intel/compiler: don't use byte operands for src1 on ICL
[mesa.git] / src / intel / compiler / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "brw_eu.h"
28 #include "nir_search_helpers.h"
29 #include "util/u_math.h"
30 #include "util/bitscan.h"
31
32 using namespace brw;
33
34 void
35 fs_visitor::emit_nir_code()
36 {
37 /* emit the arrays used for inputs and outputs - load/store intrinsics will
38 * be converted to reads/writes of these arrays
39 */
40 nir_setup_outputs();
41 nir_setup_uniforms();
42 nir_emit_system_values();
43
44 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
45 }
46
47 void
48 fs_visitor::nir_setup_outputs()
49 {
50 if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
51 return;
52
53 unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
54
55 /* Calculate the size of output registers in a separate pass, before
56 * allocating them. With ARB_enhanced_layouts, multiple output variables
57 * may occupy the same slot, but have different type sizes.
58 */
59 nir_foreach_variable(var, &nir->outputs) {
60 const int loc = var->data.driver_location;
61 const unsigned var_vec4s =
62 var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
63 : type_size_vec4(var->type, true);
64 vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
65 }
66
67 for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
68 if (vec4s[loc] == 0) {
69 loc++;
70 continue;
71 }
72
73 unsigned reg_size = vec4s[loc];
74
75 /* Check if there are any ranges that start within this range and extend
76 * past it. If so, include them in this allocation.
77 */
78 for (unsigned i = 1; i < reg_size; i++)
79 reg_size = MAX2(vec4s[i + loc] + i, reg_size);
80
81 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
82 for (unsigned i = 0; i < reg_size; i++)
83 outputs[loc + i] = offset(reg, bld, 4 * i);
84
85 loc += reg_size;
86 }
87 }
88
89 void
90 fs_visitor::nir_setup_uniforms()
91 {
92 /* Only the first compile gets to set up uniforms. */
93 if (push_constant_loc) {
94 assert(pull_constant_loc);
95 return;
96 }
97
98 uniforms = nir->num_uniforms / 4;
99
100 if (stage == MESA_SHADER_COMPUTE) {
101 /* Add a uniform for the thread local id. It must be the last uniform
102 * on the list.
103 */
104 assert(uniforms == prog_data->nr_params);
105 uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
106 *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
107 subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
108 }
109 }
110
111 static bool
112 emit_system_values_block(nir_block *block, fs_visitor *v)
113 {
114 fs_reg *reg;
115
116 nir_foreach_instr(instr, block) {
117 if (instr->type != nir_instr_type_intrinsic)
118 continue;
119
120 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
121 switch (intrin->intrinsic) {
122 case nir_intrinsic_load_vertex_id:
123 case nir_intrinsic_load_base_vertex:
124 unreachable("should be lowered by nir_lower_system_values().");
125
126 case nir_intrinsic_load_vertex_id_zero_base:
127 case nir_intrinsic_load_is_indexed_draw:
128 case nir_intrinsic_load_first_vertex:
129 case nir_intrinsic_load_instance_id:
130 case nir_intrinsic_load_base_instance:
131 case nir_intrinsic_load_draw_id:
132 unreachable("should be lowered by brw_nir_lower_vs_inputs().");
133
134 case nir_intrinsic_load_invocation_id:
135 if (v->stage == MESA_SHADER_TESS_CTRL)
136 break;
137 assert(v->stage == MESA_SHADER_GEOMETRY);
138 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
139 if (reg->file == BAD_FILE) {
140 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
141 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
142 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
143 abld.SHR(iid, g1, brw_imm_ud(27u));
144 *reg = iid;
145 }
146 break;
147
148 case nir_intrinsic_load_sample_pos:
149 assert(v->stage == MESA_SHADER_FRAGMENT);
150 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
151 if (reg->file == BAD_FILE)
152 *reg = *v->emit_samplepos_setup();
153 break;
154
155 case nir_intrinsic_load_sample_id:
156 assert(v->stage == MESA_SHADER_FRAGMENT);
157 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
158 if (reg->file == BAD_FILE)
159 *reg = *v->emit_sampleid_setup();
160 break;
161
162 case nir_intrinsic_load_sample_mask_in:
163 assert(v->stage == MESA_SHADER_FRAGMENT);
164 assert(v->devinfo->gen >= 7);
165 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
166 if (reg->file == BAD_FILE)
167 *reg = *v->emit_samplemaskin_setup();
168 break;
169
170 case nir_intrinsic_load_work_group_id:
171 assert(v->stage == MESA_SHADER_COMPUTE);
172 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
173 if (reg->file == BAD_FILE)
174 *reg = *v->emit_cs_work_group_id_setup();
175 break;
176
177 case nir_intrinsic_load_helper_invocation:
178 assert(v->stage == MESA_SHADER_FRAGMENT);
179 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
180 if (reg->file == BAD_FILE) {
181 const fs_builder abld =
182 v->bld.annotate("gl_HelperInvocation", NULL);
183
184 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
185 * pixel mask is in g1.7 of the thread payload.
186 *
187 * We move the per-channel pixel enable bit to the low bit of each
188 * channel by shifting the byte containing the pixel mask by the
189 * vector immediate 0x76543210UV.
190 *
191 * The region of <1,8,0> reads only 1 byte (the pixel masks for
192 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
193 * masks for 2 and 3) in SIMD16.
194 */
195 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
196
197 for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
198 const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
199 hbld.SHR(offset(shifted, hbld, i),
200 stride(retype(brw_vec1_grf(1 + i, 7),
201 BRW_REGISTER_TYPE_UB),
202 1, 8, 0),
203 brw_imm_v(0x76543210));
204 }
205
206 /* A set bit in the pixel mask means the channel is enabled, but
207 * that is the opposite of gl_HelperInvocation so we need to invert
208 * the mask.
209 *
210 * The negate source-modifier bit of logical instructions on Gen8+
211 * performs 1's complement negation, so we can use that instead of
212 * a NOT instruction.
213 */
214 fs_reg inverted = negate(shifted);
215 if (v->devinfo->gen < 8) {
216 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
217 abld.NOT(inverted, shifted);
218 }
219
220 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
221 * with 1 and negating.
222 */
223 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
224 abld.AND(anded, inverted, brw_imm_uw(1));
225
226 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
227 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
228 *reg = dst;
229 }
230 break;
231
232 default:
233 break;
234 }
235 }
236
237 return true;
238 }
239
240 void
241 fs_visitor::nir_emit_system_values()
242 {
243 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
244 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
245 nir_system_values[i] = fs_reg();
246 }
247
248 /* Always emit SUBGROUP_INVOCATION. Dead code will clean it up if we
249 * never end up using it.
250 */
251 {
252 const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
253 fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
254 reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
255
256 const fs_builder allbld8 = abld.group(8, 0).exec_all();
257 allbld8.MOV(reg, brw_imm_v(0x76543210));
258 if (dispatch_width > 8)
259 allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
260 if (dispatch_width > 16) {
261 const fs_builder allbld16 = abld.group(16, 0).exec_all();
262 allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
263 }
264 }
265
266 nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
267 nir_foreach_block(block, impl)
268 emit_system_values_block(block, this);
269 }
270
271 /*
272 * Returns a type based on a reference_type (word, float, half-float) and a
273 * given bit_size.
274 *
275 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
276 *
277 * @FIXME: 64-bit return types are always DF on integer types to maintain
278 * compability with uses of DF previously to the introduction of int64
279 * support.
280 */
281 static brw_reg_type
282 brw_reg_type_from_bit_size(const unsigned bit_size,
283 const brw_reg_type reference_type)
284 {
285 switch(reference_type) {
286 case BRW_REGISTER_TYPE_HF:
287 case BRW_REGISTER_TYPE_F:
288 case BRW_REGISTER_TYPE_DF:
289 switch(bit_size) {
290 case 16:
291 return BRW_REGISTER_TYPE_HF;
292 case 32:
293 return BRW_REGISTER_TYPE_F;
294 case 64:
295 return BRW_REGISTER_TYPE_DF;
296 default:
297 unreachable("Invalid bit size");
298 }
299 case BRW_REGISTER_TYPE_B:
300 case BRW_REGISTER_TYPE_W:
301 case BRW_REGISTER_TYPE_D:
302 case BRW_REGISTER_TYPE_Q:
303 switch(bit_size) {
304 case 8:
305 return BRW_REGISTER_TYPE_B;
306 case 16:
307 return BRW_REGISTER_TYPE_W;
308 case 32:
309 return BRW_REGISTER_TYPE_D;
310 case 64:
311 return BRW_REGISTER_TYPE_Q;
312 default:
313 unreachable("Invalid bit size");
314 }
315 case BRW_REGISTER_TYPE_UB:
316 case BRW_REGISTER_TYPE_UW:
317 case BRW_REGISTER_TYPE_UD:
318 case BRW_REGISTER_TYPE_UQ:
319 switch(bit_size) {
320 case 8:
321 return BRW_REGISTER_TYPE_UB;
322 case 16:
323 return BRW_REGISTER_TYPE_UW;
324 case 32:
325 return BRW_REGISTER_TYPE_UD;
326 case 64:
327 return BRW_REGISTER_TYPE_UQ;
328 default:
329 unreachable("Invalid bit size");
330 }
331 default:
332 unreachable("Unknown type");
333 }
334 }
335
336 void
337 fs_visitor::nir_emit_impl(nir_function_impl *impl)
338 {
339 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
340 for (unsigned i = 0; i < impl->reg_alloc; i++) {
341 nir_locals[i] = fs_reg();
342 }
343
344 foreach_list_typed(nir_register, reg, node, &impl->registers) {
345 unsigned array_elems =
346 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
347 unsigned size = array_elems * reg->num_components;
348 const brw_reg_type reg_type = reg->bit_size == 8 ? BRW_REGISTER_TYPE_B :
349 brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
350 nir_locals[reg->index] = bld.vgrf(reg_type, size);
351 }
352
353 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
354 impl->ssa_alloc);
355
356 nir_emit_cf_list(&impl->body);
357 }
358
359 void
360 fs_visitor::nir_emit_cf_list(exec_list *list)
361 {
362 exec_list_validate(list);
363 foreach_list_typed(nir_cf_node, node, node, list) {
364 switch (node->type) {
365 case nir_cf_node_if:
366 nir_emit_if(nir_cf_node_as_if(node));
367 break;
368
369 case nir_cf_node_loop:
370 nir_emit_loop(nir_cf_node_as_loop(node));
371 break;
372
373 case nir_cf_node_block:
374 nir_emit_block(nir_cf_node_as_block(node));
375 break;
376
377 default:
378 unreachable("Invalid CFG node block");
379 }
380 }
381 }
382
383 void
384 fs_visitor::nir_emit_if(nir_if *if_stmt)
385 {
386 bool invert;
387 fs_reg cond_reg;
388
389 /* If the condition has the form !other_condition, use other_condition as
390 * the source, but invert the predicate on the if instruction.
391 */
392 nir_alu_instr *cond = nir_src_as_alu_instr(if_stmt->condition);
393 if (cond != NULL && cond->op == nir_op_inot) {
394 assert(!cond->src[0].negate);
395 assert(!cond->src[0].abs);
396
397 invert = true;
398 cond_reg = get_nir_src(cond->src[0].src);
399 } else {
400 invert = false;
401 cond_reg = get_nir_src(if_stmt->condition);
402 }
403
404 /* first, put the condition into f0 */
405 fs_inst *inst = bld.MOV(bld.null_reg_d(),
406 retype(cond_reg, BRW_REGISTER_TYPE_D));
407 inst->conditional_mod = BRW_CONDITIONAL_NZ;
408
409 bld.IF(BRW_PREDICATE_NORMAL)->predicate_inverse = invert;
410
411 nir_emit_cf_list(&if_stmt->then_list);
412
413 if (!nir_cf_list_is_empty_block(&if_stmt->else_list)) {
414 bld.emit(BRW_OPCODE_ELSE);
415 nir_emit_cf_list(&if_stmt->else_list);
416 }
417
418 bld.emit(BRW_OPCODE_ENDIF);
419
420 if (devinfo->gen < 7)
421 limit_dispatch_width(16, "Non-uniform control flow unsupported "
422 "in SIMD32 mode.");
423 }
424
425 void
426 fs_visitor::nir_emit_loop(nir_loop *loop)
427 {
428 bld.emit(BRW_OPCODE_DO);
429
430 nir_emit_cf_list(&loop->body);
431
432 bld.emit(BRW_OPCODE_WHILE);
433
434 if (devinfo->gen < 7)
435 limit_dispatch_width(16, "Non-uniform control flow unsupported "
436 "in SIMD32 mode.");
437 }
438
439 void
440 fs_visitor::nir_emit_block(nir_block *block)
441 {
442 nir_foreach_instr(instr, block) {
443 nir_emit_instr(instr);
444 }
445 }
446
447 void
448 fs_visitor::nir_emit_instr(nir_instr *instr)
449 {
450 const fs_builder abld = bld.annotate(NULL, instr);
451
452 switch (instr->type) {
453 case nir_instr_type_alu:
454 nir_emit_alu(abld, nir_instr_as_alu(instr), true);
455 break;
456
457 case nir_instr_type_deref:
458 unreachable("All derefs should've been lowered");
459 break;
460
461 case nir_instr_type_intrinsic:
462 switch (stage) {
463 case MESA_SHADER_VERTEX:
464 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
465 break;
466 case MESA_SHADER_TESS_CTRL:
467 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
468 break;
469 case MESA_SHADER_TESS_EVAL:
470 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
471 break;
472 case MESA_SHADER_GEOMETRY:
473 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
474 break;
475 case MESA_SHADER_FRAGMENT:
476 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
477 break;
478 case MESA_SHADER_COMPUTE:
479 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
480 break;
481 default:
482 unreachable("unsupported shader stage");
483 }
484 break;
485
486 case nir_instr_type_tex:
487 nir_emit_texture(abld, nir_instr_as_tex(instr));
488 break;
489
490 case nir_instr_type_load_const:
491 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
492 break;
493
494 case nir_instr_type_ssa_undef:
495 /* We create a new VGRF for undefs on every use (by handling
496 * them in get_nir_src()), rather than for each definition.
497 * This helps register coalescing eliminate MOVs from undef.
498 */
499 break;
500
501 case nir_instr_type_jump:
502 nir_emit_jump(abld, nir_instr_as_jump(instr));
503 break;
504
505 default:
506 unreachable("unknown instruction type");
507 }
508 }
509
510 /**
511 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
512 * match instr.
513 */
514 bool
515 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
516 const fs_reg &result)
517 {
518 if (!instr->src[0].src.is_ssa ||
519 !instr->src[0].src.ssa->parent_instr)
520 return false;
521
522 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
523 return false;
524
525 nir_alu_instr *src0 =
526 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
527
528 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
529 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
530 return false;
531
532 /* If either opcode has source modifiers, bail.
533 *
534 * TODO: We can potentially handle source modifiers if both of the opcodes
535 * we're combining are signed integers.
536 */
537 if (instr->src[0].abs || instr->src[0].negate ||
538 src0->src[0].abs || src0->src[0].negate)
539 return false;
540
541 unsigned element = nir_src_as_uint(src0->src[1].src);
542
543 /* Element type to extract.*/
544 const brw_reg_type type = brw_int_type(
545 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
546 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
547
548 fs_reg op0 = get_nir_src(src0->src[0].src);
549 op0.type = brw_type_for_nir_type(devinfo,
550 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
551 nir_src_bit_size(src0->src[0].src)));
552 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
553
554 set_saturate(instr->dest.saturate,
555 bld.MOV(result, subscript(op0, type, element)));
556 return true;
557 }
558
559 bool
560 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
561 const fs_reg &result)
562 {
563 nir_intrinsic_instr *src0 = nir_src_as_intrinsic(instr->src[0].src);
564 if (src0 == NULL || src0->intrinsic != nir_intrinsic_load_front_face)
565 return false;
566
567 if (!nir_src_is_const(instr->src[1].src) ||
568 !nir_src_is_const(instr->src[2].src))
569 return false;
570
571 const float value1 = nir_src_as_float(instr->src[1].src);
572 const float value2 = nir_src_as_float(instr->src[2].src);
573 if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
574 return false;
575
576 /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
577 assert(value1 == -value2);
578
579 fs_reg tmp = vgrf(glsl_type::int_type);
580
581 if (devinfo->gen >= 6) {
582 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
583 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
584
585 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
586 *
587 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
588 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
589 *
590 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
591 *
592 * This negation looks like it's safe in practice, because bits 0:4 will
593 * surely be TRIANGLES
594 */
595
596 if (value1 == -1.0f) {
597 g0.negate = true;
598 }
599
600 bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
601 g0, brw_imm_uw(0x3f80));
602 } else {
603 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
604 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
605
606 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
607 *
608 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
609 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
610 *
611 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
612 *
613 * This negation looks like it's safe in practice, because bits 0:4 will
614 * surely be TRIANGLES
615 */
616
617 if (value1 == -1.0f) {
618 g1_6.negate = true;
619 }
620
621 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
622 }
623 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
624
625 return true;
626 }
627
628 static void
629 emit_find_msb_using_lzd(const fs_builder &bld,
630 const fs_reg &result,
631 const fs_reg &src,
632 bool is_signed)
633 {
634 fs_inst *inst;
635 fs_reg temp = src;
636
637 if (is_signed) {
638 /* LZD of an absolute value source almost always does the right
639 * thing. There are two problem values:
640 *
641 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
642 * 0. However, findMSB(int(0x80000000)) == 30.
643 *
644 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
645 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
646 *
647 * For a value of zero or negative one, -1 will be returned.
648 *
649 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
650 * findMSB(-(1<<x)) should return x-1.
651 *
652 * For all negative number cases, including 0x80000000 and
653 * 0xffffffff, the correct value is obtained from LZD if instead of
654 * negating the (already negative) value the logical-not is used. A
655 * conditonal logical-not can be achieved in two instructions.
656 */
657 temp = bld.vgrf(BRW_REGISTER_TYPE_D);
658
659 bld.ASR(temp, src, brw_imm_d(31));
660 bld.XOR(temp, temp, src);
661 }
662
663 bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
664 retype(temp, BRW_REGISTER_TYPE_UD));
665
666 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
667 * from the LSB side. Subtract the result from 31 to convert the MSB
668 * count into an LSB count. If no bits are set, LZD will return 32.
669 * 31-32 = -1, which is exactly what findMSB() is supposed to return.
670 */
671 inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
672 inst->src[0].negate = true;
673 }
674
675 static brw_rnd_mode
676 brw_rnd_mode_from_nir_op (const nir_op op) {
677 switch (op) {
678 case nir_op_f2f16_rtz:
679 return BRW_RND_MODE_RTZ;
680 case nir_op_f2f16_rtne:
681 return BRW_RND_MODE_RTNE;
682 default:
683 unreachable("Operation doesn't support rounding mode");
684 }
685 }
686
687 fs_reg
688 fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
689 nir_alu_instr *instr,
690 fs_reg *op,
691 bool need_dest)
692 {
693 fs_reg result =
694 need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
695
696 result.type = brw_type_for_nir_type(devinfo,
697 (nir_alu_type)(nir_op_infos[instr->op].output_type |
698 nir_dest_bit_size(instr->dest.dest)));
699
700 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
701 op[i] = get_nir_src(instr->src[i].src);
702 op[i].type = brw_type_for_nir_type(devinfo,
703 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
704 nir_src_bit_size(instr->src[i].src)));
705 op[i].abs = instr->src[i].abs;
706 op[i].negate = instr->src[i].negate;
707 }
708
709 /* Move and vecN instrutions may still be vectored. Return the raw,
710 * vectored source and destination so that fs_visitor::nir_emit_alu can
711 * handle it. Other callers should not have to handle these kinds of
712 * instructions.
713 */
714 switch (instr->op) {
715 case nir_op_mov:
716 case nir_op_vec2:
717 case nir_op_vec3:
718 case nir_op_vec4:
719 return result;
720 default:
721 break;
722 }
723
724 /* At this point, we have dealt with any instruction that operates on
725 * more than a single channel. Therefore, we can just adjust the source
726 * and destination registers for that channel and emit the instruction.
727 */
728 unsigned channel = 0;
729 if (nir_op_infos[instr->op].output_size == 0) {
730 /* Since NIR is doing the scalarizing for us, we should only ever see
731 * vectorized operations with a single channel.
732 */
733 assert(util_bitcount(instr->dest.write_mask) == 1);
734 channel = ffs(instr->dest.write_mask) - 1;
735
736 result = offset(result, bld, channel);
737 }
738
739 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
740 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
741 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
742 }
743
744 return result;
745 }
746
747 void
748 fs_visitor::resolve_inot_sources(const fs_builder &bld, nir_alu_instr *instr,
749 fs_reg *op)
750 {
751 for (unsigned i = 0; i < 2; i++) {
752 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[i].src);
753
754 if (inot_instr != NULL && inot_instr->op == nir_op_inot &&
755 !inot_instr->src[0].abs && !inot_instr->src[0].negate) {
756 /* The source of the inot is now the source of instr. */
757 prepare_alu_destination_and_sources(bld, inot_instr, &op[i], false);
758
759 assert(!op[i].negate);
760 op[i].negate = true;
761 } else {
762 op[i] = resolve_source_modifiers(op[i]);
763 }
764 }
765 }
766
767 bool
768 fs_visitor::try_emit_b2fi_of_inot(const fs_builder &bld,
769 fs_reg result,
770 nir_alu_instr *instr)
771 {
772 if (devinfo->gen < 6 || devinfo->gen >= 12)
773 return false;
774
775 nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[0].src);
776
777 if (inot_instr == NULL || inot_instr->op != nir_op_inot)
778 return false;
779
780 /* HF is also possible as a destination on BDW+. For nir_op_b2i, the set
781 * of valid size-changing combinations is a bit more complex.
782 *
783 * The source restriction is just because I was lazy about generating the
784 * constant below.
785 */
786 if (nir_dest_bit_size(instr->dest.dest) != 32 ||
787 nir_src_bit_size(inot_instr->src[0].src) != 32)
788 return false;
789
790 /* b2[fi](inot(a)) maps a=0 => 1, a=-1 => 0. Since a can only be 0 or -1,
791 * this is float(1 + a).
792 */
793 fs_reg op;
794
795 prepare_alu_destination_and_sources(bld, inot_instr, &op, false);
796
797 /* Ignore the saturate modifier, if there is one. The result of the
798 * arithmetic can only be 0 or 1, so the clamping will do nothing anyway.
799 */
800 bld.ADD(result, op, brw_imm_d(1));
801
802 return true;
803 }
804
805 /**
806 * Emit code for nir_op_fsign possibly fused with a nir_op_fmul
807 *
808 * If \c instr is not the \c nir_op_fsign, then \c fsign_src is the index of
809 * the source of \c instr that is a \c nir_op_fsign.
810 */
811 void
812 fs_visitor::emit_fsign(const fs_builder &bld, const nir_alu_instr *instr,
813 fs_reg result, fs_reg *op, unsigned fsign_src)
814 {
815 fs_inst *inst;
816
817 assert(instr->op == nir_op_fsign || instr->op == nir_op_fmul);
818 assert(fsign_src < nir_op_infos[instr->op].num_inputs);
819
820 if (instr->op != nir_op_fsign) {
821 const nir_alu_instr *const fsign_instr =
822 nir_src_as_alu_instr(instr->src[fsign_src].src);
823
824 assert(!fsign_instr->dest.saturate);
825
826 /* op[fsign_src] has the nominal result of the fsign, and op[1 -
827 * fsign_src] has the other multiply source. This must be rearranged so
828 * that op[0] is the source of the fsign op[1] is the other multiply
829 * source.
830 */
831 if (fsign_src != 0)
832 op[1] = op[0];
833
834 op[0] = get_nir_src(fsign_instr->src[0].src);
835
836 const nir_alu_type t =
837 (nir_alu_type)(nir_op_infos[instr->op].input_types[0] |
838 nir_src_bit_size(fsign_instr->src[0].src));
839
840 op[0].type = brw_type_for_nir_type(devinfo, t);
841 op[0].abs = fsign_instr->src[0].abs;
842 op[0].negate = fsign_instr->src[0].negate;
843
844 unsigned channel = 0;
845 if (nir_op_infos[instr->op].output_size == 0) {
846 /* Since NIR is doing the scalarizing for us, we should only ever see
847 * vectorized operations with a single channel.
848 */
849 assert(util_bitcount(instr->dest.write_mask) == 1);
850 channel = ffs(instr->dest.write_mask) - 1;
851 }
852
853 op[0] = offset(op[0], bld, fsign_instr->src[0].swizzle[channel]);
854 } else {
855 assert(!instr->dest.saturate);
856 }
857
858 if (op[0].abs) {
859 /* Straightforward since the source can be assumed to be either strictly
860 * >= 0 or strictly <= 0 depending on the setting of the negate flag.
861 */
862 set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
863
864 if (instr->op == nir_op_fsign) {
865 inst = (op[0].negate)
866 ? bld.MOV(result, brw_imm_f(-1.0f))
867 : bld.MOV(result, brw_imm_f(1.0f));
868 } else {
869 op[1].negate = (op[0].negate != op[1].negate);
870 inst = bld.MOV(result, op[1]);
871 }
872
873 set_predicate(BRW_PREDICATE_NORMAL, inst);
874 } else if (type_sz(op[0].type) == 2) {
875 /* AND(val, 0x8000) gives the sign bit.
876 *
877 * Predicated OR ORs 1.0 (0x3c00) with the sign bit if val is not zero.
878 */
879 fs_reg zero = retype(brw_imm_uw(0), BRW_REGISTER_TYPE_HF);
880 bld.CMP(bld.null_reg_f(), op[0], zero, BRW_CONDITIONAL_NZ);
881
882 op[0].type = BRW_REGISTER_TYPE_UW;
883 result.type = BRW_REGISTER_TYPE_UW;
884 bld.AND(result, op[0], brw_imm_uw(0x8000u));
885
886 if (instr->op == nir_op_fsign)
887 inst = bld.OR(result, result, brw_imm_uw(0x3c00u));
888 else {
889 /* Use XOR here to get the result sign correct. */
890 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UW));
891 }
892
893 inst->predicate = BRW_PREDICATE_NORMAL;
894 } else if (type_sz(op[0].type) == 4) {
895 /* AND(val, 0x80000000) gives the sign bit.
896 *
897 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
898 * zero.
899 */
900 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
901
902 op[0].type = BRW_REGISTER_TYPE_UD;
903 result.type = BRW_REGISTER_TYPE_UD;
904 bld.AND(result, op[0], brw_imm_ud(0x80000000u));
905
906 if (instr->op == nir_op_fsign)
907 inst = bld.OR(result, result, brw_imm_ud(0x3f800000u));
908 else {
909 /* Use XOR here to get the result sign correct. */
910 inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UD));
911 }
912
913 inst->predicate = BRW_PREDICATE_NORMAL;
914 } else {
915 /* For doubles we do the same but we need to consider:
916 *
917 * - 2-src instructions can't operate with 64-bit immediates
918 * - The sign is encoded in the high 32-bit of each DF
919 * - We need to produce a DF result.
920 */
921
922 fs_reg zero = vgrf(glsl_type::double_type);
923 bld.MOV(zero, setup_imm_df(bld, 0.0));
924 bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
925
926 bld.MOV(result, zero);
927
928 fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
929 bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
930 brw_imm_ud(0x80000000u));
931
932 if (instr->op == nir_op_fsign) {
933 set_predicate(BRW_PREDICATE_NORMAL,
934 bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
935 } else {
936 /* This could be done better in some cases. If the scale is an
937 * immediate with the low 32-bits all 0, emitting a separate XOR and
938 * OR would allow an algebraic optimization to remove the OR. There
939 * are currently zero instances of fsign(double(x))*IMM in shader-db
940 * or any test suite, so it is hard to care at this time.
941 */
942 fs_reg result_int64 = retype(result, BRW_REGISTER_TYPE_UQ);
943 inst = bld.XOR(result_int64, result_int64,
944 retype(op[1], BRW_REGISTER_TYPE_UQ));
945 }
946 }
947 }
948
949 /**
950 * Deteremine whether sources of a nir_op_fmul can be fused with a nir_op_fsign
951 *
952 * Checks the operands of a \c nir_op_fmul to determine whether or not
953 * \c emit_fsign could fuse the multiplication with the \c sign() calculation.
954 *
955 * \param instr The multiplication instruction
956 *
957 * \param fsign_src The source of \c instr that may or may not be a
958 * \c nir_op_fsign
959 */
960 static bool
961 can_fuse_fmul_fsign(nir_alu_instr *instr, unsigned fsign_src)
962 {
963 assert(instr->op == nir_op_fmul);
964
965 nir_alu_instr *const fsign_instr =
966 nir_src_as_alu_instr(instr->src[fsign_src].src);
967
968 /* Rules:
969 *
970 * 1. instr->src[fsign_src] must be a nir_op_fsign.
971 * 2. The nir_op_fsign can only be used by this multiplication.
972 * 3. The source that is the nir_op_fsign does not have source modifiers.
973 * \c emit_fsign only examines the source modifiers of the source of the
974 * \c nir_op_fsign.
975 *
976 * The nir_op_fsign must also not have the saturate modifier, but steps
977 * have already been taken (in nir_opt_algebraic) to ensure that.
978 */
979 return fsign_instr != NULL && fsign_instr->op == nir_op_fsign &&
980 is_used_once(fsign_instr) &&
981 !instr->src[fsign_src].abs && !instr->src[fsign_src].negate;
982 }
983
984 void
985 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr,
986 bool need_dest)
987 {
988 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
989 fs_inst *inst;
990
991 fs_reg op[4];
992 fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, need_dest);
993
994 switch (instr->op) {
995 case nir_op_mov:
996 case nir_op_vec2:
997 case nir_op_vec3:
998 case nir_op_vec4: {
999 fs_reg temp = result;
1000 bool need_extra_copy = false;
1001 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1002 if (!instr->src[i].src.is_ssa &&
1003 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
1004 need_extra_copy = true;
1005 temp = bld.vgrf(result.type, 4);
1006 break;
1007 }
1008 }
1009
1010 for (unsigned i = 0; i < 4; i++) {
1011 if (!(instr->dest.write_mask & (1 << i)))
1012 continue;
1013
1014 if (instr->op == nir_op_mov) {
1015 inst = bld.MOV(offset(temp, bld, i),
1016 offset(op[0], bld, instr->src[0].swizzle[i]));
1017 } else {
1018 inst = bld.MOV(offset(temp, bld, i),
1019 offset(op[i], bld, instr->src[i].swizzle[0]));
1020 }
1021 inst->saturate = instr->dest.saturate;
1022 }
1023
1024 /* In this case the source and destination registers were the same,
1025 * so we need to insert an extra set of moves in order to deal with
1026 * any swizzling.
1027 */
1028 if (need_extra_copy) {
1029 for (unsigned i = 0; i < 4; i++) {
1030 if (!(instr->dest.write_mask & (1 << i)))
1031 continue;
1032
1033 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
1034 }
1035 }
1036 return;
1037 }
1038
1039 case nir_op_i2f32:
1040 case nir_op_u2f32:
1041 if (optimize_extract_to_float(instr, result))
1042 return;
1043 inst = bld.MOV(result, op[0]);
1044 inst->saturate = instr->dest.saturate;
1045 break;
1046
1047 case nir_op_f2f16_rtne:
1048 case nir_op_f2f16_rtz:
1049 bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1050 brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
1051 /* fallthrough */
1052 case nir_op_f2f16:
1053 /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
1054 * on the HW gen, it is a special hw opcode or just a MOV, and
1055 * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
1056 *
1057 * But if we want to use that opcode, we need to provide support on
1058 * different optimizations and lowerings. As right now HF support is
1059 * only for gen8+, it will be better to use directly the MOV, and use
1060 * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
1061 */
1062 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1063 inst = bld.MOV(result, op[0]);
1064 inst->saturate = instr->dest.saturate;
1065 break;
1066
1067 case nir_op_b2i8:
1068 case nir_op_b2i16:
1069 case nir_op_b2i32:
1070 case nir_op_b2i64:
1071 case nir_op_b2f16:
1072 case nir_op_b2f32:
1073 case nir_op_b2f64:
1074 if (try_emit_b2fi_of_inot(bld, result, instr))
1075 break;
1076 op[0].type = BRW_REGISTER_TYPE_D;
1077 op[0].negate = !op[0].negate;
1078 /* fallthrough */
1079 case nir_op_i2f64:
1080 case nir_op_i2i64:
1081 case nir_op_u2f64:
1082 case nir_op_u2u64:
1083 case nir_op_f2f64:
1084 case nir_op_f2i64:
1085 case nir_op_f2u64:
1086 case nir_op_i2i32:
1087 case nir_op_u2u32:
1088 case nir_op_f2f32:
1089 case nir_op_f2i32:
1090 case nir_op_f2u32:
1091 case nir_op_i2f16:
1092 case nir_op_i2i16:
1093 case nir_op_u2f16:
1094 case nir_op_u2u16:
1095 case nir_op_f2i16:
1096 case nir_op_f2u16:
1097 case nir_op_i2i8:
1098 case nir_op_u2u8:
1099 case nir_op_f2i8:
1100 case nir_op_f2u8:
1101 if (result.type == BRW_REGISTER_TYPE_B ||
1102 result.type == BRW_REGISTER_TYPE_UB ||
1103 result.type == BRW_REGISTER_TYPE_HF)
1104 assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1105
1106 if (op[0].type == BRW_REGISTER_TYPE_B ||
1107 op[0].type == BRW_REGISTER_TYPE_UB ||
1108 op[0].type == BRW_REGISTER_TYPE_HF)
1109 assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
1110
1111 inst = bld.MOV(result, op[0]);
1112 inst->saturate = instr->dest.saturate;
1113 break;
1114
1115 case nir_op_fsat:
1116 inst = bld.MOV(result, op[0]);
1117 inst->saturate = true;
1118 break;
1119
1120 case nir_op_fneg:
1121 case nir_op_ineg:
1122 op[0].negate = true;
1123 inst = bld.MOV(result, op[0]);
1124 if (instr->op == nir_op_fneg)
1125 inst->saturate = instr->dest.saturate;
1126 break;
1127
1128 case nir_op_fabs:
1129 case nir_op_iabs:
1130 op[0].negate = false;
1131 op[0].abs = true;
1132 inst = bld.MOV(result, op[0]);
1133 if (instr->op == nir_op_fabs)
1134 inst->saturate = instr->dest.saturate;
1135 break;
1136
1137 case nir_op_fsign:
1138 emit_fsign(bld, instr, result, op, 0);
1139 break;
1140
1141 case nir_op_frcp:
1142 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
1143 inst->saturate = instr->dest.saturate;
1144 break;
1145
1146 case nir_op_fexp2:
1147 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
1148 inst->saturate = instr->dest.saturate;
1149 break;
1150
1151 case nir_op_flog2:
1152 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
1153 inst->saturate = instr->dest.saturate;
1154 break;
1155
1156 case nir_op_fsin:
1157 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
1158 inst->saturate = instr->dest.saturate;
1159 break;
1160
1161 case nir_op_fcos:
1162 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
1163 inst->saturate = instr->dest.saturate;
1164 break;
1165
1166 case nir_op_fddx:
1167 if (fs_key->high_quality_derivatives) {
1168 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1169 } else {
1170 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1171 }
1172 inst->saturate = instr->dest.saturate;
1173 break;
1174 case nir_op_fddx_fine:
1175 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1176 inst->saturate = instr->dest.saturate;
1177 break;
1178 case nir_op_fddx_coarse:
1179 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1180 inst->saturate = instr->dest.saturate;
1181 break;
1182 case nir_op_fddy:
1183 if (fs_key->high_quality_derivatives) {
1184 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1185 } else {
1186 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1187 }
1188 inst->saturate = instr->dest.saturate;
1189 break;
1190 case nir_op_fddy_fine:
1191 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1192 inst->saturate = instr->dest.saturate;
1193 break;
1194 case nir_op_fddy_coarse:
1195 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1196 inst->saturate = instr->dest.saturate;
1197 break;
1198
1199 case nir_op_iadd:
1200 case nir_op_fadd:
1201 inst = bld.ADD(result, op[0], op[1]);
1202 inst->saturate = instr->dest.saturate;
1203 break;
1204
1205 case nir_op_uadd_sat:
1206 inst = bld.ADD(result, op[0], op[1]);
1207 inst->saturate = true;
1208 break;
1209
1210 case nir_op_fmul:
1211 for (unsigned i = 0; i < 2; i++) {
1212 if (can_fuse_fmul_fsign(instr, i)) {
1213 emit_fsign(bld, instr, result, op, i);
1214 return;
1215 }
1216 }
1217
1218 inst = bld.MUL(result, op[0], op[1]);
1219 inst->saturate = instr->dest.saturate;
1220 break;
1221
1222 case nir_op_imul_2x32_64:
1223 case nir_op_umul_2x32_64:
1224 bld.MUL(result, op[0], op[1]);
1225 break;
1226
1227 case nir_op_imul:
1228 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1229 bld.MUL(result, op[0], op[1]);
1230 break;
1231
1232 case nir_op_imul_high:
1233 case nir_op_umul_high:
1234 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1235 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1236 break;
1237
1238 case nir_op_idiv:
1239 case nir_op_udiv:
1240 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1241 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1242 break;
1243
1244 case nir_op_uadd_carry:
1245 unreachable("Should have been lowered by carry_to_arith().");
1246
1247 case nir_op_usub_borrow:
1248 unreachable("Should have been lowered by borrow_to_arith().");
1249
1250 case nir_op_umod:
1251 case nir_op_irem:
1252 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1253 * appears that our hardware just does the right thing for signed
1254 * remainder.
1255 */
1256 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1257 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1258 break;
1259
1260 case nir_op_imod: {
1261 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1262 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1263
1264 /* Math instructions don't support conditional mod */
1265 inst = bld.MOV(bld.null_reg_d(), result);
1266 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1267
1268 /* Now, we need to determine if signs of the sources are different.
1269 * When we XOR the sources, the top bit is 0 if they are the same and 1
1270 * if they are different. We can then use a conditional modifier to
1271 * turn that into a predicate. This leads us to an XOR.l instruction.
1272 *
1273 * Technically, according to the PRM, you're not allowed to use .l on a
1274 * XOR instruction. However, emperical experiments and Curro's reading
1275 * of the simulator source both indicate that it's safe.
1276 */
1277 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1278 inst = bld.XOR(tmp, op[0], op[1]);
1279 inst->predicate = BRW_PREDICATE_NORMAL;
1280 inst->conditional_mod = BRW_CONDITIONAL_L;
1281
1282 /* If the result of the initial remainder operation is non-zero and the
1283 * two sources have different signs, add in a copy of op[1] to get the
1284 * final integer modulus value.
1285 */
1286 inst = bld.ADD(result, result, op[1]);
1287 inst->predicate = BRW_PREDICATE_NORMAL;
1288 break;
1289 }
1290
1291 case nir_op_flt32:
1292 case nir_op_fge32:
1293 case nir_op_feq32:
1294 case nir_op_fne32: {
1295 fs_reg dest = result;
1296
1297 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1298 if (bit_size != 32)
1299 dest = bld.vgrf(op[0].type, 1);
1300
1301 brw_conditional_mod cond;
1302 switch (instr->op) {
1303 case nir_op_flt32:
1304 cond = BRW_CONDITIONAL_L;
1305 break;
1306 case nir_op_fge32:
1307 cond = BRW_CONDITIONAL_GE;
1308 break;
1309 case nir_op_feq32:
1310 cond = BRW_CONDITIONAL_Z;
1311 break;
1312 case nir_op_fne32:
1313 cond = BRW_CONDITIONAL_NZ;
1314 break;
1315 default:
1316 unreachable("bad opcode");
1317 }
1318
1319 bld.CMP(dest, op[0], op[1], cond);
1320
1321 if (bit_size > 32) {
1322 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1323 } else if(bit_size < 32) {
1324 /* When we convert the result to 32-bit we need to be careful and do
1325 * it as a signed conversion to get sign extension (for 32-bit true)
1326 */
1327 const brw_reg_type src_type =
1328 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1329
1330 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1331 }
1332 break;
1333 }
1334
1335 case nir_op_ilt32:
1336 case nir_op_ult32:
1337 case nir_op_ige32:
1338 case nir_op_uge32:
1339 case nir_op_ieq32:
1340 case nir_op_ine32: {
1341 fs_reg dest = result;
1342
1343 /* On Gen11 we have an additional issue being that src1 cannot be a byte
1344 * type. So we convert both operands for the comparison.
1345 */
1346 fs_reg temp_op[2];
1347 temp_op[0] = bld.fix_byte_src(op[0]);
1348 temp_op[1] = bld.fix_byte_src(op[1]);
1349
1350 const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1351 if (bit_size != 32)
1352 dest = bld.vgrf(temp_op[0].type, 1);
1353
1354 brw_conditional_mod cond;
1355 switch (instr->op) {
1356 case nir_op_ilt32:
1357 case nir_op_ult32:
1358 cond = BRW_CONDITIONAL_L;
1359 break;
1360 case nir_op_ige32:
1361 case nir_op_uge32:
1362 cond = BRW_CONDITIONAL_GE;
1363 break;
1364 case nir_op_ieq32:
1365 cond = BRW_CONDITIONAL_Z;
1366 break;
1367 case nir_op_ine32:
1368 cond = BRW_CONDITIONAL_NZ;
1369 break;
1370 default:
1371 unreachable("bad opcode");
1372 }
1373 bld.CMP(dest, temp_op[0], temp_op[1], cond);
1374
1375 if (bit_size > 32) {
1376 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1377 } else if (bit_size < 32) {
1378 /* When we convert the result to 32-bit we need to be careful and do
1379 * it as a signed conversion to get sign extension (for 32-bit true)
1380 */
1381 const brw_reg_type src_type =
1382 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1383
1384 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1385 }
1386 break;
1387 }
1388
1389 case nir_op_inot:
1390 if (devinfo->gen >= 8) {
1391 nir_alu_instr *inot_src_instr = nir_src_as_alu_instr(instr->src[0].src);
1392
1393 if (inot_src_instr != NULL &&
1394 (inot_src_instr->op == nir_op_ior ||
1395 inot_src_instr->op == nir_op_ixor ||
1396 inot_src_instr->op == nir_op_iand) &&
1397 !inot_src_instr->src[0].abs &&
1398 !inot_src_instr->src[0].negate &&
1399 !inot_src_instr->src[1].abs &&
1400 !inot_src_instr->src[1].negate) {
1401 /* The sources of the source logical instruction are now the
1402 * sources of the instruction that will be generated.
1403 */
1404 prepare_alu_destination_and_sources(bld, inot_src_instr, op, false);
1405 resolve_inot_sources(bld, inot_src_instr, op);
1406
1407 /* Smash all of the sources and destination to be signed. This
1408 * doesn't matter for the operation of the instruction, but cmod
1409 * propagation fails on unsigned sources with negation (due to
1410 * fs_inst::can_do_cmod returning false).
1411 */
1412 result.type =
1413 brw_type_for_nir_type(devinfo,
1414 (nir_alu_type)(nir_type_int |
1415 nir_dest_bit_size(instr->dest.dest)));
1416 op[0].type =
1417 brw_type_for_nir_type(devinfo,
1418 (nir_alu_type)(nir_type_int |
1419 nir_src_bit_size(inot_src_instr->src[0].src)));
1420 op[1].type =
1421 brw_type_for_nir_type(devinfo,
1422 (nir_alu_type)(nir_type_int |
1423 nir_src_bit_size(inot_src_instr->src[1].src)));
1424
1425 /* For XOR, only invert one of the sources. Arbitrarily choose
1426 * the first source.
1427 */
1428 op[0].negate = !op[0].negate;
1429 if (inot_src_instr->op != nir_op_ixor)
1430 op[1].negate = !op[1].negate;
1431
1432 switch (inot_src_instr->op) {
1433 case nir_op_ior:
1434 bld.AND(result, op[0], op[1]);
1435 return;
1436
1437 case nir_op_iand:
1438 bld.OR(result, op[0], op[1]);
1439 return;
1440
1441 case nir_op_ixor:
1442 bld.XOR(result, op[0], op[1]);
1443 return;
1444
1445 default:
1446 unreachable("impossible opcode");
1447 }
1448 }
1449 op[0] = resolve_source_modifiers(op[0]);
1450 }
1451 bld.NOT(result, op[0]);
1452 break;
1453 case nir_op_ixor:
1454 if (devinfo->gen >= 8) {
1455 resolve_inot_sources(bld, instr, op);
1456 }
1457 bld.XOR(result, op[0], op[1]);
1458 break;
1459 case nir_op_ior:
1460 if (devinfo->gen >= 8) {
1461 resolve_inot_sources(bld, instr, op);
1462 }
1463 bld.OR(result, op[0], op[1]);
1464 break;
1465 case nir_op_iand:
1466 if (devinfo->gen >= 8) {
1467 resolve_inot_sources(bld, instr, op);
1468 }
1469 bld.AND(result, op[0], op[1]);
1470 break;
1471
1472 case nir_op_fdot2:
1473 case nir_op_fdot3:
1474 case nir_op_fdot4:
1475 case nir_op_b32all_fequal2:
1476 case nir_op_b32all_iequal2:
1477 case nir_op_b32all_fequal3:
1478 case nir_op_b32all_iequal3:
1479 case nir_op_b32all_fequal4:
1480 case nir_op_b32all_iequal4:
1481 case nir_op_b32any_fnequal2:
1482 case nir_op_b32any_inequal2:
1483 case nir_op_b32any_fnequal3:
1484 case nir_op_b32any_inequal3:
1485 case nir_op_b32any_fnequal4:
1486 case nir_op_b32any_inequal4:
1487 unreachable("Lowered by nir_lower_alu_reductions");
1488
1489 case nir_op_fnoise1_1:
1490 case nir_op_fnoise1_2:
1491 case nir_op_fnoise1_3:
1492 case nir_op_fnoise1_4:
1493 case nir_op_fnoise2_1:
1494 case nir_op_fnoise2_2:
1495 case nir_op_fnoise2_3:
1496 case nir_op_fnoise2_4:
1497 case nir_op_fnoise3_1:
1498 case nir_op_fnoise3_2:
1499 case nir_op_fnoise3_3:
1500 case nir_op_fnoise3_4:
1501 case nir_op_fnoise4_1:
1502 case nir_op_fnoise4_2:
1503 case nir_op_fnoise4_3:
1504 case nir_op_fnoise4_4:
1505 unreachable("not reached: should be handled by lower_noise");
1506
1507 case nir_op_ldexp:
1508 unreachable("not reached: should be handled by ldexp_to_arith()");
1509
1510 case nir_op_fsqrt:
1511 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1512 inst->saturate = instr->dest.saturate;
1513 break;
1514
1515 case nir_op_frsq:
1516 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1517 inst->saturate = instr->dest.saturate;
1518 break;
1519
1520 case nir_op_i2b32:
1521 case nir_op_f2b32: {
1522 uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1523 if (bit_size == 64) {
1524 /* two-argument instructions can't take 64-bit immediates */
1525 fs_reg zero;
1526 fs_reg tmp;
1527
1528 if (instr->op == nir_op_f2b32) {
1529 zero = vgrf(glsl_type::double_type);
1530 tmp = vgrf(glsl_type::double_type);
1531 bld.MOV(zero, setup_imm_df(bld, 0.0));
1532 } else {
1533 zero = vgrf(glsl_type::int64_t_type);
1534 tmp = vgrf(glsl_type::int64_t_type);
1535 bld.MOV(zero, brw_imm_q(0));
1536 }
1537
1538 /* A SIMD16 execution needs to be split in two instructions, so use
1539 * a vgrf instead of the flag register as dst so instruction splitting
1540 * works
1541 */
1542 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1543 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1544 } else {
1545 fs_reg zero;
1546 if (bit_size == 32) {
1547 zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1548 } else {
1549 assert(bit_size == 16);
1550 zero = instr->op == nir_op_f2b32 ?
1551 retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1552 }
1553 bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1554 }
1555 break;
1556 }
1557
1558 case nir_op_ftrunc:
1559 inst = bld.RNDZ(result, op[0]);
1560 inst->saturate = instr->dest.saturate;
1561 break;
1562
1563 case nir_op_fceil: {
1564 op[0].negate = !op[0].negate;
1565 fs_reg temp = vgrf(glsl_type::float_type);
1566 bld.RNDD(temp, op[0]);
1567 temp.negate = true;
1568 inst = bld.MOV(result, temp);
1569 inst->saturate = instr->dest.saturate;
1570 break;
1571 }
1572 case nir_op_ffloor:
1573 inst = bld.RNDD(result, op[0]);
1574 inst->saturate = instr->dest.saturate;
1575 break;
1576 case nir_op_ffract:
1577 inst = bld.FRC(result, op[0]);
1578 inst->saturate = instr->dest.saturate;
1579 break;
1580 case nir_op_fround_even:
1581 inst = bld.RNDE(result, op[0]);
1582 inst->saturate = instr->dest.saturate;
1583 break;
1584
1585 case nir_op_fquantize2f16: {
1586 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1587 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1588 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1589
1590 /* The destination stride must be at least as big as the source stride. */
1591 tmp16.type = BRW_REGISTER_TYPE_W;
1592 tmp16.stride = 2;
1593
1594 /* Check for denormal */
1595 fs_reg abs_src0 = op[0];
1596 abs_src0.abs = true;
1597 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1598 BRW_CONDITIONAL_L);
1599 /* Get the appropriately signed zero */
1600 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1601 retype(op[0], BRW_REGISTER_TYPE_UD),
1602 brw_imm_ud(0x80000000));
1603 /* Do the actual F32 -> F16 -> F32 conversion */
1604 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1605 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1606 /* Select that or zero based on normal status */
1607 inst = bld.SEL(result, zero, tmp32);
1608 inst->predicate = BRW_PREDICATE_NORMAL;
1609 inst->saturate = instr->dest.saturate;
1610 break;
1611 }
1612
1613 case nir_op_imin:
1614 case nir_op_umin:
1615 case nir_op_fmin:
1616 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1617 inst->saturate = instr->dest.saturate;
1618 break;
1619
1620 case nir_op_imax:
1621 case nir_op_umax:
1622 case nir_op_fmax:
1623 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1624 inst->saturate = instr->dest.saturate;
1625 break;
1626
1627 case nir_op_pack_snorm_2x16:
1628 case nir_op_pack_snorm_4x8:
1629 case nir_op_pack_unorm_2x16:
1630 case nir_op_pack_unorm_4x8:
1631 case nir_op_unpack_snorm_2x16:
1632 case nir_op_unpack_snorm_4x8:
1633 case nir_op_unpack_unorm_2x16:
1634 case nir_op_unpack_unorm_4x8:
1635 case nir_op_unpack_half_2x16:
1636 case nir_op_pack_half_2x16:
1637 unreachable("not reached: should be handled by lower_packing_builtins");
1638
1639 case nir_op_unpack_half_2x16_split_x:
1640 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1641 subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1642 inst->saturate = instr->dest.saturate;
1643 break;
1644 case nir_op_unpack_half_2x16_split_y:
1645 inst = bld.emit(BRW_OPCODE_F16TO32, result,
1646 subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1647 inst->saturate = instr->dest.saturate;
1648 break;
1649
1650 case nir_op_pack_64_2x32_split:
1651 case nir_op_pack_32_2x16_split:
1652 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1653 break;
1654
1655 case nir_op_unpack_64_2x32_split_x:
1656 case nir_op_unpack_64_2x32_split_y: {
1657 if (instr->op == nir_op_unpack_64_2x32_split_x)
1658 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1659 else
1660 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1661 break;
1662 }
1663
1664 case nir_op_unpack_32_2x16_split_x:
1665 case nir_op_unpack_32_2x16_split_y: {
1666 if (instr->op == nir_op_unpack_32_2x16_split_x)
1667 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1668 else
1669 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1670 break;
1671 }
1672
1673 case nir_op_fpow:
1674 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1675 inst->saturate = instr->dest.saturate;
1676 break;
1677
1678 case nir_op_bitfield_reverse:
1679 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1680 bld.BFREV(result, op[0]);
1681 break;
1682
1683 case nir_op_bit_count:
1684 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1685 bld.CBIT(result, op[0]);
1686 break;
1687
1688 case nir_op_ufind_msb: {
1689 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1690 emit_find_msb_using_lzd(bld, result, op[0], false);
1691 break;
1692 }
1693
1694 case nir_op_ifind_msb: {
1695 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1696
1697 if (devinfo->gen < 7) {
1698 emit_find_msb_using_lzd(bld, result, op[0], true);
1699 } else {
1700 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1701
1702 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1703 * count from the LSB side. If FBH didn't return an error
1704 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1705 * count into an LSB count.
1706 */
1707 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1708
1709 inst = bld.ADD(result, result, brw_imm_d(31));
1710 inst->predicate = BRW_PREDICATE_NORMAL;
1711 inst->src[0].negate = true;
1712 }
1713 break;
1714 }
1715
1716 case nir_op_find_lsb:
1717 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1718
1719 if (devinfo->gen < 7) {
1720 fs_reg temp = vgrf(glsl_type::int_type);
1721
1722 /* (x & -x) generates a value that consists of only the LSB of x.
1723 * For all powers of 2, findMSB(y) == findLSB(y).
1724 */
1725 fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1726 fs_reg negated_src = src;
1727
1728 /* One must be negated, and the other must be non-negated. It
1729 * doesn't matter which is which.
1730 */
1731 negated_src.negate = true;
1732 src.negate = false;
1733
1734 bld.AND(temp, src, negated_src);
1735 emit_find_msb_using_lzd(bld, result, temp, false);
1736 } else {
1737 bld.FBL(result, op[0]);
1738 }
1739 break;
1740
1741 case nir_op_ubitfield_extract:
1742 case nir_op_ibitfield_extract:
1743 unreachable("should have been lowered");
1744 case nir_op_ubfe:
1745 case nir_op_ibfe:
1746 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1747 bld.BFE(result, op[2], op[1], op[0]);
1748 break;
1749 case nir_op_bfm:
1750 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1751 bld.BFI1(result, op[0], op[1]);
1752 break;
1753 case nir_op_bfi:
1754 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1755 bld.BFI2(result, op[0], op[1], op[2]);
1756 break;
1757
1758 case nir_op_bitfield_insert:
1759 unreachable("not reached: should have been lowered");
1760
1761 case nir_op_ishl:
1762 bld.SHL(result, op[0], op[1]);
1763 break;
1764 case nir_op_ishr:
1765 bld.ASR(result, op[0], op[1]);
1766 break;
1767 case nir_op_ushr:
1768 bld.SHR(result, op[0], op[1]);
1769 break;
1770
1771 case nir_op_pack_half_2x16_split:
1772 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1773 break;
1774
1775 case nir_op_ffma:
1776 inst = bld.MAD(result, op[2], op[1], op[0]);
1777 inst->saturate = instr->dest.saturate;
1778 break;
1779
1780 case nir_op_flrp:
1781 inst = bld.LRP(result, op[0], op[1], op[2]);
1782 inst->saturate = instr->dest.saturate;
1783 break;
1784
1785 case nir_op_b32csel:
1786 if (optimize_frontfacing_ternary(instr, result))
1787 return;
1788
1789 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1790 inst = bld.SEL(result, op[1], op[2]);
1791 inst->predicate = BRW_PREDICATE_NORMAL;
1792 break;
1793
1794 case nir_op_extract_u8:
1795 case nir_op_extract_i8: {
1796 unsigned byte = nir_src_as_uint(instr->src[1].src);
1797
1798 /* The PRMs say:
1799 *
1800 * BDW+
1801 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1802 * Use two instructions and a word or DWord intermediate integer type.
1803 */
1804 if (nir_dest_bit_size(instr->dest.dest) == 64) {
1805 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1806
1807 if (instr->op == nir_op_extract_i8) {
1808 /* If we need to sign extend, extract to a word first */
1809 fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1810 bld.MOV(w_temp, subscript(op[0], type, byte));
1811 bld.MOV(result, w_temp);
1812 } else if (byte & 1) {
1813 /* Extract the high byte from the word containing the desired byte
1814 * offset.
1815 */
1816 bld.SHR(result,
1817 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1818 brw_imm_uw(8));
1819 } else {
1820 /* Otherwise use an AND with 0xff and a word type */
1821 bld.AND(result,
1822 subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1823 brw_imm_uw(0xff));
1824 }
1825 } else {
1826 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1827 bld.MOV(result, subscript(op[0], type, byte));
1828 }
1829 break;
1830 }
1831
1832 case nir_op_extract_u16:
1833 case nir_op_extract_i16: {
1834 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1835 unsigned word = nir_src_as_uint(instr->src[1].src);
1836 bld.MOV(result, subscript(op[0], type, word));
1837 break;
1838 }
1839
1840 default:
1841 unreachable("unhandled instruction");
1842 }
1843
1844 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1845 * to sign extend the low bit to 0/~0
1846 */
1847 if (devinfo->gen <= 5 &&
1848 !result.is_null() &&
1849 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1850 fs_reg masked = vgrf(glsl_type::int_type);
1851 bld.AND(masked, result, brw_imm_d(1));
1852 masked.negate = true;
1853 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1854 }
1855 }
1856
1857 void
1858 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1859 nir_load_const_instr *instr)
1860 {
1861 const brw_reg_type reg_type =
1862 brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1863 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1864
1865 switch (instr->def.bit_size) {
1866 case 8:
1867 for (unsigned i = 0; i < instr->def.num_components; i++)
1868 bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value[i].i8));
1869 break;
1870
1871 case 16:
1872 for (unsigned i = 0; i < instr->def.num_components; i++)
1873 bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value[i].i16));
1874 break;
1875
1876 case 32:
1877 for (unsigned i = 0; i < instr->def.num_components; i++)
1878 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value[i].i32));
1879 break;
1880
1881 case 64:
1882 assert(devinfo->gen >= 7);
1883 if (devinfo->gen == 7) {
1884 /* We don't get 64-bit integer types until gen8 */
1885 for (unsigned i = 0; i < instr->def.num_components; i++) {
1886 bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1887 setup_imm_df(bld, instr->value[i].f64));
1888 }
1889 } else {
1890 for (unsigned i = 0; i < instr->def.num_components; i++)
1891 bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value[i].i64));
1892 }
1893 break;
1894
1895 default:
1896 unreachable("Invalid bit size");
1897 }
1898
1899 nir_ssa_values[instr->def.index] = reg;
1900 }
1901
1902 fs_reg
1903 fs_visitor::get_nir_src(const nir_src &src)
1904 {
1905 fs_reg reg;
1906 if (src.is_ssa) {
1907 if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1908 const brw_reg_type reg_type =
1909 brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1910 reg = bld.vgrf(reg_type, src.ssa->num_components);
1911 } else {
1912 reg = nir_ssa_values[src.ssa->index];
1913 }
1914 } else {
1915 /* We don't handle indirects on locals */
1916 assert(src.reg.indirect == NULL);
1917 reg = offset(nir_locals[src.reg.reg->index], bld,
1918 src.reg.base_offset * src.reg.reg->num_components);
1919 }
1920
1921 if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1922 /* The only 64-bit type available on gen7 is DF, so use that. */
1923 reg.type = BRW_REGISTER_TYPE_DF;
1924 } else {
1925 /* To avoid floating-point denorm flushing problems, set the type by
1926 * default to an integer type - instructions that need floating point
1927 * semantics will set this to F if they need to
1928 */
1929 reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1930 BRW_REGISTER_TYPE_D);
1931 }
1932
1933 return reg;
1934 }
1935
1936 /**
1937 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1938 *
1939 * This function should not be called on any value which may be 64 bits.
1940 * We could theoretically support 64-bit on gen8+ but we choose not to
1941 * because it wouldn't work in general (no gen7 support) and there are
1942 * enough restrictions in 64-bit immediates that you can't take the return
1943 * value and treat it the same as the result of get_nir_src().
1944 */
1945 fs_reg
1946 fs_visitor::get_nir_src_imm(const nir_src &src)
1947 {
1948 assert(nir_src_bit_size(src) == 32);
1949 return nir_src_is_const(src) ?
1950 fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
1951 }
1952
1953 fs_reg
1954 fs_visitor::get_nir_dest(const nir_dest &dest)
1955 {
1956 if (dest.is_ssa) {
1957 const brw_reg_type reg_type =
1958 brw_reg_type_from_bit_size(dest.ssa.bit_size,
1959 dest.ssa.bit_size == 8 ?
1960 BRW_REGISTER_TYPE_D :
1961 BRW_REGISTER_TYPE_F);
1962 nir_ssa_values[dest.ssa.index] =
1963 bld.vgrf(reg_type, dest.ssa.num_components);
1964 bld.UNDEF(nir_ssa_values[dest.ssa.index]);
1965 return nir_ssa_values[dest.ssa.index];
1966 } else {
1967 /* We don't handle indirects on locals */
1968 assert(dest.reg.indirect == NULL);
1969 return offset(nir_locals[dest.reg.reg->index], bld,
1970 dest.reg.base_offset * dest.reg.reg->num_components);
1971 }
1972 }
1973
1974 void
1975 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1976 unsigned wr_mask)
1977 {
1978 for (unsigned i = 0; i < 4; i++) {
1979 if (!((wr_mask >> i) & 1))
1980 continue;
1981
1982 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1983 new_inst->dst = offset(new_inst->dst, bld, i);
1984 for (unsigned j = 0; j < new_inst->sources; j++)
1985 if (new_inst->src[j].file == VGRF)
1986 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1987
1988 bld.emit(new_inst);
1989 }
1990 }
1991
1992 static fs_inst *
1993 emit_pixel_interpolater_send(const fs_builder &bld,
1994 enum opcode opcode,
1995 const fs_reg &dst,
1996 const fs_reg &src,
1997 const fs_reg &desc,
1998 glsl_interp_mode interpolation)
1999 {
2000 struct brw_wm_prog_data *wm_prog_data =
2001 brw_wm_prog_data(bld.shader->stage_prog_data);
2002
2003 fs_inst *inst = bld.emit(opcode, dst, src, desc);
2004 /* 2 floats per slot returned */
2005 inst->size_written = 2 * dst.component_size(inst->exec_size);
2006 inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
2007
2008 wm_prog_data->pulls_bary = true;
2009
2010 return inst;
2011 }
2012
2013 /**
2014 * Computes 1 << x, given a D/UD register containing some value x.
2015 */
2016 static fs_reg
2017 intexp2(const fs_builder &bld, const fs_reg &x)
2018 {
2019 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
2020
2021 fs_reg result = bld.vgrf(x.type, 1);
2022 fs_reg one = bld.vgrf(x.type, 1);
2023
2024 bld.MOV(one, retype(brw_imm_d(1), one.type));
2025 bld.SHL(result, one, x);
2026 return result;
2027 }
2028
2029 void
2030 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
2031 {
2032 assert(stage == MESA_SHADER_GEOMETRY);
2033
2034 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2035
2036 if (gs_compile->control_data_header_size_bits == 0)
2037 return;
2038
2039 /* We can only do EndPrimitive() functionality when the control data
2040 * consists of cut bits. Fortunately, the only time it isn't is when the
2041 * output type is points, in which case EndPrimitive() is a no-op.
2042 */
2043 if (gs_prog_data->control_data_format !=
2044 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
2045 return;
2046 }
2047
2048 /* Cut bits use one bit per vertex. */
2049 assert(gs_compile->control_data_bits_per_vertex == 1);
2050
2051 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2052 vertex_count.type = BRW_REGISTER_TYPE_UD;
2053
2054 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
2055 * vertex n, 0 otherwise. So all we need to do here is mark bit
2056 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
2057 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
2058 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
2059 *
2060 * Note that if EndPrimitive() is called before emitting any vertices, this
2061 * will cause us to set bit 31 of the control_data_bits register to 1.
2062 * That's fine because:
2063 *
2064 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
2065 * output, so the hardware will ignore cut bit 31.
2066 *
2067 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
2068 * last vertex, so setting cut bit 31 has no effect (since the primitive
2069 * is automatically ended when the GS terminates).
2070 *
2071 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
2072 * control_data_bits register to 0 when the first vertex is emitted.
2073 */
2074
2075 const fs_builder abld = bld.annotate("end primitive");
2076
2077 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
2078 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2079 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2080 fs_reg mask = intexp2(abld, prev_count);
2081 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2082 * attention to the lower 5 bits of its second source argument, so on this
2083 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
2084 * ((vertex_count - 1) % 32).
2085 */
2086 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2087 }
2088
2089 void
2090 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
2091 {
2092 assert(stage == MESA_SHADER_GEOMETRY);
2093 assert(gs_compile->control_data_bits_per_vertex != 0);
2094
2095 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2096
2097 const fs_builder abld = bld.annotate("emit control data bits");
2098 const fs_builder fwa_bld = bld.exec_all();
2099
2100 /* We use a single UD register to accumulate control data bits (32 bits
2101 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
2102 * at a time.
2103 *
2104 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
2105 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
2106 * use the Channel Mask phase to enable/disable which DWord within that
2107 * group to write. (Remember, different SIMD8 channels may have emitted
2108 * different numbers of vertices, so we may need per-slot offsets.)
2109 *
2110 * Channel masking presents an annoying problem: we may have to replicate
2111 * the data up to 4 times:
2112 *
2113 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
2114 *
2115 * To avoid penalizing shaders that emit a small number of vertices, we
2116 * can avoid these sometimes: if the size of the control data header is
2117 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
2118 * land in the same 128-bit group, so we can skip per-slot offsets.
2119 *
2120 * Similarly, if the control data header is <= 32 bits, there is only one
2121 * DWord, so we can skip channel masks.
2122 */
2123 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
2124
2125 fs_reg channel_mask, per_slot_offset;
2126
2127 if (gs_compile->control_data_header_size_bits > 32) {
2128 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2129 channel_mask = vgrf(glsl_type::uint_type);
2130 }
2131
2132 if (gs_compile->control_data_header_size_bits > 128) {
2133 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
2134 per_slot_offset = vgrf(glsl_type::uint_type);
2135 }
2136
2137 /* Figure out which DWord we're trying to write to using the formula:
2138 *
2139 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
2140 *
2141 * Since bits_per_vertex is a power of two, and is known at compile
2142 * time, this can be optimized to:
2143 *
2144 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
2145 */
2146 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
2147 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2148 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2149 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2150 unsigned log2_bits_per_vertex =
2151 util_last_bit(gs_compile->control_data_bits_per_vertex);
2152 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
2153
2154 if (per_slot_offset.file != BAD_FILE) {
2155 /* Set the per-slot offset to dword_index / 4, so that we'll write to
2156 * the appropriate OWord within the control data header.
2157 */
2158 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
2159 }
2160
2161 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
2162 * write to the appropriate DWORD within the OWORD.
2163 */
2164 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2165 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
2166 channel_mask = intexp2(fwa_bld, channel);
2167 /* Then the channel masks need to be in bits 23:16. */
2168 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
2169 }
2170
2171 /* Store the control data bits in the message payload and send it. */
2172 unsigned mlen = 2;
2173 if (channel_mask.file != BAD_FILE)
2174 mlen += 4; /* channel masks, plus 3 extra copies of the data */
2175 if (per_slot_offset.file != BAD_FILE)
2176 mlen++;
2177
2178 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2179 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2180 unsigned i = 0;
2181 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2182 if (per_slot_offset.file != BAD_FILE)
2183 sources[i++] = per_slot_offset;
2184 if (channel_mask.file != BAD_FILE)
2185 sources[i++] = channel_mask;
2186 while (i < mlen) {
2187 sources[i++] = this->control_data_bits;
2188 }
2189
2190 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2191 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2192 inst->mlen = mlen;
2193 /* We need to increment Global Offset by 256-bits to make room for
2194 * Broadwell's extra "Vertex Count" payload at the beginning of the
2195 * URB entry. Since this is an OWord message, Global Offset is counted
2196 * in 128-bit units, so we must set it to 2.
2197 */
2198 if (gs_prog_data->static_vertex_count == -1)
2199 inst->offset = 2;
2200 }
2201
2202 void
2203 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2204 unsigned stream_id)
2205 {
2206 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2207
2208 /* Note: we are calling this *before* increasing vertex_count, so
2209 * this->vertex_count == vertex_count - 1 in the formula above.
2210 */
2211
2212 /* Stream mode uses 2 bits per vertex */
2213 assert(gs_compile->control_data_bits_per_vertex == 2);
2214
2215 /* Must be a valid stream */
2216 assert(stream_id < MAX_VERTEX_STREAMS);
2217
2218 /* Control data bits are initialized to 0 so we don't have to set any
2219 * bits when sending vertices to stream 0.
2220 */
2221 if (stream_id == 0)
2222 return;
2223
2224 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2225
2226 /* reg::sid = stream_id */
2227 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2228 abld.MOV(sid, brw_imm_ud(stream_id));
2229
2230 /* reg:shift_count = 2 * (vertex_count - 1) */
2231 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2232 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2233
2234 /* Note: we're relying on the fact that the GEN SHL instruction only pays
2235 * attention to the lower 5 bits of its second source argument, so on this
2236 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2237 * stream_id << ((2 * (vertex_count - 1)) % 32).
2238 */
2239 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2240 abld.SHL(mask, sid, shift_count);
2241 abld.OR(this->control_data_bits, this->control_data_bits, mask);
2242 }
2243
2244 void
2245 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2246 unsigned stream_id)
2247 {
2248 assert(stage == MESA_SHADER_GEOMETRY);
2249
2250 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2251
2252 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2253 vertex_count.type = BRW_REGISTER_TYPE_UD;
2254
2255 /* Haswell and later hardware ignores the "Render Stream Select" bits
2256 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2257 * and instead sends all primitives down the pipeline for rasterization.
2258 * If the SOL stage is enabled, "Render Stream Select" is honored and
2259 * primitives bound to non-zero streams are discarded after stream output.
2260 *
2261 * Since the only purpose of primives sent to non-zero streams is to
2262 * be recorded by transform feedback, we can simply discard all geometry
2263 * bound to these streams when transform feedback is disabled.
2264 */
2265 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2266 return;
2267
2268 /* If we're outputting 32 control data bits or less, then we can wait
2269 * until the shader is over to output them all. Otherwise we need to
2270 * output them as we go. Now is the time to do it, since we're about to
2271 * output the vertex_count'th vertex, so it's guaranteed that the
2272 * control data bits associated with the (vertex_count - 1)th vertex are
2273 * correct.
2274 */
2275 if (gs_compile->control_data_header_size_bits > 32) {
2276 const fs_builder abld =
2277 bld.annotate("emit vertex: emit control data bits");
2278
2279 /* Only emit control data bits if we've finished accumulating a batch
2280 * of 32 bits. This is the case when:
2281 *
2282 * (vertex_count * bits_per_vertex) % 32 == 0
2283 *
2284 * (in other words, when the last 5 bits of vertex_count *
2285 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
2286 * integer n (which is always the case, since bits_per_vertex is
2287 * always 1 or 2), this is equivalent to requiring that the last 5-n
2288 * bits of vertex_count are 0:
2289 *
2290 * vertex_count & (2^(5-n) - 1) == 0
2291 *
2292 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2293 * equivalent to:
2294 *
2295 * vertex_count & (32 / bits_per_vertex - 1) == 0
2296 *
2297 * TODO: If vertex_count is an immediate, we could do some of this math
2298 * at compile time...
2299 */
2300 fs_inst *inst =
2301 abld.AND(bld.null_reg_d(), vertex_count,
2302 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2303 inst->conditional_mod = BRW_CONDITIONAL_Z;
2304
2305 abld.IF(BRW_PREDICATE_NORMAL);
2306 /* If vertex_count is 0, then no control data bits have been
2307 * accumulated yet, so we can skip emitting them.
2308 */
2309 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2310 BRW_CONDITIONAL_NEQ);
2311 abld.IF(BRW_PREDICATE_NORMAL);
2312 emit_gs_control_data_bits(vertex_count);
2313 abld.emit(BRW_OPCODE_ENDIF);
2314
2315 /* Reset control_data_bits to 0 so we can start accumulating a new
2316 * batch.
2317 *
2318 * Note: in the case where vertex_count == 0, this neutralizes the
2319 * effect of any call to EndPrimitive() that the shader may have
2320 * made before outputting its first vertex.
2321 */
2322 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2323 inst->force_writemask_all = true;
2324 abld.emit(BRW_OPCODE_ENDIF);
2325 }
2326
2327 emit_urb_writes(vertex_count);
2328
2329 /* In stream mode we have to set control data bits for all vertices
2330 * unless we have disabled control data bits completely (which we do
2331 * do for GL_POINTS outputs that don't use streams).
2332 */
2333 if (gs_compile->control_data_header_size_bits > 0 &&
2334 gs_prog_data->control_data_format ==
2335 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2336 set_gs_stream_control_data_bits(vertex_count, stream_id);
2337 }
2338 }
2339
2340 void
2341 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2342 const nir_src &vertex_src,
2343 unsigned base_offset,
2344 const nir_src &offset_src,
2345 unsigned num_components,
2346 unsigned first_component)
2347 {
2348 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2349 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2350
2351 /* TODO: figure out push input layout for invocations == 1 */
2352 /* TODO: make this work with 64-bit inputs */
2353 if (gs_prog_data->invocations == 1 &&
2354 type_sz(dst.type) <= 4 &&
2355 nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2356 4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2357 int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2358 nir_src_as_uint(vertex_src) * push_reg_count;
2359 for (unsigned i = 0; i < num_components; i++) {
2360 bld.MOV(offset(dst, bld, i),
2361 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2362 }
2363 return;
2364 }
2365
2366 /* Resort to the pull model. Ensure the VUE handles are provided. */
2367 assert(gs_prog_data->base.include_vue_handles);
2368
2369 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2370 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2371
2372 if (gs_prog_data->invocations == 1) {
2373 if (nir_src_is_const(vertex_src)) {
2374 /* The vertex index is constant; just select the proper URB handle. */
2375 icp_handle =
2376 retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2377 BRW_REGISTER_TYPE_UD);
2378 } else {
2379 /* The vertex index is non-constant. We need to use indirect
2380 * addressing to fetch the proper URB handle.
2381 *
2382 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2383 * indicating that channel <n> should read the handle from
2384 * DWord <n>. We convert that to bytes by multiplying by 4.
2385 *
2386 * Next, we convert the vertex index to bytes by multiplying
2387 * by 32 (shifting by 5), and add the two together. This is
2388 * the final indirect byte offset.
2389 */
2390 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2391 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2392 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2393 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2394
2395 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2396 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2397 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2398 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2399 /* Convert vertex_index to bytes (multiply by 32) */
2400 bld.SHL(vertex_offset_bytes,
2401 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2402 brw_imm_ud(5u));
2403 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2404
2405 /* Use first_icp_handle as the base offset. There is one register
2406 * of URB handles per vertex, so inform the register allocator that
2407 * we might read up to nir->info.gs.vertices_in registers.
2408 */
2409 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2410 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2411 fs_reg(icp_offset_bytes),
2412 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2413 }
2414 } else {
2415 assert(gs_prog_data->invocations > 1);
2416
2417 if (nir_src_is_const(vertex_src)) {
2418 unsigned vertex = nir_src_as_uint(vertex_src);
2419 assert(devinfo->gen >= 9 || vertex <= 5);
2420 bld.MOV(icp_handle,
2421 retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2422 BRW_REGISTER_TYPE_UD));
2423 } else {
2424 /* The vertex index is non-constant. We need to use indirect
2425 * addressing to fetch the proper URB handle.
2426 *
2427 */
2428 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2429
2430 /* Convert vertex_index to bytes (multiply by 4) */
2431 bld.SHL(icp_offset_bytes,
2432 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2433 brw_imm_ud(2u));
2434
2435 /* Use first_icp_handle as the base offset. There is one DWord
2436 * of URB handles per vertex, so inform the register allocator that
2437 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2438 */
2439 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2440 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2441 fs_reg(icp_offset_bytes),
2442 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2443 REG_SIZE));
2444 }
2445 }
2446
2447 fs_inst *inst;
2448
2449 fs_reg tmp_dst = dst;
2450 fs_reg indirect_offset = get_nir_src(offset_src);
2451 unsigned num_iterations = 1;
2452 unsigned orig_num_components = num_components;
2453
2454 if (type_sz(dst.type) == 8) {
2455 if (num_components > 2) {
2456 num_iterations = 2;
2457 num_components = 2;
2458 }
2459 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2460 tmp_dst = tmp;
2461 first_component = first_component / 2;
2462 }
2463
2464 for (unsigned iter = 0; iter < num_iterations; iter++) {
2465 if (nir_src_is_const(offset_src)) {
2466 /* Constant indexing - use global offset. */
2467 if (first_component != 0) {
2468 unsigned read_components = num_components + first_component;
2469 fs_reg tmp = bld.vgrf(dst.type, read_components);
2470 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2471 inst->size_written = read_components *
2472 tmp.component_size(inst->exec_size);
2473 for (unsigned i = 0; i < num_components; i++) {
2474 bld.MOV(offset(tmp_dst, bld, i),
2475 offset(tmp, bld, i + first_component));
2476 }
2477 } else {
2478 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2479 icp_handle);
2480 inst->size_written = num_components *
2481 tmp_dst.component_size(inst->exec_size);
2482 }
2483 inst->offset = base_offset + nir_src_as_uint(offset_src);
2484 inst->mlen = 1;
2485 } else {
2486 /* Indirect indexing - use per-slot offsets as well. */
2487 const fs_reg srcs[] = { icp_handle, indirect_offset };
2488 unsigned read_components = num_components + first_component;
2489 fs_reg tmp = bld.vgrf(dst.type, read_components);
2490 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2491 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2492 if (first_component != 0) {
2493 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2494 payload);
2495 inst->size_written = read_components *
2496 tmp.component_size(inst->exec_size);
2497 for (unsigned i = 0; i < num_components; i++) {
2498 bld.MOV(offset(tmp_dst, bld, i),
2499 offset(tmp, bld, i + first_component));
2500 }
2501 } else {
2502 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2503 payload);
2504 inst->size_written = num_components *
2505 tmp_dst.component_size(inst->exec_size);
2506 }
2507 inst->offset = base_offset;
2508 inst->mlen = 2;
2509 }
2510
2511 if (type_sz(dst.type) == 8) {
2512 shuffle_from_32bit_read(bld,
2513 offset(dst, bld, iter * 2),
2514 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2515 0,
2516 num_components);
2517 }
2518
2519 if (num_iterations > 1) {
2520 num_components = orig_num_components - 2;
2521 if(nir_src_is_const(offset_src)) {
2522 base_offset++;
2523 } else {
2524 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2525 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2526 indirect_offset = new_indirect;
2527 }
2528 }
2529 }
2530 }
2531
2532 fs_reg
2533 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2534 {
2535 nir_src *offset_src = nir_get_io_offset_src(instr);
2536
2537 if (nir_src_is_const(*offset_src)) {
2538 /* The only constant offset we should find is 0. brw_nir.c's
2539 * add_const_offset_to_base() will fold other constant offsets
2540 * into instr->const_index[0].
2541 */
2542 assert(nir_src_as_uint(*offset_src) == 0);
2543 return fs_reg();
2544 }
2545
2546 return get_nir_src(*offset_src);
2547 }
2548
2549 void
2550 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2551 nir_intrinsic_instr *instr)
2552 {
2553 assert(stage == MESA_SHADER_VERTEX);
2554
2555 fs_reg dest;
2556 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2557 dest = get_nir_dest(instr->dest);
2558
2559 switch (instr->intrinsic) {
2560 case nir_intrinsic_load_vertex_id:
2561 case nir_intrinsic_load_base_vertex:
2562 unreachable("should be lowered by nir_lower_system_values()");
2563
2564 case nir_intrinsic_load_input: {
2565 fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2566 unsigned first_component = nir_intrinsic_component(instr);
2567 unsigned num_components = instr->num_components;
2568
2569 src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2570
2571 if (type_sz(dest.type) == 8)
2572 first_component /= 2;
2573
2574 /* For 16-bit support maybe a temporary will be needed to copy from
2575 * the ATTR file.
2576 */
2577 shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2578 first_component, num_components);
2579 break;
2580 }
2581
2582 case nir_intrinsic_load_vertex_id_zero_base:
2583 case nir_intrinsic_load_instance_id:
2584 case nir_intrinsic_load_base_instance:
2585 case nir_intrinsic_load_draw_id:
2586 case nir_intrinsic_load_first_vertex:
2587 case nir_intrinsic_load_is_indexed_draw:
2588 unreachable("lowered by brw_nir_lower_vs_inputs");
2589
2590 default:
2591 nir_emit_intrinsic(bld, instr);
2592 break;
2593 }
2594 }
2595
2596 fs_reg
2597 fs_visitor::get_tcs_single_patch_icp_handle(const fs_builder &bld,
2598 nir_intrinsic_instr *instr)
2599 {
2600 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2601 const nir_src &vertex_src = instr->src[0];
2602 nir_intrinsic_instr *vertex_intrin = nir_src_as_intrinsic(vertex_src);
2603 fs_reg icp_handle;
2604
2605 if (nir_src_is_const(vertex_src)) {
2606 /* Emit a MOV to resolve <0,1,0> regioning. */
2607 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2608 unsigned vertex = nir_src_as_uint(vertex_src);
2609 bld.MOV(icp_handle,
2610 retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2611 BRW_REGISTER_TYPE_UD));
2612 } else if (tcs_prog_data->instances == 1 && vertex_intrin &&
2613 vertex_intrin->intrinsic == nir_intrinsic_load_invocation_id) {
2614 /* For the common case of only 1 instance, an array index of
2615 * gl_InvocationID means reading g1. Skip all the indirect work.
2616 */
2617 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2618 } else {
2619 /* The vertex index is non-constant. We need to use indirect
2620 * addressing to fetch the proper URB handle.
2621 */
2622 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2623
2624 /* Each ICP handle is a single DWord (4 bytes) */
2625 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2626 bld.SHL(vertex_offset_bytes,
2627 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2628 brw_imm_ud(2u));
2629
2630 /* Start at g1. We might read up to 4 registers. */
2631 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2632 retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2633 brw_imm_ud(4 * REG_SIZE));
2634 }
2635
2636 return icp_handle;
2637 }
2638
2639 fs_reg
2640 fs_visitor::get_tcs_eight_patch_icp_handle(const fs_builder &bld,
2641 nir_intrinsic_instr *instr)
2642 {
2643 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2644 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2645 const nir_src &vertex_src = instr->src[0];
2646
2647 unsigned first_icp_handle = tcs_prog_data->include_primitive_id ? 3 : 2;
2648
2649 if (nir_src_is_const(vertex_src)) {
2650 return fs_reg(retype(brw_vec8_grf(first_icp_handle +
2651 nir_src_as_uint(vertex_src), 0),
2652 BRW_REGISTER_TYPE_UD));
2653 }
2654
2655 /* The vertex index is non-constant. We need to use indirect
2656 * addressing to fetch the proper URB handle.
2657 *
2658 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2659 * indicating that channel <n> should read the handle from
2660 * DWord <n>. We convert that to bytes by multiplying by 4.
2661 *
2662 * Next, we convert the vertex index to bytes by multiplying
2663 * by 32 (shifting by 5), and add the two together. This is
2664 * the final indirect byte offset.
2665 */
2666 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2667 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2668 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2669 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2670 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2671
2672 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2673 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2674 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2675 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2676 /* Convert vertex_index to bytes (multiply by 32) */
2677 bld.SHL(vertex_offset_bytes,
2678 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2679 brw_imm_ud(5u));
2680 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2681
2682 /* Use first_icp_handle as the base offset. There is one register
2683 * of URB handles per vertex, so inform the register allocator that
2684 * we might read up to nir->info.gs.vertices_in registers.
2685 */
2686 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2687 retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2688 icp_offset_bytes, brw_imm_ud(tcs_key->input_vertices * REG_SIZE));
2689
2690 return icp_handle;
2691 }
2692
2693 struct brw_reg
2694 fs_visitor::get_tcs_output_urb_handle()
2695 {
2696 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
2697
2698 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) {
2699 return retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2700 } else {
2701 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
2702 return retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2703 }
2704 }
2705
2706 void
2707 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2708 nir_intrinsic_instr *instr)
2709 {
2710 assert(stage == MESA_SHADER_TESS_CTRL);
2711 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2712 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2713 struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
2714
2715 bool eight_patch =
2716 vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH;
2717
2718 fs_reg dst;
2719 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2720 dst = get_nir_dest(instr->dest);
2721
2722 switch (instr->intrinsic) {
2723 case nir_intrinsic_load_primitive_id:
2724 bld.MOV(dst, fs_reg(eight_patch ? brw_vec8_grf(2, 0)
2725 : brw_vec1_grf(0, 1)));
2726 break;
2727 case nir_intrinsic_load_invocation_id:
2728 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2729 break;
2730 case nir_intrinsic_load_patch_vertices_in:
2731 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2732 brw_imm_d(tcs_key->input_vertices));
2733 break;
2734
2735 case nir_intrinsic_barrier: {
2736 if (tcs_prog_data->instances == 1)
2737 break;
2738
2739 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2740 fs_reg m0_2 = component(m0, 2);
2741
2742 const fs_builder chanbld = bld.exec_all().group(1, 0);
2743
2744 /* Zero the message header */
2745 bld.exec_all().MOV(m0, brw_imm_ud(0u));
2746
2747 if (devinfo->gen < 11) {
2748 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2749 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2750 brw_imm_ud(INTEL_MASK(16, 13)));
2751
2752 /* Shift it up to bits 27:24. */
2753 chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2754 } else {
2755 chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2756 brw_imm_ud(INTEL_MASK(30, 24)));
2757 }
2758
2759 /* Set the Barrier Count and the enable bit */
2760 if (devinfo->gen < 11) {
2761 chanbld.OR(m0_2, m0_2,
2762 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2763 } else {
2764 chanbld.OR(m0_2, m0_2,
2765 brw_imm_ud(tcs_prog_data->instances << 8 | (1 << 15)));
2766 }
2767
2768 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2769 break;
2770 }
2771
2772 case nir_intrinsic_load_input:
2773 unreachable("nir_lower_io should never give us these.");
2774 break;
2775
2776 case nir_intrinsic_load_per_vertex_input: {
2777 fs_reg indirect_offset = get_indirect_offset(instr);
2778 unsigned imm_offset = instr->const_index[0];
2779 fs_inst *inst;
2780
2781 fs_reg icp_handle =
2782 eight_patch ? get_tcs_eight_patch_icp_handle(bld, instr)
2783 : get_tcs_single_patch_icp_handle(bld, instr);
2784
2785 /* We can only read two double components with each URB read, so
2786 * we send two read messages in that case, each one loading up to
2787 * two double components.
2788 */
2789 unsigned num_iterations = 1;
2790 unsigned num_components = instr->num_components;
2791 unsigned first_component = nir_intrinsic_component(instr);
2792 fs_reg orig_dst = dst;
2793 if (type_sz(dst.type) == 8) {
2794 first_component = first_component / 2;
2795 if (instr->num_components > 2) {
2796 num_iterations = 2;
2797 num_components = 2;
2798 }
2799
2800 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2801 dst = tmp;
2802 }
2803
2804 for (unsigned iter = 0; iter < num_iterations; iter++) {
2805 if (indirect_offset.file == BAD_FILE) {
2806 /* Constant indexing - use global offset. */
2807 if (first_component != 0) {
2808 unsigned read_components = num_components + first_component;
2809 fs_reg tmp = bld.vgrf(dst.type, read_components);
2810 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2811 for (unsigned i = 0; i < num_components; i++) {
2812 bld.MOV(offset(dst, bld, i),
2813 offset(tmp, bld, i + first_component));
2814 }
2815 } else {
2816 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2817 }
2818 inst->offset = imm_offset;
2819 inst->mlen = 1;
2820 } else {
2821 /* Indirect indexing - use per-slot offsets as well. */
2822 const fs_reg srcs[] = { icp_handle, indirect_offset };
2823 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2824 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2825 if (first_component != 0) {
2826 unsigned read_components = num_components + first_component;
2827 fs_reg tmp = bld.vgrf(dst.type, read_components);
2828 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2829 payload);
2830 for (unsigned i = 0; i < num_components; i++) {
2831 bld.MOV(offset(dst, bld, i),
2832 offset(tmp, bld, i + first_component));
2833 }
2834 } else {
2835 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2836 payload);
2837 }
2838 inst->offset = imm_offset;
2839 inst->mlen = 2;
2840 }
2841 inst->size_written = (num_components + first_component) *
2842 inst->dst.component_size(inst->exec_size);
2843
2844 /* If we are reading 64-bit data using 32-bit read messages we need
2845 * build proper 64-bit data elements by shuffling the low and high
2846 * 32-bit components around like we do for other things like UBOs
2847 * or SSBOs.
2848 */
2849 if (type_sz(dst.type) == 8) {
2850 shuffle_from_32bit_read(bld,
2851 offset(orig_dst, bld, iter * 2),
2852 retype(dst, BRW_REGISTER_TYPE_D),
2853 0, num_components);
2854 }
2855
2856 /* Copy the temporary to the destination to deal with writemasking.
2857 *
2858 * Also attempt to deal with gl_PointSize being in the .w component.
2859 */
2860 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2861 assert(type_sz(dst.type) < 8);
2862 inst->dst = bld.vgrf(dst.type, 4);
2863 inst->size_written = 4 * REG_SIZE;
2864 bld.MOV(dst, offset(inst->dst, bld, 3));
2865 }
2866
2867 /* If we are loading double data and we need a second read message
2868 * adjust the write offset
2869 */
2870 if (num_iterations > 1) {
2871 num_components = instr->num_components - 2;
2872 imm_offset++;
2873 }
2874 }
2875 break;
2876 }
2877
2878 case nir_intrinsic_load_output:
2879 case nir_intrinsic_load_per_vertex_output: {
2880 fs_reg indirect_offset = get_indirect_offset(instr);
2881 unsigned imm_offset = instr->const_index[0];
2882 unsigned first_component = nir_intrinsic_component(instr);
2883
2884 struct brw_reg output_handles = get_tcs_output_urb_handle();
2885
2886 fs_inst *inst;
2887 if (indirect_offset.file == BAD_FILE) {
2888 /* This MOV replicates the output handle to all enabled channels
2889 * is SINGLE_PATCH mode.
2890 */
2891 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2892 bld.MOV(patch_handle, output_handles);
2893
2894 {
2895 if (first_component != 0) {
2896 unsigned read_components =
2897 instr->num_components + first_component;
2898 fs_reg tmp = bld.vgrf(dst.type, read_components);
2899 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2900 patch_handle);
2901 inst->size_written = read_components * REG_SIZE;
2902 for (unsigned i = 0; i < instr->num_components; i++) {
2903 bld.MOV(offset(dst, bld, i),
2904 offset(tmp, bld, i + first_component));
2905 }
2906 } else {
2907 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2908 patch_handle);
2909 inst->size_written = instr->num_components * REG_SIZE;
2910 }
2911 inst->offset = imm_offset;
2912 inst->mlen = 1;
2913 }
2914 } else {
2915 /* Indirect indexing - use per-slot offsets as well. */
2916 const fs_reg srcs[] = { output_handles, indirect_offset };
2917 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2918 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2919 if (first_component != 0) {
2920 unsigned read_components =
2921 instr->num_components + first_component;
2922 fs_reg tmp = bld.vgrf(dst.type, read_components);
2923 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2924 payload);
2925 inst->size_written = read_components * REG_SIZE;
2926 for (unsigned i = 0; i < instr->num_components; i++) {
2927 bld.MOV(offset(dst, bld, i),
2928 offset(tmp, bld, i + first_component));
2929 }
2930 } else {
2931 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2932 payload);
2933 inst->size_written = instr->num_components * REG_SIZE;
2934 }
2935 inst->offset = imm_offset;
2936 inst->mlen = 2;
2937 }
2938 break;
2939 }
2940
2941 case nir_intrinsic_store_output:
2942 case nir_intrinsic_store_per_vertex_output: {
2943 fs_reg value = get_nir_src(instr->src[0]);
2944 bool is_64bit = (instr->src[0].is_ssa ?
2945 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2946 fs_reg indirect_offset = get_indirect_offset(instr);
2947 unsigned imm_offset = instr->const_index[0];
2948 unsigned mask = instr->const_index[1];
2949 unsigned header_regs = 0;
2950 struct brw_reg output_handles = get_tcs_output_urb_handle();
2951
2952 fs_reg srcs[7];
2953 srcs[header_regs++] = output_handles;
2954
2955 if (indirect_offset.file != BAD_FILE) {
2956 srcs[header_regs++] = indirect_offset;
2957 }
2958
2959 if (mask == 0)
2960 break;
2961
2962 unsigned num_components = util_last_bit(mask);
2963 enum opcode opcode;
2964
2965 /* We can only pack two 64-bit components in a single message, so send
2966 * 2 messages if we have more components
2967 */
2968 unsigned num_iterations = 1;
2969 unsigned iter_components = num_components;
2970 unsigned first_component = nir_intrinsic_component(instr);
2971 if (is_64bit) {
2972 first_component = first_component / 2;
2973 if (instr->num_components > 2) {
2974 num_iterations = 2;
2975 iter_components = 2;
2976 }
2977 }
2978
2979 mask = mask << first_component;
2980
2981 for (unsigned iter = 0; iter < num_iterations; iter++) {
2982 if (!is_64bit && mask != WRITEMASK_XYZW) {
2983 srcs[header_regs++] = brw_imm_ud(mask << 16);
2984 opcode = indirect_offset.file != BAD_FILE ?
2985 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2986 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2987 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2988 /* Expand the 64-bit mask to 32-bit channels. We only handle
2989 * two channels in each iteration, so we only care about X/Y.
2990 */
2991 unsigned mask32 = 0;
2992 if (mask & WRITEMASK_X)
2993 mask32 |= WRITEMASK_XY;
2994 if (mask & WRITEMASK_Y)
2995 mask32 |= WRITEMASK_ZW;
2996
2997 /* If the mask does not include any of the channels X or Y there
2998 * is nothing to do in this iteration. Move on to the next couple
2999 * of 64-bit channels.
3000 */
3001 if (!mask32) {
3002 mask >>= 2;
3003 imm_offset++;
3004 continue;
3005 }
3006
3007 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
3008 opcode = indirect_offset.file != BAD_FILE ?
3009 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
3010 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
3011 } else {
3012 opcode = indirect_offset.file != BAD_FILE ?
3013 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
3014 SHADER_OPCODE_URB_WRITE_SIMD8;
3015 }
3016
3017 for (unsigned i = 0; i < iter_components; i++) {
3018 if (!(mask & (1 << (i + first_component))))
3019 continue;
3020
3021 if (!is_64bit) {
3022 srcs[header_regs + i + first_component] = offset(value, bld, i);
3023 } else {
3024 /* We need to shuffle the 64-bit data to match the layout
3025 * expected by our 32-bit URB write messages. We use a temporary
3026 * for that.
3027 */
3028 unsigned channel = iter * 2 + i;
3029 fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
3030
3031 srcs[header_regs + (i + first_component) * 2] = dest;
3032 srcs[header_regs + (i + first_component) * 2 + 1] =
3033 offset(dest, bld, 1);
3034 }
3035 }
3036
3037 unsigned mlen =
3038 header_regs + (is_64bit ? 2 * iter_components : iter_components) +
3039 (is_64bit ? 2 * first_component : first_component);
3040 fs_reg payload =
3041 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
3042 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
3043
3044 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
3045 inst->offset = imm_offset;
3046 inst->mlen = mlen;
3047
3048 /* If this is a 64-bit attribute, select the next two 64-bit channels
3049 * to be handled in the next iteration.
3050 */
3051 if (is_64bit) {
3052 mask >>= 2;
3053 imm_offset++;
3054 }
3055 }
3056 break;
3057 }
3058
3059 default:
3060 nir_emit_intrinsic(bld, instr);
3061 break;
3062 }
3063 }
3064
3065 void
3066 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
3067 nir_intrinsic_instr *instr)
3068 {
3069 assert(stage == MESA_SHADER_TESS_EVAL);
3070 struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
3071
3072 fs_reg dest;
3073 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3074 dest = get_nir_dest(instr->dest);
3075
3076 switch (instr->intrinsic) {
3077 case nir_intrinsic_load_primitive_id:
3078 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
3079 break;
3080 case nir_intrinsic_load_tess_coord:
3081 /* gl_TessCoord is part of the payload in g1-3 */
3082 for (unsigned i = 0; i < 3; i++) {
3083 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
3084 }
3085 break;
3086
3087 case nir_intrinsic_load_input:
3088 case nir_intrinsic_load_per_vertex_input: {
3089 fs_reg indirect_offset = get_indirect_offset(instr);
3090 unsigned imm_offset = instr->const_index[0];
3091 unsigned first_component = nir_intrinsic_component(instr);
3092
3093 if (type_sz(dest.type) == 8) {
3094 first_component = first_component / 2;
3095 }
3096
3097 fs_inst *inst;
3098 if (indirect_offset.file == BAD_FILE) {
3099 /* Arbitrarily only push up to 32 vec4 slots worth of data,
3100 * which is 16 registers (since each holds 2 vec4 slots).
3101 */
3102 unsigned slot_count = 1;
3103 if (type_sz(dest.type) == 8 && instr->num_components > 2)
3104 slot_count++;
3105
3106 const unsigned max_push_slots = 32;
3107 if (imm_offset + slot_count <= max_push_slots) {
3108 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
3109 for (int i = 0; i < instr->num_components; i++) {
3110 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
3111 i + first_component;
3112 bld.MOV(offset(dest, bld, i), component(src, comp));
3113 }
3114
3115 tes_prog_data->base.urb_read_length =
3116 MAX2(tes_prog_data->base.urb_read_length,
3117 DIV_ROUND_UP(imm_offset + slot_count, 2));
3118 } else {
3119 /* Replicate the patch handle to all enabled channels */
3120 const fs_reg srcs[] = {
3121 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
3122 };
3123 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
3124 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
3125
3126 if (first_component != 0) {
3127 unsigned read_components =
3128 instr->num_components + first_component;
3129 fs_reg tmp = bld.vgrf(dest.type, read_components);
3130 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
3131 patch_handle);
3132 inst->size_written = read_components * REG_SIZE;
3133 for (unsigned i = 0; i < instr->num_components; i++) {
3134 bld.MOV(offset(dest, bld, i),
3135 offset(tmp, bld, i + first_component));
3136 }
3137 } else {
3138 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
3139 patch_handle);
3140 inst->size_written = instr->num_components * REG_SIZE;
3141 }
3142 inst->mlen = 1;
3143 inst->offset = imm_offset;
3144 }
3145 } else {
3146 /* Indirect indexing - use per-slot offsets as well. */
3147
3148 /* We can only read two double components with each URB read, so
3149 * we send two read messages in that case, each one loading up to
3150 * two double components.
3151 */
3152 unsigned num_iterations = 1;
3153 unsigned num_components = instr->num_components;
3154 fs_reg orig_dest = dest;
3155 if (type_sz(dest.type) == 8) {
3156 if (instr->num_components > 2) {
3157 num_iterations = 2;
3158 num_components = 2;
3159 }
3160 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
3161 dest = tmp;
3162 }
3163
3164 for (unsigned iter = 0; iter < num_iterations; iter++) {
3165 const fs_reg srcs[] = {
3166 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
3167 indirect_offset
3168 };
3169 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3170 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
3171
3172 if (first_component != 0) {
3173 unsigned read_components =
3174 num_components + first_component;
3175 fs_reg tmp = bld.vgrf(dest.type, read_components);
3176 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
3177 payload);
3178 for (unsigned i = 0; i < num_components; i++) {
3179 bld.MOV(offset(dest, bld, i),
3180 offset(tmp, bld, i + first_component));
3181 }
3182 } else {
3183 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
3184 payload);
3185 }
3186 inst->mlen = 2;
3187 inst->offset = imm_offset;
3188 inst->size_written = (num_components + first_component) *
3189 inst->dst.component_size(inst->exec_size);
3190
3191 /* If we are reading 64-bit data using 32-bit read messages we need
3192 * build proper 64-bit data elements by shuffling the low and high
3193 * 32-bit components around like we do for other things like UBOs
3194 * or SSBOs.
3195 */
3196 if (type_sz(dest.type) == 8) {
3197 shuffle_from_32bit_read(bld,
3198 offset(orig_dest, bld, iter * 2),
3199 retype(dest, BRW_REGISTER_TYPE_D),
3200 0, num_components);
3201 }
3202
3203 /* If we are loading double data and we need a second read message
3204 * adjust the offset
3205 */
3206 if (num_iterations > 1) {
3207 num_components = instr->num_components - 2;
3208 imm_offset++;
3209 }
3210 }
3211 }
3212 break;
3213 }
3214 default:
3215 nir_emit_intrinsic(bld, instr);
3216 break;
3217 }
3218 }
3219
3220 void
3221 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3222 nir_intrinsic_instr *instr)
3223 {
3224 assert(stage == MESA_SHADER_GEOMETRY);
3225 fs_reg indirect_offset;
3226
3227 fs_reg dest;
3228 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3229 dest = get_nir_dest(instr->dest);
3230
3231 switch (instr->intrinsic) {
3232 case nir_intrinsic_load_primitive_id:
3233 assert(stage == MESA_SHADER_GEOMETRY);
3234 assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3235 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3236 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3237 break;
3238
3239 case nir_intrinsic_load_input:
3240 unreachable("load_input intrinsics are invalid for the GS stage");
3241
3242 case nir_intrinsic_load_per_vertex_input:
3243 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3244 instr->src[1], instr->num_components,
3245 nir_intrinsic_component(instr));
3246 break;
3247
3248 case nir_intrinsic_emit_vertex_with_counter:
3249 emit_gs_vertex(instr->src[0], instr->const_index[0]);
3250 break;
3251
3252 case nir_intrinsic_end_primitive_with_counter:
3253 emit_gs_end_primitive(instr->src[0]);
3254 break;
3255
3256 case nir_intrinsic_set_vertex_count:
3257 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3258 break;
3259
3260 case nir_intrinsic_load_invocation_id: {
3261 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3262 assert(val.file != BAD_FILE);
3263 dest.type = val.type;
3264 bld.MOV(dest, val);
3265 break;
3266 }
3267
3268 default:
3269 nir_emit_intrinsic(bld, instr);
3270 break;
3271 }
3272 }
3273
3274 /**
3275 * Fetch the current render target layer index.
3276 */
3277 static fs_reg
3278 fetch_render_target_array_index(const fs_builder &bld)
3279 {
3280 if (bld.shader->devinfo->gen >= 6) {
3281 /* The render target array index is provided in the thread payload as
3282 * bits 26:16 of r0.0.
3283 */
3284 const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3285 bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3286 brw_imm_uw(0x7ff));
3287 return idx;
3288 } else {
3289 /* Pre-SNB we only ever render into the first layer of the framebuffer
3290 * since layered rendering is not implemented.
3291 */
3292 return brw_imm_ud(0);
3293 }
3294 }
3295
3296 /**
3297 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3298 * framebuffer at the current fragment coordinates and sample index.
3299 */
3300 fs_inst *
3301 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3302 unsigned target)
3303 {
3304 const struct gen_device_info *devinfo = bld.shader->devinfo;
3305
3306 assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3307 const brw_wm_prog_key *wm_key =
3308 reinterpret_cast<const brw_wm_prog_key *>(key);
3309 assert(!wm_key->coherent_fb_fetch);
3310 const struct brw_wm_prog_data *wm_prog_data =
3311 brw_wm_prog_data(stage_prog_data);
3312
3313 /* Calculate the surface index relative to the start of the texture binding
3314 * table block, since that's what the texturing messages expect.
3315 */
3316 const unsigned surface = target +
3317 wm_prog_data->binding_table.render_target_read_start -
3318 wm_prog_data->base.binding_table.texture_start;
3319
3320 /* Calculate the fragment coordinates. */
3321 const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3322 bld.MOV(offset(coords, bld, 0), pixel_x);
3323 bld.MOV(offset(coords, bld, 1), pixel_y);
3324 bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3325
3326 /* Calculate the sample index and MCS payload when multisampling. Luckily
3327 * the MCS fetch message behaves deterministically for UMS surfaces, so it
3328 * shouldn't be necessary to recompile based on whether the framebuffer is
3329 * CMS or UMS.
3330 */
3331 if (wm_key->multisample_fbo &&
3332 nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3333 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3334
3335 const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3336 const fs_reg mcs = wm_key->multisample_fbo ?
3337 emit_mcs_fetch(coords, 3, brw_imm_ud(surface), fs_reg()) : fs_reg();
3338
3339 /* Use either a normal or a CMS texel fetch message depending on whether
3340 * the framebuffer is single or multisample. On SKL+ use the wide CMS
3341 * message just in case the framebuffer uses 16x multisampling, it should
3342 * be equivalent to the normal CMS fetch for lower multisampling modes.
3343 */
3344 const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3345 devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3346 SHADER_OPCODE_TXF_CMS_LOGICAL;
3347
3348 /* Emit the instruction. */
3349 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3350 srcs[TEX_LOGICAL_SRC_COORDINATE] = coords;
3351 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0);
3352 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample;
3353 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
3354 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3355 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
3356 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
3357 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0);
3358
3359 fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3360 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3361
3362 return inst;
3363 }
3364
3365 /**
3366 * Actual coherent framebuffer read implemented using the native render target
3367 * read message. Requires SKL+.
3368 */
3369 static fs_inst *
3370 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3371 {
3372 assert(bld.shader->devinfo->gen >= 9);
3373 fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3374 inst->target = target;
3375 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3376
3377 return inst;
3378 }
3379
3380 static fs_reg
3381 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3382 {
3383 if (n && regs[0].file != BAD_FILE) {
3384 return regs[0];
3385
3386 } else {
3387 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3388
3389 for (unsigned i = 0; i < n; i++)
3390 regs[i] = tmp;
3391
3392 return tmp;
3393 }
3394 }
3395
3396 static fs_reg
3397 alloc_frag_output(fs_visitor *v, unsigned location)
3398 {
3399 assert(v->stage == MESA_SHADER_FRAGMENT);
3400 const brw_wm_prog_key *const key =
3401 reinterpret_cast<const brw_wm_prog_key *>(v->key);
3402 const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3403 const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3404
3405 if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3406 return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3407
3408 else if (l == FRAG_RESULT_COLOR)
3409 return alloc_temporary(v->bld, 4, v->outputs,
3410 MAX2(key->nr_color_regions, 1));
3411
3412 else if (l == FRAG_RESULT_DEPTH)
3413 return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3414
3415 else if (l == FRAG_RESULT_STENCIL)
3416 return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3417
3418 else if (l == FRAG_RESULT_SAMPLE_MASK)
3419 return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3420
3421 else if (l >= FRAG_RESULT_DATA0 &&
3422 l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3423 return alloc_temporary(v->bld, 4,
3424 &v->outputs[l - FRAG_RESULT_DATA0], 1);
3425
3426 else
3427 unreachable("Invalid location");
3428 }
3429
3430 void
3431 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3432 nir_intrinsic_instr *instr)
3433 {
3434 assert(stage == MESA_SHADER_FRAGMENT);
3435
3436 fs_reg dest;
3437 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3438 dest = get_nir_dest(instr->dest);
3439
3440 switch (instr->intrinsic) {
3441 case nir_intrinsic_load_front_face:
3442 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3443 *emit_frontfacing_interpolation());
3444 break;
3445
3446 case nir_intrinsic_load_sample_pos: {
3447 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3448 assert(sample_pos.file != BAD_FILE);
3449 dest.type = sample_pos.type;
3450 bld.MOV(dest, sample_pos);
3451 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3452 break;
3453 }
3454
3455 case nir_intrinsic_load_layer_id:
3456 dest.type = BRW_REGISTER_TYPE_UD;
3457 bld.MOV(dest, fetch_render_target_array_index(bld));
3458 break;
3459
3460 case nir_intrinsic_load_helper_invocation:
3461 case nir_intrinsic_load_sample_mask_in:
3462 case nir_intrinsic_load_sample_id: {
3463 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3464 fs_reg val = nir_system_values[sv];
3465 assert(val.file != BAD_FILE);
3466 dest.type = val.type;
3467 bld.MOV(dest, val);
3468 break;
3469 }
3470
3471 case nir_intrinsic_store_output: {
3472 const fs_reg src = get_nir_src(instr->src[0]);
3473 const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3474 const unsigned location = nir_intrinsic_base(instr) +
3475 SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3476 const fs_reg new_dest = retype(alloc_frag_output(this, location),
3477 src.type);
3478
3479 for (unsigned j = 0; j < instr->num_components; j++)
3480 bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3481 offset(src, bld, j));
3482
3483 break;
3484 }
3485
3486 case nir_intrinsic_load_output: {
3487 const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3488 BRW_NIR_FRAG_OUTPUT_LOCATION);
3489 assert(l >= FRAG_RESULT_DATA0);
3490 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3491 const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3492 const fs_reg tmp = bld.vgrf(dest.type, 4);
3493
3494 if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3495 emit_coherent_fb_read(bld, tmp, target);
3496 else
3497 emit_non_coherent_fb_read(bld, tmp, target);
3498
3499 for (unsigned j = 0; j < instr->num_components; j++) {
3500 bld.MOV(offset(dest, bld, j),
3501 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3502 }
3503
3504 break;
3505 }
3506
3507 case nir_intrinsic_discard:
3508 case nir_intrinsic_discard_if: {
3509 /* We track our discarded pixels in f0.1. By predicating on it, we can
3510 * update just the flag bits that aren't yet discarded. If there's no
3511 * condition, we emit a CMP of g0 != g0, so all currently executing
3512 * channels will get turned off.
3513 */
3514 fs_inst *cmp = NULL;
3515 if (instr->intrinsic == nir_intrinsic_discard_if) {
3516 nir_alu_instr *alu = nir_src_as_alu_instr(instr->src[0]);
3517
3518 if (alu != NULL &&
3519 alu->op != nir_op_bcsel &&
3520 alu->op != nir_op_inot) {
3521 /* Re-emit the instruction that generated the Boolean value, but
3522 * do not store it. Since this instruction will be conditional,
3523 * other instructions that want to use the real Boolean value may
3524 * get garbage. This was a problem for piglit's fs-discard-exit-2
3525 * test.
3526 *
3527 * Ideally we'd detect that the instruction cannot have a
3528 * conditional modifier before emitting the instructions. Alas,
3529 * that is nigh impossible. Instead, we're going to assume the
3530 * instruction (or last instruction) generated can have a
3531 * conditional modifier. If it cannot, fallback to the old-style
3532 * compare, and hope dead code elimination will clean up the
3533 * extra instructions generated.
3534 */
3535 nir_emit_alu(bld, alu, false);
3536
3537 cmp = (fs_inst *) instructions.get_tail();
3538 if (cmp->conditional_mod == BRW_CONDITIONAL_NONE) {
3539 if (cmp->can_do_cmod())
3540 cmp->conditional_mod = BRW_CONDITIONAL_Z;
3541 else
3542 cmp = NULL;
3543 } else {
3544 /* The old sequence that would have been generated is,
3545 * basically, bool_result == false. This is equivalent to
3546 * !bool_result, so negate the old modifier.
3547 */
3548 cmp->conditional_mod = brw_negate_cmod(cmp->conditional_mod);
3549 }
3550 }
3551
3552 if (cmp == NULL) {
3553 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3554 brw_imm_d(0), BRW_CONDITIONAL_Z);
3555 }
3556 } else {
3557 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3558 BRW_REGISTER_TYPE_UW));
3559 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3560 }
3561
3562 cmp->predicate = BRW_PREDICATE_NORMAL;
3563 cmp->flag_subreg = 1;
3564
3565 if (devinfo->gen >= 6) {
3566 emit_discard_jump();
3567 }
3568
3569 limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3570 break;
3571 }
3572
3573 case nir_intrinsic_load_input: {
3574 /* load_input is only used for flat inputs */
3575 unsigned base = nir_intrinsic_base(instr);
3576 unsigned comp = nir_intrinsic_component(instr);
3577 unsigned num_components = instr->num_components;
3578 fs_reg orig_dest = dest;
3579 enum brw_reg_type type = dest.type;
3580
3581 /* Special case fields in the VUE header */
3582 if (base == VARYING_SLOT_LAYER)
3583 comp = 1;
3584 else if (base == VARYING_SLOT_VIEWPORT)
3585 comp = 2;
3586
3587 if (nir_dest_bit_size(instr->dest) == 64) {
3588 /* const_index is in 32-bit type size units that could not be aligned
3589 * with DF. We need to read the double vector as if it was a float
3590 * vector of twice the number of components to fetch the right data.
3591 */
3592 type = BRW_REGISTER_TYPE_F;
3593 num_components *= 2;
3594 dest = bld.vgrf(type, num_components);
3595 }
3596
3597 for (unsigned int i = 0; i < num_components; i++) {
3598 bld.MOV(offset(retype(dest, type), bld, i),
3599 retype(component(interp_reg(base, comp + i), 3), type));
3600 }
3601
3602 if (nir_dest_bit_size(instr->dest) == 64) {
3603 shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3604 instr->num_components);
3605 }
3606 break;
3607 }
3608
3609 case nir_intrinsic_load_barycentric_pixel:
3610 case nir_intrinsic_load_barycentric_centroid:
3611 case nir_intrinsic_load_barycentric_sample:
3612 /* Do nothing - load_interpolated_input handling will handle it later. */
3613 break;
3614
3615 case nir_intrinsic_load_barycentric_at_sample: {
3616 const glsl_interp_mode interpolation =
3617 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3618
3619 if (nir_src_is_const(instr->src[0])) {
3620 unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3621
3622 emit_pixel_interpolater_send(bld,
3623 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3624 dest,
3625 fs_reg(), /* src */
3626 brw_imm_ud(msg_data),
3627 interpolation);
3628 } else {
3629 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3630 BRW_REGISTER_TYPE_UD);
3631
3632 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3633 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3634 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3635 bld.exec_all().group(1, 0)
3636 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3637 emit_pixel_interpolater_send(bld,
3638 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3639 dest,
3640 fs_reg(), /* src */
3641 msg_data,
3642 interpolation);
3643 } else {
3644 /* Make a loop that sends a message to the pixel interpolater
3645 * for the sample number in each live channel. If there are
3646 * multiple channels with the same sample number then these
3647 * will be handled simultaneously with a single interation of
3648 * the loop.
3649 */
3650 bld.emit(BRW_OPCODE_DO);
3651
3652 /* Get the next live sample number into sample_id_reg */
3653 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3654
3655 /* Set the flag register so that we can perform the send
3656 * message on all channels that have the same sample number
3657 */
3658 bld.CMP(bld.null_reg_ud(),
3659 sample_src, sample_id,
3660 BRW_CONDITIONAL_EQ);
3661 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3662 bld.exec_all().group(1, 0)
3663 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3664 fs_inst *inst =
3665 emit_pixel_interpolater_send(bld,
3666 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3667 dest,
3668 fs_reg(), /* src */
3669 component(msg_data, 0),
3670 interpolation);
3671 set_predicate(BRW_PREDICATE_NORMAL, inst);
3672
3673 /* Continue the loop if there are any live channels left */
3674 set_predicate_inv(BRW_PREDICATE_NORMAL,
3675 true, /* inverse */
3676 bld.emit(BRW_OPCODE_WHILE));
3677 }
3678 }
3679 break;
3680 }
3681
3682 case nir_intrinsic_load_barycentric_at_offset: {
3683 const glsl_interp_mode interpolation =
3684 (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3685
3686 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3687
3688 if (const_offset) {
3689 assert(nir_src_bit_size(instr->src[0]) == 32);
3690 unsigned off_x = MIN2((int)(const_offset[0].f32 * 16), 7) & 0xf;
3691 unsigned off_y = MIN2((int)(const_offset[1].f32 * 16), 7) & 0xf;
3692
3693 emit_pixel_interpolater_send(bld,
3694 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3695 dest,
3696 fs_reg(), /* src */
3697 brw_imm_ud(off_x | (off_y << 4)),
3698 interpolation);
3699 } else {
3700 fs_reg src = vgrf(glsl_type::ivec2_type);
3701 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3702 BRW_REGISTER_TYPE_F);
3703 for (int i = 0; i < 2; i++) {
3704 fs_reg temp = vgrf(glsl_type::float_type);
3705 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3706 fs_reg itemp = vgrf(glsl_type::int_type);
3707 /* float to int */
3708 bld.MOV(itemp, temp);
3709
3710 /* Clamp the upper end of the range to +7/16.
3711 * ARB_gpu_shader5 requires that we support a maximum offset
3712 * of +0.5, which isn't representable in a S0.4 value -- if
3713 * we didn't clamp it, we'd end up with -8/16, which is the
3714 * opposite of what the shader author wanted.
3715 *
3716 * This is legal due to ARB_gpu_shader5's quantization
3717 * rules:
3718 *
3719 * "Not all values of <offset> may be supported; x and y
3720 * offsets may be rounded to fixed-point values with the
3721 * number of fraction bits given by the
3722 * implementation-dependent constant
3723 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3724 */
3725 set_condmod(BRW_CONDITIONAL_L,
3726 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3727 }
3728
3729 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3730 emit_pixel_interpolater_send(bld,
3731 opcode,
3732 dest,
3733 src,
3734 brw_imm_ud(0u),
3735 interpolation);
3736 }
3737 break;
3738 }
3739
3740 case nir_intrinsic_load_interpolated_input: {
3741 if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3742 emit_fragcoord_interpolation(dest);
3743 break;
3744 }
3745
3746 assert(instr->src[0].ssa &&
3747 instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3748 nir_intrinsic_instr *bary_intrinsic =
3749 nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3750 nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3751 enum glsl_interp_mode interp_mode =
3752 (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3753 fs_reg dst_xy;
3754
3755 if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3756 bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3757 /* Use the result of the PI message */
3758 dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3759 } else {
3760 /* Use the delta_xy values computed from the payload */
3761 enum brw_barycentric_mode bary =
3762 brw_barycentric_mode(interp_mode, bary_intrin);
3763
3764 dst_xy = this->delta_xy[bary];
3765 }
3766
3767 for (unsigned int i = 0; i < instr->num_components; i++) {
3768 fs_reg interp =
3769 interp_reg(nir_intrinsic_base(instr),
3770 nir_intrinsic_component(instr) + i);
3771 interp.type = BRW_REGISTER_TYPE_F;
3772 dest.type = BRW_REGISTER_TYPE_F;
3773
3774 if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3775 fs_reg tmp = vgrf(glsl_type::float_type);
3776 bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3777 bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3778 } else {
3779 bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3780 }
3781 }
3782 break;
3783 }
3784
3785 default:
3786 nir_emit_intrinsic(bld, instr);
3787 break;
3788 }
3789 }
3790
3791 static int
3792 get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
3793 {
3794 if (nir_src_is_const(instr->src[src])) {
3795 int64_t add_val = nir_src_as_int(instr->src[src]);
3796 if (add_val == 1)
3797 return BRW_AOP_INC;
3798 else if (add_val == -1)
3799 return BRW_AOP_DEC;
3800 }
3801
3802 return BRW_AOP_ADD;
3803 }
3804
3805 void
3806 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3807 nir_intrinsic_instr *instr)
3808 {
3809 assert(stage == MESA_SHADER_COMPUTE);
3810 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3811
3812 fs_reg dest;
3813 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3814 dest = get_nir_dest(instr->dest);
3815
3816 switch (instr->intrinsic) {
3817 case nir_intrinsic_barrier:
3818 emit_barrier();
3819 cs_prog_data->uses_barrier = true;
3820 break;
3821
3822 case nir_intrinsic_load_subgroup_id:
3823 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3824 break;
3825
3826 case nir_intrinsic_load_local_invocation_id:
3827 case nir_intrinsic_load_work_group_id: {
3828 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3829 fs_reg val = nir_system_values[sv];
3830 assert(val.file != BAD_FILE);
3831 dest.type = val.type;
3832 for (unsigned i = 0; i < 3; i++)
3833 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3834 break;
3835 }
3836
3837 case nir_intrinsic_load_num_work_groups: {
3838 const unsigned surface =
3839 cs_prog_data->binding_table.work_groups_start;
3840
3841 cs_prog_data->uses_num_work_groups = true;
3842
3843 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3844 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3845 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3846 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(1); /* num components */
3847
3848 /* Read the 3 GLuint components of gl_NumWorkGroups */
3849 for (unsigned i = 0; i < 3; i++) {
3850 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(i << 2);
3851 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3852 offset(dest, bld, i), srcs, SURFACE_LOGICAL_NUM_SRCS);
3853 }
3854 break;
3855 }
3856
3857 case nir_intrinsic_shared_atomic_add:
3858 nir_emit_shared_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
3859 break;
3860 case nir_intrinsic_shared_atomic_imin:
3861 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3862 break;
3863 case nir_intrinsic_shared_atomic_umin:
3864 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3865 break;
3866 case nir_intrinsic_shared_atomic_imax:
3867 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3868 break;
3869 case nir_intrinsic_shared_atomic_umax:
3870 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3871 break;
3872 case nir_intrinsic_shared_atomic_and:
3873 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3874 break;
3875 case nir_intrinsic_shared_atomic_or:
3876 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3877 break;
3878 case nir_intrinsic_shared_atomic_xor:
3879 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3880 break;
3881 case nir_intrinsic_shared_atomic_exchange:
3882 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3883 break;
3884 case nir_intrinsic_shared_atomic_comp_swap:
3885 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3886 break;
3887 case nir_intrinsic_shared_atomic_fmin:
3888 nir_emit_shared_atomic_float(bld, BRW_AOP_FMIN, instr);
3889 break;
3890 case nir_intrinsic_shared_atomic_fmax:
3891 nir_emit_shared_atomic_float(bld, BRW_AOP_FMAX, instr);
3892 break;
3893 case nir_intrinsic_shared_atomic_fcomp_swap:
3894 nir_emit_shared_atomic_float(bld, BRW_AOP_FCMPWR, instr);
3895 break;
3896
3897 case nir_intrinsic_load_shared: {
3898 assert(devinfo->gen >= 7);
3899 assert(stage == MESA_SHADER_COMPUTE);
3900
3901 const unsigned bit_size = nir_dest_bit_size(instr->dest);
3902 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3903 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3904 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
3905 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3906
3907 /* Make dest unsigned because that's what the temporary will be */
3908 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3909
3910 /* Read the vector */
3911 if (nir_intrinsic_align(instr) >= 4) {
3912 assert(nir_dest_bit_size(instr->dest) == 32);
3913 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3914 fs_inst *inst =
3915 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3916 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3917 inst->size_written = instr->num_components * dispatch_width * 4;
3918 } else {
3919 assert(nir_dest_bit_size(instr->dest) <= 32);
3920 assert(nir_dest_num_components(instr->dest) == 1);
3921 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3922
3923 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
3924 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
3925 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
3926 bld.MOV(dest, read_result);
3927 }
3928 break;
3929 }
3930
3931 case nir_intrinsic_store_shared: {
3932 assert(devinfo->gen >= 7);
3933 assert(stage == MESA_SHADER_COMPUTE);
3934
3935 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
3936 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3937 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3938 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3939 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3940
3941 fs_reg data = get_nir_src(instr->src[0]);
3942 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3943
3944 assert(nir_intrinsic_write_mask(instr) ==
3945 (1u << instr->num_components) - 1);
3946 if (nir_intrinsic_align(instr) >= 4) {
3947 assert(nir_src_bit_size(instr->src[0]) == 32);
3948 assert(nir_src_num_components(instr->src[0]) <= 4);
3949 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3950 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3951 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3952 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3953 } else {
3954 assert(nir_src_bit_size(instr->src[0]) <= 32);
3955 assert(nir_src_num_components(instr->src[0]) == 1);
3956 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3957
3958 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3959 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
3960
3961 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
3962 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3963 }
3964 break;
3965 }
3966
3967 default:
3968 nir_emit_intrinsic(bld, instr);
3969 break;
3970 }
3971 }
3972
3973 static fs_reg
3974 brw_nir_reduction_op_identity(const fs_builder &bld,
3975 nir_op op, brw_reg_type type)
3976 {
3977 nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3978 switch (type_sz(type)) {
3979 case 2:
3980 assert(type != BRW_REGISTER_TYPE_HF);
3981 return retype(brw_imm_uw(value.u16), type);
3982 case 4:
3983 return retype(brw_imm_ud(value.u32), type);
3984 case 8:
3985 if (type == BRW_REGISTER_TYPE_DF)
3986 return setup_imm_df(bld, value.f64);
3987 else
3988 return retype(brw_imm_u64(value.u64), type);
3989 default:
3990 unreachable("Invalid type size");
3991 }
3992 }
3993
3994 static opcode
3995 brw_op_for_nir_reduction_op(nir_op op)
3996 {
3997 switch (op) {
3998 case nir_op_iadd: return BRW_OPCODE_ADD;
3999 case nir_op_fadd: return BRW_OPCODE_ADD;
4000 case nir_op_imul: return BRW_OPCODE_MUL;
4001 case nir_op_fmul: return BRW_OPCODE_MUL;
4002 case nir_op_imin: return BRW_OPCODE_SEL;
4003 case nir_op_umin: return BRW_OPCODE_SEL;
4004 case nir_op_fmin: return BRW_OPCODE_SEL;
4005 case nir_op_imax: return BRW_OPCODE_SEL;
4006 case nir_op_umax: return BRW_OPCODE_SEL;
4007 case nir_op_fmax: return BRW_OPCODE_SEL;
4008 case nir_op_iand: return BRW_OPCODE_AND;
4009 case nir_op_ior: return BRW_OPCODE_OR;
4010 case nir_op_ixor: return BRW_OPCODE_XOR;
4011 default:
4012 unreachable("Invalid reduction operation");
4013 }
4014 }
4015
4016 static brw_conditional_mod
4017 brw_cond_mod_for_nir_reduction_op(nir_op op)
4018 {
4019 switch (op) {
4020 case nir_op_iadd: return BRW_CONDITIONAL_NONE;
4021 case nir_op_fadd: return BRW_CONDITIONAL_NONE;
4022 case nir_op_imul: return BRW_CONDITIONAL_NONE;
4023 case nir_op_fmul: return BRW_CONDITIONAL_NONE;
4024 case nir_op_imin: return BRW_CONDITIONAL_L;
4025 case nir_op_umin: return BRW_CONDITIONAL_L;
4026 case nir_op_fmin: return BRW_CONDITIONAL_L;
4027 case nir_op_imax: return BRW_CONDITIONAL_GE;
4028 case nir_op_umax: return BRW_CONDITIONAL_GE;
4029 case nir_op_fmax: return BRW_CONDITIONAL_GE;
4030 case nir_op_iand: return BRW_CONDITIONAL_NONE;
4031 case nir_op_ior: return BRW_CONDITIONAL_NONE;
4032 case nir_op_ixor: return BRW_CONDITIONAL_NONE;
4033 default:
4034 unreachable("Invalid reduction operation");
4035 }
4036 }
4037
4038 fs_reg
4039 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
4040 nir_intrinsic_instr *instr)
4041 {
4042 fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
4043
4044 if (stage_prog_data->binding_table.image_start > 0) {
4045 if (image.file == BRW_IMMEDIATE_VALUE) {
4046 image.d += stage_prog_data->binding_table.image_start;
4047 } else {
4048 bld.ADD(image, image,
4049 brw_imm_d(stage_prog_data->binding_table.image_start));
4050 }
4051 }
4052
4053 return bld.emit_uniformize(image);
4054 }
4055
4056 fs_reg
4057 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
4058 nir_intrinsic_instr *instr)
4059 {
4060 /* SSBO stores are weird in that their index is in src[1] */
4061 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
4062
4063 fs_reg surf_index;
4064 if (nir_src_is_const(instr->src[src])) {
4065 unsigned index = stage_prog_data->binding_table.ssbo_start +
4066 nir_src_as_uint(instr->src[src]);
4067 surf_index = brw_imm_ud(index);
4068 } else {
4069 surf_index = vgrf(glsl_type::uint_type);
4070 bld.ADD(surf_index, get_nir_src(instr->src[src]),
4071 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4072 }
4073
4074 return bld.emit_uniformize(surf_index);
4075 }
4076
4077 static unsigned
4078 image_intrinsic_coord_components(nir_intrinsic_instr *instr)
4079 {
4080 switch (nir_intrinsic_image_dim(instr)) {
4081 case GLSL_SAMPLER_DIM_1D:
4082 return 1 + nir_intrinsic_image_array(instr);
4083 case GLSL_SAMPLER_DIM_2D:
4084 case GLSL_SAMPLER_DIM_RECT:
4085 return 2 + nir_intrinsic_image_array(instr);
4086 case GLSL_SAMPLER_DIM_3D:
4087 case GLSL_SAMPLER_DIM_CUBE:
4088 return 3;
4089 case GLSL_SAMPLER_DIM_BUF:
4090 return 1;
4091 case GLSL_SAMPLER_DIM_MS:
4092 return 2 + nir_intrinsic_image_array(instr);
4093 default:
4094 unreachable("Invalid image dimension");
4095 }
4096 }
4097
4098 void
4099 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
4100 {
4101 fs_reg dest;
4102 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4103 dest = get_nir_dest(instr->dest);
4104
4105 switch (instr->intrinsic) {
4106 case nir_intrinsic_image_load:
4107 case nir_intrinsic_image_store:
4108 case nir_intrinsic_image_atomic_add:
4109 case nir_intrinsic_image_atomic_min:
4110 case nir_intrinsic_image_atomic_max:
4111 case nir_intrinsic_image_atomic_and:
4112 case nir_intrinsic_image_atomic_or:
4113 case nir_intrinsic_image_atomic_xor:
4114 case nir_intrinsic_image_atomic_exchange:
4115 case nir_intrinsic_image_atomic_comp_swap:
4116 case nir_intrinsic_bindless_image_load:
4117 case nir_intrinsic_bindless_image_store:
4118 case nir_intrinsic_bindless_image_atomic_add:
4119 case nir_intrinsic_bindless_image_atomic_min:
4120 case nir_intrinsic_bindless_image_atomic_max:
4121 case nir_intrinsic_bindless_image_atomic_and:
4122 case nir_intrinsic_bindless_image_atomic_or:
4123 case nir_intrinsic_bindless_image_atomic_xor:
4124 case nir_intrinsic_bindless_image_atomic_exchange:
4125 case nir_intrinsic_bindless_image_atomic_comp_swap: {
4126 if (stage == MESA_SHADER_FRAGMENT &&
4127 instr->intrinsic != nir_intrinsic_image_load)
4128 brw_wm_prog_data(prog_data)->has_side_effects = true;
4129
4130 /* Get some metadata from the image intrinsic. */
4131 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
4132 const GLenum format = nir_intrinsic_format(instr);
4133
4134 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4135
4136 switch (instr->intrinsic) {
4137 case nir_intrinsic_image_load:
4138 case nir_intrinsic_image_store:
4139 case nir_intrinsic_image_atomic_add:
4140 case nir_intrinsic_image_atomic_min:
4141 case nir_intrinsic_image_atomic_max:
4142 case nir_intrinsic_image_atomic_and:
4143 case nir_intrinsic_image_atomic_or:
4144 case nir_intrinsic_image_atomic_xor:
4145 case nir_intrinsic_image_atomic_exchange:
4146 case nir_intrinsic_image_atomic_comp_swap:
4147 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4148 get_nir_image_intrinsic_image(bld, instr);
4149 break;
4150
4151 default:
4152 /* Bindless */
4153 srcs[SURFACE_LOGICAL_SRC_SURFACE_HANDLE] =
4154 bld.emit_uniformize(get_nir_src(instr->src[0]));
4155 break;
4156 }
4157
4158 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4159 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
4160 brw_imm_ud(image_intrinsic_coord_components(instr));
4161
4162 /* Emit an image load, store or atomic op. */
4163 if (instr->intrinsic == nir_intrinsic_image_load ||
4164 instr->intrinsic == nir_intrinsic_bindless_image_load) {
4165 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4166 fs_inst *inst =
4167 bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
4168 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4169 inst->size_written = instr->num_components * dispatch_width * 4;
4170 } else if (instr->intrinsic == nir_intrinsic_image_store ||
4171 instr->intrinsic == nir_intrinsic_bindless_image_store) {
4172 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4173 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
4174 bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
4175 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4176 } else {
4177 int op;
4178 unsigned num_srcs = info->num_srcs;
4179
4180 switch (instr->intrinsic) {
4181 case nir_intrinsic_image_atomic_add:
4182 case nir_intrinsic_bindless_image_atomic_add:
4183 assert(num_srcs == 4);
4184
4185 op = get_op_for_atomic_add(instr, 3);
4186
4187 if (op != BRW_AOP_ADD)
4188 num_srcs = 3;
4189 break;
4190 case nir_intrinsic_image_atomic_min:
4191 case nir_intrinsic_bindless_image_atomic_min:
4192 assert(format == GL_R32UI || format == GL_R32I);
4193 op = (format == GL_R32I) ? BRW_AOP_IMIN : BRW_AOP_UMIN;
4194 break;
4195 case nir_intrinsic_image_atomic_max:
4196 case nir_intrinsic_bindless_image_atomic_max:
4197 assert(format == GL_R32UI || format == GL_R32I);
4198 op = (format == GL_R32I) ? BRW_AOP_IMAX : BRW_AOP_UMAX;
4199 break;
4200 case nir_intrinsic_image_atomic_and:
4201 case nir_intrinsic_bindless_image_atomic_and:
4202 op = BRW_AOP_AND;
4203 break;
4204 case nir_intrinsic_image_atomic_or:
4205 case nir_intrinsic_bindless_image_atomic_or:
4206 op = BRW_AOP_OR;
4207 break;
4208 case nir_intrinsic_image_atomic_xor:
4209 case nir_intrinsic_bindless_image_atomic_xor:
4210 op = BRW_AOP_XOR;
4211 break;
4212 case nir_intrinsic_image_atomic_exchange:
4213 case nir_intrinsic_bindless_image_atomic_exchange:
4214 op = BRW_AOP_MOV;
4215 break;
4216 case nir_intrinsic_image_atomic_comp_swap:
4217 case nir_intrinsic_bindless_image_atomic_comp_swap:
4218 op = BRW_AOP_CMPWR;
4219 break;
4220 default:
4221 unreachable("Not reachable.");
4222 }
4223
4224 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4225
4226 fs_reg data;
4227 if (num_srcs >= 4)
4228 data = get_nir_src(instr->src[3]);
4229 if (num_srcs >= 5) {
4230 fs_reg tmp = bld.vgrf(data.type, 2);
4231 fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
4232 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4233 data = tmp;
4234 }
4235 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4236
4237 bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
4238 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4239 }
4240 break;
4241 }
4242
4243 case nir_intrinsic_image_size:
4244 case nir_intrinsic_bindless_image_size: {
4245 /* Unlike the [un]typed load and store opcodes, the TXS that this turns
4246 * into will handle the binding table index for us in the geneerator.
4247 * Incidentally, this means that we can handle bindless with exactly the
4248 * same code.
4249 */
4250 fs_reg image = retype(get_nir_src_imm(instr->src[0]),
4251 BRW_REGISTER_TYPE_UD);
4252 image = bld.emit_uniformize(image);
4253
4254 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4255 if (instr->intrinsic == nir_intrinsic_image_size)
4256 srcs[TEX_LOGICAL_SRC_SURFACE] = image;
4257 else
4258 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = image;
4259 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
4260 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
4261 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
4262
4263 /* Since the image size is always uniform, we can just emit a SIMD8
4264 * query instruction and splat the result out.
4265 */
4266 const fs_builder ubld = bld.exec_all().group(8, 0);
4267
4268 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4269 fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
4270 tmp, srcs, ARRAY_SIZE(srcs));
4271 inst->size_written = 4 * REG_SIZE;
4272
4273 for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
4274 if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
4275 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
4276 offset(retype(dest, tmp.type), bld, c),
4277 component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
4278 } else {
4279 bld.MOV(offset(retype(dest, tmp.type), bld, c),
4280 component(offset(tmp, ubld, c), 0));
4281 }
4282 }
4283 break;
4284 }
4285
4286 case nir_intrinsic_image_load_raw_intel: {
4287 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4288 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4289 get_nir_image_intrinsic_image(bld, instr);
4290 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4291 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4292 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4293
4294 fs_inst *inst =
4295 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4296 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4297 inst->size_written = instr->num_components * dispatch_width * 4;
4298 break;
4299 }
4300
4301 case nir_intrinsic_image_store_raw_intel: {
4302 if (stage == MESA_SHADER_FRAGMENT)
4303 brw_wm_prog_data(prog_data)->has_side_effects = true;
4304
4305 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4306 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4307 get_nir_image_intrinsic_image(bld, instr);
4308 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4309 srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
4310 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4311 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4312
4313 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4314 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4315 break;
4316 }
4317
4318 case nir_intrinsic_group_memory_barrier:
4319 case nir_intrinsic_memory_barrier_shared:
4320 case nir_intrinsic_memory_barrier_atomic_counter:
4321 case nir_intrinsic_memory_barrier_buffer:
4322 case nir_intrinsic_memory_barrier_image:
4323 case nir_intrinsic_memory_barrier: {
4324 const fs_builder ubld = bld.group(8, 0);
4325 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4326 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
4327 brw_vec8_grf(0, 0), brw_imm_ud(0))
4328 ->size_written = 2 * REG_SIZE;
4329 break;
4330 }
4331
4332 case nir_intrinsic_shader_clock: {
4333 /* We cannot do anything if there is an event, so ignore it for now */
4334 const fs_reg shader_clock = get_timestamp(bld);
4335 const fs_reg srcs[] = { component(shader_clock, 0),
4336 component(shader_clock, 1) };
4337 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
4338 break;
4339 }
4340
4341 case nir_intrinsic_image_samples:
4342 /* The driver does not support multi-sampled images. */
4343 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4344 break;
4345
4346 case nir_intrinsic_load_uniform: {
4347 /* Offsets are in bytes but they should always aligned to
4348 * the type size
4349 */
4350 assert(instr->const_index[0] % 4 == 0 ||
4351 instr->const_index[0] % type_sz(dest.type) == 0);
4352
4353 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4354
4355 if (nir_src_is_const(instr->src[0])) {
4356 unsigned load_offset = nir_src_as_uint(instr->src[0]);
4357 assert(load_offset % type_sz(dest.type) == 0);
4358 /* For 16-bit types we add the module of the const_index[0]
4359 * offset to access to not 32-bit aligned element
4360 */
4361 src.offset = load_offset + instr->const_index[0] % 4;
4362
4363 for (unsigned j = 0; j < instr->num_components; j++) {
4364 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4365 }
4366 } else {
4367 fs_reg indirect = retype(get_nir_src(instr->src[0]),
4368 BRW_REGISTER_TYPE_UD);
4369
4370 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4371 * go past the end of the uniform. In order to keep the n'th
4372 * component from running past, we subtract off the size of all but
4373 * one component of the vector.
4374 */
4375 assert(instr->const_index[1] >=
4376 instr->num_components * (int) type_sz(dest.type));
4377 unsigned read_size = instr->const_index[1] -
4378 (instr->num_components - 1) * type_sz(dest.type);
4379
4380 bool supports_64bit_indirects =
4381 !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4382
4383 if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4384 for (unsigned j = 0; j < instr->num_components; j++) {
4385 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4386 offset(dest, bld, j), offset(src, bld, j),
4387 indirect, brw_imm_ud(read_size));
4388 }
4389 } else {
4390 const unsigned num_mov_indirects =
4391 type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4392 /* We read a little bit less per MOV INDIRECT, as they are now
4393 * 32-bits ones instead of 64-bit. Fix read_size then.
4394 */
4395 const unsigned read_size_32bit = read_size -
4396 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4397 for (unsigned j = 0; j < instr->num_components; j++) {
4398 for (unsigned i = 0; i < num_mov_indirects; i++) {
4399 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4400 subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4401 subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4402 indirect, brw_imm_ud(read_size_32bit));
4403 }
4404 }
4405 }
4406 }
4407 break;
4408 }
4409
4410 case nir_intrinsic_load_ubo: {
4411 fs_reg surf_index;
4412 if (nir_src_is_const(instr->src[0])) {
4413 const unsigned index = stage_prog_data->binding_table.ubo_start +
4414 nir_src_as_uint(instr->src[0]);
4415 surf_index = brw_imm_ud(index);
4416 } else {
4417 /* The block index is not a constant. Evaluate the index expression
4418 * per-channel and add the base UBO index; we have to select a value
4419 * from any live channel.
4420 */
4421 surf_index = vgrf(glsl_type::uint_type);
4422 bld.ADD(surf_index, get_nir_src(instr->src[0]),
4423 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4424 surf_index = bld.emit_uniformize(surf_index);
4425 }
4426
4427 if (!nir_src_is_const(instr->src[1])) {
4428 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4429 BRW_REGISTER_TYPE_UD);
4430
4431 for (int i = 0; i < instr->num_components; i++)
4432 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4433 base_offset, i * type_sz(dest.type));
4434 } else {
4435 /* Even if we are loading doubles, a pull constant load will load
4436 * a 32-bit vec4, so should only reserve vgrf space for that. If we
4437 * need to load a full dvec4 we will have to emit 2 loads. This is
4438 * similar to demote_pull_constants(), except that in that case we
4439 * see individual accesses to each component of the vector and then
4440 * we let CSE deal with duplicate loads. Here we see a vector access
4441 * and we have to split it if necessary.
4442 */
4443 const unsigned type_size = type_sz(dest.type);
4444 const unsigned load_offset = nir_src_as_uint(instr->src[1]);
4445
4446 /* See if we've selected this as a push constant candidate */
4447 if (nir_src_is_const(instr->src[0])) {
4448 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
4449 const unsigned offset_256b = load_offset / 32;
4450
4451 fs_reg push_reg;
4452 for (int i = 0; i < 4; i++) {
4453 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4454 if (range->block == ubo_block &&
4455 offset_256b >= range->start &&
4456 offset_256b < range->start + range->length) {
4457
4458 push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4459 push_reg.offset = load_offset - 32 * range->start;
4460 break;
4461 }
4462 }
4463
4464 if (push_reg.file != BAD_FILE) {
4465 for (unsigned i = 0; i < instr->num_components; i++) {
4466 bld.MOV(offset(dest, bld, i),
4467 byte_offset(push_reg, i * type_size));
4468 }
4469 break;
4470 }
4471 }
4472
4473 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4474 const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4475 const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4476
4477 for (unsigned c = 0; c < instr->num_components;) {
4478 const unsigned base = load_offset + c * type_size;
4479 /* Number of usable components in the next block-aligned load. */
4480 const unsigned count = MIN2(instr->num_components - c,
4481 (block_sz - base % block_sz) / type_size);
4482
4483 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4484 packed_consts, surf_index,
4485 brw_imm_ud(base & ~(block_sz - 1)));
4486
4487 const fs_reg consts =
4488 retype(byte_offset(packed_consts, base & (block_sz - 1)),
4489 dest.type);
4490
4491 for (unsigned d = 0; d < count; d++)
4492 bld.MOV(offset(dest, bld, c + d), component(consts, d));
4493
4494 c += count;
4495 }
4496 }
4497 break;
4498 }
4499
4500 case nir_intrinsic_load_global: {
4501 assert(devinfo->gen >= 8);
4502
4503 if (nir_intrinsic_align(instr) >= 4) {
4504 assert(nir_dest_bit_size(instr->dest) == 32);
4505 fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
4506 dest,
4507 get_nir_src(instr->src[0]), /* Address */
4508 fs_reg(), /* No source data */
4509 brw_imm_ud(instr->num_components));
4510 inst->size_written = instr->num_components *
4511 inst->dst.component_size(inst->exec_size);
4512 } else {
4513 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4514 assert(bit_size <= 32);
4515 assert(nir_dest_num_components(instr->dest) == 1);
4516 brw_reg_type data_type =
4517 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4518 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4519 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
4520 tmp,
4521 get_nir_src(instr->src[0]), /* Address */
4522 fs_reg(), /* No source data */
4523 brw_imm_ud(bit_size));
4524 bld.MOV(retype(dest, data_type), tmp);
4525 }
4526 break;
4527 }
4528
4529 case nir_intrinsic_store_global:
4530 assert(devinfo->gen >= 8);
4531
4532 if (stage == MESA_SHADER_FRAGMENT)
4533 brw_wm_prog_data(prog_data)->has_side_effects = true;
4534
4535 if (nir_intrinsic_align(instr) >= 4) {
4536 assert(nir_src_bit_size(instr->src[0]) == 32);
4537 bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4538 fs_reg(),
4539 get_nir_src(instr->src[1]), /* Address */
4540 get_nir_src(instr->src[0]), /* Data */
4541 brw_imm_ud(instr->num_components));
4542 } else {
4543 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4544 assert(bit_size <= 32);
4545 assert(nir_src_num_components(instr->src[0]) == 1);
4546 brw_reg_type data_type =
4547 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4548 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4549 bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4550 bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4551 fs_reg(),
4552 get_nir_src(instr->src[1]), /* Address */
4553 tmp, /* Data */
4554 brw_imm_ud(nir_src_bit_size(instr->src[0])));
4555 }
4556 break;
4557
4558 case nir_intrinsic_global_atomic_add:
4559 nir_emit_global_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
4560 break;
4561 case nir_intrinsic_global_atomic_imin:
4562 nir_emit_global_atomic(bld, BRW_AOP_IMIN, instr);
4563 break;
4564 case nir_intrinsic_global_atomic_umin:
4565 nir_emit_global_atomic(bld, BRW_AOP_UMIN, instr);
4566 break;
4567 case nir_intrinsic_global_atomic_imax:
4568 nir_emit_global_atomic(bld, BRW_AOP_IMAX, instr);
4569 break;
4570 case nir_intrinsic_global_atomic_umax:
4571 nir_emit_global_atomic(bld, BRW_AOP_UMAX, instr);
4572 break;
4573 case nir_intrinsic_global_atomic_and:
4574 nir_emit_global_atomic(bld, BRW_AOP_AND, instr);
4575 break;
4576 case nir_intrinsic_global_atomic_or:
4577 nir_emit_global_atomic(bld, BRW_AOP_OR, instr);
4578 break;
4579 case nir_intrinsic_global_atomic_xor:
4580 nir_emit_global_atomic(bld, BRW_AOP_XOR, instr);
4581 break;
4582 case nir_intrinsic_global_atomic_exchange:
4583 nir_emit_global_atomic(bld, BRW_AOP_MOV, instr);
4584 break;
4585 case nir_intrinsic_global_atomic_comp_swap:
4586 nir_emit_global_atomic(bld, BRW_AOP_CMPWR, instr);
4587 break;
4588 case nir_intrinsic_global_atomic_fmin:
4589 nir_emit_global_atomic_float(bld, BRW_AOP_FMIN, instr);
4590 break;
4591 case nir_intrinsic_global_atomic_fmax:
4592 nir_emit_global_atomic_float(bld, BRW_AOP_FMAX, instr);
4593 break;
4594 case nir_intrinsic_global_atomic_fcomp_swap:
4595 nir_emit_global_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4596 break;
4597
4598 case nir_intrinsic_load_ssbo: {
4599 assert(devinfo->gen >= 7);
4600
4601 const unsigned bit_size = nir_dest_bit_size(instr->dest);
4602 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4603 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4604 get_nir_ssbo_intrinsic_index(bld, instr);
4605 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4606 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4607
4608 /* Make dest unsigned because that's what the temporary will be */
4609 dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4610
4611 /* Read the vector */
4612 if (nir_intrinsic_align(instr) >= 4) {
4613 assert(nir_dest_bit_size(instr->dest) == 32);
4614 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4615 fs_inst *inst =
4616 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4617 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4618 inst->size_written = instr->num_components * dispatch_width * 4;
4619 } else {
4620 assert(nir_dest_bit_size(instr->dest) <= 32);
4621 assert(nir_dest_num_components(instr->dest) == 1);
4622 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4623
4624 fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4625 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4626 read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4627 bld.MOV(dest, read_result);
4628 }
4629 break;
4630 }
4631
4632 case nir_intrinsic_store_ssbo: {
4633 assert(devinfo->gen >= 7);
4634
4635 if (stage == MESA_SHADER_FRAGMENT)
4636 brw_wm_prog_data(prog_data)->has_side_effects = true;
4637
4638 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4639 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4640 srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4641 get_nir_ssbo_intrinsic_index(bld, instr);
4642 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4643 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4644
4645 fs_reg data = get_nir_src(instr->src[0]);
4646 data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4647
4648 assert(nir_intrinsic_write_mask(instr) ==
4649 (1u << instr->num_components) - 1);
4650 if (nir_intrinsic_align(instr) >= 4) {
4651 assert(nir_src_bit_size(instr->src[0]) == 32);
4652 assert(nir_src_num_components(instr->src[0]) <= 4);
4653 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4654 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4655 bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4656 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4657 } else {
4658 assert(nir_src_bit_size(instr->src[0]) <= 32);
4659 assert(nir_src_num_components(instr->src[0]) == 1);
4660 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4661
4662 srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4663 bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4664
4665 bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4666 fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4667 }
4668 break;
4669 }
4670
4671 case nir_intrinsic_store_output: {
4672 fs_reg src = get_nir_src(instr->src[0]);
4673
4674 unsigned store_offset = nir_src_as_uint(instr->src[1]);
4675 unsigned num_components = instr->num_components;
4676 unsigned first_component = nir_intrinsic_component(instr);
4677 if (nir_src_bit_size(instr->src[0]) == 64) {
4678 src = shuffle_for_32bit_write(bld, src, 0, num_components);
4679 num_components *= 2;
4680 }
4681
4682 fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4683 4 * store_offset), src.type);
4684 for (unsigned j = 0; j < num_components; j++) {
4685 bld.MOV(offset(new_dest, bld, j + first_component),
4686 offset(src, bld, j));
4687 }
4688 break;
4689 }
4690
4691 case nir_intrinsic_ssbo_atomic_add:
4692 nir_emit_ssbo_atomic(bld, get_op_for_atomic_add(instr, 2), instr);
4693 break;
4694 case nir_intrinsic_ssbo_atomic_imin:
4695 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4696 break;
4697 case nir_intrinsic_ssbo_atomic_umin:
4698 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4699 break;
4700 case nir_intrinsic_ssbo_atomic_imax:
4701 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4702 break;
4703 case nir_intrinsic_ssbo_atomic_umax:
4704 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4705 break;
4706 case nir_intrinsic_ssbo_atomic_and:
4707 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4708 break;
4709 case nir_intrinsic_ssbo_atomic_or:
4710 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4711 break;
4712 case nir_intrinsic_ssbo_atomic_xor:
4713 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4714 break;
4715 case nir_intrinsic_ssbo_atomic_exchange:
4716 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4717 break;
4718 case nir_intrinsic_ssbo_atomic_comp_swap:
4719 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4720 break;
4721 case nir_intrinsic_ssbo_atomic_fmin:
4722 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMIN, instr);
4723 break;
4724 case nir_intrinsic_ssbo_atomic_fmax:
4725 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMAX, instr);
4726 break;
4727 case nir_intrinsic_ssbo_atomic_fcomp_swap:
4728 nir_emit_ssbo_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4729 break;
4730
4731 case nir_intrinsic_get_buffer_size: {
4732 assert(nir_src_num_components(instr->src[0]) == 1);
4733 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
4734 nir_src_as_uint(instr->src[0]) : 0;
4735
4736 /* A resinfo's sampler message is used to get the buffer size. The
4737 * SIMD8's writeback message consists of four registers and SIMD16's
4738 * writeback message consists of 8 destination registers (two per each
4739 * component). Because we are only interested on the first channel of
4740 * the first returned component, where resinfo returns the buffer size
4741 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4742 * the dispatch width.
4743 */
4744 const fs_builder ubld = bld.exec_all().group(8, 0);
4745 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4746 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4747
4748 /* Set LOD = 0 */
4749 ubld.MOV(src_payload, brw_imm_d(0));
4750
4751 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4752 fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4753 src_payload, brw_imm_ud(index));
4754 inst->header_size = 0;
4755 inst->mlen = 1;
4756 inst->size_written = 4 * REG_SIZE;
4757
4758 /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4759 *
4760 * "Out-of-bounds checking is always performed at a DWord granularity. If
4761 * any part of the DWord is out-of-bounds then the whole DWord is
4762 * considered out-of-bounds."
4763 *
4764 * This implies that types with size smaller than 4-bytes need to be
4765 * padded if they don't complete the last dword of the buffer. But as we
4766 * need to maintain the original size we need to reverse the padding
4767 * calculation to return the correct size to know the number of elements
4768 * of an unsized array. As we stored in the last two bits of the surface
4769 * size the needed padding for the buffer, we calculate here the
4770 * original buffer_size reversing the surface_size calculation:
4771 *
4772 * surface_size = isl_align(buffer_size, 4) +
4773 * (isl_align(buffer_size) - buffer_size)
4774 *
4775 * buffer_size = surface_size & ~3 - surface_size & 3
4776 */
4777
4778 fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4779 fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4780 fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4781
4782 ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4783 ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4784 ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4785
4786 bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4787 break;
4788 }
4789
4790 case nir_intrinsic_load_subgroup_invocation:
4791 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4792 nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4793 break;
4794
4795 case nir_intrinsic_load_subgroup_eq_mask:
4796 case nir_intrinsic_load_subgroup_ge_mask:
4797 case nir_intrinsic_load_subgroup_gt_mask:
4798 case nir_intrinsic_load_subgroup_le_mask:
4799 case nir_intrinsic_load_subgroup_lt_mask:
4800 unreachable("not reached");
4801
4802 case nir_intrinsic_vote_any: {
4803 const fs_builder ubld = bld.exec_all().group(1, 0);
4804
4805 /* The any/all predicates do not consider channel enables. To prevent
4806 * dead channels from affecting the result, we initialize the flag with
4807 * with the identity value for the logical operation.
4808 */
4809 if (dispatch_width == 32) {
4810 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4811 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4812 brw_imm_ud(0));
4813 } else {
4814 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4815 }
4816 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4817
4818 /* For some reason, the any/all predicates don't work properly with
4819 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4820 * doesn't read the correct subset of the flag register and you end up
4821 * getting garbage in the second half. Work around this by using a pair
4822 * of 1-wide MOVs and scattering the result.
4823 */
4824 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4825 ubld.MOV(res1, brw_imm_d(0));
4826 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H :
4827 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4828 BRW_PREDICATE_ALIGN1_ANY32H,
4829 ubld.MOV(res1, brw_imm_d(-1)));
4830
4831 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4832 break;
4833 }
4834 case nir_intrinsic_vote_all: {
4835 const fs_builder ubld = bld.exec_all().group(1, 0);
4836
4837 /* The any/all predicates do not consider channel enables. To prevent
4838 * dead channels from affecting the result, we initialize the flag with
4839 * with the identity value for the logical operation.
4840 */
4841 if (dispatch_width == 32) {
4842 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4843 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4844 brw_imm_ud(0xffffffff));
4845 } else {
4846 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4847 }
4848 bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4849
4850 /* For some reason, the any/all predicates don't work properly with
4851 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4852 * doesn't read the correct subset of the flag register and you end up
4853 * getting garbage in the second half. Work around this by using a pair
4854 * of 1-wide MOVs and scattering the result.
4855 */
4856 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4857 ubld.MOV(res1, brw_imm_d(0));
4858 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4859 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4860 BRW_PREDICATE_ALIGN1_ALL32H,
4861 ubld.MOV(res1, brw_imm_d(-1)));
4862
4863 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4864 break;
4865 }
4866 case nir_intrinsic_vote_feq:
4867 case nir_intrinsic_vote_ieq: {
4868 fs_reg value = get_nir_src(instr->src[0]);
4869 if (instr->intrinsic == nir_intrinsic_vote_feq) {
4870 const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4871 value.type = bit_size == 8 ? BRW_REGISTER_TYPE_B :
4872 brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4873 }
4874
4875 fs_reg uniformized = bld.emit_uniformize(value);
4876 const fs_builder ubld = bld.exec_all().group(1, 0);
4877
4878 /* The any/all predicates do not consider channel enables. To prevent
4879 * dead channels from affecting the result, we initialize the flag with
4880 * with the identity value for the logical operation.
4881 */
4882 if (dispatch_width == 32) {
4883 /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4884 ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4885 brw_imm_ud(0xffffffff));
4886 } else {
4887 ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4888 }
4889 bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4890
4891 /* For some reason, the any/all predicates don't work properly with
4892 * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H
4893 * doesn't read the correct subset of the flag register and you end up
4894 * getting garbage in the second half. Work around this by using a pair
4895 * of 1-wide MOVs and scattering the result.
4896 */
4897 fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4898 ubld.MOV(res1, brw_imm_d(0));
4899 set_predicate(dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H :
4900 dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4901 BRW_PREDICATE_ALIGN1_ALL32H,
4902 ubld.MOV(res1, brw_imm_d(-1)));
4903
4904 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4905 break;
4906 }
4907
4908 case nir_intrinsic_ballot: {
4909 const fs_reg value = retype(get_nir_src(instr->src[0]),
4910 BRW_REGISTER_TYPE_UD);
4911 struct brw_reg flag = brw_flag_reg(0, 0);
4912 /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4913 * as f0.0. This is a problem for fragment programs as we currently use
4914 * f0.1 for discards. Fortunately, we don't support SIMD32 fragment
4915 * programs yet so this isn't a problem. When we do, something will
4916 * have to change.
4917 */
4918 if (dispatch_width == 32)
4919 flag.type = BRW_REGISTER_TYPE_UD;
4920
4921 bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4922 bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4923
4924 if (instr->dest.ssa.bit_size > 32) {
4925 dest.type = BRW_REGISTER_TYPE_UQ;
4926 } else {
4927 dest.type = BRW_REGISTER_TYPE_UD;
4928 }
4929 bld.MOV(dest, flag);
4930 break;
4931 }
4932
4933 case nir_intrinsic_read_invocation: {
4934 const fs_reg value = get_nir_src(instr->src[0]);
4935 const fs_reg invocation = get_nir_src(instr->src[1]);
4936 fs_reg tmp = bld.vgrf(value.type);
4937
4938 bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4939 bld.emit_uniformize(invocation));
4940
4941 bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4942 break;
4943 }
4944
4945 case nir_intrinsic_read_first_invocation: {
4946 const fs_reg value = get_nir_src(instr->src[0]);
4947 bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4948 break;
4949 }
4950
4951 case nir_intrinsic_shuffle: {
4952 const fs_reg value = get_nir_src(instr->src[0]);
4953 const fs_reg index = get_nir_src(instr->src[1]);
4954
4955 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4956 break;
4957 }
4958
4959 case nir_intrinsic_first_invocation: {
4960 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4961 bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4962 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4963 fs_reg(component(tmp, 0)));
4964 break;
4965 }
4966
4967 case nir_intrinsic_quad_broadcast: {
4968 const fs_reg value = get_nir_src(instr->src[0]);
4969 const unsigned index = nir_src_as_uint(instr->src[1]);
4970
4971 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4972 value, brw_imm_ud(index), brw_imm_ud(4));
4973 break;
4974 }
4975
4976 case nir_intrinsic_quad_swap_horizontal: {
4977 const fs_reg value = get_nir_src(instr->src[0]);
4978 const fs_reg tmp = bld.vgrf(value.type);
4979 const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4980
4981 const fs_reg src_left = horiz_stride(value, 2);
4982 const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4983 const fs_reg tmp_left = horiz_stride(tmp, 2);
4984 const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4985
4986 ubld.MOV(tmp_left, src_right);
4987 ubld.MOV(tmp_right, src_left);
4988
4989 bld.MOV(retype(dest, value.type), tmp);
4990 break;
4991 }
4992
4993 case nir_intrinsic_quad_swap_vertical: {
4994 const fs_reg value = get_nir_src(instr->src[0]);
4995 if (nir_src_bit_size(instr->src[0]) == 32) {
4996 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4997 const fs_reg tmp = bld.vgrf(value.type);
4998 const fs_builder ubld = bld.exec_all();
4999 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
5000 brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
5001 bld.MOV(retype(dest, value.type), tmp);
5002 } else {
5003 /* For larger data types, we have to either emit dispatch_width many
5004 * MOVs or else fall back to doing indirects.
5005 */
5006 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5007 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5008 brw_imm_w(0x2));
5009 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
5010 }
5011 break;
5012 }
5013
5014 case nir_intrinsic_quad_swap_diagonal: {
5015 const fs_reg value = get_nir_src(instr->src[0]);
5016 if (nir_src_bit_size(instr->src[0]) == 32) {
5017 /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
5018 const fs_reg tmp = bld.vgrf(value.type);
5019 const fs_builder ubld = bld.exec_all();
5020 ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
5021 brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
5022 bld.MOV(retype(dest, value.type), tmp);
5023 } else {
5024 /* For larger data types, we have to either emit dispatch_width many
5025 * MOVs or else fall back to doing indirects.
5026 */
5027 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5028 bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5029 brw_imm_w(0x3));
5030 bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
5031 }
5032 break;
5033 }
5034
5035 case nir_intrinsic_reduce: {
5036 fs_reg src = get_nir_src(instr->src[0]);
5037 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
5038 unsigned cluster_size = nir_intrinsic_cluster_size(instr);
5039 if (cluster_size == 0 || cluster_size > dispatch_width)
5040 cluster_size = dispatch_width;
5041
5042 /* Figure out the source type */
5043 src.type = brw_type_for_nir_type(devinfo,
5044 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
5045 nir_src_bit_size(instr->src[0])));
5046
5047 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
5048 opcode brw_op = brw_op_for_nir_reduction_op(redop);
5049 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
5050
5051 /* Set up a register for all of our scratching around and initialize it
5052 * to reduction operation's identity value.
5053 */
5054 fs_reg scan = bld.vgrf(src.type);
5055 bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
5056
5057 bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
5058
5059 dest.type = src.type;
5060 if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
5061 /* In this case, CLUSTER_BROADCAST instruction isn't needed because
5062 * the distance between clusters is at least 2 GRFs. In this case,
5063 * we don't need the weird striding of the CLUSTER_BROADCAST
5064 * instruction and can just do regular MOVs.
5065 */
5066 assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
5067 const unsigned groups =
5068 (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
5069 const unsigned group_size = dispatch_width / groups;
5070 for (unsigned i = 0; i < groups; i++) {
5071 const unsigned cluster = (i * group_size) / cluster_size;
5072 const unsigned comp = cluster * cluster_size + (cluster_size - 1);
5073 bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
5074 component(scan, comp));
5075 }
5076 } else {
5077 bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
5078 brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
5079 }
5080 break;
5081 }
5082
5083 case nir_intrinsic_inclusive_scan:
5084 case nir_intrinsic_exclusive_scan: {
5085 fs_reg src = get_nir_src(instr->src[0]);
5086 nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
5087
5088 /* Figure out the source type */
5089 src.type = brw_type_for_nir_type(devinfo,
5090 (nir_alu_type)(nir_op_infos[redop].input_types[0] |
5091 nir_src_bit_size(instr->src[0])));
5092
5093 fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
5094 opcode brw_op = brw_op_for_nir_reduction_op(redop);
5095 brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
5096
5097 /* Set up a register for all of our scratching around and initialize it
5098 * to reduction operation's identity value.
5099 */
5100 fs_reg scan = bld.vgrf(src.type);
5101 const fs_builder allbld = bld.exec_all();
5102 allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
5103
5104 if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
5105 /* Exclusive scan is a bit harder because we have to do an annoying
5106 * shift of the contents before we can begin. To make things worse,
5107 * we can't do this with a normal stride; we have to use indirects.
5108 */
5109 fs_reg shifted = bld.vgrf(src.type);
5110 fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5111 allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5112 brw_imm_w(-1));
5113 allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
5114 allbld.group(1, 0).MOV(component(shifted, 0), identity);
5115 scan = shifted;
5116 }
5117
5118 bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
5119
5120 bld.MOV(retype(dest, src.type), scan);
5121 break;
5122 }
5123
5124 case nir_intrinsic_begin_invocation_interlock: {
5125 const fs_builder ubld = bld.group(8, 0);
5126 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5127
5128 ubld.emit(SHADER_OPCODE_INTERLOCK, tmp, brw_vec8_grf(0, 0))
5129 ->size_written = 2 * REG_SIZE;
5130 break;
5131 }
5132
5133 case nir_intrinsic_end_invocation_interlock: {
5134 /* For endInvocationInterlock(), we need to insert a memory fence which
5135 * stalls in the shader until the memory transactions prior to that
5136 * fence are complete. This ensures that the shader does not end before
5137 * any writes from its critical section have landed. Otherwise, you can
5138 * end up with a case where the next invocation on that pixel properly
5139 * stalls for previous FS invocation on its pixel to complete but
5140 * doesn't actually wait for the dataport memory transactions from that
5141 * thread to land before submitting its own.
5142 */
5143 const fs_builder ubld = bld.group(8, 0);
5144 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5145 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp,
5146 brw_vec8_grf(0, 0), brw_imm_ud(1))
5147 ->size_written = 2 * REG_SIZE;
5148 break;
5149 }
5150
5151 default:
5152 unreachable("unknown intrinsic");
5153 }
5154 }
5155
5156 void
5157 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
5158 int op, nir_intrinsic_instr *instr)
5159 {
5160 if (stage == MESA_SHADER_FRAGMENT)
5161 brw_wm_prog_data(prog_data)->has_side_effects = true;
5162
5163 /* The BTI untyped atomic messages only support 32-bit atomics. If you
5164 * just look at the big table of messages in the Vol 7 of the SKL PRM, they
5165 * appear to exist. However, if you look at Vol 2a, there are no message
5166 * descriptors provided for Qword atomic ops except for A64 messages.
5167 */
5168 assert(nir_dest_bit_size(instr->dest) == 32);
5169
5170 fs_reg dest;
5171 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5172 dest = get_nir_dest(instr->dest);
5173
5174 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5175 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5176 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5177 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5178 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5179
5180 fs_reg data;
5181 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5182 data = get_nir_src(instr->src[2]);
5183
5184 if (op == BRW_AOP_CMPWR) {
5185 fs_reg tmp = bld.vgrf(data.type, 2);
5186 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5187 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5188 data = tmp;
5189 }
5190 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5191
5192 /* Emit the actual atomic operation */
5193
5194 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5195 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5196 }
5197
5198 void
5199 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
5200 int op, nir_intrinsic_instr *instr)
5201 {
5202 if (stage == MESA_SHADER_FRAGMENT)
5203 brw_wm_prog_data(prog_data)->has_side_effects = true;
5204
5205 fs_reg dest;
5206 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5207 dest = get_nir_dest(instr->dest);
5208
5209 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5210 srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5211 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5212 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5213 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5214
5215 fs_reg data = get_nir_src(instr->src[2]);
5216 if (op == BRW_AOP_FCMPWR) {
5217 fs_reg tmp = bld.vgrf(data.type, 2);
5218 fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5219 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5220 data = tmp;
5221 }
5222 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5223
5224 /* Emit the actual atomic operation */
5225
5226 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5227 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5228 }
5229
5230 void
5231 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
5232 int op, nir_intrinsic_instr *instr)
5233 {
5234 fs_reg dest;
5235 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5236 dest = get_nir_dest(instr->dest);
5237
5238 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5239 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5240 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5241 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5242
5243 fs_reg data;
5244 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5245 data = get_nir_src(instr->src[1]);
5246 if (op == BRW_AOP_CMPWR) {
5247 fs_reg tmp = bld.vgrf(data.type, 2);
5248 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5249 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5250 data = tmp;
5251 }
5252 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5253
5254 /* Get the offset */
5255 if (nir_src_is_const(instr->src[0])) {
5256 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5257 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5258 } else {
5259 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5260 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5261 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5262 brw_imm_ud(instr->const_index[0]));
5263 }
5264
5265 /* Emit the actual atomic operation operation */
5266
5267 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5268 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5269 }
5270
5271 void
5272 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
5273 int op, nir_intrinsic_instr *instr)
5274 {
5275 fs_reg dest;
5276 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5277 dest = get_nir_dest(instr->dest);
5278
5279 fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5280 srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5281 srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5282 srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5283
5284 fs_reg data = get_nir_src(instr->src[1]);
5285 if (op == BRW_AOP_FCMPWR) {
5286 fs_reg tmp = bld.vgrf(data.type, 2);
5287 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5288 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5289 data = tmp;
5290 }
5291 srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5292
5293 /* Get the offset */
5294 if (nir_src_is_const(instr->src[0])) {
5295 srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5296 brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5297 } else {
5298 srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5299 bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5300 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5301 brw_imm_ud(instr->const_index[0]));
5302 }
5303
5304 /* Emit the actual atomic operation operation */
5305
5306 bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5307 dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5308 }
5309
5310 void
5311 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
5312 int op, nir_intrinsic_instr *instr)
5313 {
5314 if (stage == MESA_SHADER_FRAGMENT)
5315 brw_wm_prog_data(prog_data)->has_side_effects = true;
5316
5317 fs_reg dest;
5318 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5319 dest = get_nir_dest(instr->dest);
5320
5321 fs_reg addr = get_nir_src(instr->src[0]);
5322
5323 fs_reg data;
5324 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5325 data = get_nir_src(instr->src[1]);
5326
5327 if (op == BRW_AOP_CMPWR) {
5328 fs_reg tmp = bld.vgrf(data.type, 2);
5329 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5330 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5331 data = tmp;
5332 }
5333
5334 if (nir_dest_bit_size(instr->dest) == 64) {
5335 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL,
5336 dest, addr, data, brw_imm_ud(op));
5337 } else {
5338 assert(nir_dest_bit_size(instr->dest) == 32);
5339 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5340 dest, addr, data, brw_imm_ud(op));
5341 }
5342 }
5343
5344 void
5345 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
5346 int op, nir_intrinsic_instr *instr)
5347 {
5348 if (stage == MESA_SHADER_FRAGMENT)
5349 brw_wm_prog_data(prog_data)->has_side_effects = true;
5350
5351 assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
5352 fs_reg dest = get_nir_dest(instr->dest);
5353
5354 fs_reg addr = get_nir_src(instr->src[0]);
5355
5356 assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
5357 fs_reg data = get_nir_src(instr->src[1]);
5358
5359 if (op == BRW_AOP_FCMPWR) {
5360 fs_reg tmp = bld.vgrf(data.type, 2);
5361 fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5362 bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5363 data = tmp;
5364 }
5365
5366 bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5367 dest, addr, data, brw_imm_ud(op));
5368 }
5369
5370 void
5371 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
5372 {
5373 unsigned texture = instr->texture_index;
5374 unsigned sampler = instr->sampler_index;
5375
5376 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
5377
5378 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
5379 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
5380
5381 int lod_components = 0;
5382
5383 /* The hardware requires a LOD for buffer textures */
5384 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
5385 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
5386
5387 uint32_t header_bits = 0;
5388 for (unsigned i = 0; i < instr->num_srcs; i++) {
5389 fs_reg src = get_nir_src(instr->src[i].src);
5390 switch (instr->src[i].src_type) {
5391 case nir_tex_src_bias:
5392 srcs[TEX_LOGICAL_SRC_LOD] =
5393 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5394 break;
5395 case nir_tex_src_comparator:
5396 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
5397 break;
5398 case nir_tex_src_coord:
5399 switch (instr->op) {
5400 case nir_texop_txf:
5401 case nir_texop_txf_ms:
5402 case nir_texop_txf_ms_mcs:
5403 case nir_texop_samples_identical:
5404 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
5405 break;
5406 default:
5407 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
5408 break;
5409 }
5410 break;
5411 case nir_tex_src_ddx:
5412 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5413 lod_components = nir_tex_instr_src_size(instr, i);
5414 break;
5415 case nir_tex_src_ddy:
5416 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5417 break;
5418 case nir_tex_src_lod:
5419 switch (instr->op) {
5420 case nir_texop_txs:
5421 srcs[TEX_LOGICAL_SRC_LOD] =
5422 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5423 break;
5424 case nir_texop_txf:
5425 srcs[TEX_LOGICAL_SRC_LOD] =
5426 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5427 break;
5428 default:
5429 srcs[TEX_LOGICAL_SRC_LOD] =
5430 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5431 break;
5432 }
5433 break;
5434 case nir_tex_src_min_lod:
5435 srcs[TEX_LOGICAL_SRC_MIN_LOD] =
5436 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5437 break;
5438 case nir_tex_src_ms_index:
5439 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5440 break;
5441
5442 case nir_tex_src_offset: {
5443 uint32_t offset_bits = 0;
5444 if (brw_texture_offset(instr, i, &offset_bits)) {
5445 header_bits |= offset_bits;
5446 } else {
5447 srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5448 retype(src, BRW_REGISTER_TYPE_D);
5449 }
5450 break;
5451 }
5452
5453 case nir_tex_src_projector:
5454 unreachable("should be lowered");
5455
5456 case nir_tex_src_texture_offset: {
5457 /* Emit code to evaluate the actual indexing expression */
5458 fs_reg tmp = vgrf(glsl_type::uint_type);
5459 bld.ADD(tmp, src, brw_imm_ud(texture));
5460 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5461 break;
5462 }
5463
5464 case nir_tex_src_sampler_offset: {
5465 /* Emit code to evaluate the actual indexing expression */
5466 fs_reg tmp = vgrf(glsl_type::uint_type);
5467 bld.ADD(tmp, src, brw_imm_ud(sampler));
5468 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5469 break;
5470 }
5471
5472 case nir_tex_src_texture_handle:
5473 assert(nir_tex_instr_src_index(instr, nir_tex_src_texture_offset) == -1);
5474 srcs[TEX_LOGICAL_SRC_SURFACE] = fs_reg();
5475 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = bld.emit_uniformize(src);
5476 break;
5477
5478 case nir_tex_src_sampler_handle:
5479 assert(nir_tex_instr_src_index(instr, nir_tex_src_sampler_offset) == -1);
5480 srcs[TEX_LOGICAL_SRC_SAMPLER] = fs_reg();
5481 srcs[TEX_LOGICAL_SRC_SAMPLER_HANDLE] = bld.emit_uniformize(src);
5482 break;
5483
5484 case nir_tex_src_ms_mcs:
5485 assert(instr->op == nir_texop_txf_ms);
5486 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5487 break;
5488
5489 case nir_tex_src_plane: {
5490 const uint32_t plane = nir_src_as_uint(instr->src[i].src);
5491 const uint32_t texture_index =
5492 instr->texture_index +
5493 stage_prog_data->binding_table.plane_start[plane] -
5494 stage_prog_data->binding_table.texture_start;
5495
5496 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5497 break;
5498 }
5499
5500 default:
5501 unreachable("unknown texture source");
5502 }
5503 }
5504
5505 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5506 (instr->op == nir_texop_txf_ms ||
5507 instr->op == nir_texop_samples_identical)) {
5508 if (devinfo->gen >= 7 &&
5509 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5510 srcs[TEX_LOGICAL_SRC_MCS] =
5511 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5512 instr->coord_components,
5513 srcs[TEX_LOGICAL_SRC_SURFACE],
5514 srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE]);
5515 } else {
5516 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5517 }
5518 }
5519
5520 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5521 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5522
5523 enum opcode opcode;
5524 switch (instr->op) {
5525 case nir_texop_tex:
5526 opcode = SHADER_OPCODE_TEX_LOGICAL;
5527 break;
5528 case nir_texop_txb:
5529 opcode = FS_OPCODE_TXB_LOGICAL;
5530 break;
5531 case nir_texop_txl:
5532 opcode = SHADER_OPCODE_TXL_LOGICAL;
5533 break;
5534 case nir_texop_txd:
5535 opcode = SHADER_OPCODE_TXD_LOGICAL;
5536 break;
5537 case nir_texop_txf:
5538 opcode = SHADER_OPCODE_TXF_LOGICAL;
5539 break;
5540 case nir_texop_txf_ms:
5541 if ((key_tex->msaa_16 & (1 << sampler)))
5542 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5543 else
5544 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5545 break;
5546 case nir_texop_txf_ms_mcs:
5547 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5548 break;
5549 case nir_texop_query_levels:
5550 case nir_texop_txs:
5551 opcode = SHADER_OPCODE_TXS_LOGICAL;
5552 break;
5553 case nir_texop_lod:
5554 opcode = SHADER_OPCODE_LOD_LOGICAL;
5555 break;
5556 case nir_texop_tg4:
5557 if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5558 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5559 else
5560 opcode = SHADER_OPCODE_TG4_LOGICAL;
5561 break;
5562 case nir_texop_texture_samples:
5563 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5564 break;
5565 case nir_texop_samples_identical: {
5566 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5567
5568 /* If mcs is an immediate value, it means there is no MCS. In that case
5569 * just return false.
5570 */
5571 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5572 bld.MOV(dst, brw_imm_ud(0u));
5573 } else if ((key_tex->msaa_16 & (1 << sampler))) {
5574 fs_reg tmp = vgrf(glsl_type::uint_type);
5575 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5576 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5577 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5578 } else {
5579 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5580 BRW_CONDITIONAL_EQ);
5581 }
5582 return;
5583 }
5584 default:
5585 unreachable("unknown texture opcode");
5586 }
5587
5588 if (instr->op == nir_texop_tg4) {
5589 if (instr->component == 1 &&
5590 key_tex->gather_channel_quirk_mask & (1 << texture)) {
5591 /* gather4 sampler is broken for green channel on RG32F --
5592 * we must ask for blue instead.
5593 */
5594 header_bits |= 2 << 16;
5595 } else {
5596 header_bits |= instr->component << 16;
5597 }
5598 }
5599
5600 fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5601 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5602 inst->offset = header_bits;
5603
5604 const unsigned dest_size = nir_tex_instr_dest_size(instr);
5605 if (devinfo->gen >= 9 &&
5606 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5607 unsigned write_mask = instr->dest.is_ssa ?
5608 nir_ssa_def_components_read(&instr->dest.ssa):
5609 (1 << dest_size) - 1;
5610 assert(write_mask != 0); /* dead code should have been eliminated */
5611 inst->size_written = util_last_bit(write_mask) *
5612 inst->dst.component_size(inst->exec_size);
5613 } else {
5614 inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5615 }
5616
5617 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5618 inst->shadow_compare = true;
5619
5620 if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5621 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5622
5623 fs_reg nir_dest[4];
5624 for (unsigned i = 0; i < dest_size; i++)
5625 nir_dest[i] = offset(dst, bld, i);
5626
5627 if (instr->op == nir_texop_query_levels) {
5628 /* # levels is in .w */
5629 nir_dest[0] = offset(dst, bld, 3);
5630 } else if (instr->op == nir_texop_txs &&
5631 dest_size >= 3 && devinfo->gen < 7) {
5632 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5633 fs_reg depth = offset(dst, bld, 2);
5634 nir_dest[2] = vgrf(glsl_type::int_type);
5635 bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5636 }
5637
5638 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5639 }
5640
5641 void
5642 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5643 {
5644 switch (instr->type) {
5645 case nir_jump_break:
5646 bld.emit(BRW_OPCODE_BREAK);
5647 break;
5648 case nir_jump_continue:
5649 bld.emit(BRW_OPCODE_CONTINUE);
5650 break;
5651 case nir_jump_return:
5652 default:
5653 unreachable("unknown jump");
5654 }
5655 }
5656
5657 /*
5658 * This helper takes a source register and un/shuffles it into the destination
5659 * register.
5660 *
5661 * If source type size is smaller than destination type size the operation
5662 * needed is a component shuffle. The opposite case would be an unshuffle. If
5663 * source/destination type size is equal a shuffle is done that would be
5664 * equivalent to a simple MOV.
5665 *
5666 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5667 * components .xyz 16-bit vector on SIMD8 would be.
5668 *
5669 * |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5670 * |z1|z2|z3|z4|z5|z6|z7|z8| | | | | | | | |
5671 *
5672 * This helper will return the following 2 32-bit components with the 16-bit
5673 * values shuffled:
5674 *
5675 * |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5676 * |z1 |z2 |z3 |z4 |z5 |z6 |z7 |z8 |
5677 *
5678 * For unshuffle, the example would be the opposite, a 64-bit type source
5679 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5680 * would be:
5681 *
5682 * | x1l x1h | x2l x2h | x3l x3h | x4l x4h |
5683 * | x5l x5h | x6l x6h | x7l x7h | x8l x8h |
5684 * | y1l y1h | y2l y2h | y3l y3h | y4l y4h |
5685 * | y5l y5h | y6l y6h | y7l y7h | y8l y8h |
5686 *
5687 * The returned result would be the following 4 32-bit components unshuffled:
5688 *
5689 * | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5690 * | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5691 * | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5692 * | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5693 *
5694 * - Source and destination register must not be overlapped.
5695 * - components units are measured in terms of the smaller type between
5696 * source and destination because we are un/shuffling the smaller
5697 * components from/into the bigger ones.
5698 * - first_component parameter allows skipping source components.
5699 */
5700 void
5701 shuffle_src_to_dst(const fs_builder &bld,
5702 const fs_reg &dst,
5703 const fs_reg &src,
5704 uint32_t first_component,
5705 uint32_t components)
5706 {
5707 if (type_sz(src.type) == type_sz(dst.type)) {
5708 assert(!regions_overlap(dst,
5709 type_sz(dst.type) * bld.dispatch_width() * components,
5710 offset(src, bld, first_component),
5711 type_sz(src.type) * bld.dispatch_width() * components));
5712 for (unsigned i = 0; i < components; i++) {
5713 bld.MOV(retype(offset(dst, bld, i), src.type),
5714 offset(src, bld, i + first_component));
5715 }
5716 } else if (type_sz(src.type) < type_sz(dst.type)) {
5717 /* Source is shuffled into destination */
5718 unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5719 assert(!regions_overlap(dst,
5720 type_sz(dst.type) * bld.dispatch_width() *
5721 DIV_ROUND_UP(components, size_ratio),
5722 offset(src, bld, first_component),
5723 type_sz(src.type) * bld.dispatch_width() * components));
5724
5725 brw_reg_type shuffle_type =
5726 brw_reg_type_from_bit_size(8 * type_sz(src.type),
5727 BRW_REGISTER_TYPE_D);
5728 for (unsigned i = 0; i < components; i++) {
5729 fs_reg shuffle_component_i =
5730 subscript(offset(dst, bld, i / size_ratio),
5731 shuffle_type, i % size_ratio);
5732 bld.MOV(shuffle_component_i,
5733 retype(offset(src, bld, i + first_component), shuffle_type));
5734 }
5735 } else {
5736 /* Source is unshuffled into destination */
5737 unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5738 assert(!regions_overlap(dst,
5739 type_sz(dst.type) * bld.dispatch_width() * components,
5740 offset(src, bld, first_component / size_ratio),
5741 type_sz(src.type) * bld.dispatch_width() *
5742 DIV_ROUND_UP(components + (first_component % size_ratio),
5743 size_ratio)));
5744
5745 brw_reg_type shuffle_type =
5746 brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5747 BRW_REGISTER_TYPE_D);
5748 for (unsigned i = 0; i < components; i++) {
5749 fs_reg shuffle_component_i =
5750 subscript(offset(src, bld, (first_component + i) / size_ratio),
5751 shuffle_type, (first_component + i) % size_ratio);
5752 bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5753 shuffle_component_i);
5754 }
5755 }
5756 }
5757
5758 void
5759 shuffle_from_32bit_read(const fs_builder &bld,
5760 const fs_reg &dst,
5761 const fs_reg &src,
5762 uint32_t first_component,
5763 uint32_t components)
5764 {
5765 assert(type_sz(src.type) == 4);
5766
5767 /* This function takes components in units of the destination type while
5768 * shuffle_src_to_dst takes components in units of the smallest type
5769 */
5770 if (type_sz(dst.type) > 4) {
5771 assert(type_sz(dst.type) == 8);
5772 first_component *= 2;
5773 components *= 2;
5774 }
5775
5776 shuffle_src_to_dst(bld, dst, src, first_component, components);
5777 }
5778
5779 fs_reg
5780 shuffle_for_32bit_write(const fs_builder &bld,
5781 const fs_reg &src,
5782 uint32_t first_component,
5783 uint32_t components)
5784 {
5785 fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5786 DIV_ROUND_UP (components * type_sz(src.type), 4));
5787 /* This function takes components in units of the source type while
5788 * shuffle_src_to_dst takes components in units of the smallest type
5789 */
5790 if (type_sz(src.type) > 4) {
5791 assert(type_sz(src.type) == 8);
5792 first_component *= 2;
5793 components *= 2;
5794 }
5795
5796 shuffle_src_to_dst(bld, dst, src, first_component, components);
5797
5798 return dst;
5799 }
5800
5801 fs_reg
5802 setup_imm_df(const fs_builder &bld, double v)
5803 {
5804 const struct gen_device_info *devinfo = bld.shader->devinfo;
5805 assert(devinfo->gen >= 7);
5806
5807 if (devinfo->gen >= 8)
5808 return brw_imm_df(v);
5809
5810 /* gen7.5 does not support DF immediates straighforward but the DIM
5811 * instruction allows to set the 64-bit immediate value.
5812 */
5813 if (devinfo->is_haswell) {
5814 const fs_builder ubld = bld.exec_all().group(1, 0);
5815 fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5816 ubld.DIM(dst, brw_imm_df(v));
5817 return component(dst, 0);
5818 }
5819
5820 /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5821 * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5822 * the high 32-bit to suboffset 4 and then applying a stride of 0.
5823 *
5824 * Alternatively, we could also produce a normal VGRF (without stride 0)
5825 * by writing to all the channels in the VGRF, however, that would hit the
5826 * gen7 bug where we have to split writes that span more than 1 register
5827 * into instructions with a width of 4 (otherwise the write to the second
5828 * register written runs into an execmask hardware bug) which isn't very
5829 * nice.
5830 */
5831 union {
5832 double d;
5833 struct {
5834 uint32_t i1;
5835 uint32_t i2;
5836 };
5837 } di;
5838
5839 di.d = v;
5840
5841 const fs_builder ubld = bld.exec_all().group(1, 0);
5842 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5843 ubld.MOV(tmp, brw_imm_ud(di.i1));
5844 ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5845
5846 return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5847 }
5848
5849 fs_reg
5850 setup_imm_b(const fs_builder &bld, int8_t v)
5851 {
5852 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5853 bld.MOV(tmp, brw_imm_w(v));
5854 return tmp;
5855 }
5856
5857 fs_reg
5858 setup_imm_ub(const fs_builder &bld, uint8_t v)
5859 {
5860 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5861 bld.MOV(tmp, brw_imm_uw(v));
5862 return tmp;
5863 }