intel/fs: Use writes_memory from shader_info
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "brw_eu.h"
28 #include "nir_search_helpers.h"
29 #include "util/u_math.h"
30 #include "util/bitscan.h"
31
32 using namespace brw;
33
34 void
35 fs_visitor::emit_nir_code()
36 {
37 emit_shader_float_controls_execution_mode();
38
39 /* emit the arrays used for inputs and outputs - load/store intrinsics will
40 * be converted to reads/writes of these arrays
41 */
42 nir_setup_outputs();
43 nir_setup_uniforms();
44 nir_emit_system_values();
45 last_scratch = ALIGN(nir->scratch_size, 4) * dispatch_width;
46
47 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
48 }
49
50 void
51 fs_visitor::nir_setup_outputs()
52 {
53 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
54 return;
55
56 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
57
58 /* Calculate the size of output registers in a separate pass, before
59 * allocating them. With ARB_enhanced_layouts, multiple output variables
60 * may occupy the same slot, but have different type sizes.
61 */
62 nir_foreach_variable(var, &nir->outputs) {
63 const int loc = var->data.driver_location;
64 const unsigned var_vec4s =
65 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
66 : type_size_vec4(var->type, true);
67 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
68 }
69
70 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
71 if (vec4s[loc] == 0) {
72 loc++;
73 continue;
74 }
75
76 unsigned reg_size = vec4s[loc];
77
78 /* Check if there are any ranges that start within this range and extend
79 * past it. If so, include them in this allocation.
80 */
81 for (unsigned i = 1; i < reg_size; i++)
82 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
83
84 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
85 for (unsigned i = 0; i < reg_size; i++)
86 outputs[loc + i] = offset(reg, bld, 4 * i);
87
88 loc += reg_size;
89 }
90 }
91
92 void
93 fs_visitor::nir_setup_uniforms()
94 {
95 /* Only the first compile gets to set up uniforms. */
96 if (push_constant_loc) {
97 assert(pull_constant_loc);
98 return;
99 }
100
101 uniforms = nir->num_uniforms / 4;
102
103 if (stage == MESA_SHADER_COMPUTE) {
104 /* Add uniforms for builtins after regular NIR uniforms. */
105 assert(uniforms == prog_data->nr_params);
106
107 uint32_t *param;
108 if (nir->info.cs.local_size_variable &&
109 compiler->lower_variable_group_size) {
110 param = brw_stage_prog_data_add_params(prog_data, 3);
111 for (unsigned i = 0; i < 3; i++) {
112 param[i] = (BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X + i);
113 group_size[i] = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
114 }
115 }
116
117 /* Subgroup ID must be the last uniform on the list. This will make
118 * easier later to split between cross thread and per thread
119 * uniforms.
120 */
121 param = brw_stage_prog_data_add_params(prog_data, 1);
122 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
123 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
124 }
125 }
126
127 static bool
128 emit_system_values_block(nir_block *block, fs_visitor *v)
129 {
130 fs_reg *reg;
131
132 nir_foreach_instr(instr, block) {
133 if (instr->type != nir_instr_type_intrinsic)
134 continue;
135
136 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
137 switch (intrin->intrinsic) {
138 case nir_intrinsic_load_vertex_id:
139 case nir_intrinsic_load_base_vertex:
140 unreachable("should be lowered by nir_lower_system_values().");
141
142 case nir_intrinsic_load_vertex_id_zero_base:
143 case nir_intrinsic_load_is_indexed_draw:
144 case nir_intrinsic_load_first_vertex:
145 case nir_intrinsic_load_instance_id:
146 case nir_intrinsic_load_base_instance:
147 case nir_intrinsic_load_draw_id:
148 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
149
150 case nir_intrinsic_load_invocation_id:
151 if (v->stage == MESA_SHADER_TESS_CTRL)
152 break;
153 assert(v->stage == MESA_SHADER_GEOMETRY);
154 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
155 if (reg->file == BAD_FILE) {
156 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
157 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
158 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
159 abld.SHR(iid, g1, brw_imm_ud(27u));
160 *reg = iid;
161 }
162 break;
163
164 case nir_intrinsic_load_sample_pos:
165 assert(v->stage == MESA_SHADER_FRAGMENT);
166 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
167 if (reg->file == BAD_FILE)
168 *reg = *v->emit_samplepos_setup();
169 break;
170
171 case nir_intrinsic_load_sample_id:
172 assert(v->stage == MESA_SHADER_FRAGMENT);
173 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
174 if (reg->file == BAD_FILE)
175 *reg = *v->emit_sampleid_setup();
176 break;
177
178 case nir_intrinsic_load_sample_mask_in:
179 assert(v->stage == MESA_SHADER_FRAGMENT);
180 assert(v->devinfo->gen >= 7);
181 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
182 if (reg->file == BAD_FILE)
183 *reg = *v->emit_samplemaskin_setup();
184 break;
185
186 case nir_intrinsic_load_work_group_id:
187 assert(v->stage == MESA_SHADER_COMPUTE);
188 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
189 if (reg->file == BAD_FILE)
190 *reg = *v->emit_cs_work_group_id_setup();
191 break;
192
193 case nir_intrinsic_load_helper_invocation:
194 assert(v->stage == MESA_SHADER_FRAGMENT);
195 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
196 if (reg->file == BAD_FILE) {
197 const fs_builder abld =
198 v->bld.annotate("gl_HelperInvocation", NULL);
199
200 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
201 * pixel mask is in g1.7 of the thread payload.
202 *
203 * We move the per-channel pixel enable bit to the low bit of each
204 * channel by shifting the byte containing the pixel mask by the
205 * vector immediate 0x76543210UV.
206 *
207 * The region of <1,8,0> reads only 1 byte (the pixel masks for
208 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
209 * masks for 2 and 3) in SIMD16.
210 */
211 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
212
213 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
214 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
215 hbld.SHR(offset(shifted, hbld, i),
216 stride(retype(brw_vec1_grf(1 + i, 7),
217 BRW_REGISTER_TYPE_UB),
218 1, 8, 0),
219 brw_imm_v(0x76543210));
220 }
221
222 /* A set bit in the pixel mask means the channel is enabled, but
223 * that is the opposite of gl_HelperInvocation so we need to invert
224 * the mask.
225 *
226 * The negate source-modifier bit of logical instructions on Gen8+
227 * performs 1's complement negation, so we can use that instead of
228 * a NOT instruction.
229 */
230 fs_reg inverted = negate(shifted);
231 if (v->devinfo->gen < 8) {
232 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
233 abld.NOT(inverted, shifted);
234 }
235
236 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
237 * with 1 and negating.
238 */
239 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
240 abld.AND(anded, inverted, brw_imm_uw(1));
241
242 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
243 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
244 *reg = dst;
245 }
246 break;
247
248 default:
249 break;
250 }
251 }
252
253 return true;
254 }
255
256 void
257 fs_visitor::nir_emit_system_values()
258 {
259 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
260 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
261 nir_system_values[i] = fs_reg();
262 }
263
264 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
265 * never end up using it.
266 */
267 {
268 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
269 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
270 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
271
272 const fs_builder allbld8 = abld.group(8, 0).exec_all();
273 allbld8.MOV(reg, brw_imm_v(0x76543210));
274 if (dispatch_width > 8)
275 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
276 if (dispatch_width > 16) {
277 const fs_builder allbld16 = abld.group(16, 0).exec_all();
278 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
279 }
280 }
281
282 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
283 nir_foreach_block(block, impl)
284 emit_system_values_block(block, this);
285 }
286
287 /*
288 * Returns a type based on a reference_type (word, float, half-float) and a
289 * given bit_size.
290 *
291 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
292 *
293 * @FIXME: 64-bit return types are always DF on integer types to maintain
294 * compability with uses of DF previously to the introduction of int64
295 * support.
296 */
297 static brw_reg_type
298 brw_reg_type_from_bit_size(const unsigned bit_size,
299 const brw_reg_type reference_type)
300 {
301 switch(reference_type) {
302 case BRW_REGISTER_TYPE_HF:
303 case BRW_REGISTER_TYPE_F:
304 case BRW_REGISTER_TYPE_DF:
305 switch(bit_size) {
306 case 16:
307 return BRW_REGISTER_TYPE_HF;
308 case 32:
309 return BRW_REGISTER_TYPE_F;
310 case 64:
311 return BRW_REGISTER_TYPE_DF;
312 default:
313 unreachable("Invalid bit size");
314 }
315 case BRW_REGISTER_TYPE_B:
316 case BRW_REGISTER_TYPE_W:
317 case BRW_REGISTER_TYPE_D:
318 case BRW_REGISTER_TYPE_Q:
319 switch(bit_size) {
320 case 8:
321 return BRW_REGISTER_TYPE_B;
322 case 16:
323 return BRW_REGISTER_TYPE_W;
324 case 32:
325 return BRW_REGISTER_TYPE_D;
326 case 64:
327 return BRW_REGISTER_TYPE_Q;
328 default:
329 unreachable("Invalid bit size");
330 }
331 case BRW_REGISTER_TYPE_UB:
332 case BRW_REGISTER_TYPE_UW:
333 case BRW_REGISTER_TYPE_UD:
334 case BRW_REGISTER_TYPE_UQ:
335 switch(bit_size) {
336 case 8:
337 return BRW_REGISTER_TYPE_UB;
338 case 16:
339 return BRW_REGISTER_TYPE_UW;
340 case 32:
341 return BRW_REGISTER_TYPE_UD;
342 case 64:
343 return BRW_REGISTER_TYPE_UQ;
344 default:
345 unreachable("Invalid bit size");
346 }
347 default:
348 unreachable("Unknown type");
349 }
350 }
351
352 void
353 fs_visitor::nir_emit_impl(nir_function_impl *impl)
354 {
355 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
356 for (unsigned i = 0; i < impl->reg_alloc; i++) {
357 nir_locals[i] = fs_reg();
358 }
359
360 foreach_list_typed(nir_register, reg, node, &impl->registers) {
361 unsigned array_elems =
362 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
363 unsigned size = array_elems * reg->num_components;
364 const brw_reg_type reg_type = reg->bit_size == 8 ? BRW_REGISTER_TYPE_B :
365 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
366 nir_locals[reg->index] = bld.vgrf(reg_type, size);
367 }
368
369 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
370 impl->ssa_alloc);
371
372 nir_emit_cf_list(&impl->body);
373 }
374
375 void
376 fs_visitor::nir_emit_cf_list(exec_list *list)
377 {
378 exec_list_validate(list);
379 foreach_list_typed(nir_cf_node, node, node, list) {
380 switch (node->type) {
381 case nir_cf_node_if:
382 nir_emit_if(nir_cf_node_as_if(node));
383 break;
384
385 case nir_cf_node_loop:
386 nir_emit_loop(nir_cf_node_as_loop(node));
387 break;
388
389 case nir_cf_node_block:
390 nir_emit_block(nir_cf_node_as_block(node));
391 break;
392
393 default:
394 unreachable("Invalid CFG node block");
395 }
396 }
397 }
398
399 void
400 fs_visitor::nir_emit_if(nir_if *if_stmt)
401 {
402 bool invert;
403 fs_reg cond_reg;
404
405 /* If the condition has the form !other_condition, use other_condition as
406 * the source, but invert the predicate on the if instruction.
407 */
408 nir_alu_instr *cond = nir_src_as_alu_instr(if_stmt->condition);
409 if (cond != NULL && cond->op == nir_op_inot) {
410 invert = true;
411 cond_reg = get_nir_src(cond->src[0].src);
412 } else {
413 invert = false;
414 cond_reg = get_nir_src(if_stmt->condition);
415 }
416
417 /* first, put the condition into f0 */
418 fs_inst *inst = bld.MOV(bld.null_reg_d(),
419 retype(cond_reg, BRW_REGISTER_TYPE_D));
420 inst->conditional_mod = BRW_CONDITIONAL_NZ;
421
422 bld.IF(BRW_PREDICATE_NORMAL)->predicate_inverse = invert;
423
424 nir_emit_cf_list(&if_stmt->then_list);
425
426 if (!nir_cf_list_is_empty_block(&if_stmt->else_list)) {
427 bld.emit(BRW_OPCODE_ELSE);
428 nir_emit_cf_list(&if_stmt->else_list);
429 }
430
431 bld.emit(BRW_OPCODE_ENDIF);
432
433 if (devinfo->gen < 7)
434 limit_dispatch_width(16, "Non-uniform control flow unsupported "
435 "in SIMD32 mode.");
436 }
437
438 void
439 fs_visitor::nir_emit_loop(nir_loop *loop)
440 {
441 bld.emit(BRW_OPCODE_DO);
442
443 nir_emit_cf_list(&loop->body);
444
445 bld.emit(BRW_OPCODE_WHILE);
446
447 if (devinfo->gen < 7)
448 limit_dispatch_width(16, "Non-uniform control flow unsupported "
449 "in SIMD32 mode.");
450 }
451
452 void
453 fs_visitor::nir_emit_block(nir_block *block)
454 {
455 nir_foreach_instr(instr, block) {
456 nir_emit_instr(instr);
457 }
458 }
459
460 void
461 fs_visitor::nir_emit_instr(nir_instr *instr)
462 {
463 const fs_builder abld = bld.annotate(NULL, instr);
464
465 switch (instr->type) {
466 case nir_instr_type_alu:
467 nir_emit_alu(abld, nir_instr_as_alu(instr), true);
468 break;
469
470 case nir_instr_type_deref:
471 unreachable("All derefs should've been lowered");
472 break;
473
474 case nir_instr_type_intrinsic:
475 switch (stage) {
476 case MESA_SHADER_VERTEX:
477 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
478 break;
479 case MESA_SHADER_TESS_CTRL:
480 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
481 break;
482 case MESA_SHADER_TESS_EVAL:
483 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
484 break;
485 case MESA_SHADER_GEOMETRY:
486 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
487 break;
488 case MESA_SHADER_FRAGMENT:
489 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
490 break;
491 case MESA_SHADER_COMPUTE:
492 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
493 break;
494 default:
495 unreachable("unsupported shader stage");
496 }
497 break;
498
499 case nir_instr_type_tex:
500 nir_emit_texture(abld, nir_instr_as_tex(instr));
501 break;
502
503 case nir_instr_type_load_const:
504 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
505 break;
506
507 case nir_instr_type_ssa_undef:
508 /* We create a new VGRF for undefs on every use (by handling
509 * them in get_nir_src()), rather than for each definition.
510 * This helps register coalescing eliminate MOVs from undef.
511 */
512 break;
513
514 case nir_instr_type_jump:
515 nir_emit_jump(abld, nir_instr_as_jump(instr));
516 break;
517
518 default:
519 unreachable("unknown instruction type");
520 }
521 }
522
523 /**
524 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
525 * match instr.
526 */
527 bool
528 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
529 const fs_reg &result)
530 {
531 if (!instr->src[0].src.is_ssa ||
532 !instr->src[0].src.ssa->parent_instr)
533 return false;
534
535 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
536 return false;
537
538 nir_alu_instr *src0 =
539 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
540
541 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
542 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
543 return false;
544
545 unsigned element = nir_src_as_uint(src0->src[1].src);
546
547 /* Element type to extract.*/
548 const brw_reg_type type = brw_int_type(
549 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
550 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
551
552 fs_reg op0 = get_nir_src(src0->src[0].src);
553 op0.type = brw_type_for_nir_type(devinfo,
554 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
555 nir_src_bit_size(src0->src[0].src)));
556 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
557
558 bld.MOV(result, subscript(op0, type, element));
559 return true;
560 }
561
562 bool
563 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
564 const fs_reg &result)
565 {
566 nir_intrinsic_instr *src0 = nir_src_as_intrinsic(instr->src[0].src);
567 if (src0 == NULL || src0->intrinsic != nir_intrinsic_load_front_face)
568 return false;
569
570 if (!nir_src_is_const(instr->src[1].src) ||
571 !nir_src_is_const(instr->src[2].src))
572 return false;
573
574 const float value1 = nir_src_as_float(instr->src[1].src);
575 const float value2 = nir_src_as_float(instr->src[2].src);
576 if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
577 return false;
578
579 /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
580 assert(value1 == -value2);
581
582 fs_reg tmp = vgrf(glsl_type::int_type);
583
584 if (devinfo->gen >= 12) {
585 /* Bit 15 of g1.1 is 0 if the polygon is front facing. */
586 fs_reg g1 = fs_reg(retype(brw_vec1_grf(1, 1), BRW_REGISTER_TYPE_W));
587
588 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
589 *
590 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
591 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
592 *
593 * and negate the result for (gl_FrontFacing ? -1.0 : 1.0).
594 */
595 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
596 g1, brw_imm_uw(0x3f80));
597
598 if (value1 == -1.0f)
599 bld.MOV(tmp, negate(tmp));
600
601 } else if (devinfo->gen >= 6) {
602 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
603 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
604
605 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
606 *
607 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
608 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
609 *
610 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
611 *
612 * This negation looks like it's safe in practice, because bits 0:4 will
613 * surely be TRIANGLES
614 */
615
616 if (value1 == -1.0f) {
617 g0.negate = true;
618 }
619
620 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
621 g0, brw_imm_uw(0x3f80));
622 } else {
623 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
624 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
625
626 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
627 *
628 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
629 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
630 *
631 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
632 *
633 * This negation looks like it's safe in practice, because bits 0:4 will
634 * surely be TRIANGLES
635 */
636
637 if (value1 == -1.0f) {
638 g1_6.negate = true;
639 }
640
641 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
642 }
643 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
644
645 return true;
646 }
647
648 static void
649 emit_find_msb_using_lzd(const fs_builder &bld,
650 const fs_reg &result,
651 const fs_reg &src,
652 bool is_signed)
653 {
654 fs_inst *inst;
655 fs_reg temp = src;
656
657 if (is_signed) {
658 /* LZD of an absolute value source almost always does the right
659 * thing. There are two problem values:
660 *
661 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
662 * 0. However, findMSB(int(0x80000000)) == 30.
663 *
664 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
665 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
666 *
667 * For a value of zero or negative one, -1 will be returned.
668 *
669 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
670 * findMSB(-(1<<x)) should return x-1.
671 *
672 * For all negative number cases, including 0x80000000 and
673 * 0xffffffff, the correct value is obtained from LZD if instead of
674 * negating the (already negative) value the logical-not is used. A
675 * conditonal logical-not can be achieved in two instructions.
676 */
677 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
678
679 bld.ASR(temp, src, brw_imm_d(31));
680 bld.XOR(temp, temp, src);
681 }
682
683 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
684 retype(temp, BRW_REGISTER_TYPE_UD));
685
686 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
687 * from the LSB side. Subtract the result from 31 to convert the MSB
688 * count into an LSB count. If no bits are set, LZD will return 32.
689 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
690 */
691 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
692 inst->src[0].negate = true;
693 }
694
695 static brw_rnd_mode
696 brw_rnd_mode_from_nir_op (const nir_op op) {
697 switch (op) {
698 case nir_op_f2f16_rtz:
699 return BRW_RND_MODE_RTZ;
700 case nir_op_f2f16_rtne:
701 return BRW_RND_MODE_RTNE;
702 default:
703 unreachable("Operation doesn't support rounding mode");
704 }
705 }
706
707 static brw_rnd_mode
708 brw_rnd_mode_from_execution_mode(unsigned execution_mode)
709 {
710 if (nir_has_any_rounding_mode_rtne(execution_mode))
711 return BRW_RND_MODE_RTNE;
712 if (nir_has_any_rounding_mode_rtz(execution_mode))
713 return BRW_RND_MODE_RTZ;
714 return BRW_RND_MODE_UNSPECIFIED;
715 }
716
717 fs_reg
718 fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
719 nir_alu_instr *instr,
720 fs_reg *op,
721 bool need_dest)
722 {
723 fs_reg result =
724 need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
725
726 result.type = brw_type_for_nir_type(devinfo,
727 (nir_alu_type)(nir_op_infos[instr->op].output_type |
728 nir_dest_bit_size(instr->dest.dest)));
729
730 assert(!instr->dest.saturate);
731
732 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
733 /* We don't lower to source modifiers so they should not exist. */
734 assert(!instr->src[i].abs);
735 assert(!instr->src[i].negate);
736
737 op[i] = get_nir_src(instr->src[i].src);
738 op[i].type = brw_type_for_nir_type(devinfo,
739 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
740 nir_src_bit_size(instr->src[i].src)));
741 }
742
743 /* Move and vecN instrutions may still be vectored. Return the raw,
744 * vectored source and destination so that fs_visitor::nir_emit_alu can
745 * handle it. Other callers should not have to handle these kinds of
746 * instructions.
747 */
748 switch (instr->op) {
749 case nir_op_mov:
750 case nir_op_vec2:
751 case nir_op_vec3:
752 case nir_op_vec4:
753 return result;
754 default:
755 break;
756 }
757
758 /* At this point, we have dealt with any instruction that operates on
759 * more than a single channel. Therefore, we can just adjust the source
760 * and destination registers for that channel and emit the instruction.
761 */
762 unsigned channel = 0;
763 if (nir_op_infos[instr->op].output_size == 0) {
764 /* Since NIR is doing the scalarizing for us, we should only ever see
765 * vectorized operations with a single channel.
766 */
767 assert(util_bitcount(instr->dest.write_mask) == 1);
768 channel = ffs(instr->dest.write_mask) - 1;
769
770 result = offset(result, bld, channel);
771 }
772
773 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
774 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
775 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
776 }
777
778 return result;
779 }
780
781 void
782 fs_visitor::resolve_inot_sources(const fs_builder &bld, nir_alu_instr *instr,
783 fs_reg *op)
784 {
785 for (unsigned i = 0; i < 2; i++) {
786 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[i].src);
787
788 if (inot_instr != NULL && inot_instr->op == nir_op_inot) {
789 /* The source of the inot is now the source of instr. */
790 prepare_alu_destination_and_sources(bld, inot_instr, &op[i], false);
791
792 assert(!op[i].negate);
793 op[i].negate = true;
794 } else {
795 op[i] = resolve_source_modifiers(op[i]);
796 }
797 }
798 }
799
800 bool
801 fs_visitor::try_emit_b2fi_of_inot(const fs_builder &bld,
802 fs_reg result,
803 nir_alu_instr *instr)
804 {
805 if (devinfo->gen < 6 || devinfo->gen >= 12)
806 return false;
807
808 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[0].src);
809
810 if (inot_instr == NULL || inot_instr->op != nir_op_inot)
811 return false;
812
813 /* HF is also possible as a destination on BDW+. For nir_op_b2i, the set
814 * of valid size-changing combinations is a bit more complex.
815 *
816 * The source restriction is just because I was lazy about generating the
817 * constant below.
818 */
819 if (nir_dest_bit_size(instr->dest.dest) != 32 ||
820 nir_src_bit_size(inot_instr->src[0].src) != 32)
821 return false;
822
823 /* b2[fi](inot(a)) maps a=0 => 1, a=-1 => 0. Since a can only be 0 or -1,
824 * this is float(1 + a).
825 */
826 fs_reg op;
827
828 prepare_alu_destination_and_sources(bld, inot_instr, &op, false);
829
830 /* Ignore the saturate modifier, if there is one. The result of the
831 * arithmetic can only be 0 or 1, so the clamping will do nothing anyway.
832 */
833 bld.ADD(result, op, brw_imm_d(1));
834
835 return true;
836 }
837
838 /**
839 * Emit code for nir_op_fsign possibly fused with a nir_op_fmul
840 *
841 * If \c instr is not the \c nir_op_fsign, then \c fsign_src is the index of
842 * the source of \c instr that is a \c nir_op_fsign.
843 */
844 void
845 fs_visitor::emit_fsign(const fs_builder &bld, const nir_alu_instr *instr,
846 fs_reg result, fs_reg *op, unsigned fsign_src)
847 {
848 fs_inst *inst;
849
850 assert(instr->op == nir_op_fsign || instr->op == nir_op_fmul);
851 assert(fsign_src < nir_op_infos[instr->op].num_inputs);
852
853 if (instr->op != nir_op_fsign) {
854 const nir_alu_instr *const fsign_instr =
855 nir_src_as_alu_instr(instr->src[fsign_src].src);
856
857 /* op[fsign_src] has the nominal result of the fsign, and op[1 -
858 * fsign_src] has the other multiply source. This must be rearranged so
859 * that op[0] is the source of the fsign op[1] is the other multiply
860 * source.
861 */
862 if (fsign_src != 0)
863 op[1] = op[0];
864
865 op[0] = get_nir_src(fsign_instr->src[0].src);
866
867 const nir_alu_type t =
868 (nir_alu_type)(nir_op_infos[instr->op].input_types[0] |
869 nir_src_bit_size(fsign_instr->src[0].src));
870
871 op[0].type = brw_type_for_nir_type(devinfo, t);
872
873 unsigned channel = 0;
874 if (nir_op_infos[instr->op].output_size == 0) {
875 /* Since NIR is doing the scalarizing for us, we should only ever see
876 * vectorized operations with a single channel.
877 */
878 assert(util_bitcount(instr->dest.write_mask) == 1);
879 channel = ffs(instr->dest.write_mask) - 1;
880 }
881
882 op[0] = offset(op[0], bld, fsign_instr->src[0].swizzle[channel]);
883 }
884
885 if (type_sz(op[0].type) == 2) {
886 /* AND(val, 0x8000) gives the sign bit.
887 *
888 * Predicated OR ORs 1.0 (0x3c00) with the sign bit if val is not zero.
889 */
890 fs_reg zero = retype(brw_imm_uw(0), BRW_REGISTER_TYPE_HF);
891 bld.CMP(bld.null_reg_f(), op[0], zero, BRW_CONDITIONAL_NZ);
892
893 op[0].type = BRW_REGISTER_TYPE_UW;
894 result.type = BRW_REGISTER_TYPE_UW;
895 bld.AND(result, op[0], brw_imm_uw(0x8000u));
896
897 if (instr->op == nir_op_fsign)
898 inst = bld.OR(result, result, brw_imm_uw(0x3c00u));
899 else {
900 /* Use XOR here to get the result sign correct. */
901 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UW));
902 }
903
904 inst->predicate = BRW_PREDICATE_NORMAL;
905 } else if (type_sz(op[0].type) == 4) {
906 /* AND(val, 0x80000000) gives the sign bit.
907 *
908 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
909 * zero.
910 */
911 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
912
913 op[0].type = BRW_REGISTER_TYPE_UD;
914 result.type = BRW_REGISTER_TYPE_UD;
915 bld.AND(result, op[0], brw_imm_ud(0x80000000u));
916
917 if (instr->op == nir_op_fsign)
918 inst = bld.OR(result, result, brw_imm_ud(0x3f800000u));
919 else {
920 /* Use XOR here to get the result sign correct. */
921 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UD));
922 }
923
924 inst->predicate = BRW_PREDICATE_NORMAL;
925 } else {
926 /* For doubles we do the same but we need to consider:
927 *
928 * - 2-src instructions can't operate with 64-bit immediates
929 * - The sign is encoded in the high 32-bit of each DF
930 * - We need to produce a DF result.
931 */
932
933 fs_reg zero = vgrf(glsl_type::double_type);
934 bld.MOV(zero, setup_imm_df(bld, 0.0));
935 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
936
937 bld.MOV(result, zero);
938
939 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
940 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
941 brw_imm_ud(0x80000000u));
942
943 if (instr->op == nir_op_fsign) {
944 set_predicate(BRW_PREDICATE_NORMAL,
945 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
946 } else {
947 /* This could be done better in some cases. If the scale is an
948 * immediate with the low 32-bits all 0, emitting a separate XOR and
949 * OR would allow an algebraic optimization to remove the OR. There
950 * are currently zero instances of fsign(double(x))*IMM in shader-db
951 * or any test suite, so it is hard to care at this time.
952 */
953 fs_reg result_int64 = retype(result, BRW_REGISTER_TYPE_UQ);
954 inst = bld.XOR(result_int64, result_int64,
955 retype(op[1], BRW_REGISTER_TYPE_UQ));
956 }
957 }
958 }
959
960 /**
961 * Deteremine whether sources of a nir_op_fmul can be fused with a nir_op_fsign
962 *
963 * Checks the operands of a \c nir_op_fmul to determine whether or not
964 * \c emit_fsign could fuse the multiplication with the \c sign() calculation.
965 *
966 * \param instr The multiplication instruction
967 *
968 * \param fsign_src The source of \c instr that may or may not be a
969 * \c nir_op_fsign
970 */
971 static bool
972 can_fuse_fmul_fsign(nir_alu_instr *instr, unsigned fsign_src)
973 {
974 assert(instr->op == nir_op_fmul);
975
976 nir_alu_instr *const fsign_instr =
977 nir_src_as_alu_instr(instr->src[fsign_src].src);
978
979 /* Rules:
980 *
981 * 1. instr->src[fsign_src] must be a nir_op_fsign.
982 * 2. The nir_op_fsign can only be used by this multiplication.
983 * 3. The source that is the nir_op_fsign does not have source modifiers.
984 * \c emit_fsign only examines the source modifiers of the source of the
985 * \c nir_op_fsign.
986 *
987 * The nir_op_fsign must also not have the saturate modifier, but steps
988 * have already been taken (in nir_opt_algebraic) to ensure that.
989 */
990 return fsign_instr != NULL && fsign_instr->op == nir_op_fsign &&
991 is_used_once(fsign_instr);
992 }
993
994 void
995 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr,
996 bool need_dest)
997 {
998 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
999 fs_inst *inst;
1000 unsigned execution_mode =
1001 bld.shader->nir->info.float_controls_execution_mode;
1002
1003 fs_reg op[4];
1004 fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, need_dest);
1005
1006 switch (instr->op) {
1007 case nir_op_mov:
1008 case nir_op_vec2:
1009 case nir_op_vec3:
1010 case nir_op_vec4: {
1011 fs_reg temp = result;
1012 bool need_extra_copy = false;
1013 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1014 if (!instr->src[i].src.is_ssa &&
1015 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
1016 need_extra_copy = true;
1017 temp = bld.vgrf(result.type, 4);
1018 break;
1019 }
1020 }
1021
1022 for (unsigned i = 0; i < 4; i++) {
1023 if (!(instr->dest.write_mask & (1 << i)))
1024 continue;
1025
1026 if (instr->op == nir_op_mov) {
1027 inst = bld.MOV(offset(temp, bld, i),
1028 offset(op[0], bld, instr->src[0].swizzle[i]));
1029 } else {
1030 inst = bld.MOV(offset(temp, bld, i),
1031 offset(op[i], bld, instr->src[i].swizzle[0]));
1032 }
1033 }
1034
1035 /* In this case the source and destination registers were the same,
1036 * so we need to insert an extra set of moves in order to deal with
1037 * any swizzling.
1038 */
1039 if (need_extra_copy) {
1040 for (unsigned i = 0; i < 4; i++) {
1041 if (!(instr->dest.write_mask & (1 << i)))
1042 continue;
1043
1044 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
1045 }
1046 }
1047 return;
1048 }
1049
1050 case nir_op_i2f32:
1051 case nir_op_u2f32:
1052 if (optimize_extract_to_float(instr, result))
1053 return;
1054 inst = bld.MOV(result, op[0]);
1055 break;
1056
1057 case nir_op_f2f16_rtne:
1058 case nir_op_f2f16_rtz:
1059 case nir_op_f2f16: {
1060 brw_rnd_mode rnd = BRW_RND_MODE_UNSPECIFIED;
1061
1062 if (nir_op_f2f16 == instr->op)
1063 rnd = brw_rnd_mode_from_execution_mode(execution_mode);
1064 else
1065 rnd = brw_rnd_mode_from_nir_op(instr->op);
1066
1067 if (BRW_RND_MODE_UNSPECIFIED != rnd)
1068 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(), brw_imm_d(rnd));
1069
1070 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
1071 * on the HW gen, it is a special hw opcode or just a MOV, and
1072 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
1073 *
1074 * But if we want to use that opcode, we need to provide support on
1075 * different optimizations and lowerings. As right now HF support is
1076 * only for gen8+, it will be better to use directly the MOV, and use
1077 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
1078 */
1079 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1080 inst = bld.MOV(result, op[0]);
1081 break;
1082 }
1083
1084 case nir_op_b2i8:
1085 case nir_op_b2i16:
1086 case nir_op_b2i32:
1087 case nir_op_b2i64:
1088 case nir_op_b2f16:
1089 case nir_op_b2f32:
1090 case nir_op_b2f64:
1091 if (try_emit_b2fi_of_inot(bld, result, instr))
1092 break;
1093 op[0].type = BRW_REGISTER_TYPE_D;
1094 op[0].negate = !op[0].negate;
1095 /* fallthrough */
1096 case nir_op_i2f64:
1097 case nir_op_i2i64:
1098 case nir_op_u2f64:
1099 case nir_op_u2u64:
1100 case nir_op_f2f64:
1101 case nir_op_f2i64:
1102 case nir_op_f2u64:
1103 case nir_op_i2i32:
1104 case nir_op_u2u32:
1105 case nir_op_f2i32:
1106 case nir_op_f2u32:
1107 case nir_op_i2f16:
1108 case nir_op_i2i16:
1109 case nir_op_u2f16:
1110 case nir_op_u2u16:
1111 case nir_op_f2i16:
1112 case nir_op_f2u16:
1113 case nir_op_i2i8:
1114 case nir_op_u2u8:
1115 case nir_op_f2i8:
1116 case nir_op_f2u8:
1117 if (result.type == BRW_REGISTER_TYPE_B ||
1118 result.type == BRW_REGISTER_TYPE_UB ||
1119 result.type == BRW_REGISTER_TYPE_HF)
1120 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1121
1122 if (op[0].type == BRW_REGISTER_TYPE_B ||
1123 op[0].type == BRW_REGISTER_TYPE_UB ||
1124 op[0].type == BRW_REGISTER_TYPE_HF)
1125 assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
1126
1127 inst = bld.MOV(result, op[0]);
1128 break;
1129
1130 case nir_op_fsat:
1131 inst = bld.MOV(result, op[0]);
1132 inst->saturate = true;
1133 break;
1134
1135 case nir_op_fneg:
1136 case nir_op_ineg:
1137 op[0].negate = true;
1138 inst = bld.MOV(result, op[0]);
1139 break;
1140
1141 case nir_op_fabs:
1142 case nir_op_iabs:
1143 op[0].negate = false;
1144 op[0].abs = true;
1145 inst = bld.MOV(result, op[0]);
1146 break;
1147
1148 case nir_op_f2f32:
1149 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1150 brw_rnd_mode rnd =
1151 brw_rnd_mode_from_execution_mode(execution_mode);
1152 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1153 brw_imm_d(rnd));
1154 }
1155
1156 if (op[0].type == BRW_REGISTER_TYPE_HF)
1157 assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
1158
1159 inst = bld.MOV(result, op[0]);
1160 break;
1161
1162 case nir_op_fsign:
1163 emit_fsign(bld, instr, result, op, 0);
1164 break;
1165
1166 case nir_op_frcp:
1167 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
1168 break;
1169
1170 case nir_op_fexp2:
1171 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
1172 break;
1173
1174 case nir_op_flog2:
1175 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
1176 break;
1177
1178 case nir_op_fsin:
1179 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
1180 break;
1181
1182 case nir_op_fcos:
1183 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
1184 break;
1185
1186 case nir_op_fddx:
1187 if (fs_key->high_quality_derivatives) {
1188 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1189 } else {
1190 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1191 }
1192 break;
1193 case nir_op_fddx_fine:
1194 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1195 break;
1196 case nir_op_fddx_coarse:
1197 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1198 break;
1199 case nir_op_fddy:
1200 if (fs_key->high_quality_derivatives) {
1201 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1202 } else {
1203 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1204 }
1205 break;
1206 case nir_op_fddy_fine:
1207 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1208 break;
1209 case nir_op_fddy_coarse:
1210 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1211 break;
1212
1213 case nir_op_fadd:
1214 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1215 brw_rnd_mode rnd =
1216 brw_rnd_mode_from_execution_mode(execution_mode);
1217 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1218 brw_imm_d(rnd));
1219 }
1220 /* fallthrough */
1221 case nir_op_iadd:
1222 inst = bld.ADD(result, op[0], op[1]);
1223 break;
1224
1225 case nir_op_iadd_sat:
1226 case nir_op_uadd_sat:
1227 inst = bld.ADD(result, op[0], op[1]);
1228 inst->saturate = true;
1229 break;
1230
1231 case nir_op_isub_sat:
1232 bld.emit(SHADER_OPCODE_ISUB_SAT, result, op[0], op[1]);
1233 break;
1234
1235 case nir_op_usub_sat:
1236 bld.emit(SHADER_OPCODE_USUB_SAT, result, op[0], op[1]);
1237 break;
1238
1239 case nir_op_irhadd:
1240 case nir_op_urhadd:
1241 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1242 inst = bld.AVG(result, op[0], op[1]);
1243 break;
1244
1245 case nir_op_ihadd:
1246 case nir_op_uhadd: {
1247 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1248 fs_reg tmp = bld.vgrf(result.type);
1249
1250 if (devinfo->gen >= 8) {
1251 op[0] = resolve_source_modifiers(op[0]);
1252 op[1] = resolve_source_modifiers(op[1]);
1253 }
1254
1255 /* AVG(x, y) - ((x ^ y) & 1) */
1256 bld.XOR(tmp, op[0], op[1]);
1257 bld.AND(tmp, tmp, retype(brw_imm_ud(1), result.type));
1258 bld.AVG(result, op[0], op[1]);
1259 inst = bld.ADD(result, result, tmp);
1260 inst->src[1].negate = true;
1261 break;
1262 }
1263
1264 case nir_op_fmul:
1265 for (unsigned i = 0; i < 2; i++) {
1266 if (can_fuse_fmul_fsign(instr, i)) {
1267 emit_fsign(bld, instr, result, op, i);
1268 return;
1269 }
1270 }
1271
1272 /* We emit the rounding mode after the previous fsign optimization since
1273 * it won't result in a MUL, but will try to negate the value by other
1274 * means.
1275 */
1276 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1277 brw_rnd_mode rnd =
1278 brw_rnd_mode_from_execution_mode(execution_mode);
1279 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1280 brw_imm_d(rnd));
1281 }
1282
1283 inst = bld.MUL(result, op[0], op[1]);
1284 break;
1285
1286 case nir_op_imul_2x32_64:
1287 case nir_op_umul_2x32_64:
1288 bld.MUL(result, op[0], op[1]);
1289 break;
1290
1291 case nir_op_imul_32x16:
1292 case nir_op_umul_32x16: {
1293 const bool ud = instr->op == nir_op_umul_32x16;
1294
1295 assert(nir_dest_bit_size(instr->dest.dest) == 32);
1296
1297 /* Before Gen7, the order of the 32-bit source and the 16-bit source was
1298 * swapped. The extension isn't enabled on those platforms, so don't
1299 * pretend to support the differences.
1300 */
1301 assert(devinfo->gen >= 7);
1302
1303 if (op[1].file == IMM)
1304 op[1] = ud ? brw_imm_uw(op[1].ud) : brw_imm_w(op[1].d);
1305 else {
1306 const enum brw_reg_type word_type =
1307 ud ? BRW_REGISTER_TYPE_UW : BRW_REGISTER_TYPE_W;
1308
1309 op[1] = subscript(op[1], word_type, 0);
1310 }
1311
1312 const enum brw_reg_type dword_type =
1313 ud ? BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_D;
1314
1315 bld.MUL(result, retype(op[0], dword_type), op[1]);
1316 break;
1317 }
1318
1319 case nir_op_imul:
1320 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1321 bld.MUL(result, op[0], op[1]);
1322 break;
1323
1324 case nir_op_imul_high:
1325 case nir_op_umul_high:
1326 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1327 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1328 break;
1329
1330 case nir_op_idiv:
1331 case nir_op_udiv:
1332 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1333 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1334 break;
1335
1336 case nir_op_uadd_carry:
1337 unreachable("Should have been lowered by carry_to_arith().");
1338
1339 case nir_op_usub_borrow:
1340 unreachable("Should have been lowered by borrow_to_arith().");
1341
1342 case nir_op_umod:
1343 case nir_op_irem:
1344 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1345 * appears that our hardware just does the right thing for signed
1346 * remainder.
1347 */
1348 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1349 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1350 break;
1351
1352 case nir_op_imod: {
1353 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1354 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1355
1356 /* Math instructions don't support conditional mod */
1357 inst = bld.MOV(bld.null_reg_d(), result);
1358 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1359
1360 /* Now, we need to determine if signs of the sources are different.
1361 * When we XOR the sources, the top bit is 0 if they are the same and 1
1362 * if they are different. We can then use a conditional modifier to
1363 * turn that into a predicate. This leads us to an XOR.l instruction.
1364 *
1365 * Technically, according to the PRM, you're not allowed to use .l on a
1366 * XOR instruction. However, emperical experiments and Curro's reading
1367 * of the simulator source both indicate that it's safe.
1368 */
1369 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1370 inst = bld.XOR(tmp, op[0], op[1]);
1371 inst->predicate = BRW_PREDICATE_NORMAL;
1372 inst->conditional_mod = BRW_CONDITIONAL_L;
1373
1374 /* If the result of the initial remainder operation is non-zero and the
1375 * two sources have different signs, add in a copy of op[1] to get the
1376 * final integer modulus value.
1377 */
1378 inst = bld.ADD(result, result, op[1]);
1379 inst->predicate = BRW_PREDICATE_NORMAL;
1380 break;
1381 }
1382
1383 case nir_op_flt32:
1384 case nir_op_fge32:
1385 case nir_op_feq32:
1386 case nir_op_fne32: {
1387 fs_reg dest = result;
1388
1389 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1390 if (bit_size != 32)
1391 dest = bld.vgrf(op[0].type, 1);
1392
1393 bld.CMP(dest, op[0], op[1], brw_cmod_for_nir_comparison(instr->op));
1394
1395 if (bit_size > 32) {
1396 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1397 } else if(bit_size < 32) {
1398 /* When we convert the result to 32-bit we need to be careful and do
1399 * it as a signed conversion to get sign extension (for 32-bit true)
1400 */
1401 const brw_reg_type src_type =
1402 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1403
1404 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1405 }
1406 break;
1407 }
1408
1409 case nir_op_ilt32:
1410 case nir_op_ult32:
1411 case nir_op_ige32:
1412 case nir_op_uge32:
1413 case nir_op_ieq32:
1414 case nir_op_ine32: {
1415 fs_reg dest = result;
1416
1417 /* On Gen11 we have an additional issue being that src1 cannot be a byte
1418 * type. So we convert both operands for the comparison.
1419 */
1420 fs_reg temp_op[2];
1421 temp_op[0] = bld.fix_byte_src(op[0]);
1422 temp_op[1] = bld.fix_byte_src(op[1]);
1423
1424 const uint32_t bit_size = type_sz(temp_op[0].type) * 8;
1425 if (bit_size != 32)
1426 dest = bld.vgrf(temp_op[0].type, 1);
1427
1428 bld.CMP(dest, temp_op[0], temp_op[1],
1429 brw_cmod_for_nir_comparison(instr->op));
1430
1431 if (bit_size > 32) {
1432 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1433 } else if (bit_size < 32) {
1434 /* When we convert the result to 32-bit we need to be careful and do
1435 * it as a signed conversion to get sign extension (for 32-bit true)
1436 */
1437 const brw_reg_type src_type =
1438 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1439
1440 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1441 }
1442 break;
1443 }
1444
1445 case nir_op_inot:
1446 if (devinfo->gen >= 8) {
1447 nir_alu_instr *inot_src_instr = nir_src_as_alu_instr(instr->src[0].src);
1448
1449 if (inot_src_instr != NULL &&
1450 (inot_src_instr->op == nir_op_ior ||
1451 inot_src_instr->op == nir_op_ixor ||
1452 inot_src_instr->op == nir_op_iand)) {
1453 /* The sources of the source logical instruction are now the
1454 * sources of the instruction that will be generated.
1455 */
1456 prepare_alu_destination_and_sources(bld, inot_src_instr, op, false);
1457 resolve_inot_sources(bld, inot_src_instr, op);
1458
1459 /* Smash all of the sources and destination to be signed. This
1460 * doesn't matter for the operation of the instruction, but cmod
1461 * propagation fails on unsigned sources with negation (due to
1462 * fs_inst::can_do_cmod returning false).
1463 */
1464 result.type =
1465 brw_type_for_nir_type(devinfo,
1466 (nir_alu_type)(nir_type_int |
1467 nir_dest_bit_size(instr->dest.dest)));
1468 op[0].type =
1469 brw_type_for_nir_type(devinfo,
1470 (nir_alu_type)(nir_type_int |
1471 nir_src_bit_size(inot_src_instr->src[0].src)));
1472 op[1].type =
1473 brw_type_for_nir_type(devinfo,
1474 (nir_alu_type)(nir_type_int |
1475 nir_src_bit_size(inot_src_instr->src[1].src)));
1476
1477 /* For XOR, only invert one of the sources. Arbitrarily choose
1478 * the first source.
1479 */
1480 op[0].negate = !op[0].negate;
1481 if (inot_src_instr->op != nir_op_ixor)
1482 op[1].negate = !op[1].negate;
1483
1484 switch (inot_src_instr->op) {
1485 case nir_op_ior:
1486 bld.AND(result, op[0], op[1]);
1487 return;
1488
1489 case nir_op_iand:
1490 bld.OR(result, op[0], op[1]);
1491 return;
1492
1493 case nir_op_ixor:
1494 bld.XOR(result, op[0], op[1]);
1495 return;
1496
1497 default:
1498 unreachable("impossible opcode");
1499 }
1500 }
1501 op[0] = resolve_source_modifiers(op[0]);
1502 }
1503 bld.NOT(result, op[0]);
1504 break;
1505 case nir_op_ixor:
1506 if (devinfo->gen >= 8) {
1507 resolve_inot_sources(bld, instr, op);
1508 }
1509 bld.XOR(result, op[0], op[1]);
1510 break;
1511 case nir_op_ior:
1512 if (devinfo->gen >= 8) {
1513 resolve_inot_sources(bld, instr, op);
1514 }
1515 bld.OR(result, op[0], op[1]);
1516 break;
1517 case nir_op_iand:
1518 if (devinfo->gen >= 8) {
1519 resolve_inot_sources(bld, instr, op);
1520 }
1521 bld.AND(result, op[0], op[1]);
1522 break;
1523
1524 case nir_op_fdot2:
1525 case nir_op_fdot3:
1526 case nir_op_fdot4:
1527 case nir_op_b32all_fequal2:
1528 case nir_op_b32all_iequal2:
1529 case nir_op_b32all_fequal3:
1530 case nir_op_b32all_iequal3:
1531 case nir_op_b32all_fequal4:
1532 case nir_op_b32all_iequal4:
1533 case nir_op_b32any_fnequal2:
1534 case nir_op_b32any_inequal2:
1535 case nir_op_b32any_fnequal3:
1536 case nir_op_b32any_inequal3:
1537 case nir_op_b32any_fnequal4:
1538 case nir_op_b32any_inequal4:
1539 unreachable("Lowered by nir_lower_alu_reductions");
1540
1541 case nir_op_ldexp:
1542 unreachable("not reached: should be handled by ldexp_to_arith()");
1543
1544 case nir_op_fsqrt:
1545 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1546 break;
1547
1548 case nir_op_frsq:
1549 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1550 break;
1551
1552 case nir_op_i2b32:
1553 case nir_op_f2b32: {
1554 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1555 if (bit_size == 64) {
1556 /* two-argument instructions can't take 64-bit immediates */
1557 fs_reg zero;
1558 fs_reg tmp;
1559
1560 if (instr->op == nir_op_f2b32) {
1561 zero = vgrf(glsl_type::double_type);
1562 tmp = vgrf(glsl_type::double_type);
1563 bld.MOV(zero, setup_imm_df(bld, 0.0));
1564 } else {
1565 zero = vgrf(glsl_type::int64_t_type);
1566 tmp = vgrf(glsl_type::int64_t_type);
1567 bld.MOV(zero, brw_imm_q(0));
1568 }
1569
1570 /* A SIMD16 execution needs to be split in two instructions, so use
1571 * a vgrf instead of the flag register as dst so instruction splitting
1572 * works
1573 */
1574 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1575 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1576 } else {
1577 fs_reg zero;
1578 if (bit_size == 32) {
1579 zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1580 } else {
1581 assert(bit_size == 16);
1582 zero = instr->op == nir_op_f2b32 ?
1583 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1584 }
1585 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1586 }
1587 break;
1588 }
1589
1590 case nir_op_ftrunc:
1591 inst = bld.RNDZ(result, op[0]);
1592 if (devinfo->gen < 6) {
1593 set_condmod(BRW_CONDITIONAL_R, inst);
1594 set_predicate(BRW_PREDICATE_NORMAL,
1595 bld.ADD(result, result, brw_imm_f(1.0f)));
1596 inst = bld.MOV(result, result); /* for potential saturation */
1597 }
1598 break;
1599
1600 case nir_op_fceil: {
1601 op[0].negate = !op[0].negate;
1602 fs_reg temp = vgrf(glsl_type::float_type);
1603 bld.RNDD(temp, op[0]);
1604 temp.negate = true;
1605 inst = bld.MOV(result, temp);
1606 break;
1607 }
1608 case nir_op_ffloor:
1609 inst = bld.RNDD(result, op[0]);
1610 break;
1611 case nir_op_ffract:
1612 inst = bld.FRC(result, op[0]);
1613 break;
1614 case nir_op_fround_even:
1615 inst = bld.RNDE(result, op[0]);
1616 if (devinfo->gen < 6) {
1617 set_condmod(BRW_CONDITIONAL_R, inst);
1618 set_predicate(BRW_PREDICATE_NORMAL,
1619 bld.ADD(result, result, brw_imm_f(1.0f)));
1620 inst = bld.MOV(result, result); /* for potential saturation */
1621 }
1622 break;
1623
1624 case nir_op_fquantize2f16: {
1625 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1626 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1627 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1628
1629 /* The destination stride must be at least as big as the source stride. */
1630 tmp16.type = BRW_REGISTER_TYPE_W;
1631 tmp16.stride = 2;
1632
1633 /* Check for denormal */
1634 fs_reg abs_src0 = op[0];
1635 abs_src0.abs = true;
1636 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1637 BRW_CONDITIONAL_L);
1638 /* Get the appropriately signed zero */
1639 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1640 retype(op[0], BRW_REGISTER_TYPE_UD),
1641 brw_imm_ud(0x80000000));
1642 /* Do the actual F32 -> F16 -> F32 conversion */
1643 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1644 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1645 /* Select that or zero based on normal status */
1646 inst = bld.SEL(result, zero, tmp32);
1647 inst->predicate = BRW_PREDICATE_NORMAL;
1648 break;
1649 }
1650
1651 case nir_op_imin:
1652 case nir_op_umin:
1653 case nir_op_fmin:
1654 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1655 break;
1656
1657 case nir_op_imax:
1658 case nir_op_umax:
1659 case nir_op_fmax:
1660 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1661 break;
1662
1663 case nir_op_pack_snorm_2x16:
1664 case nir_op_pack_snorm_4x8:
1665 case nir_op_pack_unorm_2x16:
1666 case nir_op_pack_unorm_4x8:
1667 case nir_op_unpack_snorm_2x16:
1668 case nir_op_unpack_snorm_4x8:
1669 case nir_op_unpack_unorm_2x16:
1670 case nir_op_unpack_unorm_4x8:
1671 case nir_op_unpack_half_2x16:
1672 case nir_op_pack_half_2x16:
1673 unreachable("not reached: should be handled by lower_packing_builtins");
1674
1675 case nir_op_unpack_half_2x16_split_x_flush_to_zero:
1676 assert(FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 & execution_mode);
1677 /* Fall-through */
1678 case nir_op_unpack_half_2x16_split_x:
1679 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1680 subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1681 break;
1682
1683 case nir_op_unpack_half_2x16_split_y_flush_to_zero:
1684 assert(FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 & execution_mode);
1685 /* Fall-through */
1686 case nir_op_unpack_half_2x16_split_y:
1687 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1688 subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1689 break;
1690
1691 case nir_op_pack_64_2x32_split:
1692 case nir_op_pack_32_2x16_split:
1693 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1694 break;
1695
1696 case nir_op_unpack_64_2x32_split_x:
1697 case nir_op_unpack_64_2x32_split_y: {
1698 if (instr->op == nir_op_unpack_64_2x32_split_x)
1699 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1700 else
1701 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1702 break;
1703 }
1704
1705 case nir_op_unpack_32_2x16_split_x:
1706 case nir_op_unpack_32_2x16_split_y: {
1707 if (instr->op == nir_op_unpack_32_2x16_split_x)
1708 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1709 else
1710 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1711 break;
1712 }
1713
1714 case nir_op_fpow:
1715 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1716 break;
1717
1718 case nir_op_bitfield_reverse:
1719 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1720 bld.BFREV(result, op[0]);
1721 break;
1722
1723 case nir_op_bit_count:
1724 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1725 bld.CBIT(result, op[0]);
1726 break;
1727
1728 case nir_op_ufind_msb: {
1729 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1730 emit_find_msb_using_lzd(bld, result, op[0], false);
1731 break;
1732 }
1733
1734 case nir_op_uclz:
1735 assert(nir_dest_bit_size(instr->dest.dest) == 32);
1736 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1737 break;
1738
1739 case nir_op_ifind_msb: {
1740 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1741
1742 if (devinfo->gen < 7) {
1743 emit_find_msb_using_lzd(bld, result, op[0], true);
1744 } else {
1745 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1746
1747 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1748 * count from the LSB side. If FBH didn't return an error
1749 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1750 * count into an LSB count.
1751 */
1752 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1753
1754 inst = bld.ADD(result, result, brw_imm_d(31));
1755 inst->predicate = BRW_PREDICATE_NORMAL;
1756 inst->src[0].negate = true;
1757 }
1758 break;
1759 }
1760
1761 case nir_op_find_lsb:
1762 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1763
1764 if (devinfo->gen < 7) {
1765 fs_reg temp = vgrf(glsl_type::int_type);
1766
1767 /* (x & -x) generates a value that consists of only the LSB of x.
1768 * For all powers of 2, findMSB(y) == findLSB(y).
1769 */
1770 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1771 fs_reg negated_src = src;
1772
1773 /* One must be negated, and the other must be non-negated. It
1774 * doesn't matter which is which.
1775 */
1776 negated_src.negate = true;
1777 src.negate = false;
1778
1779 bld.AND(temp, src, negated_src);
1780 emit_find_msb_using_lzd(bld, result, temp, false);
1781 } else {
1782 bld.FBL(result, op[0]);
1783 }
1784 break;
1785
1786 case nir_op_ubitfield_extract:
1787 case nir_op_ibitfield_extract:
1788 unreachable("should have been lowered");
1789 case nir_op_ubfe:
1790 case nir_op_ibfe:
1791 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1792 bld.BFE(result, op[2], op[1], op[0]);
1793 break;
1794 case nir_op_bfm:
1795 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1796 bld.BFI1(result, op[0], op[1]);
1797 break;
1798 case nir_op_bfi:
1799 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1800 bld.BFI2(result, op[0], op[1], op[2]);
1801 break;
1802
1803 case nir_op_bitfield_insert:
1804 unreachable("not reached: should have been lowered");
1805
1806 case nir_op_ishl:
1807 bld.SHL(result, op[0], op[1]);
1808 break;
1809 case nir_op_ishr:
1810 bld.ASR(result, op[0], op[1]);
1811 break;
1812 case nir_op_ushr:
1813 bld.SHR(result, op[0], op[1]);
1814 break;
1815
1816 case nir_op_urol:
1817 bld.ROL(result, op[0], op[1]);
1818 break;
1819 case nir_op_uror:
1820 bld.ROR(result, op[0], op[1]);
1821 break;
1822
1823 case nir_op_pack_half_2x16_split:
1824 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1825 break;
1826
1827 case nir_op_ffma:
1828 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1829 brw_rnd_mode rnd =
1830 brw_rnd_mode_from_execution_mode(execution_mode);
1831 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1832 brw_imm_d(rnd));
1833 }
1834
1835 inst = bld.MAD(result, op[2], op[1], op[0]);
1836 break;
1837
1838 case nir_op_flrp:
1839 if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1840 brw_rnd_mode rnd =
1841 brw_rnd_mode_from_execution_mode(execution_mode);
1842 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1843 brw_imm_d(rnd));
1844 }
1845
1846 inst = bld.LRP(result, op[0], op[1], op[2]);
1847 break;
1848
1849 case nir_op_b32csel:
1850 if (optimize_frontfacing_ternary(instr, result))
1851 return;
1852
1853 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1854 inst = bld.SEL(result, op[1], op[2]);
1855 inst->predicate = BRW_PREDICATE_NORMAL;
1856 break;
1857
1858 case nir_op_extract_u8:
1859 case nir_op_extract_i8: {
1860 unsigned byte = nir_src_as_uint(instr->src[1].src);
1861
1862 /* The PRMs say:
1863 *
1864 * BDW+
1865 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1866 * Use two instructions and a word or DWord intermediate integer type.
1867 */
1868 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1869 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1870
1871 if (instr->op == nir_op_extract_i8) {
1872 /* If we need to sign extend, extract to a word first */
1873 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1874 bld.MOV(w_temp, subscript(op[0], type, byte));
1875 bld.MOV(result, w_temp);
1876 } else if (byte & 1) {
1877 /* Extract the high byte from the word containing the desired byte
1878 * offset.
1879 */
1880 bld.SHR(result,
1881 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1882 brw_imm_uw(8));
1883 } else {
1884 /* Otherwise use an AND with 0xff and a word type */
1885 bld.AND(result,
1886 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1887 brw_imm_uw(0xff));
1888 }
1889 } else {
1890 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1891 bld.MOV(result, subscript(op[0], type, byte));
1892 }
1893 break;
1894 }
1895
1896 case nir_op_extract_u16:
1897 case nir_op_extract_i16: {
1898 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1899 unsigned word = nir_src_as_uint(instr->src[1].src);
1900 bld.MOV(result, subscript(op[0], type, word));
1901 break;
1902 }
1903
1904 default:
1905 unreachable("unhandled instruction");
1906 }
1907
1908 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1909 * to sign extend the low bit to 0/~0
1910 */
1911 if (devinfo->gen <= 5 &&
1912 !result.is_null() &&
1913 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1914 fs_reg masked = vgrf(glsl_type::int_type);
1915 bld.AND(masked, result, brw_imm_d(1));
1916 masked.negate = true;
1917 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1918 }
1919 }
1920
1921 void
1922 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1923 nir_load_const_instr *instr)
1924 {
1925 const brw_reg_type reg_type =
1926 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1927 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1928
1929 switch (instr->def.bit_size) {
1930 case 8:
1931 for (unsigned i = 0; i < instr->def.num_components; i++)
1932 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value[i].i8));
1933 break;
1934
1935 case 16:
1936 for (unsigned i = 0; i < instr->def.num_components; i++)
1937 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value[i].i16));
1938 break;
1939
1940 case 32:
1941 for (unsigned i = 0; i < instr->def.num_components; i++)
1942 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value[i].i32));
1943 break;
1944
1945 case 64:
1946 assert(devinfo->gen >= 7);
1947 if (devinfo->gen == 7) {
1948 /* We don't get 64-bit integer types until gen8 */
1949 for (unsigned i = 0; i < instr->def.num_components; i++) {
1950 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1951 setup_imm_df(bld, instr->value[i].f64));
1952 }
1953 } else {
1954 for (unsigned i = 0; i < instr->def.num_components; i++)
1955 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value[i].i64));
1956 }
1957 break;
1958
1959 default:
1960 unreachable("Invalid bit size");
1961 }
1962
1963 nir_ssa_values[instr->def.index] = reg;
1964 }
1965
1966 fs_reg
1967 fs_visitor::get_nir_src(const nir_src &src)
1968 {
1969 fs_reg reg;
1970 if (src.is_ssa) {
1971 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1972 const brw_reg_type reg_type =
1973 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1974 reg = bld.vgrf(reg_type, src.ssa->num_components);
1975 } else {
1976 reg = nir_ssa_values[src.ssa->index];
1977 }
1978 } else {
1979 /* We don't handle indirects on locals */
1980 assert(src.reg.indirect == NULL);
1981 reg = offset(nir_locals[src.reg.reg->index], bld,
1982 src.reg.base_offset * src.reg.reg->num_components);
1983 }
1984
1985 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1986 /* The only 64-bit type available on gen7 is DF, so use that. */
1987 reg.type = BRW_REGISTER_TYPE_DF;
1988 } else {
1989 /* To avoid floating-point denorm flushing problems, set the type by
1990 * default to an integer type - instructions that need floating point
1991 * semantics will set this to F if they need to
1992 */
1993 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1994 BRW_REGISTER_TYPE_D);
1995 }
1996
1997 return reg;
1998 }
1999
2000 /**
2001 * Return an IMM for constants; otherwise call get_nir_src() as normal.
2002 *
2003 * This function should not be called on any value which may be 64 bits.
2004 * We could theoretically support 64-bit on gen8+ but we choose not to
2005 * because it wouldn't work in general (no gen7 support) and there are
2006 * enough restrictions in 64-bit immediates that you can't take the return
2007 * value and treat it the same as the result of get_nir_src().
2008 */
2009 fs_reg
2010 fs_visitor::get_nir_src_imm(const nir_src &src)
2011 {
2012 assert(nir_src_bit_size(src) == 32);
2013 return nir_src_is_const(src) ?
2014 fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
2015 }
2016
2017 fs_reg
2018 fs_visitor::get_nir_dest(const nir_dest &dest)
2019 {
2020 if (dest.is_ssa) {
2021 const brw_reg_type reg_type =
2022 brw_reg_type_from_bit_size(dest.ssa.bit_size,
2023 dest.ssa.bit_size == 8 ?
2024 BRW_REGISTER_TYPE_D :
2025 BRW_REGISTER_TYPE_F);
2026 nir_ssa_values[dest.ssa.index] =
2027 bld.vgrf(reg_type, dest.ssa.num_components);
2028 bld.UNDEF(nir_ssa_values[dest.ssa.index]);
2029 return nir_ssa_values[dest.ssa.index];
2030 } else {
2031 /* We don't handle indirects on locals */
2032 assert(dest.reg.indirect == NULL);
2033 return offset(nir_locals[dest.reg.reg->index], bld,
2034 dest.reg.base_offset * dest.reg.reg->num_components);
2035 }
2036 }
2037
2038 void
2039 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
2040 unsigned wr_mask)
2041 {
2042 for (unsigned i = 0; i < 4; i++) {
2043 if (!((wr_mask >> i) & 1))
2044 continue;
2045
2046 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
2047 new_inst->dst = offset(new_inst->dst, bld, i);
2048 for (unsigned j = 0; j < new_inst->sources; j++)
2049 if (new_inst->src[j].file == VGRF)
2050 new_inst->src[j] = offset(new_inst->src[j], bld, i);
2051
2052 bld.emit(new_inst);
2053 }
2054 }
2055
2056 static fs_inst *
2057 emit_pixel_interpolater_send(const fs_builder &bld,
2058 enum opcode opcode,
2059 const fs_reg &dst,
2060 const fs_reg &src,
2061 const fs_reg &desc,
2062 glsl_interp_mode interpolation)
2063 {
2064 struct brw_wm_prog_data *wm_prog_data =
2065 brw_wm_prog_data(bld.shader->stage_prog_data);
2066
2067 fs_inst *inst = bld.emit(opcode, dst, src, desc);
2068 /* 2 floats per slot returned */
2069 inst->size_written = 2 * dst.component_size(inst->exec_size);
2070 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
2071
2072 wm_prog_data->pulls_bary = true;
2073
2074 return inst;
2075 }
2076
2077 /**
2078 * Computes 1 << x, given a D/UD register containing some value x.
2079 */
2080 static fs_reg
2081 intexp2(const fs_builder &bld, const fs_reg &x)
2082 {
2083 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
2084
2085 fs_reg result = bld.vgrf(x.type, 1);
2086 fs_reg one = bld.vgrf(x.type, 1);
2087
2088 bld.MOV(one, retype(brw_imm_d(1), one.type));
2089 bld.SHL(result, one, x);
2090 return result;
2091 }
2092
2093 void
2094 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
2095 {
2096 assert(stage == MESA_SHADER_GEOMETRY);
2097
2098 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2099
2100 if (gs_compile->control_data_header_size_bits == 0)
2101 return;
2102
2103 /* We can only do EndPrimitive() functionality when the control data
2104 * consists of cut bits. Fortunately, the only time it isn't is when the
2105 * output type is points, in which case EndPrimitive() is a no-op.
2106 */
2107 if (gs_prog_data->control_data_format !=
2108 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
2109 return;
2110 }
2111
2112 /* Cut bits use one bit per vertex. */
2113 assert(gs_compile->control_data_bits_per_vertex == 1);
2114
2115 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2116 vertex_count.type = BRW_REGISTER_TYPE_UD;
2117
2118 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
2119 * vertex n, 0 otherwise. So all we need to do here is mark bit
2120 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
2121 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
2122 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
2123 *
2124 * Note that if EndPrimitive() is called before emitting any vertices, this
2125 * will cause us to set bit 31 of the control_data_bits register to 1.
2126 * That's fine because:
2127 *
2128 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
2129 * output, so the hardware will ignore cut bit 31.
2130 *
2131 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
2132 * last vertex, so setting cut bit 31 has no effect (since the primitive
2133 * is automatically ended when the GS terminates).
2134 *
2135 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
2136 * control_data_bits register to 0 when the first vertex is emitted.
2137 */
2138
2139 const fs_builder abld = bld.annotate("end primitive");
2140
2141 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
2142 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2143 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2144 fs_reg mask = intexp2(abld, prev_count);
2145 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2146 * attention to the lower 5 bits of its second source argument, so on this
2147 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
2148 * ((vertex_count - 1) % 32).
2149 */
2150 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2151 }
2152
2153 void
2154 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
2155 {
2156 assert(stage == MESA_SHADER_GEOMETRY);
2157 assert(gs_compile->control_data_bits_per_vertex != 0);
2158
2159 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2160
2161 const fs_builder abld = bld.annotate("emit control data bits");
2162 const fs_builder fwa_bld = bld.exec_all();
2163
2164 /* We use a single UD register to accumulate control data bits (32 bits
2165 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
2166 * at a time.
2167 *
2168 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
2169 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
2170 * use the Channel Mask phase to enable/disable which DWord within that
2171 * group to write. (Remember, different SIMD8 channels may have emitted
2172 * different numbers of vertices, so we may need per-slot offsets.)
2173 *
2174 * Channel masking presents an annoying problem: we may have to replicate
2175 * the data up to 4 times:
2176 *
2177 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
2178 *
2179 * To avoid penalizing shaders that emit a small number of vertices, we
2180 * can avoid these sometimes: if the size of the control data header is
2181 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
2182 * land in the same 128-bit group, so we can skip per-slot offsets.
2183 *
2184 * Similarly, if the control data header is <= 32 bits, there is only one
2185 * DWord, so we can skip channel masks.
2186 */
2187 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
2188
2189 fs_reg channel_mask, per_slot_offset;
2190
2191 if (gs_compile->control_data_header_size_bits > 32) {
2192 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2193 channel_mask = vgrf(glsl_type::uint_type);
2194 }
2195
2196 if (gs_compile->control_data_header_size_bits > 128) {
2197 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
2198 per_slot_offset = vgrf(glsl_type::uint_type);
2199 }
2200
2201 /* Figure out which DWord we're trying to write to using the formula:
2202 *
2203 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
2204 *
2205 * Since bits_per_vertex is a power of two, and is known at compile
2206 * time, this can be optimized to:
2207 *
2208 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
2209 */
2210 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
2211 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2212 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2213 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2214 unsigned log2_bits_per_vertex =
2215 util_last_bit(gs_compile->control_data_bits_per_vertex);
2216 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
2217
2218 if (per_slot_offset.file != BAD_FILE) {
2219 /* Set the per-slot offset to dword_index / 4, so that we'll write to
2220 * the appropriate OWord within the control data header.
2221 */
2222 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
2223 }
2224
2225 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
2226 * write to the appropriate DWORD within the OWORD.
2227 */
2228 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2229 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
2230 channel_mask = intexp2(fwa_bld, channel);
2231 /* Then the channel masks need to be in bits 23:16. */
2232 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
2233 }
2234
2235 /* Store the control data bits in the message payload and send it. */
2236 unsigned mlen = 2;
2237 if (channel_mask.file != BAD_FILE)
2238 mlen += 4; /* channel masks, plus 3 extra copies of the data */
2239 if (per_slot_offset.file != BAD_FILE)
2240 mlen++;
2241
2242 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2243 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2244 unsigned i = 0;
2245 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2246 if (per_slot_offset.file != BAD_FILE)
2247 sources[i++] = per_slot_offset;
2248 if (channel_mask.file != BAD_FILE)
2249 sources[i++] = channel_mask;
2250 while (i < mlen) {
2251 sources[i++] = this->control_data_bits;
2252 }
2253
2254 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2255 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2256 inst->mlen = mlen;
2257 /* We need to increment Global Offset by 256-bits to make room for
2258 * Broadwell's extra "Vertex Count" payload at the beginning of the
2259 * URB entry. Since this is an OWord message, Global Offset is counted
2260 * in 128-bit units, so we must set it to 2.
2261 */
2262 if (gs_prog_data->static_vertex_count == -1)
2263 inst->offset = 2;
2264 }
2265
2266 void
2267 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2268 unsigned stream_id)
2269 {
2270 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2271
2272 /* Note: we are calling this *before* increasing vertex_count, so
2273 * this->vertex_count == vertex_count - 1 in the formula above.
2274 */
2275
2276 /* Stream mode uses 2 bits per vertex */
2277 assert(gs_compile->control_data_bits_per_vertex == 2);
2278
2279 /* Must be a valid stream */
2280 assert(stream_id < MAX_VERTEX_STREAMS);
2281
2282 /* Control data bits are initialized to 0 so we don't have to set any
2283 * bits when sending vertices to stream 0.
2284 */
2285 if (stream_id == 0)
2286 return;
2287
2288 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2289
2290 /* reg::sid = stream_id */
2291 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2292 abld.MOV(sid, brw_imm_ud(stream_id));
2293
2294 /* reg:shift_count = 2 * (vertex_count - 1) */
2295 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2296 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2297
2298 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2299 * attention to the lower 5 bits of its second source argument, so on this
2300 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2301 * stream_id << ((2 * (vertex_count - 1)) % 32).
2302 */
2303 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2304 abld.SHL(mask, sid, shift_count);
2305 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2306 }
2307
2308 void
2309 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2310 unsigned stream_id)
2311 {
2312 assert(stage == MESA_SHADER_GEOMETRY);
2313
2314 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2315
2316 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2317 vertex_count.type = BRW_REGISTER_TYPE_UD;
2318
2319 /* Haswell and later hardware ignores the "Render Stream Select" bits
2320 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2321 * and instead sends all primitives down the pipeline for rasterization.
2322 * If the SOL stage is enabled, "Render Stream Select" is honored and
2323 * primitives bound to non-zero streams are discarded after stream output.
2324 *
2325 * Since the only purpose of primives sent to non-zero streams is to
2326 * be recorded by transform feedback, we can simply discard all geometry
2327 * bound to these streams when transform feedback is disabled.
2328 */
2329 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2330 return;
2331
2332 /* If we're outputting 32 control data bits or less, then we can wait
2333 * until the shader is over to output them all. Otherwise we need to
2334 * output them as we go. Now is the time to do it, since we're about to
2335 * output the vertex_count'th vertex, so it's guaranteed that the
2336 * control data bits associated with the (vertex_count - 1)th vertex are
2337 * correct.
2338 */
2339 if (gs_compile->control_data_header_size_bits > 32) {
2340 const fs_builder abld =
2341 bld.annotate("emit vertex: emit control data bits");
2342
2343 /* Only emit control data bits if we've finished accumulating a batch
2344 * of 32 bits. This is the case when:
2345 *
2346 * (vertex_count * bits_per_vertex) % 32 == 0
2347 *
2348 * (in other words, when the last 5 bits of vertex_count *
2349 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2350 * integer n (which is always the case, since bits_per_vertex is
2351 * always 1 or 2), this is equivalent to requiring that the last 5-n
2352 * bits of vertex_count are 0:
2353 *
2354 * vertex_count & (2^(5-n) - 1) == 0
2355 *
2356 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2357 * equivalent to:
2358 *
2359 * vertex_count & (32 / bits_per_vertex - 1) == 0
2360 *
2361 * TODO: If vertex_count is an immediate, we could do some of this math
2362 * at compile time...
2363 */
2364 fs_inst *inst =
2365 abld.AND(bld.null_reg_d(), vertex_count,
2366 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2367 inst->conditional_mod = BRW_CONDITIONAL_Z;
2368
2369 abld.IF(BRW_PREDICATE_NORMAL);
2370 /* If vertex_count is 0, then no control data bits have been
2371 * accumulated yet, so we can skip emitting them.
2372 */
2373 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2374 BRW_CONDITIONAL_NEQ);
2375 abld.IF(BRW_PREDICATE_NORMAL);
2376 emit_gs_control_data_bits(vertex_count);
2377 abld.emit(BRW_OPCODE_ENDIF);
2378
2379 /* Reset control_data_bits to 0 so we can start accumulating a new
2380 * batch.
2381 *
2382 * Note: in the case where vertex_count == 0, this neutralizes the
2383 * effect of any call to EndPrimitive() that the shader may have
2384 * made before outputting its first vertex.
2385 */
2386 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2387 inst->force_writemask_all = true;
2388 abld.emit(BRW_OPCODE_ENDIF);
2389 }
2390
2391 emit_urb_writes(vertex_count);
2392
2393 /* In stream mode we have to set control data bits for all vertices
2394 * unless we have disabled control data bits completely (which we do
2395 * do for GL_POINTS outputs that don't use streams).
2396 */
2397 if (gs_compile->control_data_header_size_bits > 0 &&
2398 gs_prog_data->control_data_format ==
2399 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2400 set_gs_stream_control_data_bits(vertex_count, stream_id);
2401 }
2402 }
2403
2404 void
2405 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2406 const nir_src &vertex_src,
2407 unsigned base_offset,
2408 const nir_src &offset_src,
2409 unsigned num_components,
2410 unsigned first_component)
2411 {
2412 assert(type_sz(dst.type) == 4);
2413 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2414 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2415
2416 /* TODO: figure out push input layout for invocations == 1 */
2417 if (gs_prog_data->invocations == 1 &&
2418 nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2419 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2420 int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2421 nir_src_as_uint(vertex_src) * push_reg_count;
2422 for (unsigned i = 0; i < num_components; i++) {
2423 bld.MOV(offset(dst, bld, i),
2424 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2425 }
2426 return;
2427 }
2428
2429 /* Resort to the pull model. Ensure the VUE handles are provided. */
2430 assert(gs_prog_data->base.include_vue_handles);
2431
2432 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2433 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2434
2435 if (gs_prog_data->invocations == 1) {
2436 if (nir_src_is_const(vertex_src)) {
2437 /* The vertex index is constant; just select the proper URB handle. */
2438 icp_handle =
2439 retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2440 BRW_REGISTER_TYPE_UD);
2441 } else {
2442 /* The vertex index is non-constant. We need to use indirect
2443 * addressing to fetch the proper URB handle.
2444 *
2445 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2446 * indicating that channel <n> should read the handle from
2447 * DWord <n>. We convert that to bytes by multiplying by 4.
2448 *
2449 * Next, we convert the vertex index to bytes by multiplying
2450 * by 32 (shifting by 5), and add the two together. This is
2451 * the final indirect byte offset.
2452 */
2453 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2454 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2455 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2456 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2457
2458 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2459 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2460 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2461 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2462 /* Convert vertex_index to bytes (multiply by 32) */
2463 bld.SHL(vertex_offset_bytes,
2464 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2465 brw_imm_ud(5u));
2466 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2467
2468 /* Use first_icp_handle as the base offset. There is one register
2469 * of URB handles per vertex, so inform the register allocator that
2470 * we might read up to nir->info.gs.vertices_in registers.
2471 */
2472 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2473 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2474 fs_reg(icp_offset_bytes),
2475 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2476 }
2477 } else {
2478 assert(gs_prog_data->invocations > 1);
2479
2480 if (nir_src_is_const(vertex_src)) {
2481 unsigned vertex = nir_src_as_uint(vertex_src);
2482 assert(devinfo->gen >= 9 || vertex <= 5);
2483 bld.MOV(icp_handle,
2484 retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2485 BRW_REGISTER_TYPE_UD));
2486 } else {
2487 /* The vertex index is non-constant. We need to use indirect
2488 * addressing to fetch the proper URB handle.
2489 *
2490 */
2491 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2492
2493 /* Convert vertex_index to bytes (multiply by 4) */
2494 bld.SHL(icp_offset_bytes,
2495 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2496 brw_imm_ud(2u));
2497
2498 /* Use first_icp_handle as the base offset. There is one DWord
2499 * of URB handles per vertex, so inform the register allocator that
2500 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2501 */
2502 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2503 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2504 fs_reg(icp_offset_bytes),
2505 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2506 REG_SIZE));
2507 }
2508 }
2509
2510 fs_inst *inst;
2511 fs_reg indirect_offset = get_nir_src(offset_src);
2512
2513 if (nir_src_is_const(offset_src)) {
2514 /* Constant indexing - use global offset. */
2515 if (first_component != 0) {
2516 unsigned read_components = num_components + first_component;
2517 fs_reg tmp = bld.vgrf(dst.type, read_components);
2518 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2519 inst->size_written = read_components *
2520 tmp.component_size(inst->exec_size);
2521 for (unsigned i = 0; i < num_components; i++) {
2522 bld.MOV(offset(dst, bld, i),
2523 offset(tmp, bld, i + first_component));
2524 }
2525 } else {
2526 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2527 inst->size_written = num_components *
2528 dst.component_size(inst->exec_size);
2529 }
2530 inst->offset = base_offset + nir_src_as_uint(offset_src);
2531 inst->mlen = 1;
2532 } else {
2533 /* Indirect indexing - use per-slot offsets as well. */
2534 const fs_reg srcs[] = { icp_handle, indirect_offset };
2535 unsigned read_components = num_components + first_component;
2536 fs_reg tmp = bld.vgrf(dst.type, read_components);
2537 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2538 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2539 if (first_component != 0) {
2540 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2541 payload);
2542 inst->size_written = read_components *
2543 tmp.component_size(inst->exec_size);
2544 for (unsigned i = 0; i < num_components; i++) {
2545 bld.MOV(offset(dst, bld, i),
2546 offset(tmp, bld, i + first_component));
2547 }
2548 } else {
2549 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
2550 inst->size_written = num_components *
2551 dst.component_size(inst->exec_size);
2552 }
2553 inst->offset = base_offset;
2554 inst->mlen = 2;
2555 }
2556 }
2557
2558 fs_reg
2559 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2560 {
2561 nir_src *offset_src = nir_get_io_offset_src(instr);
2562
2563 if (nir_src_is_const(*offset_src)) {
2564 /* The only constant offset we should find is 0. brw_nir.c's
2565 * add_const_offset_to_base() will fold other constant offsets
2566 * into instr->const_index[0].
2567 */
2568 assert(nir_src_as_uint(*offset_src) == 0);
2569 return fs_reg();
2570 }
2571
2572 return get_nir_src(*offset_src);
2573 }
2574
2575 void
2576 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2577 nir_intrinsic_instr *instr)
2578 {
2579 assert(stage == MESA_SHADER_VERTEX);
2580
2581 fs_reg dest;
2582 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2583 dest = get_nir_dest(instr->dest);
2584
2585 switch (instr->intrinsic) {
2586 case nir_intrinsic_load_vertex_id:
2587 case nir_intrinsic_load_base_vertex:
2588 unreachable("should be lowered by nir_lower_system_values()");
2589
2590 case nir_intrinsic_load_input: {
2591 assert(nir_dest_bit_size(instr->dest) == 32);
2592 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2593 src = offset(src, bld, nir_intrinsic_component(instr));
2594 src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2595
2596 for (unsigned i = 0; i < instr->num_components; i++)
2597 bld.MOV(offset(dest, bld, i), offset(src, bld, i));
2598 break;
2599 }
2600
2601 case nir_intrinsic_load_vertex_id_zero_base:
2602 case nir_intrinsic_load_instance_id:
2603 case nir_intrinsic_load_base_instance:
2604 case nir_intrinsic_load_draw_id:
2605 case nir_intrinsic_load_first_vertex:
2606 case nir_intrinsic_load_is_indexed_draw:
2607 unreachable("lowered by brw_nir_lower_vs_inputs");
2608
2609 default:
2610 nir_emit_intrinsic(bld, instr);
2611 break;
2612 }
2613 }
2614
2615 fs_reg
2616 fs_visitor::get_tcs_single_patch_icp_handle(const fs_builder &bld,
2617 nir_intrinsic_instr *instr)
2618 {
2619 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2620 const nir_src &vertex_src = instr->src[0];
2621 nir_intrinsic_instr *vertex_intrin = nir_src_as_intrinsic(vertex_src);
2622 fs_reg icp_handle;
2623
2624 if (nir_src_is_const(vertex_src)) {
2625 /* Emit a MOV to resolve <0,1,0> regioning. */
2626 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2627 unsigned vertex = nir_src_as_uint(vertex_src);
2628 bld.MOV(icp_handle,
2629 retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2630 BRW_REGISTER_TYPE_UD));
2631 } else if (tcs_prog_data->instances == 1 && vertex_intrin &&
2632 vertex_intrin->intrinsic == nir_intrinsic_load_invocation_id) {
2633 /* For the common case of only 1 instance, an array index of
2634 * gl_InvocationID means reading g1. Skip all the indirect work.
2635 */
2636 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2637 } else {
2638 /* The vertex index is non-constant. We need to use indirect
2639 * addressing to fetch the proper URB handle.
2640 */
2641 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2642
2643 /* Each ICP handle is a single DWord (4 bytes) */
2644 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2645 bld.SHL(vertex_offset_bytes,
2646 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2647 brw_imm_ud(2u));
2648
2649 /* Start at g1. We might read up to 4 registers. */
2650 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2651 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2652 brw_imm_ud(4 * REG_SIZE));
2653 }
2654
2655 return icp_handle;
2656 }
2657
2658 fs_reg
2659 fs_visitor::get_tcs_eight_patch_icp_handle(const fs_builder &bld,
2660 nir_intrinsic_instr *instr)
2661 {
2662 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2663 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2664 const nir_src &vertex_src = instr->src[0];
2665
2666 unsigned first_icp_handle = tcs_prog_data->include_primitive_id ? 3 : 2;
2667
2668 if (nir_src_is_const(vertex_src)) {
2669 return fs_reg(retype(brw_vec8_grf(first_icp_handle +
2670 nir_src_as_uint(vertex_src), 0),
2671 BRW_REGISTER_TYPE_UD));
2672 }
2673
2674 /* The vertex index is non-constant. We need to use indirect
2675 * addressing to fetch the proper URB handle.
2676 *
2677 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2678 * indicating that channel <n> should read the handle from
2679 * DWord <n>. We convert that to bytes by multiplying by 4.
2680 *
2681 * Next, we convert the vertex index to bytes by multiplying
2682 * by 32 (shifting by 5), and add the two together. This is
2683 * the final indirect byte offset.
2684 */
2685 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2686 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2687 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2688 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2689 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2690
2691 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2692 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2693 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2694 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2695 /* Convert vertex_index to bytes (multiply by 32) */
2696 bld.SHL(vertex_offset_bytes,
2697 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2698 brw_imm_ud(5u));
2699 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2700
2701 /* Use first_icp_handle as the base offset. There is one register
2702 * of URB handles per vertex, so inform the register allocator that
2703 * we might read up to nir->info.gs.vertices_in registers.
2704 */
2705 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2706 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2707 icp_offset_bytes, brw_imm_ud(tcs_key->input_vertices * REG_SIZE));
2708
2709 return icp_handle;
2710 }
2711
2712 struct brw_reg
2713 fs_visitor::get_tcs_output_urb_handle()
2714 {
2715 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
2716
2717 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) {
2718 return retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2719 } else {
2720 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
2721 return retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2722 }
2723 }
2724
2725 void
2726 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2727 nir_intrinsic_instr *instr)
2728 {
2729 assert(stage == MESA_SHADER_TESS_CTRL);
2730 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2731 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2732 struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
2733
2734 bool eight_patch =
2735 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH;
2736
2737 fs_reg dst;
2738 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2739 dst = get_nir_dest(instr->dest);
2740
2741 switch (instr->intrinsic) {
2742 case nir_intrinsic_load_primitive_id:
2743 bld.MOV(dst, fs_reg(eight_patch ? brw_vec8_grf(2, 0)
2744 : brw_vec1_grf(0, 1)));
2745 break;
2746 case nir_intrinsic_load_invocation_id:
2747 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2748 break;
2749 case nir_intrinsic_load_patch_vertices_in:
2750 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2751 brw_imm_d(tcs_key->input_vertices));
2752 break;
2753
2754 case nir_intrinsic_control_barrier: {
2755 if (tcs_prog_data->instances == 1)
2756 break;
2757
2758 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2759 fs_reg m0_2 = component(m0, 2);
2760
2761 const fs_builder chanbld = bld.exec_all().group(1, 0);
2762
2763 /* Zero the message header */
2764 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2765
2766 if (devinfo->gen < 11) {
2767 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2768 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2769 brw_imm_ud(INTEL_MASK(16, 13)));
2770
2771 /* Shift it up to bits 27:24. */
2772 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2773 } else {
2774 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2775 brw_imm_ud(INTEL_MASK(30, 24)));
2776 }
2777
2778 /* Set the Barrier Count and the enable bit */
2779 if (devinfo->gen < 11) {
2780 chanbld.OR(m0_2, m0_2,
2781 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2782 } else {
2783 chanbld.OR(m0_2, m0_2,
2784 brw_imm_ud(tcs_prog_data->instances << 8 | (1 << 15)));
2785 }
2786
2787 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2788 break;
2789 }
2790
2791 case nir_intrinsic_load_input:
2792 unreachable("nir_lower_io should never give us these.");
2793 break;
2794
2795 case nir_intrinsic_load_per_vertex_input: {
2796 assert(nir_dest_bit_size(instr->dest) == 32);
2797 fs_reg indirect_offset = get_indirect_offset(instr);
2798 unsigned imm_offset = instr->const_index[0];
2799 fs_inst *inst;
2800
2801 fs_reg icp_handle =
2802 eight_patch ? get_tcs_eight_patch_icp_handle(bld, instr)
2803 : get_tcs_single_patch_icp_handle(bld, instr);
2804
2805 /* We can only read two double components with each URB read, so
2806 * we send two read messages in that case, each one loading up to
2807 * two double components.
2808 */
2809 unsigned num_components = instr->num_components;
2810 unsigned first_component = nir_intrinsic_component(instr);
2811
2812 if (indirect_offset.file == BAD_FILE) {
2813 /* Constant indexing - use global offset. */
2814 if (first_component != 0) {
2815 unsigned read_components = num_components + first_component;
2816 fs_reg tmp = bld.vgrf(dst.type, read_components);
2817 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2818 for (unsigned i = 0; i < num_components; i++) {
2819 bld.MOV(offset(dst, bld, i),
2820 offset(tmp, bld, i + first_component));
2821 }
2822 } else {
2823 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2824 }
2825 inst->offset = imm_offset;
2826 inst->mlen = 1;
2827 } else {
2828 /* Indirect indexing - use per-slot offsets as well. */
2829 const fs_reg srcs[] = { icp_handle, indirect_offset };
2830 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2831 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2832 if (first_component != 0) {
2833 unsigned read_components = num_components + first_component;
2834 fs_reg tmp = bld.vgrf(dst.type, read_components);
2835 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2836 payload);
2837 for (unsigned i = 0; i < num_components; i++) {
2838 bld.MOV(offset(dst, bld, i),
2839 offset(tmp, bld, i + first_component));
2840 }
2841 } else {
2842 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2843 payload);
2844 }
2845 inst->offset = imm_offset;
2846 inst->mlen = 2;
2847 }
2848 inst->size_written = (num_components + first_component) *
2849 inst->dst.component_size(inst->exec_size);
2850
2851 /* Copy the temporary to the destination to deal with writemasking.
2852 *
2853 * Also attempt to deal with gl_PointSize being in the .w component.
2854 */
2855 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2856 assert(type_sz(dst.type) == 4);
2857 inst->dst = bld.vgrf(dst.type, 4);
2858 inst->size_written = 4 * REG_SIZE;
2859 bld.MOV(dst, offset(inst->dst, bld, 3));
2860 }
2861 break;
2862 }
2863
2864 case nir_intrinsic_load_output:
2865 case nir_intrinsic_load_per_vertex_output: {
2866 assert(nir_dest_bit_size(instr->dest) == 32);
2867 fs_reg indirect_offset = get_indirect_offset(instr);
2868 unsigned imm_offset = instr->const_index[0];
2869 unsigned first_component = nir_intrinsic_component(instr);
2870
2871 struct brw_reg output_handles = get_tcs_output_urb_handle();
2872
2873 fs_inst *inst;
2874 if (indirect_offset.file == BAD_FILE) {
2875 /* This MOV replicates the output handle to all enabled channels
2876 * is SINGLE_PATCH mode.
2877 */
2878 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2879 bld.MOV(patch_handle, output_handles);
2880
2881 {
2882 if (first_component != 0) {
2883 unsigned read_components =
2884 instr->num_components + first_component;
2885 fs_reg tmp = bld.vgrf(dst.type, read_components);
2886 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2887 patch_handle);
2888 inst->size_written = read_components * REG_SIZE;
2889 for (unsigned i = 0; i < instr->num_components; i++) {
2890 bld.MOV(offset(dst, bld, i),
2891 offset(tmp, bld, i + first_component));
2892 }
2893 } else {
2894 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2895 patch_handle);
2896 inst->size_written = instr->num_components * REG_SIZE;
2897 }
2898 inst->offset = imm_offset;
2899 inst->mlen = 1;
2900 }
2901 } else {
2902 /* Indirect indexing - use per-slot offsets as well. */
2903 const fs_reg srcs[] = { output_handles, indirect_offset };
2904 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2905 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2906 if (first_component != 0) {
2907 unsigned read_components =
2908 instr->num_components + first_component;
2909 fs_reg tmp = bld.vgrf(dst.type, read_components);
2910 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2911 payload);
2912 inst->size_written = read_components * REG_SIZE;
2913 for (unsigned i = 0; i < instr->num_components; i++) {
2914 bld.MOV(offset(dst, bld, i),
2915 offset(tmp, bld, i + first_component));
2916 }
2917 } else {
2918 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2919 payload);
2920 inst->size_written = instr->num_components * REG_SIZE;
2921 }
2922 inst->offset = imm_offset;
2923 inst->mlen = 2;
2924 }
2925 break;
2926 }
2927
2928 case nir_intrinsic_store_output:
2929 case nir_intrinsic_store_per_vertex_output: {
2930 assert(nir_src_bit_size(instr->src[0]) == 32);
2931 fs_reg value = get_nir_src(instr->src[0]);
2932 fs_reg indirect_offset = get_indirect_offset(instr);
2933 unsigned imm_offset = instr->const_index[0];
2934 unsigned mask = instr->const_index[1];
2935 unsigned header_regs = 0;
2936 struct brw_reg output_handles = get_tcs_output_urb_handle();
2937
2938 fs_reg srcs[7];
2939 srcs[header_regs++] = output_handles;
2940
2941 if (indirect_offset.file != BAD_FILE) {
2942 srcs[header_regs++] = indirect_offset;
2943 }
2944
2945 if (mask == 0)
2946 break;
2947
2948 unsigned num_components = util_last_bit(mask);
2949 enum opcode opcode;
2950
2951 /* We can only pack two 64-bit components in a single message, so send
2952 * 2 messages if we have more components
2953 */
2954 unsigned first_component = nir_intrinsic_component(instr);
2955 mask = mask << first_component;
2956
2957 if (mask != WRITEMASK_XYZW) {
2958 srcs[header_regs++] = brw_imm_ud(mask << 16);
2959 opcode = indirect_offset.file != BAD_FILE ?
2960 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2961 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2962 } else {
2963 opcode = indirect_offset.file != BAD_FILE ?
2964 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2965 SHADER_OPCODE_URB_WRITE_SIMD8;
2966 }
2967
2968 for (unsigned i = 0; i < num_components; i++) {
2969 if (!(mask & (1 << (i + first_component))))
2970 continue;
2971
2972 srcs[header_regs + i + first_component] = offset(value, bld, i);
2973 }
2974
2975 unsigned mlen = header_regs + num_components + first_component;
2976 fs_reg payload =
2977 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2978 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2979
2980 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2981 inst->offset = imm_offset;
2982 inst->mlen = mlen;
2983 break;
2984 }
2985
2986 default:
2987 nir_emit_intrinsic(bld, instr);
2988 break;
2989 }
2990 }
2991
2992 void
2993 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2994 nir_intrinsic_instr *instr)
2995 {
2996 assert(stage == MESA_SHADER_TESS_EVAL);
2997 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2998
2999 fs_reg dest;
3000 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3001 dest = get_nir_dest(instr->dest);
3002
3003 switch (instr->intrinsic) {
3004 case nir_intrinsic_load_primitive_id:
3005 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
3006 break;
3007 case nir_intrinsic_load_tess_coord:
3008 /* gl_TessCoord is part of the payload in g1-3 */
3009 for (unsigned i = 0; i < 3; i++) {
3010 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
3011 }
3012 break;
3013
3014 case nir_intrinsic_load_input:
3015 case nir_intrinsic_load_per_vertex_input: {
3016 assert(nir_dest_bit_size(instr->dest) == 32);
3017 fs_reg indirect_offset = get_indirect_offset(instr);
3018 unsigned imm_offset = instr->const_index[0];
3019 unsigned first_component = nir_intrinsic_component(instr);
3020
3021 fs_inst *inst;
3022 if (indirect_offset.file == BAD_FILE) {
3023 /* Arbitrarily only push up to 32 vec4 slots worth of data,
3024 * which is 16 registers (since each holds 2 vec4 slots).
3025 */
3026 const unsigned max_push_slots = 32;
3027 if (imm_offset < max_push_slots) {
3028 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
3029 for (int i = 0; i < instr->num_components; i++) {
3030 unsigned comp = 4 * (imm_offset % 2) + i + first_component;
3031 bld.MOV(offset(dest, bld, i), component(src, comp));
3032 }
3033
3034 tes_prog_data->base.urb_read_length =
3035 MAX2(tes_prog_data->base.urb_read_length,
3036 (imm_offset / 2) + 1);
3037 } else {
3038 /* Replicate the patch handle to all enabled channels */
3039 const fs_reg srcs[] = {
3040 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
3041 };
3042 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
3043 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
3044
3045 if (first_component != 0) {
3046 unsigned read_components =
3047 instr->num_components + first_component;
3048 fs_reg tmp = bld.vgrf(dest.type, read_components);
3049 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
3050 patch_handle);
3051 inst->size_written = read_components * REG_SIZE;
3052 for (unsigned i = 0; i < instr->num_components; i++) {
3053 bld.MOV(offset(dest, bld, i),
3054 offset(tmp, bld, i + first_component));
3055 }
3056 } else {
3057 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
3058 patch_handle);
3059 inst->size_written = instr->num_components * REG_SIZE;
3060 }
3061 inst->mlen = 1;
3062 inst->offset = imm_offset;
3063 }
3064 } else {
3065 /* Indirect indexing - use per-slot offsets as well. */
3066
3067 /* We can only read two double components with each URB read, so
3068 * we send two read messages in that case, each one loading up to
3069 * two double components.
3070 */
3071 unsigned num_components = instr->num_components;
3072 const fs_reg srcs[] = {
3073 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
3074 indirect_offset
3075 };
3076 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3077 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
3078
3079 if (first_component != 0) {
3080 unsigned read_components =
3081 num_components + first_component;
3082 fs_reg tmp = bld.vgrf(dest.type, read_components);
3083 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
3084 payload);
3085 for (unsigned i = 0; i < num_components; i++) {
3086 bld.MOV(offset(dest, bld, i),
3087 offset(tmp, bld, i + first_component));
3088 }
3089 } else {
3090 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
3091 payload);
3092 }
3093 inst->mlen = 2;
3094 inst->offset = imm_offset;
3095 inst->size_written = (num_components + first_component) *
3096 inst->dst.component_size(inst->exec_size);
3097 }
3098 break;
3099 }
3100 default:
3101 nir_emit_intrinsic(bld, instr);
3102 break;
3103 }
3104 }
3105
3106 void
3107 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3108 nir_intrinsic_instr *instr)
3109 {
3110 assert(stage == MESA_SHADER_GEOMETRY);
3111 fs_reg indirect_offset;
3112
3113 fs_reg dest;
3114 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3115 dest = get_nir_dest(instr->dest);
3116
3117 switch (instr->intrinsic) {
3118 case nir_intrinsic_load_primitive_id:
3119 assert(stage == MESA_SHADER_GEOMETRY);
3120 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3121 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3122 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3123 break;
3124
3125 case nir_intrinsic_load_input:
3126 unreachable("load_input intrinsics are invalid for the GS stage");
3127
3128 case nir_intrinsic_load_per_vertex_input:
3129 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3130 instr->src[1], instr->num_components,
3131 nir_intrinsic_component(instr));
3132 break;
3133
3134 case nir_intrinsic_emit_vertex_with_counter:
3135 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3136 break;
3137
3138 case nir_intrinsic_end_primitive_with_counter:
3139 emit_gs_end_primitive(instr->src[0]);
3140 break;
3141
3142 case nir_intrinsic_set_vertex_count:
3143 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3144 break;
3145
3146 case nir_intrinsic_load_invocation_id: {
3147 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3148 assert(val.file != BAD_FILE);
3149 dest.type = val.type;
3150 bld.MOV(dest, val);
3151 break;
3152 }
3153
3154 default:
3155 nir_emit_intrinsic(bld, instr);
3156 break;
3157 }
3158 }
3159
3160 /**
3161 * Fetch the current render target layer index.
3162 */
3163 static fs_reg
3164 fetch_render_target_array_index(const fs_builder &bld)
3165 {
3166 if (bld.shader->devinfo->gen >= 12) {
3167 /* The render target array index is provided in the thread payload as
3168 * bits 26:16 of r1.1.
3169 */
3170 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3171 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 1, 3),
3172 brw_imm_uw(0x7ff));
3173 return idx;
3174 } else if (bld.shader->devinfo->gen >= 6) {
3175 /* The render target array index is provided in the thread payload as
3176 * bits 26:16 of r0.0.
3177 */
3178 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3179 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3180 brw_imm_uw(0x7ff));
3181 return idx;
3182 } else {
3183 /* Pre-SNB we only ever render into the first layer of the framebuffer
3184 * since layered rendering is not implemented.
3185 */
3186 return brw_imm_ud(0);
3187 }
3188 }
3189
3190 /**
3191 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3192 * framebuffer at the current fragment coordinates and sample index.
3193 */
3194 fs_inst *
3195 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3196 unsigned target)
3197 {
3198 const struct gen_device_info *devinfo = bld.shader->devinfo;
3199
3200 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3201 const brw_wm_prog_key *wm_key =
3202 reinterpret_cast<const brw_wm_prog_key *>(key);
3203 assert(!wm_key->coherent_fb_fetch);
3204 const struct brw_wm_prog_data *wm_prog_data =
3205 brw_wm_prog_data(stage_prog_data);
3206
3207 /* Calculate the surface index relative to the start of the texture binding
3208 * table block, since that's what the texturing messages expect.
3209 */
3210 const unsigned surface = target +
3211 wm_prog_data->binding_table.render_target_read_start -
3212 wm_prog_data->base.binding_table.texture_start;
3213
3214 /* Calculate the fragment coordinates. */
3215 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3216 bld.MOV(offset(coords, bld, 0), pixel_x);
3217 bld.MOV(offset(coords, bld, 1), pixel_y);
3218 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3219
3220 /* Calculate the sample index and MCS payload when multisampling. Luckily
3221 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3222 * shouldn't be necessary to recompile based on whether the framebuffer is
3223 * CMS or UMS.
3224 */
3225 if (wm_key->multisample_fbo &&
3226 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3227 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3228
3229 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3230 const fs_reg mcs = wm_key->multisample_fbo ?
3231 emit_mcs_fetch(coords, 3, brw_imm_ud(surface), fs_reg()) : fs_reg();
3232
3233 /* Use either a normal or a CMS texel fetch message depending on whether
3234 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3235 * message just in case the framebuffer uses 16x multisampling, it should
3236 * be equivalent to the normal CMS fetch for lower multisampling modes.
3237 */
3238 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3239 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3240 SHADER_OPCODE_TXF_CMS_LOGICAL;
3241
3242 /* Emit the instruction. */
3243 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3244 srcs[TEX_LOGICAL_SRC_COORDINATE] = coords;
3245 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0);
3246 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample;
3247 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
3248 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3249 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
3250 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
3251 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0);
3252
3253 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3254 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3255
3256 return inst;
3257 }
3258
3259 /**
3260 * Actual coherent framebuffer read implemented using the native render target
3261 * read message. Requires SKL+.
3262 */
3263 static fs_inst *
3264 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3265 {
3266 assert(bld.shader->devinfo->gen >= 9);
3267 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3268 inst->target = target;
3269 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3270
3271 return inst;
3272 }
3273
3274 static fs_reg
3275 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3276 {
3277 if (n && regs[0].file != BAD_FILE) {
3278 return regs[0];
3279
3280 } else {
3281 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3282
3283 for (unsigned i = 0; i < n; i++)
3284 regs[i] = tmp;
3285
3286 return tmp;
3287 }
3288 }
3289
3290 static fs_reg
3291 alloc_frag_output(fs_visitor *v, unsigned location)
3292 {
3293 assert(v->stage == MESA_SHADER_FRAGMENT);
3294 const brw_wm_prog_key *const key =
3295 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3296 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3297 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3298
3299 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3300 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3301
3302 else if (l == FRAG_RESULT_COLOR)
3303 return alloc_temporary(v->bld, 4, v->outputs,
3304 MAX2(key->nr_color_regions, 1));
3305
3306 else if (l == FRAG_RESULT_DEPTH)
3307 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3308
3309 else if (l == FRAG_RESULT_STENCIL)
3310 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3311
3312 else if (l == FRAG_RESULT_SAMPLE_MASK)
3313 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3314
3315 else if (l >= FRAG_RESULT_DATA0 &&
3316 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3317 return alloc_temporary(v->bld, 4,
3318 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3319
3320 else
3321 unreachable("Invalid location");
3322 }
3323
3324 void
3325 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3326 nir_intrinsic_instr *instr)
3327 {
3328 assert(stage == MESA_SHADER_FRAGMENT);
3329
3330 fs_reg dest;
3331 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3332 dest = get_nir_dest(instr->dest);
3333
3334 switch (instr->intrinsic) {
3335 case nir_intrinsic_load_front_face:
3336 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3337 *emit_frontfacing_interpolation());
3338 break;
3339
3340 case nir_intrinsic_load_sample_pos: {
3341 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3342 assert(sample_pos.file != BAD_FILE);
3343 dest.type = sample_pos.type;
3344 bld.MOV(dest, sample_pos);
3345 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3346 break;
3347 }
3348
3349 case nir_intrinsic_load_layer_id:
3350 dest.type = BRW_REGISTER_TYPE_UD;
3351 bld.MOV(dest, fetch_render_target_array_index(bld));
3352 break;
3353
3354 case nir_intrinsic_is_helper_invocation: {
3355 /* Unlike the regular gl_HelperInvocation, that is defined at dispatch,
3356 * the helperInvocationEXT() (aka SpvOpIsHelperInvocationEXT) takes into
3357 * consideration demoted invocations. That information is stored in
3358 * f0.1.
3359 */
3360 dest.type = BRW_REGISTER_TYPE_UD;
3361
3362 bld.MOV(dest, brw_imm_ud(0));
3363
3364 fs_inst *mov = bld.MOV(dest, brw_imm_ud(~0));
3365 mov->predicate = BRW_PREDICATE_NORMAL;
3366 mov->predicate_inverse = true;
3367 mov->flag_subreg = sample_mask_flag_subreg(this);
3368 break;
3369 }
3370
3371 case nir_intrinsic_load_helper_invocation:
3372 case nir_intrinsic_load_sample_mask_in:
3373 case nir_intrinsic_load_sample_id: {
3374 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3375 fs_reg val = nir_system_values[sv];
3376 assert(val.file != BAD_FILE);
3377 dest.type = val.type;
3378 bld.MOV(dest, val);
3379 break;
3380 }
3381
3382 case nir_intrinsic_store_output: {
3383 const fs_reg src = get_nir_src(instr->src[0]);
3384 const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3385 const unsigned location = nir_intrinsic_base(instr) +
3386 SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3387 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3388 src.type);
3389
3390 for (unsigned j = 0; j < instr->num_components; j++)
3391 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3392 offset(src, bld, j));
3393
3394 break;
3395 }
3396
3397 case nir_intrinsic_load_output: {
3398 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3399 BRW_NIR_FRAG_OUTPUT_LOCATION);
3400 assert(l >= FRAG_RESULT_DATA0);
3401 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3402 const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3403 const fs_reg tmp = bld.vgrf(dest.type, 4);
3404
3405 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3406 emit_coherent_fb_read(bld, tmp, target);
3407 else
3408 emit_non_coherent_fb_read(bld, tmp, target);
3409
3410 for (unsigned j = 0; j < instr->num_components; j++) {
3411 bld.MOV(offset(dest, bld, j),
3412 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3413 }
3414
3415 break;
3416 }
3417
3418 case nir_intrinsic_demote:
3419 case nir_intrinsic_discard:
3420 case nir_intrinsic_demote_if:
3421 case nir_intrinsic_discard_if: {
3422 /* We track our discarded pixels in f0.1/f1.0. By predicating on it, we
3423 * can update just the flag bits that aren't yet discarded. If there's
3424 * no condition, we emit a CMP of g0 != g0, so all currently executing
3425 * channels will get turned off.
3426 */
3427 fs_inst *cmp = NULL;
3428 if (instr->intrinsic == nir_intrinsic_demote_if ||
3429 instr->intrinsic == nir_intrinsic_discard_if) {
3430 nir_alu_instr *alu = nir_src_as_alu_instr(instr->src[0]);
3431
3432 if (alu != NULL &&
3433 alu->op != nir_op_bcsel &&
3434 (devinfo->gen > 5 ||
3435 (alu->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) != BRW_NIR_BOOLEAN_NEEDS_RESOLVE ||
3436 alu->op == nir_op_fne32 || alu->op == nir_op_feq32 ||
3437 alu->op == nir_op_flt32 || alu->op == nir_op_fge32 ||
3438 alu->op == nir_op_ine32 || alu->op == nir_op_ieq32 ||
3439 alu->op == nir_op_ilt32 || alu->op == nir_op_ige32 ||
3440 alu->op == nir_op_ult32 || alu->op == nir_op_uge32)) {
3441 /* Re-emit the instruction that generated the Boolean value, but
3442 * do not store it. Since this instruction will be conditional,
3443 * other instructions that want to use the real Boolean value may
3444 * get garbage. This was a problem for piglit's fs-discard-exit-2
3445 * test.
3446 *
3447 * Ideally we'd detect that the instruction cannot have a
3448 * conditional modifier before emitting the instructions. Alas,
3449 * that is nigh impossible. Instead, we're going to assume the
3450 * instruction (or last instruction) generated can have a
3451 * conditional modifier. If it cannot, fallback to the old-style
3452 * compare, and hope dead code elimination will clean up the
3453 * extra instructions generated.
3454 */
3455 nir_emit_alu(bld, alu, false);
3456
3457 cmp = (fs_inst *) instructions.get_tail();
3458 if (cmp->conditional_mod == BRW_CONDITIONAL_NONE) {
3459 if (cmp->can_do_cmod())
3460 cmp->conditional_mod = BRW_CONDITIONAL_Z;
3461 else
3462 cmp = NULL;
3463 } else {
3464 /* The old sequence that would have been generated is,
3465 * basically, bool_result == false. This is equivalent to
3466 * !bool_result, so negate the old modifier.
3467 */
3468 cmp->conditional_mod = brw_negate_cmod(cmp->conditional_mod);
3469 }
3470 }
3471
3472 if (cmp == NULL) {
3473 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3474 brw_imm_d(0), BRW_CONDITIONAL_Z);
3475 }
3476 } else {
3477 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3478 BRW_REGISTER_TYPE_UW));
3479 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3480 }
3481
3482 cmp->predicate = BRW_PREDICATE_NORMAL;
3483 cmp->flag_subreg = sample_mask_flag_subreg(this);
3484
3485 if (devinfo->gen >= 6) {
3486 /* Due to the way we implement discard, the jump will only happen
3487 * when the whole quad is discarded. So we can do this even for
3488 * demote as it won't break its uniformity promises.
3489 */
3490 emit_discard_jump();
3491 }
3492
3493 if (devinfo->gen < 7)
3494 limit_dispatch_width(
3495 16, "Fragment discard/demote not implemented in SIMD32 mode.\n");
3496 break;
3497 }
3498
3499 case nir_intrinsic_load_input: {
3500 /* load_input is only used for flat inputs */
3501 assert(nir_dest_bit_size(instr->dest) == 32);
3502 unsigned base = nir_intrinsic_base(instr);
3503 unsigned comp = nir_intrinsic_component(instr);
3504 unsigned num_components = instr->num_components;
3505
3506 /* Special case fields in the VUE header */
3507 if (base == VARYING_SLOT_LAYER)
3508 comp = 1;
3509 else if (base == VARYING_SLOT_VIEWPORT)
3510 comp = 2;
3511
3512 for (unsigned int i = 0; i < num_components; i++) {
3513 bld.MOV(offset(dest, bld, i),
3514 retype(component(interp_reg(base, comp + i), 3), dest.type));
3515 }
3516 break;
3517 }
3518
3519 case nir_intrinsic_load_fs_input_interp_deltas: {
3520 assert(stage == MESA_SHADER_FRAGMENT);
3521 assert(nir_src_as_uint(instr->src[0]) == 0);
3522 fs_reg interp = interp_reg(nir_intrinsic_base(instr),
3523 nir_intrinsic_component(instr));
3524 dest.type = BRW_REGISTER_TYPE_F;
3525 bld.MOV(offset(dest, bld, 0), component(interp, 3));
3526 bld.MOV(offset(dest, bld, 1), component(interp, 1));
3527 bld.MOV(offset(dest, bld, 2), component(interp, 0));
3528 break;
3529 }
3530
3531 case nir_intrinsic_load_barycentric_pixel:
3532 case nir_intrinsic_load_barycentric_centroid:
3533 case nir_intrinsic_load_barycentric_sample: {
3534 /* Use the delta_xy values computed from the payload */
3535 const glsl_interp_mode interp_mode =
3536 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3537 enum brw_barycentric_mode bary =
3538 brw_barycentric_mode(interp_mode, instr->intrinsic);
3539 const fs_reg srcs[] = { offset(this->delta_xy[bary], bld, 0),
3540 offset(this->delta_xy[bary], bld, 1) };
3541 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3542 break;
3543 }
3544
3545 case nir_intrinsic_load_barycentric_at_sample: {
3546 const glsl_interp_mode interpolation =
3547 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3548
3549 if (nir_src_is_const(instr->src[0])) {
3550 unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3551
3552 emit_pixel_interpolater_send(bld,
3553 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3554 dest,
3555 fs_reg(), /* src */
3556 brw_imm_ud(msg_data),
3557 interpolation);
3558 } else {
3559 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3560 BRW_REGISTER_TYPE_UD);
3561
3562 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3563 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3564 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3565 bld.exec_all().group(1, 0)
3566 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3567 emit_pixel_interpolater_send(bld,
3568 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3569 dest,
3570 fs_reg(), /* src */
3571 component(msg_data, 0),
3572 interpolation);
3573 } else {
3574 /* Make a loop that sends a message to the pixel interpolater
3575 * for the sample number in each live channel. If there are
3576 * multiple channels with the same sample number then these
3577 * will be handled simultaneously with a single interation of
3578 * the loop.
3579 */
3580 bld.emit(BRW_OPCODE_DO);
3581
3582 /* Get the next live sample number into sample_id_reg */
3583 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3584
3585 /* Set the flag register so that we can perform the send
3586 * message on all channels that have the same sample number
3587 */
3588 bld.CMP(bld.null_reg_ud(),
3589 sample_src, sample_id,
3590 BRW_CONDITIONAL_EQ);
3591 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3592 bld.exec_all().group(1, 0)
3593 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3594 fs_inst *inst =
3595 emit_pixel_interpolater_send(bld,
3596 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3597 dest,
3598 fs_reg(), /* src */
3599 component(msg_data, 0),
3600 interpolation);
3601 set_predicate(BRW_PREDICATE_NORMAL, inst);
3602
3603 /* Continue the loop if there are any live channels left */
3604 set_predicate_inv(BRW_PREDICATE_NORMAL,
3605 true, /* inverse */
3606 bld.emit(BRW_OPCODE_WHILE));
3607 }
3608 }
3609 break;
3610 }
3611
3612 case nir_intrinsic_load_barycentric_at_offset: {
3613 const glsl_interp_mode interpolation =
3614 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3615
3616 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3617
3618 if (const_offset) {
3619 assert(nir_src_bit_size(instr->src[0]) == 32);
3620 unsigned off_x = MIN2((int)(const_offset[0].f32 * 16), 7) & 0xf;
3621 unsigned off_y = MIN2((int)(const_offset[1].f32 * 16), 7) & 0xf;
3622
3623 emit_pixel_interpolater_send(bld,
3624 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3625 dest,
3626 fs_reg(), /* src */
3627 brw_imm_ud(off_x | (off_y << 4)),
3628 interpolation);
3629 } else {
3630 fs_reg src = vgrf(glsl_type::ivec2_type);
3631 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3632 BRW_REGISTER_TYPE_F);
3633 for (int i = 0; i < 2; i++) {
3634 fs_reg temp = vgrf(glsl_type::float_type);
3635 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3636 fs_reg itemp = vgrf(glsl_type::int_type);
3637 /* float to int */
3638 bld.MOV(itemp, temp);
3639
3640 /* Clamp the upper end of the range to +7/16.
3641 * ARB_gpu_shader5 requires that we support a maximum offset
3642 * of +0.5, which isn't representable in a S0.4 value -- if
3643 * we didn't clamp it, we'd end up with -8/16, which is the
3644 * opposite of what the shader author wanted.
3645 *
3646 * This is legal due to ARB_gpu_shader5's quantization
3647 * rules:
3648 *
3649 * "Not all values of <offset> may be supported; x and y
3650 * offsets may be rounded to fixed-point values with the
3651 * number of fraction bits given by the
3652 * implementation-dependent constant
3653 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3654 */
3655 set_condmod(BRW_CONDITIONAL_L,
3656 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3657 }
3658
3659 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3660 emit_pixel_interpolater_send(bld,
3661 opcode,
3662 dest,
3663 src,
3664 brw_imm_ud(0u),
3665 interpolation);
3666 }
3667 break;
3668 }
3669
3670 case nir_intrinsic_load_frag_coord:
3671 emit_fragcoord_interpolation(dest);
3672 break;
3673
3674 case nir_intrinsic_load_interpolated_input: {
3675 assert(instr->src[0].ssa &&
3676 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3677 nir_intrinsic_instr *bary_intrinsic =
3678 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3679 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3680 enum glsl_interp_mode interp_mode =
3681 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3682 fs_reg dst_xy;
3683
3684 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3685 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3686 /* Use the result of the PI message. */
3687 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3688 } else {
3689 /* Use the delta_xy values computed from the payload */
3690 enum brw_barycentric_mode bary =
3691 brw_barycentric_mode(interp_mode, bary_intrin);
3692 dst_xy = this->delta_xy[bary];
3693 }
3694
3695 for (unsigned int i = 0; i < instr->num_components; i++) {
3696 fs_reg interp =
3697 component(interp_reg(nir_intrinsic_base(instr),
3698 nir_intrinsic_component(instr) + i), 0);
3699 interp.type = BRW_REGISTER_TYPE_F;
3700 dest.type = BRW_REGISTER_TYPE_F;
3701
3702 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3703 fs_reg tmp = vgrf(glsl_type::float_type);
3704 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3705 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3706 } else {
3707 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3708 }
3709 }
3710 break;
3711 }
3712
3713 default:
3714 nir_emit_intrinsic(bld, instr);
3715 break;
3716 }
3717 }
3718
3719 void
3720 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3721 nir_intrinsic_instr *instr)
3722 {
3723 assert(stage == MESA_SHADER_COMPUTE);
3724 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3725
3726 fs_reg dest;
3727 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3728 dest = get_nir_dest(instr->dest);
3729
3730 switch (instr->intrinsic) {
3731 case nir_intrinsic_control_barrier:
3732 /* The whole workgroup fits in a single HW thread, so all the
3733 * invocations are already executed lock-step. Instead of an actual
3734 * barrier just emit a scheduling fence, that will generate no code.
3735 */
3736 if (!nir->info.cs.local_size_variable &&
3737 workgroup_size() <= dispatch_width) {
3738 bld.exec_all().group(1, 0).emit(FS_OPCODE_SCHEDULING_FENCE);
3739 break;
3740 }
3741
3742 emit_barrier();
3743 cs_prog_data->uses_barrier = true;
3744 break;
3745
3746 case nir_intrinsic_load_subgroup_id:
3747 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3748 break;
3749
3750 case nir_intrinsic_load_local_invocation_id:
3751 case nir_intrinsic_load_work_group_id: {
3752 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3753 fs_reg val = nir_system_values[sv];
3754 assert(val.file != BAD_FILE);
3755 dest.type = val.type;
3756 for (unsigned i = 0; i < 3; i++)
3757 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3758 break;
3759 }
3760
3761 case nir_intrinsic_load_num_work_groups: {
3762 const unsigned surface =
3763 cs_prog_data->binding_table.work_groups_start;
3764
3765 cs_prog_data->uses_num_work_groups = true;
3766
3767 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3768 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3769 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3770 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1); /* num components */
3771
3772 /* Read the 3 GLuint components of gl_NumWorkGroups */
3773 for (unsigned i = 0; i < 3; i++) {
3774 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(i << 2);
3775 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3776 offset(dest, bld, i), srcs, SURFACE_LOGICAL_NUM_SRCS);
3777 }
3778 break;
3779 }
3780
3781 case nir_intrinsic_shared_atomic_add:
3782 case nir_intrinsic_shared_atomic_imin:
3783 case nir_intrinsic_shared_atomic_umin:
3784 case nir_intrinsic_shared_atomic_imax:
3785 case nir_intrinsic_shared_atomic_umax:
3786 case nir_intrinsic_shared_atomic_and:
3787 case nir_intrinsic_shared_atomic_or:
3788 case nir_intrinsic_shared_atomic_xor:
3789 case nir_intrinsic_shared_atomic_exchange:
3790 case nir_intrinsic_shared_atomic_comp_swap:
3791 nir_emit_shared_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
3792 break;
3793 case nir_intrinsic_shared_atomic_fmin:
3794 case nir_intrinsic_shared_atomic_fmax:
3795 case nir_intrinsic_shared_atomic_fcomp_swap:
3796 nir_emit_shared_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
3797 break;
3798
3799 case nir_intrinsic_load_shared: {
3800 assert(devinfo->gen >= 7);
3801 assert(stage == MESA_SHADER_COMPUTE);
3802
3803 const unsigned bit_size = nir_dest_bit_size(instr->dest);
3804 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3805 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3806 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
3807 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3808
3809 /* Make dest unsigned because that's what the temporary will be */
3810 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3811
3812 /* Read the vector */
3813 assert(nir_dest_bit_size(instr->dest) <= 32);
3814 assert(nir_intrinsic_align(instr) > 0);
3815 if (nir_dest_bit_size(instr->dest) == 32 &&
3816 nir_intrinsic_align(instr) >= 4) {
3817 assert(nir_dest_num_components(instr->dest) <= 4);
3818 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3819 fs_inst *inst =
3820 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3821 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3822 inst->size_written = instr->num_components * dispatch_width * 4;
3823 } else {
3824 assert(nir_dest_num_components(instr->dest) == 1);
3825 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3826
3827 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
3828 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
3829 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
3830 bld.MOV(dest, subscript(read_result, dest.type, 0));
3831 }
3832 break;
3833 }
3834
3835 case nir_intrinsic_store_shared: {
3836 assert(devinfo->gen >= 7);
3837 assert(stage == MESA_SHADER_COMPUTE);
3838
3839 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
3840 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3841 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3842 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3843 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3844
3845 fs_reg data = get_nir_src(instr->src[0]);
3846 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3847
3848 assert(nir_src_bit_size(instr->src[0]) <= 32);
3849 assert(nir_intrinsic_write_mask(instr) ==
3850 (1u << instr->num_components) - 1);
3851 assert(nir_intrinsic_align(instr) > 0);
3852 if (nir_src_bit_size(instr->src[0]) == 32 &&
3853 nir_intrinsic_align(instr) >= 4) {
3854 assert(nir_src_num_components(instr->src[0]) <= 4);
3855 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3856 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3857 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3858 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3859 } else {
3860 assert(nir_src_num_components(instr->src[0]) == 1);
3861 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3862
3863 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3864 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
3865
3866 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
3867 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3868 }
3869 break;
3870 }
3871
3872 case nir_intrinsic_load_local_group_size: {
3873 assert(compiler->lower_variable_group_size);
3874 assert(nir->info.cs.local_size_variable);
3875 for (unsigned i = 0; i < 3; i++) {
3876 bld.MOV(retype(offset(dest, bld, i), BRW_REGISTER_TYPE_UD),
3877 group_size[i]);
3878 }
3879 break;
3880 }
3881
3882 case nir_intrinsic_load_simd_width_intel: {
3883 bld.MOV(dest, brw_imm_ud(cs_prog_data->simd_size));
3884 break;
3885 };
3886
3887 default:
3888 nir_emit_intrinsic(bld, instr);
3889 break;
3890 }
3891 }
3892
3893 static fs_reg
3894 brw_nir_reduction_op_identity(const fs_builder &bld,
3895 nir_op op, brw_reg_type type)
3896 {
3897 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3898 switch (type_sz(type)) {
3899 case 1:
3900 if (type == BRW_REGISTER_TYPE_UB) {
3901 return brw_imm_uw(value.u8);
3902 } else {
3903 assert(type == BRW_REGISTER_TYPE_B);
3904 return brw_imm_w(value.i8);
3905 }
3906 case 2:
3907 return retype(brw_imm_uw(value.u16), type);
3908 case 4:
3909 return retype(brw_imm_ud(value.u32), type);
3910 case 8:
3911 if (type == BRW_REGISTER_TYPE_DF)
3912 return setup_imm_df(bld, value.f64);
3913 else
3914 return retype(brw_imm_u64(value.u64), type);
3915 default:
3916 unreachable("Invalid type size");
3917 }
3918 }
3919
3920 static opcode
3921 brw_op_for_nir_reduction_op(nir_op op)
3922 {
3923 switch (op) {
3924 case nir_op_iadd: return BRW_OPCODE_ADD;
3925 case nir_op_fadd: return BRW_OPCODE_ADD;
3926 case nir_op_imul: return BRW_OPCODE_MUL;
3927 case nir_op_fmul: return BRW_OPCODE_MUL;
3928 case nir_op_imin: return BRW_OPCODE_SEL;
3929 case nir_op_umin: return BRW_OPCODE_SEL;
3930 case nir_op_fmin: return BRW_OPCODE_SEL;
3931 case nir_op_imax: return BRW_OPCODE_SEL;
3932 case nir_op_umax: return BRW_OPCODE_SEL;
3933 case nir_op_fmax: return BRW_OPCODE_SEL;
3934 case nir_op_iand: return BRW_OPCODE_AND;
3935 case nir_op_ior: return BRW_OPCODE_OR;
3936 case nir_op_ixor: return BRW_OPCODE_XOR;
3937 default:
3938 unreachable("Invalid reduction operation");
3939 }
3940 }
3941
3942 static brw_conditional_mod
3943 brw_cond_mod_for_nir_reduction_op(nir_op op)
3944 {
3945 switch (op) {
3946 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3947 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3948 case nir_op_imul: return BRW_CONDITIONAL_NONE;
3949 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3950 case nir_op_imin: return BRW_CONDITIONAL_L;
3951 case nir_op_umin: return BRW_CONDITIONAL_L;
3952 case nir_op_fmin: return BRW_CONDITIONAL_L;
3953 case nir_op_imax: return BRW_CONDITIONAL_GE;
3954 case nir_op_umax: return BRW_CONDITIONAL_GE;
3955 case nir_op_fmax: return BRW_CONDITIONAL_GE;
3956 case nir_op_iand: return BRW_CONDITIONAL_NONE;
3957 case nir_op_ior: return BRW_CONDITIONAL_NONE;
3958 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3959 default:
3960 unreachable("Invalid reduction operation");
3961 }
3962 }
3963
3964 fs_reg
3965 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3966 nir_intrinsic_instr *instr)
3967 {
3968 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3969 fs_reg surf_index = image;
3970
3971 if (stage_prog_data->binding_table.image_start > 0) {
3972 if (image.file == BRW_IMMEDIATE_VALUE) {
3973 surf_index =
3974 brw_imm_ud(image.d + stage_prog_data->binding_table.image_start);
3975 } else {
3976 surf_index = vgrf(glsl_type::uint_type);
3977 bld.ADD(surf_index, image,
3978 brw_imm_d(stage_prog_data->binding_table.image_start));
3979 }
3980 }
3981
3982 return bld.emit_uniformize(surf_index);
3983 }
3984
3985 fs_reg
3986 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
3987 nir_intrinsic_instr *instr)
3988 {
3989 /* SSBO stores are weird in that their index is in src[1] */
3990 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
3991
3992 fs_reg surf_index;
3993 if (nir_src_is_const(instr->src[src])) {
3994 unsigned index = stage_prog_data->binding_table.ssbo_start +
3995 nir_src_as_uint(instr->src[src]);
3996 surf_index = brw_imm_ud(index);
3997 } else {
3998 surf_index = vgrf(glsl_type::uint_type);
3999 bld.ADD(surf_index, get_nir_src(instr->src[src]),
4000 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4001 }
4002
4003 return bld.emit_uniformize(surf_index);
4004 }
4005
4006 /**
4007 * The offsets we get from NIR act as if each SIMD channel has it's own blob
4008 * of contiguous space. However, if we actually place each SIMD channel in
4009 * it's own space, we end up with terrible cache performance because each SIMD
4010 * channel accesses a different cache line even when they're all accessing the
4011 * same byte offset. To deal with this problem, we swizzle the address using
4012 * a simple algorithm which ensures that any time a SIMD message reads or
4013 * writes the same address, it's all in the same cache line. We have to keep
4014 * the bottom two bits fixed so that we can read/write up to a dword at a time
4015 * and the individual element is contiguous. We do this by splitting the
4016 * address as follows:
4017 *
4018 * 31 4-6 2 0
4019 * +-------------------------------+------------+----------+
4020 * | Hi address bits | chan index | addr low |
4021 * +-------------------------------+------------+----------+
4022 *
4023 * In other words, the bottom two address bits stay, and the top 30 get
4024 * shifted up so that we can stick the SIMD channel index in the middle. This
4025 * way, we can access 8, 16, or 32-bit elements and, when accessing a 32-bit
4026 * at the same logical offset, the scratch read/write instruction acts on
4027 * continuous elements and we get good cache locality.
4028 */
4029 fs_reg
4030 fs_visitor::swizzle_nir_scratch_addr(const brw::fs_builder &bld,
4031 const fs_reg &nir_addr,
4032 bool in_dwords)
4033 {
4034 const fs_reg &chan_index =
4035 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
4036 const unsigned chan_index_bits = ffs(dispatch_width) - 1;
4037
4038 fs_reg addr = bld.vgrf(BRW_REGISTER_TYPE_UD);
4039 if (in_dwords) {
4040 /* In this case, we know the address is aligned to a DWORD and we want
4041 * the final address in DWORDs.
4042 */
4043 bld.SHL(addr, nir_addr, brw_imm_ud(chan_index_bits - 2));
4044 bld.OR(addr, addr, chan_index);
4045 } else {
4046 /* This case substantially more annoying because we have to pay
4047 * attention to those pesky two bottom bits.
4048 */
4049 fs_reg addr_hi = bld.vgrf(BRW_REGISTER_TYPE_UD);
4050 bld.AND(addr_hi, nir_addr, brw_imm_ud(~0x3u));
4051 bld.SHL(addr_hi, addr_hi, brw_imm_ud(chan_index_bits));
4052 fs_reg chan_addr = bld.vgrf(BRW_REGISTER_TYPE_UD);
4053 bld.SHL(chan_addr, chan_index, brw_imm_ud(2));
4054 bld.AND(addr, nir_addr, brw_imm_ud(0x3u));
4055 bld.OR(addr, addr, addr_hi);
4056 bld.OR(addr, addr, chan_addr);
4057 }
4058 return addr;
4059 }
4060
4061 void
4062 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
4063 {
4064 fs_reg dest;
4065 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4066 dest = get_nir_dest(instr->dest);
4067
4068 switch (instr->intrinsic) {
4069 case nir_intrinsic_image_load:
4070 case nir_intrinsic_image_store:
4071 case nir_intrinsic_image_atomic_add:
4072 case nir_intrinsic_image_atomic_imin:
4073 case nir_intrinsic_image_atomic_umin:
4074 case nir_intrinsic_image_atomic_imax:
4075 case nir_intrinsic_image_atomic_umax:
4076 case nir_intrinsic_image_atomic_and:
4077 case nir_intrinsic_image_atomic_or:
4078 case nir_intrinsic_image_atomic_xor:
4079 case nir_intrinsic_image_atomic_exchange:
4080 case nir_intrinsic_image_atomic_comp_swap:
4081 case nir_intrinsic_bindless_image_load:
4082 case nir_intrinsic_bindless_image_store:
4083 case nir_intrinsic_bindless_image_atomic_add:
4084 case nir_intrinsic_bindless_image_atomic_imin:
4085 case nir_intrinsic_bindless_image_atomic_umin:
4086 case nir_intrinsic_bindless_image_atomic_imax:
4087 case nir_intrinsic_bindless_image_atomic_umax:
4088 case nir_intrinsic_bindless_image_atomic_and:
4089 case nir_intrinsic_bindless_image_atomic_or:
4090 case nir_intrinsic_bindless_image_atomic_xor:
4091 case nir_intrinsic_bindless_image_atomic_exchange:
4092 case nir_intrinsic_bindless_image_atomic_comp_swap: {
4093 /* Get some metadata from the image intrinsic. */
4094 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
4095
4096 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4097
4098 switch (instr->intrinsic) {
4099 case nir_intrinsic_image_load:
4100 case nir_intrinsic_image_store:
4101 case nir_intrinsic_image_atomic_add:
4102 case nir_intrinsic_image_atomic_imin:
4103 case nir_intrinsic_image_atomic_umin:
4104 case nir_intrinsic_image_atomic_imax:
4105 case nir_intrinsic_image_atomic_umax:
4106 case nir_intrinsic_image_atomic_and:
4107 case nir_intrinsic_image_atomic_or:
4108 case nir_intrinsic_image_atomic_xor:
4109 case nir_intrinsic_image_atomic_exchange:
4110 case nir_intrinsic_image_atomic_comp_swap:
4111 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4112 get_nir_image_intrinsic_image(bld, instr);
4113 break;
4114
4115 default:
4116 /* Bindless */
4117 srcs[SURFACE_LOGICAL_SRC_SURFACE_HANDLE] =
4118 bld.emit_uniformize(get_nir_src(instr->src[0]));
4119 break;
4120 }
4121
4122 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4123 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
4124 brw_imm_ud(nir_image_intrinsic_coord_components(instr));
4125
4126 /* Emit an image load, store or atomic op. */
4127 if (instr->intrinsic == nir_intrinsic_image_load ||
4128 instr->intrinsic == nir_intrinsic_bindless_image_load) {
4129 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4130 fs_inst *inst =
4131 bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
4132 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4133 inst->size_written = instr->num_components * dispatch_width * 4;
4134 } else if (instr->intrinsic == nir_intrinsic_image_store ||
4135 instr->intrinsic == nir_intrinsic_bindless_image_store) {
4136 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4137 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
4138 bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
4139 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4140 } else {
4141 unsigned num_srcs = info->num_srcs;
4142 int op = brw_aop_for_nir_intrinsic(instr);
4143 if (op == BRW_AOP_INC || op == BRW_AOP_DEC) {
4144 assert(num_srcs == 4);
4145 num_srcs = 3;
4146 }
4147
4148 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4149
4150 fs_reg data;
4151 if (num_srcs >= 4)
4152 data = get_nir_src(instr->src[3]);
4153 if (num_srcs >= 5) {
4154 fs_reg tmp = bld.vgrf(data.type, 2);
4155 fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
4156 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4157 data = tmp;
4158 }
4159 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4160
4161 bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
4162 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4163 }
4164 break;
4165 }
4166
4167 case nir_intrinsic_image_size:
4168 case nir_intrinsic_bindless_image_size: {
4169 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
4170 * into will handle the binding table index for us in the geneerator.
4171 * Incidentally, this means that we can handle bindless with exactly the
4172 * same code.
4173 */
4174 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
4175 BRW_REGISTER_TYPE_UD);
4176 image = bld.emit_uniformize(image);
4177
4178 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4179 if (instr->intrinsic == nir_intrinsic_image_size)
4180 srcs[TEX_LOGICAL_SRC_SURFACE] = image;
4181 else
4182 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = image;
4183 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
4184 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
4185 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
4186
4187 /* Since the image size is always uniform, we can just emit a SIMD8
4188 * query instruction and splat the result out.
4189 */
4190 const fs_builder ubld = bld.exec_all().group(8, 0);
4191
4192 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4193 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
4194 tmp, srcs, ARRAY_SIZE(srcs));
4195 inst->size_written = 4 * REG_SIZE;
4196
4197 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
4198 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
4199 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
4200 offset(retype(dest, tmp.type), bld, c),
4201 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
4202 } else {
4203 bld.MOV(offset(retype(dest, tmp.type), bld, c),
4204 component(offset(tmp, ubld, c), 0));
4205 }
4206 }
4207 break;
4208 }
4209
4210 case nir_intrinsic_image_load_raw_intel: {
4211 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4212 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4213 get_nir_image_intrinsic_image(bld, instr);
4214 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4215 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4216 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4217
4218 fs_inst *inst =
4219 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4220 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4221 inst->size_written = instr->num_components * dispatch_width * 4;
4222 break;
4223 }
4224
4225 case nir_intrinsic_image_store_raw_intel: {
4226 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4227 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4228 get_nir_image_intrinsic_image(bld, instr);
4229 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4230 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
4231 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4232 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4233
4234 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4235 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4236 break;
4237 }
4238
4239 case nir_intrinsic_scoped_memory_barrier:
4240 case nir_intrinsic_group_memory_barrier:
4241 case nir_intrinsic_memory_barrier_shared:
4242 case nir_intrinsic_memory_barrier_buffer:
4243 case nir_intrinsic_memory_barrier_image:
4244 case nir_intrinsic_memory_barrier:
4245 case nir_intrinsic_begin_invocation_interlock:
4246 case nir_intrinsic_end_invocation_interlock: {
4247 bool l3_fence, slm_fence;
4248 const enum opcode opcode =
4249 instr->intrinsic == nir_intrinsic_begin_invocation_interlock ?
4250 SHADER_OPCODE_INTERLOCK : SHADER_OPCODE_MEMORY_FENCE;
4251
4252 switch (instr->intrinsic) {
4253 case nir_intrinsic_scoped_memory_barrier: {
4254 nir_variable_mode modes = nir_intrinsic_memory_modes(instr);
4255 l3_fence = modes & (nir_var_shader_out |
4256 nir_var_mem_ssbo |
4257 nir_var_mem_global);
4258 slm_fence = modes & nir_var_mem_shared;
4259 break;
4260 }
4261
4262 case nir_intrinsic_begin_invocation_interlock:
4263 case nir_intrinsic_end_invocation_interlock:
4264 /* For beginInvocationInterlockARB(), we will generate a memory fence
4265 * but with a different opcode so that generator can pick SENDC
4266 * instead of SEND.
4267 *
4268 * For endInvocationInterlockARB(), we need to insert a memory fence which
4269 * stalls in the shader until the memory transactions prior to that
4270 * fence are complete. This ensures that the shader does not end before
4271 * any writes from its critical section have landed. Otherwise, you can
4272 * end up with a case where the next invocation on that pixel properly
4273 * stalls for previous FS invocation on its pixel to complete but
4274 * doesn't actually wait for the dataport memory transactions from that
4275 * thread to land before submitting its own.
4276 *
4277 * Handling them here will allow the logic for IVB render cache (see
4278 * below) to be reused.
4279 */
4280 l3_fence = true;
4281 slm_fence = false;
4282 break;
4283
4284 default:
4285 l3_fence = instr->intrinsic != nir_intrinsic_memory_barrier_shared;
4286 slm_fence = instr->intrinsic == nir_intrinsic_group_memory_barrier ||
4287 instr->intrinsic == nir_intrinsic_memory_barrier ||
4288 instr->intrinsic == nir_intrinsic_memory_barrier_shared;
4289 break;
4290 }
4291
4292 if (stage != MESA_SHADER_COMPUTE)
4293 slm_fence = false;
4294
4295 /* If the workgroup fits in a single HW thread, the messages for SLM are
4296 * processed in-order and the shader itself is already synchronized so
4297 * the memory fence is not necessary.
4298 *
4299 * TODO: Check if applies for many HW threads sharing same Data Port.
4300 */
4301 if (!nir->info.cs.local_size_variable &&
4302 slm_fence && workgroup_size() <= dispatch_width)
4303 slm_fence = false;
4304
4305 /* Prior to Gen11, there's only L3 fence, so emit that instead. */
4306 if (slm_fence && devinfo->gen < 11) {
4307 slm_fence = false;
4308 l3_fence = true;
4309 }
4310
4311 /* IVB does typed surface access through the render cache, so we need
4312 * to flush it too.
4313 */
4314 const bool needs_render_fence =
4315 devinfo->gen == 7 && !devinfo->is_haswell;
4316
4317 /* Be conservative in Gen11+ and always stall in a fence. Since there
4318 * are two different fences, and shader might want to synchronize
4319 * between them.
4320 *
4321 * TODO: Use scope and visibility information for the barriers from NIR
4322 * to make a better decision on whether we need to stall.
4323 */
4324 const bool stall = devinfo->gen >= 11 || needs_render_fence ||
4325 instr->intrinsic == nir_intrinsic_end_invocation_interlock;
4326
4327 const bool commit_enable = stall ||
4328 devinfo->gen >= 10; /* HSD ES # 1404612949 */
4329
4330 unsigned fence_regs_count = 0;
4331 fs_reg fence_regs[2] = {};
4332
4333 const fs_builder ubld = bld.group(8, 0);
4334
4335 if (l3_fence) {
4336 fs_inst *fence =
4337 ubld.emit(opcode,
4338 ubld.vgrf(BRW_REGISTER_TYPE_UD),
4339 brw_vec8_grf(0, 0),
4340 brw_imm_ud(commit_enable),
4341 brw_imm_ud(/* bti */ 0));
4342 fence->sfid = GEN7_SFID_DATAPORT_DATA_CACHE;
4343
4344 fence_regs[fence_regs_count++] = fence->dst;
4345
4346 if (needs_render_fence) {
4347 fs_inst *render_fence =
4348 ubld.emit(opcode,
4349 ubld.vgrf(BRW_REGISTER_TYPE_UD),
4350 brw_vec8_grf(0, 0),
4351 brw_imm_ud(commit_enable),
4352 brw_imm_ud(/* bti */ 0));
4353 render_fence->sfid = GEN6_SFID_DATAPORT_RENDER_CACHE;
4354
4355 fence_regs[fence_regs_count++] = render_fence->dst;
4356 }
4357 }
4358
4359 if (slm_fence) {
4360 assert(opcode == SHADER_OPCODE_MEMORY_FENCE);
4361 fs_inst *fence =
4362 ubld.emit(opcode,
4363 ubld.vgrf(BRW_REGISTER_TYPE_UD),
4364 brw_vec8_grf(0, 0),
4365 brw_imm_ud(commit_enable),
4366 brw_imm_ud(GEN7_BTI_SLM));
4367 fence->sfid = GEN7_SFID_DATAPORT_DATA_CACHE;
4368
4369 fence_regs[fence_regs_count++] = fence->dst;
4370 }
4371
4372 assert(fence_regs_count <= 2);
4373
4374 if (stall || fence_regs_count == 0) {
4375 ubld.exec_all().group(1, 0).emit(
4376 FS_OPCODE_SCHEDULING_FENCE, ubld.null_reg_ud(),
4377 fence_regs, fence_regs_count);
4378 }
4379
4380 break;
4381 }
4382
4383 case nir_intrinsic_memory_barrier_tcs_patch:
4384 break;
4385
4386 case nir_intrinsic_shader_clock: {
4387 /* We cannot do anything if there is an event, so ignore it for now */
4388 const fs_reg shader_clock = get_timestamp(bld);
4389 const fs_reg srcs[] = { component(shader_clock, 0),
4390 component(shader_clock, 1) };
4391 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
4392 break;
4393 }
4394
4395 case nir_intrinsic_image_samples:
4396 /* The driver does not support multi-sampled images. */
4397 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4398 break;
4399
4400 case nir_intrinsic_load_uniform: {
4401 /* Offsets are in bytes but they should always aligned to
4402 * the type size
4403 */
4404 assert(instr->const_index[0] % 4 == 0 ||
4405 instr->const_index[0] % type_sz(dest.type) == 0);
4406
4407 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4408
4409 if (nir_src_is_const(instr->src[0])) {
4410 unsigned load_offset = nir_src_as_uint(instr->src[0]);
4411 assert(load_offset % type_sz(dest.type) == 0);
4412 /* For 16-bit types we add the module of the const_index[0]
4413 * offset to access to not 32-bit aligned element
4414 */
4415 src.offset = load_offset + instr->const_index[0] % 4;
4416
4417 for (unsigned j = 0; j < instr->num_components; j++) {
4418 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4419 }
4420 } else {
4421 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4422 BRW_REGISTER_TYPE_UD);
4423
4424 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4425 * go past the end of the uniform. In order to keep the n'th
4426 * component from running past, we subtract off the size of all but
4427 * one component of the vector.
4428 */
4429 assert(instr->const_index[1] >=
4430 instr->num_components * (int) type_sz(dest.type));
4431 unsigned read_size = instr->const_index[1] -
4432 (instr->num_components - 1) * type_sz(dest.type);
4433
4434 bool supports_64bit_indirects =
4435 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4436
4437 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4438 for (unsigned j = 0; j < instr->num_components; j++) {
4439 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4440 offset(dest, bld, j), offset(src, bld, j),
4441 indirect, brw_imm_ud(read_size));
4442 }
4443 } else {
4444 const unsigned num_mov_indirects =
4445 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4446 /* We read a little bit less per MOV INDIRECT, as they are now
4447 * 32-bits ones instead of 64-bit. Fix read_size then.
4448 */
4449 const unsigned read_size_32bit = read_size -
4450 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4451 for (unsigned j = 0; j < instr->num_components; j++) {
4452 for (unsigned i = 0; i < num_mov_indirects; i++) {
4453 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4454 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4455 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4456 indirect, brw_imm_ud(read_size_32bit));
4457 }
4458 }
4459 }
4460 }
4461 break;
4462 }
4463
4464 case nir_intrinsic_load_ubo: {
4465 fs_reg surf_index;
4466 if (nir_src_is_const(instr->src[0])) {
4467 const unsigned index = stage_prog_data->binding_table.ubo_start +
4468 nir_src_as_uint(instr->src[0]);
4469 surf_index = brw_imm_ud(index);
4470 } else {
4471 /* The block index is not a constant. Evaluate the index expression
4472 * per-channel and add the base UBO index; we have to select a value
4473 * from any live channel.
4474 */
4475 surf_index = vgrf(glsl_type::uint_type);
4476 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4477 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4478 surf_index = bld.emit_uniformize(surf_index);
4479 }
4480
4481 if (!nir_src_is_const(instr->src[1])) {
4482 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4483 BRW_REGISTER_TYPE_UD);
4484
4485 for (int i = 0; i < instr->num_components; i++)
4486 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4487 base_offset, i * type_sz(dest.type));
4488
4489 prog_data->has_ubo_pull = true;
4490 } else {
4491 /* Even if we are loading doubles, a pull constant load will load
4492 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4493 * need to load a full dvec4 we will have to emit 2 loads. This is
4494 * similar to demote_pull_constants(), except that in that case we
4495 * see individual accesses to each component of the vector and then
4496 * we let CSE deal with duplicate loads. Here we see a vector access
4497 * and we have to split it if necessary.
4498 */
4499 const unsigned type_size = type_sz(dest.type);
4500 const unsigned load_offset = nir_src_as_uint(instr->src[1]);
4501
4502 /* See if we've selected this as a push constant candidate */
4503 if (nir_src_is_const(instr->src[0])) {
4504 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
4505 const unsigned offset_256b = load_offset / 32;
4506
4507 fs_reg push_reg;
4508 for (int i = 0; i < 4; i++) {
4509 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4510 if (range->block == ubo_block &&
4511 offset_256b >= range->start &&
4512 offset_256b < range->start + range->length) {
4513
4514 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4515 push_reg.offset = load_offset - 32 * range->start;
4516 break;
4517 }
4518 }
4519
4520 if (push_reg.file != BAD_FILE) {
4521 for (unsigned i = 0; i < instr->num_components; i++) {
4522 bld.MOV(offset(dest, bld, i),
4523 byte_offset(push_reg, i * type_size));
4524 }
4525 break;
4526 }
4527 }
4528
4529 prog_data->has_ubo_pull = true;
4530
4531 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4532 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4533 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4534
4535 for (unsigned c = 0; c < instr->num_components;) {
4536 const unsigned base = load_offset + c * type_size;
4537 /* Number of usable components in the next block-aligned load. */
4538 const unsigned count = MIN2(instr->num_components - c,
4539 (block_sz - base % block_sz) / type_size);
4540
4541 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4542 packed_consts, surf_index,
4543 brw_imm_ud(base & ~(block_sz - 1)));
4544
4545 const fs_reg consts =
4546 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4547 dest.type);
4548
4549 for (unsigned d = 0; d < count; d++)
4550 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4551
4552 c += count;
4553 }
4554 }
4555 break;
4556 }
4557
4558 case nir_intrinsic_load_global: {
4559 assert(devinfo->gen >= 8);
4560
4561 assert(nir_dest_bit_size(instr->dest) <= 32);
4562 assert(nir_intrinsic_align(instr) > 0);
4563 if (nir_dest_bit_size(instr->dest) == 32 &&
4564 nir_intrinsic_align(instr) >= 4) {
4565 assert(nir_dest_num_components(instr->dest) <= 4);
4566 fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
4567 dest,
4568 get_nir_src(instr->src[0]), /* Address */
4569 fs_reg(), /* No source data */
4570 brw_imm_ud(instr->num_components));
4571 inst->size_written = instr->num_components *
4572 inst->dst.component_size(inst->exec_size);
4573 } else {
4574 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4575 assert(nir_dest_num_components(instr->dest) == 1);
4576 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4577 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
4578 tmp,
4579 get_nir_src(instr->src[0]), /* Address */
4580 fs_reg(), /* No source data */
4581 brw_imm_ud(bit_size));
4582 bld.MOV(dest, subscript(tmp, dest.type, 0));
4583 }
4584 break;
4585 }
4586
4587 case nir_intrinsic_store_global:
4588 assert(devinfo->gen >= 8);
4589
4590 assert(nir_src_bit_size(instr->src[0]) <= 32);
4591 assert(nir_intrinsic_write_mask(instr) ==
4592 (1u << instr->num_components) - 1);
4593 assert(nir_intrinsic_align(instr) > 0);
4594 if (nir_src_bit_size(instr->src[0]) == 32 &&
4595 nir_intrinsic_align(instr) >= 4) {
4596 assert(nir_src_num_components(instr->src[0]) <= 4);
4597 bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4598 fs_reg(),
4599 get_nir_src(instr->src[1]), /* Address */
4600 get_nir_src(instr->src[0]), /* Data */
4601 brw_imm_ud(instr->num_components));
4602 } else {
4603 assert(nir_src_num_components(instr->src[0]) == 1);
4604 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4605 brw_reg_type data_type =
4606 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4607 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4608 bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4609 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4610 fs_reg(),
4611 get_nir_src(instr->src[1]), /* Address */
4612 tmp, /* Data */
4613 brw_imm_ud(nir_src_bit_size(instr->src[0])));
4614 }
4615 break;
4616
4617 case nir_intrinsic_global_atomic_add:
4618 case nir_intrinsic_global_atomic_imin:
4619 case nir_intrinsic_global_atomic_umin:
4620 case nir_intrinsic_global_atomic_imax:
4621 case nir_intrinsic_global_atomic_umax:
4622 case nir_intrinsic_global_atomic_and:
4623 case nir_intrinsic_global_atomic_or:
4624 case nir_intrinsic_global_atomic_xor:
4625 case nir_intrinsic_global_atomic_exchange:
4626 case nir_intrinsic_global_atomic_comp_swap:
4627 nir_emit_global_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
4628 break;
4629 case nir_intrinsic_global_atomic_fmin:
4630 case nir_intrinsic_global_atomic_fmax:
4631 case nir_intrinsic_global_atomic_fcomp_swap:
4632 nir_emit_global_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
4633 break;
4634
4635 case nir_intrinsic_load_ssbo: {
4636 assert(devinfo->gen >= 7);
4637
4638 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4639 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4640 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4641 get_nir_ssbo_intrinsic_index(bld, instr);
4642 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4643 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4644
4645 /* Make dest unsigned because that's what the temporary will be */
4646 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4647
4648 /* Read the vector */
4649 assert(nir_dest_bit_size(instr->dest) <= 32);
4650 assert(nir_intrinsic_align(instr) > 0);
4651 if (nir_dest_bit_size(instr->dest) == 32 &&
4652 nir_intrinsic_align(instr) >= 4) {
4653 assert(nir_dest_num_components(instr->dest) <= 4);
4654 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4655 fs_inst *inst =
4656 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4657 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4658 inst->size_written = instr->num_components * dispatch_width * 4;
4659 } else {
4660 assert(nir_dest_num_components(instr->dest) == 1);
4661 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4662
4663 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4664 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4665 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4666 bld.MOV(dest, subscript(read_result, dest.type, 0));
4667 }
4668 break;
4669 }
4670
4671 case nir_intrinsic_store_ssbo: {
4672 assert(devinfo->gen >= 7);
4673
4674 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4675 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4676 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4677 get_nir_ssbo_intrinsic_index(bld, instr);
4678 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4679 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4680
4681 fs_reg data = get_nir_src(instr->src[0]);
4682 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4683
4684 assert(nir_src_bit_size(instr->src[0]) <= 32);
4685 assert(nir_intrinsic_write_mask(instr) ==
4686 (1u << instr->num_components) - 1);
4687 assert(nir_intrinsic_align(instr) > 0);
4688 if (nir_src_bit_size(instr->src[0]) == 32 &&
4689 nir_intrinsic_align(instr) >= 4) {
4690 assert(nir_src_num_components(instr->src[0]) <= 4);
4691 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4692 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4693 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4694 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4695 } else {
4696 assert(nir_src_num_components(instr->src[0]) == 1);
4697 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4698
4699 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4700 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4701
4702 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4703 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4704 }
4705 break;
4706 }
4707
4708 case nir_intrinsic_store_output: {
4709 assert(nir_src_bit_size(instr->src[0]) == 32);
4710 fs_reg src = get_nir_src(instr->src[0]);
4711
4712 unsigned store_offset = nir_src_as_uint(instr->src[1]);
4713 unsigned num_components = instr->num_components;
4714 unsigned first_component = nir_intrinsic_component(instr);
4715
4716 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4717 4 * store_offset), src.type);
4718 for (unsigned j = 0; j < num_components; j++) {
4719 bld.MOV(offset(new_dest, bld, j + first_component),
4720 offset(src, bld, j));
4721 }
4722 break;
4723 }
4724
4725 case nir_intrinsic_ssbo_atomic_add:
4726 case nir_intrinsic_ssbo_atomic_imin:
4727 case nir_intrinsic_ssbo_atomic_umin:
4728 case nir_intrinsic_ssbo_atomic_imax:
4729 case nir_intrinsic_ssbo_atomic_umax:
4730 case nir_intrinsic_ssbo_atomic_and:
4731 case nir_intrinsic_ssbo_atomic_or:
4732 case nir_intrinsic_ssbo_atomic_xor:
4733 case nir_intrinsic_ssbo_atomic_exchange:
4734 case nir_intrinsic_ssbo_atomic_comp_swap:
4735 nir_emit_ssbo_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
4736 break;
4737 case nir_intrinsic_ssbo_atomic_fmin:
4738 case nir_intrinsic_ssbo_atomic_fmax:
4739 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4740 nir_emit_ssbo_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
4741 break;
4742
4743 case nir_intrinsic_get_buffer_size: {
4744 assert(nir_src_num_components(instr->src[0]) == 1);
4745 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
4746 nir_src_as_uint(instr->src[0]) : 0;
4747
4748 /* A resinfo's sampler message is used to get the buffer size. The
4749 * SIMD8's writeback message consists of four registers and SIMD16's
4750 * writeback message consists of 8 destination registers (two per each
4751 * component). Because we are only interested on the first channel of
4752 * the first returned component, where resinfo returns the buffer size
4753 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4754 * the dispatch width.
4755 */
4756 const fs_builder ubld = bld.exec_all().group(8, 0);
4757 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4758 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4759
4760 /* Set LOD = 0 */
4761 ubld.MOV(src_payload, brw_imm_d(0));
4762
4763 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4764 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4765 src_payload, brw_imm_ud(index));
4766 inst->header_size = 0;
4767 inst->mlen = 1;
4768 inst->size_written = 4 * REG_SIZE;
4769
4770 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4771 *
4772 * "Out-of-bounds checking is always performed at a DWord granularity. If
4773 * any part of the DWord is out-of-bounds then the whole DWord is
4774 * considered out-of-bounds."
4775 *
4776 * This implies that types with size smaller than 4-bytes need to be
4777 * padded if they don't complete the last dword of the buffer. But as we
4778 * need to maintain the original size we need to reverse the padding
4779 * calculation to return the correct size to know the number of elements
4780 * of an unsized array. As we stored in the last two bits of the surface
4781 * size the needed padding for the buffer, we calculate here the
4782 * original buffer_size reversing the surface_size calculation:
4783 *
4784 * surface_size = isl_align(buffer_size, 4) +
4785 * (isl_align(buffer_size) - buffer_size)
4786 *
4787 * buffer_size = surface_size & ~3 - surface_size & 3
4788 */
4789
4790 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4791 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4792 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4793
4794 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4795 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4796 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4797
4798 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4799 break;
4800 }
4801
4802 case nir_intrinsic_load_scratch: {
4803 assert(devinfo->gen >= 7);
4804
4805 assert(nir_dest_num_components(instr->dest) == 1);
4806 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4807 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4808
4809 if (devinfo->gen >= 8) {
4810 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4811 brw_imm_ud(GEN8_BTI_STATELESS_NON_COHERENT);
4812 } else {
4813 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(BRW_BTI_STATELESS);
4814 }
4815
4816 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4817 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4818 const fs_reg nir_addr = get_nir_src(instr->src[0]);
4819
4820 /* Make dest unsigned because that's what the temporary will be */
4821 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4822
4823 /* Read the vector */
4824 assert(nir_dest_num_components(instr->dest) == 1);
4825 assert(nir_dest_bit_size(instr->dest) <= 32);
4826 assert(nir_intrinsic_align(instr) > 1);
4827 if (nir_dest_bit_size(instr->dest) >= 4 &&
4828 nir_intrinsic_align(instr) >= 4) {
4829 /* The offset for a DWORD scattered message is in dwords. */
4830 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4831 swizzle_nir_scratch_addr(bld, nir_addr, true);
4832
4833 bld.emit(SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL,
4834 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4835 } else {
4836 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4837 swizzle_nir_scratch_addr(bld, nir_addr, false);
4838
4839 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4840 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4841 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4842 bld.MOV(dest, read_result);
4843 }
4844 break;
4845 }
4846
4847 case nir_intrinsic_store_scratch: {
4848 assert(devinfo->gen >= 7);
4849
4850 assert(nir_src_num_components(instr->src[0]) == 1);
4851 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4852 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4853
4854 if (devinfo->gen >= 8) {
4855 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4856 brw_imm_ud(GEN8_BTI_STATELESS_NON_COHERENT);
4857 } else {
4858 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(BRW_BTI_STATELESS);
4859 }
4860
4861 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4862 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4863 const fs_reg nir_addr = get_nir_src(instr->src[1]);
4864
4865 fs_reg data = get_nir_src(instr->src[0]);
4866 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4867
4868 assert(nir_src_num_components(instr->src[0]) == 1);
4869 assert(nir_src_bit_size(instr->src[0]) <= 32);
4870 assert(nir_intrinsic_write_mask(instr) == 1);
4871 assert(nir_intrinsic_align(instr) > 0);
4872 if (nir_src_bit_size(instr->src[0]) == 32 &&
4873 nir_intrinsic_align(instr) >= 4) {
4874 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4875
4876 /* The offset for a DWORD scattered message is in dwords. */
4877 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4878 swizzle_nir_scratch_addr(bld, nir_addr, true);
4879
4880 bld.emit(SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL,
4881 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4882 } else {
4883 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4884 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4885
4886 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4887 swizzle_nir_scratch_addr(bld, nir_addr, false);
4888
4889 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4890 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4891 }
4892 break;
4893 }
4894
4895 case nir_intrinsic_load_subgroup_size:
4896 /* This should only happen for fragment shaders because every other case
4897 * is lowered in NIR so we can optimize on it.
4898 */
4899 assert(stage == MESA_SHADER_FRAGMENT);
4900 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(dispatch_width));
4901 break;
4902
4903 case nir_intrinsic_load_subgroup_invocation:
4904 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4905 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4906 break;
4907
4908 case nir_intrinsic_load_subgroup_eq_mask:
4909 case nir_intrinsic_load_subgroup_ge_mask:
4910 case nir_intrinsic_load_subgroup_gt_mask:
4911 case nir_intrinsic_load_subgroup_le_mask:
4912 case nir_intrinsic_load_subgroup_lt_mask:
4913 unreachable("not reached");
4914
4915 case nir_intrinsic_vote_any: {
4916 const fs_builder ubld = bld.exec_all().group(1, 0);
4917
4918 /* The any/all predicates do not consider channel enables. To prevent
4919 * dead channels from affecting the result, we initialize the flag with
4920 * with the identity value for the logical operation.
4921 */
4922 if (dispatch_width == 32) {
4923 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4924 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4925 brw_imm_ud(0));
4926 } else {
4927 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4928 }
4929 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4930
4931 /* For some reason, the any/all predicates don't work properly with
4932 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4933 * doesn't read the correct subset of the flag register and you end up
4934 * getting garbage in the second half. Work around this by using a pair
4935 * of 1-wide MOVs and scattering the result.
4936 */
4937 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4938 ubld.MOV(res1, brw_imm_d(0));
4939 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4940 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4941 BRW_PREDICATE_ALIGN1_ANY32H,
4942 ubld.MOV(res1, brw_imm_d(-1)));
4943
4944 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4945 break;
4946 }
4947 case nir_intrinsic_vote_all: {
4948 const fs_builder ubld = bld.exec_all().group(1, 0);
4949
4950 /* The any/all predicates do not consider channel enables. To prevent
4951 * dead channels from affecting the result, we initialize the flag with
4952 * with the identity value for the logical operation.
4953 */
4954 if (dispatch_width == 32) {
4955 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4956 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4957 brw_imm_ud(0xffffffff));
4958 } else {
4959 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4960 }
4961 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4962
4963 /* For some reason, the any/all predicates don't work properly with
4964 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4965 * doesn't read the correct subset of the flag register and you end up
4966 * getting garbage in the second half. Work around this by using a pair
4967 * of 1-wide MOVs and scattering the result.
4968 */
4969 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4970 ubld.MOV(res1, brw_imm_d(0));
4971 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4972 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4973 BRW_PREDICATE_ALIGN1_ALL32H,
4974 ubld.MOV(res1, brw_imm_d(-1)));
4975
4976 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4977 break;
4978 }
4979 case nir_intrinsic_vote_feq:
4980 case nir_intrinsic_vote_ieq: {
4981 fs_reg value = get_nir_src(instr->src[0]);
4982 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4983 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4984 value.type = bit_size == 8 ? BRW_REGISTER_TYPE_B :
4985 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4986 }
4987
4988 fs_reg uniformized = bld.emit_uniformize(value);
4989 const fs_builder ubld = bld.exec_all().group(1, 0);
4990
4991 /* The any/all predicates do not consider channel enables. To prevent
4992 * dead channels from affecting the result, we initialize the flag with
4993 * with the identity value for the logical operation.
4994 */
4995 if (dispatch_width == 32) {
4996 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4997 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4998 brw_imm_ud(0xffffffff));
4999 } else {
5000 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
5001 }
5002 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
5003
5004 /* For some reason, the any/all predicates don't work properly with
5005 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
5006 * doesn't read the correct subset of the flag register and you end up
5007 * getting garbage in the second half. Work around this by using a pair
5008 * of 1-wide MOVs and scattering the result.
5009 */
5010 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
5011 ubld.MOV(res1, brw_imm_d(0));
5012 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
5013 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
5014 BRW_PREDICATE_ALIGN1_ALL32H,
5015 ubld.MOV(res1, brw_imm_d(-1)));
5016
5017 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
5018 break;
5019 }
5020
5021 case nir_intrinsic_ballot: {
5022 const fs_reg value = retype(get_nir_src(instr->src[0]),
5023 BRW_REGISTER_TYPE_UD);
5024 struct brw_reg flag = brw_flag_reg(0, 0);
5025 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
5026 * as f0.0. This is a problem for fragment programs as we currently use
5027 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
5028 * programs yet so this isn't a problem. When we do, something will
5029 * have to change.
5030 */
5031 if (dispatch_width == 32)
5032 flag.type = BRW_REGISTER_TYPE_UD;
5033
5034 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
5035 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
5036
5037 if (instr->dest.ssa.bit_size > 32) {
5038 dest.type = BRW_REGISTER_TYPE_UQ;
5039 } else {
5040 dest.type = BRW_REGISTER_TYPE_UD;
5041 }
5042 bld.MOV(dest, flag);
5043 break;
5044 }
5045
5046 case nir_intrinsic_read_invocation: {
5047 const fs_reg value = get_nir_src(instr->src[0]);
5048 const fs_reg invocation = get_nir_src(instr->src[1]);
5049 fs_reg tmp = bld.vgrf(value.type);
5050
5051 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
5052 bld.emit_uniformize(invocation));
5053
5054 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
5055 break;
5056 }
5057
5058 case nir_intrinsic_read_first_invocation: {
5059 const fs_reg value = get_nir_src(instr->src[0]);
5060 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
5061 break;
5062 }
5063
5064 case nir_intrinsic_shuffle: {
5065 const fs_reg value = get_nir_src(instr->src[0]);
5066 const fs_reg index = get_nir_src(instr->src[1]);
5067
5068 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
5069 break;
5070 }
5071
5072 case nir_intrinsic_first_invocation: {
5073 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
5074 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
5075 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
5076 fs_reg(component(tmp, 0)));
5077 break;
5078 }
5079
5080 case nir_intrinsic_quad_broadcast: {
5081 const fs_reg value = get_nir_src(instr->src[0]);
5082 const unsigned index = nir_src_as_uint(instr->src[1]);
5083
5084 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
5085 value, brw_imm_ud(index), brw_imm_ud(4));
5086 break;
5087 }
5088
5089 case nir_intrinsic_quad_swap_horizontal: {
5090 const fs_reg value = get_nir_src(instr->src[0]);
5091 const fs_reg tmp = bld.vgrf(value.type);
5092 if (devinfo->gen <= 7) {
5093 /* The hardware doesn't seem to support these crazy regions with
5094 * compressed instructions on gen7 and earlier so we fall back to
5095 * using quad swizzles. Fortunately, we don't support 64-bit
5096 * anything in Vulkan on gen7.
5097 */
5098 assert(nir_src_bit_size(instr->src[0]) == 32);
5099 const fs_builder ubld = bld.exec_all();
5100 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
5101 brw_imm_ud(BRW_SWIZZLE4(1,0,3,2)));
5102 bld.MOV(retype(dest, value.type), tmp);
5103 } else {
5104 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
5105
5106 const fs_reg src_left = horiz_stride(value, 2);
5107 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
5108 const fs_reg tmp_left = horiz_stride(tmp, 2);
5109 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
5110
5111 ubld.MOV(tmp_left, src_right);
5112 ubld.MOV(tmp_right, src_left);
5113
5114 }
5115 bld.MOV(retype(dest, value.type), tmp);
5116 break;
5117 }
5118
5119 case nir_intrinsic_quad_swap_vertical: {
5120 const fs_reg value = get_nir_src(instr->src[0]);
5121 if (nir_src_bit_size(instr->src[0]) == 32) {
5122 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
5123 const fs_reg tmp = bld.vgrf(value.type);
5124 const fs_builder ubld = bld.exec_all();
5125 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
5126 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
5127 bld.MOV(retype(dest, value.type), tmp);
5128 } else {
5129 /* For larger data types, we have to either emit dispatch_width many
5130 * MOVs or else fall back to doing indirects.
5131 */
5132 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5133 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5134 brw_imm_w(0x2));
5135 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
5136 }
5137 break;
5138 }
5139
5140 case nir_intrinsic_quad_swap_diagonal: {
5141 const fs_reg value = get_nir_src(instr->src[0]);
5142 if (nir_src_bit_size(instr->src[0]) == 32) {
5143 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
5144 const fs_reg tmp = bld.vgrf(value.type);
5145 const fs_builder ubld = bld.exec_all();
5146 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
5147 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
5148 bld.MOV(retype(dest, value.type), tmp);
5149 } else {
5150 /* For larger data types, we have to either emit dispatch_width many
5151 * MOVs or else fall back to doing indirects.
5152 */
5153 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5154 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5155 brw_imm_w(0x3));
5156 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
5157 }
5158 break;
5159 }
5160
5161 case nir_intrinsic_reduce: {
5162 fs_reg src = get_nir_src(instr->src[0]);
5163 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
5164 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
5165 if (cluster_size == 0 || cluster_size > dispatch_width)
5166 cluster_size = dispatch_width;
5167
5168 /* Figure out the source type */
5169 src.type = brw_type_for_nir_type(devinfo,
5170 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
5171 nir_src_bit_size(instr->src[0])));
5172
5173 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
5174 opcode brw_op = brw_op_for_nir_reduction_op(redop);
5175 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
5176
5177 /* There are a couple of register region issues that make things
5178 * complicated for 8-bit types:
5179 *
5180 * 1. Only raw moves are allowed to write to a packed 8-bit
5181 * destination.
5182 * 2. If we use a strided destination, the efficient way to do scan
5183 * operations ends up using strides that are too big to encode in
5184 * an instruction.
5185 *
5186 * To get around these issues, we just do all 8-bit scan operations in
5187 * 16 bits. It's actually fewer instructions than what we'd have to do
5188 * if we were trying to do it in native 8-bit types and the results are
5189 * the same once we truncate to 8 bits at the end.
5190 */
5191 brw_reg_type scan_type = src.type;
5192 if (type_sz(scan_type) == 1)
5193 scan_type = brw_reg_type_from_bit_size(16, src.type);
5194
5195 /* Set up a register for all of our scratching around and initialize it
5196 * to reduction operation's identity value.
5197 */
5198 fs_reg scan = bld.vgrf(scan_type);
5199 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
5200
5201 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
5202
5203 dest.type = src.type;
5204 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
5205 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
5206 * the distance between clusters is at least 2 GRFs. In this case,
5207 * we don't need the weird striding of the CLUSTER_BROADCAST
5208 * instruction and can just do regular MOVs.
5209 */
5210 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
5211 const unsigned groups =
5212 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
5213 const unsigned group_size = dispatch_width / groups;
5214 for (unsigned i = 0; i < groups; i++) {
5215 const unsigned cluster = (i * group_size) / cluster_size;
5216 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
5217 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
5218 component(scan, comp));
5219 }
5220 } else {
5221 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
5222 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
5223 }
5224 break;
5225 }
5226
5227 case nir_intrinsic_inclusive_scan:
5228 case nir_intrinsic_exclusive_scan: {
5229 fs_reg src = get_nir_src(instr->src[0]);
5230 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
5231
5232 /* Figure out the source type */
5233 src.type = brw_type_for_nir_type(devinfo,
5234 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
5235 nir_src_bit_size(instr->src[0])));
5236
5237 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
5238 opcode brw_op = brw_op_for_nir_reduction_op(redop);
5239 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
5240
5241 /* There are a couple of register region issues that make things
5242 * complicated for 8-bit types:
5243 *
5244 * 1. Only raw moves are allowed to write to a packed 8-bit
5245 * destination.
5246 * 2. If we use a strided destination, the efficient way to do scan
5247 * operations ends up using strides that are too big to encode in
5248 * an instruction.
5249 *
5250 * To get around these issues, we just do all 8-bit scan operations in
5251 * 16 bits. It's actually fewer instructions than what we'd have to do
5252 * if we were trying to do it in native 8-bit types and the results are
5253 * the same once we truncate to 8 bits at the end.
5254 */
5255 brw_reg_type scan_type = src.type;
5256 if (type_sz(scan_type) == 1)
5257 scan_type = brw_reg_type_from_bit_size(16, src.type);
5258
5259 /* Set up a register for all of our scratching around and initialize it
5260 * to reduction operation's identity value.
5261 */
5262 fs_reg scan = bld.vgrf(scan_type);
5263 const fs_builder allbld = bld.exec_all();
5264 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
5265
5266 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
5267 /* Exclusive scan is a bit harder because we have to do an annoying
5268 * shift of the contents before we can begin. To make things worse,
5269 * we can't do this with a normal stride; we have to use indirects.
5270 */
5271 fs_reg shifted = bld.vgrf(scan_type);
5272 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5273 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5274 brw_imm_w(-1));
5275 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
5276 allbld.group(1, 0).MOV(component(shifted, 0), identity);
5277 scan = shifted;
5278 }
5279
5280 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
5281
5282 bld.MOV(retype(dest, src.type), scan);
5283 break;
5284 }
5285
5286 default:
5287 unreachable("unknown intrinsic");
5288 }
5289 }
5290
5291 void
5292 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
5293 int op, nir_intrinsic_instr *instr)
5294 {
5295 /* The BTI untyped atomic messages only support 32-bit atomics. If you
5296 * just look at the big table of messages in the Vol 7 of the SKL PRM, they
5297 * appear to exist. However, if you look at Vol 2a, there are no message
5298 * descriptors provided for Qword atomic ops except for A64 messages.
5299 */
5300 assert(nir_dest_bit_size(instr->dest) == 32);
5301
5302 fs_reg dest;
5303 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5304 dest = get_nir_dest(instr->dest);
5305
5306 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5307 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5308 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5309 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5310 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5311
5312 fs_reg data;
5313 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5314 data = get_nir_src(instr->src[2]);
5315
5316 if (op == BRW_AOP_CMPWR) {
5317 fs_reg tmp = bld.vgrf(data.type, 2);
5318 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5319 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5320 data = tmp;
5321 }
5322 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5323
5324 /* Emit the actual atomic operation */
5325
5326 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5327 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5328 }
5329
5330 void
5331 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
5332 int op, nir_intrinsic_instr *instr)
5333 {
5334 fs_reg dest;
5335 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5336 dest = get_nir_dest(instr->dest);
5337
5338 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5339 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5340 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5341 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5342 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5343
5344 fs_reg data = get_nir_src(instr->src[2]);
5345 if (op == BRW_AOP_FCMPWR) {
5346 fs_reg tmp = bld.vgrf(data.type, 2);
5347 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5348 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5349 data = tmp;
5350 }
5351 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5352
5353 /* Emit the actual atomic operation */
5354
5355 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5356 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5357 }
5358
5359 void
5360 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
5361 int op, nir_intrinsic_instr *instr)
5362 {
5363 fs_reg dest;
5364 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5365 dest = get_nir_dest(instr->dest);
5366
5367 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5368 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5369 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5370 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5371
5372 fs_reg data;
5373 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5374 data = get_nir_src(instr->src[1]);
5375 if (op == BRW_AOP_CMPWR) {
5376 fs_reg tmp = bld.vgrf(data.type, 2);
5377 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5378 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5379 data = tmp;
5380 }
5381 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5382
5383 /* Get the offset */
5384 if (nir_src_is_const(instr->src[0])) {
5385 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5386 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5387 } else {
5388 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5389 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5390 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5391 brw_imm_ud(instr->const_index[0]));
5392 }
5393
5394 /* Emit the actual atomic operation operation */
5395
5396 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5397 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5398 }
5399
5400 void
5401 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
5402 int op, nir_intrinsic_instr *instr)
5403 {
5404 fs_reg dest;
5405 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5406 dest = get_nir_dest(instr->dest);
5407
5408 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5409 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5410 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5411 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5412
5413 fs_reg data = get_nir_src(instr->src[1]);
5414 if (op == BRW_AOP_FCMPWR) {
5415 fs_reg tmp = bld.vgrf(data.type, 2);
5416 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5417 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5418 data = tmp;
5419 }
5420 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5421
5422 /* Get the offset */
5423 if (nir_src_is_const(instr->src[0])) {
5424 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5425 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5426 } else {
5427 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5428 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5429 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5430 brw_imm_ud(instr->const_index[0]));
5431 }
5432
5433 /* Emit the actual atomic operation operation */
5434
5435 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5436 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5437 }
5438
5439 void
5440 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
5441 int op, nir_intrinsic_instr *instr)
5442 {
5443 fs_reg dest;
5444 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5445 dest = get_nir_dest(instr->dest);
5446
5447 fs_reg addr = get_nir_src(instr->src[0]);
5448
5449 fs_reg data;
5450 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5451 data = get_nir_src(instr->src[1]);
5452
5453 if (op == BRW_AOP_CMPWR) {
5454 fs_reg tmp = bld.vgrf(data.type, 2);
5455 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5456 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5457 data = tmp;
5458 }
5459
5460 if (nir_dest_bit_size(instr->dest) == 64) {
5461 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL,
5462 dest, addr, data, brw_imm_ud(op));
5463 } else {
5464 assert(nir_dest_bit_size(instr->dest) == 32);
5465 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5466 dest, addr, data, brw_imm_ud(op));
5467 }
5468 }
5469
5470 void
5471 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
5472 int op, nir_intrinsic_instr *instr)
5473 {
5474 assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
5475 fs_reg dest = get_nir_dest(instr->dest);
5476
5477 fs_reg addr = get_nir_src(instr->src[0]);
5478
5479 assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
5480 fs_reg data = get_nir_src(instr->src[1]);
5481
5482 if (op == BRW_AOP_FCMPWR) {
5483 fs_reg tmp = bld.vgrf(data.type, 2);
5484 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5485 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5486 data = tmp;
5487 }
5488
5489 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5490 dest, addr, data, brw_imm_ud(op));
5491 }
5492
5493 void
5494 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
5495 {
5496 unsigned texture = instr->texture_index;
5497 unsigned sampler = instr->sampler_index;
5498
5499 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
5500
5501 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
5502 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
5503
5504 int lod_components = 0;
5505
5506 /* The hardware requires a LOD for buffer textures */
5507 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
5508 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
5509
5510 uint32_t header_bits = 0;
5511 for (unsigned i = 0; i < instr->num_srcs; i++) {
5512 fs_reg src = get_nir_src(instr->src[i].src);
5513 switch (instr->src[i].src_type) {
5514 case nir_tex_src_bias:
5515 srcs[TEX_LOGICAL_SRC_LOD] =
5516 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5517 break;
5518 case nir_tex_src_comparator:
5519 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
5520 break;
5521 case nir_tex_src_coord:
5522 switch (instr->op) {
5523 case nir_texop_txf:
5524 case nir_texop_txf_ms:
5525 case nir_texop_txf_ms_mcs:
5526 case nir_texop_samples_identical:
5527 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
5528 break;
5529 default:
5530 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
5531 break;
5532 }
5533 break;
5534 case nir_tex_src_ddx:
5535 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5536 lod_components = nir_tex_instr_src_size(instr, i);
5537 break;
5538 case nir_tex_src_ddy:
5539 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5540 break;
5541 case nir_tex_src_lod:
5542 switch (instr->op) {
5543 case nir_texop_txs:
5544 srcs[TEX_LOGICAL_SRC_LOD] =
5545 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5546 break;
5547 case nir_texop_txf:
5548 srcs[TEX_LOGICAL_SRC_LOD] =
5549 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5550 break;
5551 default:
5552 srcs[TEX_LOGICAL_SRC_LOD] =
5553 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5554 break;
5555 }
5556 break;
5557 case nir_tex_src_min_lod:
5558 srcs[TEX_LOGICAL_SRC_MIN_LOD] =
5559 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5560 break;
5561 case nir_tex_src_ms_index:
5562 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5563 break;
5564
5565 case nir_tex_src_offset: {
5566 uint32_t offset_bits = 0;
5567 if (brw_texture_offset(instr, i, &offset_bits)) {
5568 header_bits |= offset_bits;
5569 } else {
5570 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5571 retype(src, BRW_REGISTER_TYPE_D);
5572 }
5573 break;
5574 }
5575
5576 case nir_tex_src_projector:
5577 unreachable("should be lowered");
5578
5579 case nir_tex_src_texture_offset: {
5580 /* Emit code to evaluate the actual indexing expression */
5581 fs_reg tmp = vgrf(glsl_type::uint_type);
5582 bld.ADD(tmp, src, brw_imm_ud(texture));
5583 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5584 break;
5585 }
5586
5587 case nir_tex_src_sampler_offset: {
5588 /* Emit code to evaluate the actual indexing expression */
5589 fs_reg tmp = vgrf(glsl_type::uint_type);
5590 bld.ADD(tmp, src, brw_imm_ud(sampler));
5591 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5592 break;
5593 }
5594
5595 case nir_tex_src_texture_handle:
5596 assert(nir_tex_instr_src_index(instr, nir_tex_src_texture_offset) == -1);
5597 srcs[TEX_LOGICAL_SRC_SURFACE] = fs_reg();
5598 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = bld.emit_uniformize(src);
5599 break;
5600
5601 case nir_tex_src_sampler_handle:
5602 assert(nir_tex_instr_src_index(instr, nir_tex_src_sampler_offset) == -1);
5603 srcs[TEX_LOGICAL_SRC_SAMPLER] = fs_reg();
5604 srcs[TEX_LOGICAL_SRC_SAMPLER_HANDLE] = bld.emit_uniformize(src);
5605 break;
5606
5607 case nir_tex_src_ms_mcs:
5608 assert(instr->op == nir_texop_txf_ms);
5609 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5610 break;
5611
5612 case nir_tex_src_plane: {
5613 const uint32_t plane = nir_src_as_uint(instr->src[i].src);
5614 const uint32_t texture_index =
5615 instr->texture_index +
5616 stage_prog_data->binding_table.plane_start[plane] -
5617 stage_prog_data->binding_table.texture_start;
5618
5619 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5620 break;
5621 }
5622
5623 default:
5624 unreachable("unknown texture source");
5625 }
5626 }
5627
5628 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5629 (instr->op == nir_texop_txf_ms ||
5630 instr->op == nir_texop_samples_identical)) {
5631 if (devinfo->gen >= 7 &&
5632 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5633 srcs[TEX_LOGICAL_SRC_MCS] =
5634 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5635 instr->coord_components,
5636 srcs[TEX_LOGICAL_SRC_SURFACE],
5637 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE]);
5638 } else {
5639 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5640 }
5641 }
5642
5643 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5644 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5645
5646 enum opcode opcode;
5647 switch (instr->op) {
5648 case nir_texop_tex:
5649 opcode = SHADER_OPCODE_TEX_LOGICAL;
5650 break;
5651 case nir_texop_txb:
5652 opcode = FS_OPCODE_TXB_LOGICAL;
5653 break;
5654 case nir_texop_txl:
5655 opcode = SHADER_OPCODE_TXL_LOGICAL;
5656 break;
5657 case nir_texop_txd:
5658 opcode = SHADER_OPCODE_TXD_LOGICAL;
5659 break;
5660 case nir_texop_txf:
5661 opcode = SHADER_OPCODE_TXF_LOGICAL;
5662 break;
5663 case nir_texop_txf_ms:
5664 if ((key_tex->msaa_16 & (1 << sampler)))
5665 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5666 else
5667 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5668 break;
5669 case nir_texop_txf_ms_mcs:
5670 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5671 break;
5672 case nir_texop_query_levels:
5673 case nir_texop_txs:
5674 opcode = SHADER_OPCODE_TXS_LOGICAL;
5675 break;
5676 case nir_texop_lod:
5677 opcode = SHADER_OPCODE_LOD_LOGICAL;
5678 break;
5679 case nir_texop_tg4:
5680 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5681 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5682 else
5683 opcode = SHADER_OPCODE_TG4_LOGICAL;
5684 break;
5685 case nir_texop_texture_samples:
5686 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5687 break;
5688 case nir_texop_samples_identical: {
5689 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5690
5691 /* If mcs is an immediate value, it means there is no MCS. In that case
5692 * just return false.
5693 */
5694 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5695 bld.MOV(dst, brw_imm_ud(0u));
5696 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5697 fs_reg tmp = vgrf(glsl_type::uint_type);
5698 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5699 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5700 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5701 } else {
5702 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5703 BRW_CONDITIONAL_EQ);
5704 }
5705 return;
5706 }
5707 default:
5708 unreachable("unknown texture opcode");
5709 }
5710
5711 if (instr->op == nir_texop_tg4) {
5712 if (instr->component == 1 &&
5713 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5714 /* gather4 sampler is broken for green channel on RG32F --
5715 * we must ask for blue instead.
5716 */
5717 header_bits |= 2 << 16;
5718 } else {
5719 header_bits |= instr->component << 16;
5720 }
5721 }
5722
5723 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5724 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5725 inst->offset = header_bits;
5726
5727 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5728 if (devinfo->gen >= 9 &&
5729 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5730 unsigned write_mask = instr->dest.is_ssa ?
5731 nir_ssa_def_components_read(&instr->dest.ssa):
5732 (1 << dest_size) - 1;
5733 assert(write_mask != 0); /* dead code should have been eliminated */
5734 inst->size_written = util_last_bit(write_mask) *
5735 inst->dst.component_size(inst->exec_size);
5736 } else {
5737 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5738 }
5739
5740 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5741 inst->shadow_compare = true;
5742
5743 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5744 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5745
5746 fs_reg nir_dest[4];
5747 for (unsigned i = 0; i < dest_size; i++)
5748 nir_dest[i] = offset(dst, bld, i);
5749
5750 if (instr->op == nir_texop_query_levels) {
5751 /* # levels is in .w */
5752 nir_dest[0] = offset(dst, bld, 3);
5753 } else if (instr->op == nir_texop_txs &&
5754 dest_size >= 3 && devinfo->gen < 7) {
5755 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5756 fs_reg depth = offset(dst, bld, 2);
5757 nir_dest[2] = vgrf(glsl_type::int_type);
5758 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5759 }
5760
5761 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5762 }
5763
5764 void
5765 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5766 {
5767 switch (instr->type) {
5768 case nir_jump_break:
5769 bld.emit(BRW_OPCODE_BREAK);
5770 break;
5771 case nir_jump_continue:
5772 bld.emit(BRW_OPCODE_CONTINUE);
5773 break;
5774 case nir_jump_return:
5775 default:
5776 unreachable("unknown jump");
5777 }
5778 }
5779
5780 /*
5781 * This helper takes a source register and un/shuffles it into the destination
5782 * register.
5783 *
5784 * If source type size is smaller than destination type size the operation
5785 * needed is a component shuffle. The opposite case would be an unshuffle. If
5786 * source/destination type size is equal a shuffle is done that would be
5787 * equivalent to a simple MOV.
5788 *
5789 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5790 * components .xyz 16-bit vector on SIMD8 would be.
5791 *
5792 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5793 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5794 *
5795 * This helper will return the following 2 32-bit components with the 16-bit
5796 * values shuffled:
5797 *
5798 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5799 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5800 *
5801 * For unshuffle, the example would be the opposite, a 64-bit type source
5802 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5803 * would be:
5804 *
5805 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5806 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5807 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5808 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5809 *
5810 * The returned result would be the following 4 32-bit components unshuffled:
5811 *
5812 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5813 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5814 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5815 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5816 *
5817 * - Source and destination register must not be overlapped.
5818 * - components units are measured in terms of the smaller type between
5819 * source and destination because we are un/shuffling the smaller
5820 * components from/into the bigger ones.
5821 * - first_component parameter allows skipping source components.
5822 */
5823 void
5824 shuffle_src_to_dst(const fs_builder &bld,
5825 const fs_reg &dst,
5826 const fs_reg &src,
5827 uint32_t first_component,
5828 uint32_t components)
5829 {
5830 if (type_sz(src.type) == type_sz(dst.type)) {
5831 assert(!regions_overlap(dst,
5832 type_sz(dst.type) * bld.dispatch_width() * components,
5833 offset(src, bld, first_component),
5834 type_sz(src.type) * bld.dispatch_width() * components));
5835 for (unsigned i = 0; i < components; i++) {
5836 bld.MOV(retype(offset(dst, bld, i), src.type),
5837 offset(src, bld, i + first_component));
5838 }
5839 } else if (type_sz(src.type) < type_sz(dst.type)) {
5840 /* Source is shuffled into destination */
5841 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5842 assert(!regions_overlap(dst,
5843 type_sz(dst.type) * bld.dispatch_width() *
5844 DIV_ROUND_UP(components, size_ratio),
5845 offset(src, bld, first_component),
5846 type_sz(src.type) * bld.dispatch_width() * components));
5847
5848 brw_reg_type shuffle_type =
5849 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5850 BRW_REGISTER_TYPE_D);
5851 for (unsigned i = 0; i < components; i++) {
5852 fs_reg shuffle_component_i =
5853 subscript(offset(dst, bld, i / size_ratio),
5854 shuffle_type, i % size_ratio);
5855 bld.MOV(shuffle_component_i,
5856 retype(offset(src, bld, i + first_component), shuffle_type));
5857 }
5858 } else {
5859 /* Source is unshuffled into destination */
5860 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5861 assert(!regions_overlap(dst,
5862 type_sz(dst.type) * bld.dispatch_width() * components,
5863 offset(src, bld, first_component / size_ratio),
5864 type_sz(src.type) * bld.dispatch_width() *
5865 DIV_ROUND_UP(components + (first_component % size_ratio),
5866 size_ratio)));
5867
5868 brw_reg_type shuffle_type =
5869 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5870 BRW_REGISTER_TYPE_D);
5871 for (unsigned i = 0; i < components; i++) {
5872 fs_reg shuffle_component_i =
5873 subscript(offset(src, bld, (first_component + i) / size_ratio),
5874 shuffle_type, (first_component + i) % size_ratio);
5875 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5876 shuffle_component_i);
5877 }
5878 }
5879 }
5880
5881 void
5882 shuffle_from_32bit_read(const fs_builder &bld,
5883 const fs_reg &dst,
5884 const fs_reg &src,
5885 uint32_t first_component,
5886 uint32_t components)
5887 {
5888 assert(type_sz(src.type) == 4);
5889
5890 /* This function takes components in units of the destination type while
5891 * shuffle_src_to_dst takes components in units of the smallest type
5892 */
5893 if (type_sz(dst.type) > 4) {
5894 assert(type_sz(dst.type) == 8);
5895 first_component *= 2;
5896 components *= 2;
5897 }
5898
5899 shuffle_src_to_dst(bld, dst, src, first_component, components);
5900 }
5901
5902 fs_reg
5903 setup_imm_df(const fs_builder &bld, double v)
5904 {
5905 const struct gen_device_info *devinfo = bld.shader->devinfo;
5906 assert(devinfo->gen >= 7);
5907
5908 if (devinfo->gen >= 8)
5909 return brw_imm_df(v);
5910
5911 /* gen7.5 does not support DF immediates straighforward but the DIM
5912 * instruction allows to set the 64-bit immediate value.
5913 */
5914 if (devinfo->is_haswell) {
5915 const fs_builder ubld = bld.exec_all().group(1, 0);
5916 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5917 ubld.DIM(dst, brw_imm_df(v));
5918 return component(dst, 0);
5919 }
5920
5921 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5922 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5923 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5924 *
5925 * Alternatively, we could also produce a normal VGRF (without stride 0)
5926 * by writing to all the channels in the VGRF, however, that would hit the
5927 * gen7 bug where we have to split writes that span more than 1 register
5928 * into instructions with a width of 4 (otherwise the write to the second
5929 * register written runs into an execmask hardware bug) which isn't very
5930 * nice.
5931 */
5932 union {
5933 double d;
5934 struct {
5935 uint32_t i1;
5936 uint32_t i2;
5937 };
5938 } di;
5939
5940 di.d = v;
5941
5942 const fs_builder ubld = bld.exec_all().group(1, 0);
5943 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5944 ubld.MOV(tmp, brw_imm_ud(di.i1));
5945 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5946
5947 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5948 }
5949
5950 fs_reg
5951 setup_imm_b(const fs_builder &bld, int8_t v)
5952 {
5953 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5954 bld.MOV(tmp, brw_imm_w(v));
5955 return tmp;
5956 }
5957
5958 fs_reg
5959 setup_imm_ub(const fs_builder &bld, uint8_t v)
5960 {
5961 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5962 bld.MOV(tmp, brw_imm_uw(v));
5963 return tmp;
5964 }