 2;
5497 }
5498
5499 shuffle_src_to_dst(bld, dst, src, first_component, components);
5500
5501 return dst;
5502 }
5503
5504 fs_reg
5505 setup_imm_df(const fs_builder &bld, double v)
5506 {
5507 const struct gen_device_info *devinfo = bld.shader->devinfo;
5508 assert(devinfo->gen >= 7);
5509
5510 if (devinfo->gen >= 8)
5511 return brw_imm_df(v);
5512
5513 /* gen7.5 does not support DF immediates straighforward but the DIM
5514 * instruction allows to set the 64-bit immediate value.
5515 */
5516 if (devinfo->is_haswell) {
5517 const fs_builder ubld = bld.exec_all().group(1, 0);
5518 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5519 ubld.DIM(dst, brw_imm_df(v));
5520 return component(dst, 0);
5521 }
5522
5523 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5524 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5525 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5526 *
5527 * Alternatively, we could also produce a normal VGRF (without stride 0)
5528 * by writing to all the channels in the VGRF, however, that would hit the
5529 * gen7 bug where we have to split writes that span more than 1 register
5530 * into instructions with a width of 4 (otherwise the write to the second
5531 * register written runs into an execmask hardware bug) which isn't very
5532 * nice.
5533 */
5534 union {
5535 double d;
5536 struct {
5537 uint32_t i1;
5538 uint32_t i2;
5539 };
5540 } di;
5541
5542 di.d = v;
5543
5544 const fs_builder ubld = bld.exec_all().group(1, 0);
5545 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5546 ubld.MOV(tmp, brw_imm_ud(di.i1));
5547 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5548
5549 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5550 }