intel: Rewrite the world of push/pull params
[mesa.git] / src / intel / compiler / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 #include "brw_fs.h"
31 #include "compiler/glsl_types.h"
32
33 using namespace brw;
34
35 /* Sample from the MCS surface attached to this multisample texture. */
36 fs_reg
37 fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
38 const fs_reg &texture)
39 {
40 const fs_reg dest = vgrf(glsl_type::uvec4_type);
41
42 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
43 srcs[TEX_LOGICAL_SRC_COORDINATE] = coordinate;
44 srcs[TEX_LOGICAL_SRC_SURFACE] = texture;
45 srcs[TEX_LOGICAL_SRC_SAMPLER] = texture;
46 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(components);
47 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
48
49 fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
50 ARRAY_SIZE(srcs));
51
52 /* We only care about one or two regs of response, but the sampler always
53 * writes 4/8.
54 */
55 inst->size_written = 4 * dest.component_size(inst->exec_size);
56
57 return dest;
58 }
59
60 /**
61 * Apply workarounds for Gen6 gather with UINT/SINT
62 */
63 void
64 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
65 {
66 if (!wa)
67 return;
68
69 int width = (wa & WA_8BIT) ? 8 : 16;
70
71 for (int i = 0; i < 4; i++) {
72 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
73 /* Convert from UNORM to UINT */
74 bld.MUL(dst_f, dst_f, brw_imm_f((1 << width) - 1));
75 bld.MOV(dst, dst_f);
76
77 if (wa & WA_SIGN) {
78 /* Reinterpret the UINT value as a signed INT value by
79 * shifting the sign bit into place, then shifting back
80 * preserving sign.
81 */
82 bld.SHL(dst, dst, brw_imm_d(32 - width));
83 bld.ASR(dst, dst, brw_imm_d(32 - width));
84 }
85
86 dst = offset(dst, bld, 1);
87 }
88 }
89
90 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
91 void
92 fs_visitor::emit_dummy_fs()
93 {
94 int reg_width = dispatch_width / 8;
95
96 /* Everyone's favorite color. */
97 const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
98 for (int i = 0; i < 4; i++) {
99 bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
100 brw_imm_f(color[i]));
101 }
102
103 fs_inst *write;
104 write = bld.emit(FS_OPCODE_FB_WRITE);
105 write->eot = true;
106 if (devinfo->gen >= 6) {
107 write->base_mrf = 2;
108 write->mlen = 4 * reg_width;
109 } else {
110 write->header_size = 2;
111 write->base_mrf = 0;
112 write->mlen = 2 + 4 * reg_width;
113 }
114
115 /* Tell the SF we don't have any inputs. Gen4-5 require at least one
116 * varying to avoid GPU hangs, so set that.
117 */
118 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
119 wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0;
120 memset(wm_prog_data->urb_setup, -1,
121 sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
122
123 /* We don't have any uniforms. */
124 stage_prog_data->nr_params = 0;
125 stage_prog_data->nr_pull_params = 0;
126 stage_prog_data->curb_read_length = 0;
127 stage_prog_data->dispatch_grf_start_reg = 2;
128 wm_prog_data->dispatch_grf_start_reg_2 = 2;
129 grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
130
131 calculate_cfg();
132 }
133
134 /* The register location here is relative to the start of the URB
135 * data. It will get adjusted to be a real location before
136 * generate_code() time.
137 */
138 struct brw_reg
139 fs_visitor::interp_reg(int location, int channel)
140 {
141 assert(stage == MESA_SHADER_FRAGMENT);
142 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
143 int regnr = prog_data->urb_setup[location] * 2 + channel / 2;
144 int stride = (channel & 1) * 4;
145
146 assert(prog_data->urb_setup[location] != -1);
147
148 return brw_vec1_grf(regnr, stride);
149 }
150
151 /** Emits the interpolation for the varying inputs. */
152 void
153 fs_visitor::emit_interpolation_setup_gen4()
154 {
155 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
156
157 fs_builder abld = bld.annotate("compute pixel centers");
158 this->pixel_x = vgrf(glsl_type::uint_type);
159 this->pixel_y = vgrf(glsl_type::uint_type);
160 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
161 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
162 abld.ADD(this->pixel_x,
163 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
164 fs_reg(brw_imm_v(0x10101010)));
165 abld.ADD(this->pixel_y,
166 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
167 fs_reg(brw_imm_v(0x11001100)));
168
169 abld = bld.annotate("compute pixel deltas from v0");
170
171 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL] =
172 vgrf(glsl_type::vec2_type);
173 const fs_reg &delta_xy = this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL];
174 const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
175 const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
176
177 if (devinfo->has_pln && dispatch_width == 16) {
178 for (unsigned i = 0; i < 2; i++) {
179 abld.half(i).ADD(half(offset(delta_xy, abld, i), 0),
180 half(this->pixel_x, i), xstart);
181 abld.half(i).ADD(half(offset(delta_xy, abld, i), 1),
182 half(this->pixel_y, i), ystart);
183 }
184 } else {
185 abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
186 abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
187 }
188
189 abld = bld.annotate("compute pos.w and 1/pos.w");
190 /* Compute wpos.w. It's always in our setup, since it's needed to
191 * interpolate the other attributes.
192 */
193 this->wpos_w = vgrf(glsl_type::float_type);
194 abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
195 interp_reg(VARYING_SLOT_POS, 3));
196 /* Compute the pixel 1/W value from wpos.w. */
197 this->pixel_w = vgrf(glsl_type::float_type);
198 abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
199 }
200
201 /** Emits the interpolation for the varying inputs. */
202 void
203 fs_visitor::emit_interpolation_setup_gen6()
204 {
205 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
206
207 fs_builder abld = bld.annotate("compute pixel centers");
208 if (devinfo->gen >= 8 || dispatch_width == 8) {
209 /* The "Register Region Restrictions" page says for BDW (and newer,
210 * presumably):
211 *
212 * "When destination spans two registers, the source may be one or
213 * two registers. The destination elements must be evenly split
214 * between the two registers."
215 *
216 * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
217 * compute our pixel centers.
218 */
219 fs_reg int_pixel_xy(VGRF, alloc.allocate(dispatch_width / 8),
220 BRW_REGISTER_TYPE_UW);
221
222 const fs_builder dbld = abld.exec_all().group(dispatch_width * 2, 0);
223 dbld.ADD(int_pixel_xy,
224 fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
225 fs_reg(brw_imm_v(0x11001010)));
226
227 this->pixel_x = vgrf(glsl_type::float_type);
228 this->pixel_y = vgrf(glsl_type::float_type);
229 abld.emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
230 abld.emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
231 } else {
232 /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
233 *
234 * "When destination spans two registers, the source MUST span two
235 * registers."
236 *
237 * Since the GRF source of the ADD will only read a single register, we
238 * must do two separate ADDs in SIMD16.
239 */
240 fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
241 fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
242 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
243 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
244 abld.ADD(int_pixel_x,
245 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
246 fs_reg(brw_imm_v(0x10101010)));
247 abld.ADD(int_pixel_y,
248 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
249 fs_reg(brw_imm_v(0x11001100)));
250
251 /* As of gen6, we can no longer mix float and int sources. We have
252 * to turn the integer pixel centers into floats for their actual
253 * use.
254 */
255 this->pixel_x = vgrf(glsl_type::float_type);
256 this->pixel_y = vgrf(glsl_type::float_type);
257 abld.MOV(this->pixel_x, int_pixel_x);
258 abld.MOV(this->pixel_y, int_pixel_y);
259 }
260
261 abld = bld.annotate("compute pos.w");
262 this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
263 this->wpos_w = vgrf(glsl_type::float_type);
264 abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
265
266 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(prog_data);
267 uint32_t centroid_modes = wm_prog_data->barycentric_interp_modes &
268 (1 << BRW_BARYCENTRIC_PERSPECTIVE_CENTROID |
269 1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
270
271 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
272 uint8_t reg = payload.barycentric_coord_reg[i];
273 this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0));
274
275 if (devinfo->needs_unlit_centroid_workaround &&
276 (centroid_modes & (1 << i))) {
277 /* Get the pixel/sample mask into f0 so that we know which
278 * pixels are lit. Then, for each channel that is unlit,
279 * replace the centroid data with non-centroid data.
280 */
281 bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
282
283 uint8_t pixel_reg = payload.barycentric_coord_reg[i - 1];
284
285 set_predicate_inv(BRW_PREDICATE_NORMAL, true,
286 bld.half(0).MOV(brw_vec8_grf(reg, 0),
287 brw_vec8_grf(pixel_reg, 0)));
288 set_predicate_inv(BRW_PREDICATE_NORMAL, true,
289 bld.half(0).MOV(brw_vec8_grf(reg + 1, 0),
290 brw_vec8_grf(pixel_reg + 1, 0)));
291 if (dispatch_width == 16) {
292 set_predicate_inv(BRW_PREDICATE_NORMAL, true,
293 bld.half(1).MOV(brw_vec8_grf(reg + 2, 0),
294 brw_vec8_grf(pixel_reg + 2, 0)));
295 set_predicate_inv(BRW_PREDICATE_NORMAL, true,
296 bld.half(1).MOV(brw_vec8_grf(reg + 3, 0),
297 brw_vec8_grf(pixel_reg + 3, 0)));
298 }
299 assert(dispatch_width != 32); /* not implemented yet */
300 }
301 }
302 }
303
304 static enum brw_conditional_mod
305 cond_for_alpha_func(GLenum func)
306 {
307 switch(func) {
308 case GL_GREATER:
309 return BRW_CONDITIONAL_G;
310 case GL_GEQUAL:
311 return BRW_CONDITIONAL_GE;
312 case GL_LESS:
313 return BRW_CONDITIONAL_L;
314 case GL_LEQUAL:
315 return BRW_CONDITIONAL_LE;
316 case GL_EQUAL:
317 return BRW_CONDITIONAL_EQ;
318 case GL_NOTEQUAL:
319 return BRW_CONDITIONAL_NEQ;
320 default:
321 unreachable("Not reached");
322 }
323 }
324
325 /**
326 * Alpha test support for when we compile it into the shader instead
327 * of using the normal fixed-function alpha test.
328 */
329 void
330 fs_visitor::emit_alpha_test()
331 {
332 assert(stage == MESA_SHADER_FRAGMENT);
333 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
334 const fs_builder abld = bld.annotate("Alpha test");
335
336 fs_inst *cmp;
337 if (key->alpha_test_func == GL_ALWAYS)
338 return;
339
340 if (key->alpha_test_func == GL_NEVER) {
341 /* f0.1 = 0 */
342 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
343 BRW_REGISTER_TYPE_UW));
344 cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
345 BRW_CONDITIONAL_NEQ);
346 } else {
347 /* RT0 alpha */
348 fs_reg color = offset(outputs[0], bld, 3);
349
350 /* f0.1 &= func(color, ref) */
351 cmp = abld.CMP(bld.null_reg_f(), color, brw_imm_f(key->alpha_test_ref),
352 cond_for_alpha_func(key->alpha_test_func));
353 }
354 cmp->predicate = BRW_PREDICATE_NORMAL;
355 cmp->flag_subreg = 1;
356 }
357
358 fs_inst *
359 fs_visitor::emit_single_fb_write(const fs_builder &bld,
360 fs_reg color0, fs_reg color1,
361 fs_reg src0_alpha, unsigned components)
362 {
363 assert(stage == MESA_SHADER_FRAGMENT);
364 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
365
366 /* Hand over gl_FragDepth or the payload depth. */
367 const fs_reg dst_depth = (payload.dest_depth_reg ?
368 fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0)) :
369 fs_reg());
370 fs_reg src_depth, src_stencil;
371
372 if (source_depth_to_render_target) {
373 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
374 src_depth = frag_depth;
375 else
376 src_depth = fs_reg(brw_vec8_grf(payload.source_depth_reg, 0));
377 }
378
379 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
380 src_stencil = frag_stencil;
381
382 const fs_reg sources[] = {
383 color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
384 (prog_data->uses_omask ? sample_mask : fs_reg()),
385 brw_imm_ud(components)
386 };
387 assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
388 fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
389 sources, ARRAY_SIZE(sources));
390
391 if (prog_data->uses_kill) {
392 write->predicate = BRW_PREDICATE_NORMAL;
393 write->flag_subreg = 1;
394 }
395
396 return write;
397 }
398
399 void
400 fs_visitor::emit_fb_writes()
401 {
402 assert(stage == MESA_SHADER_FRAGMENT);
403 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
404 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
405
406 fs_inst *inst = NULL;
407
408 if (source_depth_to_render_target && devinfo->gen == 6) {
409 /* For outputting oDepth on gen6, SIMD8 writes have to be used. This
410 * would require SIMD8 moves of each half to message regs, e.g. by using
411 * the SIMD lowering pass. Unfortunately this is more difficult than it
412 * sounds because the SIMD8 single-source message lacks channel selects
413 * for the second and third subspans.
414 */
415 limit_dispatch_width(8, "Depth writes unsupported in SIMD16+ mode.\n");
416 }
417
418 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
419 /* From the 'Render Target Write message' section of the docs:
420 * "Output Stencil is not supported with SIMD16 Render Target Write
421 * Messages."
422 */
423 limit_dispatch_width(8, "gl_FragStencilRefARB unsupported "
424 "in SIMD16+ mode.\n");
425 }
426
427 for (int target = 0; target < key->nr_color_regions; target++) {
428 /* Skip over outputs that weren't written. */
429 if (this->outputs[target].file == BAD_FILE)
430 continue;
431
432 const fs_builder abld = bld.annotate(
433 ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
434
435 fs_reg src0_alpha;
436 if (devinfo->gen >= 6 && key->replicate_alpha && target != 0)
437 src0_alpha = offset(outputs[0], bld, 3);
438
439 inst = emit_single_fb_write(abld, this->outputs[target],
440 this->dual_src_output, src0_alpha, 4);
441 inst->target = target;
442 }
443
444 prog_data->dual_src_blend = (this->dual_src_output.file != BAD_FILE);
445 assert(!prog_data->dual_src_blend || key->nr_color_regions == 1);
446
447 if (inst == NULL) {
448 /* Even if there's no color buffers enabled, we still need to send
449 * alpha out the pipeline to our null renderbuffer to support
450 * alpha-testing, alpha-to-coverage, and so on.
451 */
452 /* FINISHME: Factor out this frequently recurring pattern into a
453 * helper function.
454 */
455 const fs_reg srcs[] = { reg_undef, reg_undef,
456 reg_undef, offset(this->outputs[0], bld, 3) };
457 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
458 bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
459
460 inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
461 inst->target = 0;
462 }
463
464 inst->eot = true;
465 }
466
467 void
468 fs_visitor::setup_uniform_clipplane_values()
469 {
470 const struct brw_vs_prog_key *key =
471 (const struct brw_vs_prog_key *) this->key;
472
473 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
474 this->userplane[i] = fs_reg(UNIFORM, uniforms);
475 for (int j = 0; j < 4; ++j) {
476 stage_prog_data->param[uniforms + j] =
477 BRW_PARAM_BUILTIN_CLIP_PLANE(i, j);
478 }
479 uniforms += 4;
480 }
481 }
482
483 /**
484 * Lower legacy fixed-function and gl_ClipVertex clipping to clip distances.
485 *
486 * This does nothing if the shader uses gl_ClipDistance or user clipping is
487 * disabled altogether.
488 */
489 void fs_visitor::compute_clip_distance()
490 {
491 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
492 const struct brw_vs_prog_key *key =
493 (const struct brw_vs_prog_key *) this->key;
494
495 /* Bail unless some sort of legacy clipping is enabled */
496 if (key->nr_userclip_plane_consts == 0)
497 return;
498
499 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
500 *
501 * "If a linked set of shaders forming the vertex stage contains no
502 * static write to gl_ClipVertex or gl_ClipDistance, but the
503 * application has requested clipping against user clip planes through
504 * the API, then the coordinate written to gl_Position is used for
505 * comparison against the user clip planes."
506 *
507 * This function is only called if the shader didn't write to
508 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
509 * if the user wrote to it; otherwise we use gl_Position.
510 */
511
512 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
513 if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
514 clip_vertex = VARYING_SLOT_POS;
515
516 /* If the clip vertex isn't written, skip this. Typically this means
517 * the GS will set up clipping. */
518 if (outputs[clip_vertex].file == BAD_FILE)
519 return;
520
521 setup_uniform_clipplane_values();
522
523 const fs_builder abld = bld.annotate("user clip distances");
524
525 this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
526 this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
527
528 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
529 fs_reg u = userplane[i];
530 const fs_reg output = offset(outputs[VARYING_SLOT_CLIP_DIST0 + i / 4],
531 bld, i & 3);
532
533 abld.MUL(output, outputs[clip_vertex], u);
534 for (int j = 1; j < 4; j++) {
535 u.nr = userplane[i].nr + j;
536 abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u);
537 }
538 }
539 }
540
541 void
542 fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
543 {
544 int slot, urb_offset, length;
545 int starting_urb_offset = 0;
546 const struct brw_vue_prog_data *vue_prog_data =
547 brw_vue_prog_data(this->prog_data);
548 const struct brw_vs_prog_key *vs_key =
549 (const struct brw_vs_prog_key *) this->key;
550 const GLbitfield64 psiz_mask =
551 VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
552 const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
553 bool flush;
554 fs_reg sources[8];
555 fs_reg urb_handle;
556
557 if (stage == MESA_SHADER_TESS_EVAL)
558 urb_handle = fs_reg(retype(brw_vec8_grf(4, 0), BRW_REGISTER_TYPE_UD));
559 else
560 urb_handle = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
561
562 /* If we don't have any valid slots to write, just do a minimal urb write
563 * send to terminate the shader. This includes 1 slot of undefined data,
564 * because it's invalid to write 0 data:
565 *
566 * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
567 * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
568 * Write Data Payload:
569 *
570 * "The write data payload can be between 1 and 8 message phases long."
571 */
572 if (vue_map->slots_valid == 0) {
573 /* For GS, just turn EmitVertex() into a no-op. We don't want it to
574 * end the thread, and emit_gs_thread_end() already emits a SEND with
575 * EOT at the end of the program for us.
576 */
577 if (stage == MESA_SHADER_GEOMETRY)
578 return;
579
580 fs_reg payload = fs_reg(VGRF, alloc.allocate(2), BRW_REGISTER_TYPE_UD);
581 bld.exec_all().MOV(payload, urb_handle);
582
583 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
584 inst->eot = true;
585 inst->mlen = 2;
586 inst->offset = 1;
587 return;
588 }
589
590 opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
591 int header_size = 1;
592 fs_reg per_slot_offsets;
593
594 if (stage == MESA_SHADER_GEOMETRY) {
595 const struct brw_gs_prog_data *gs_prog_data =
596 brw_gs_prog_data(this->prog_data);
597
598 /* We need to increment the Global Offset to skip over the control data
599 * header and the extra "Vertex Count" field (1 HWord) at the beginning
600 * of the VUE. We're counting in OWords, so the units are doubled.
601 */
602 starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
603 if (gs_prog_data->static_vertex_count == -1)
604 starting_urb_offset += 2;
605
606 /* We also need to use per-slot offsets. The per-slot offset is the
607 * Vertex Count. SIMD8 mode processes 8 different primitives at a
608 * time; each may output a different number of vertices.
609 */
610 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT;
611 header_size++;
612
613 /* The URB offset is in 128-bit units, so we need to multiply by 2 */
614 const int output_vertex_size_owords =
615 gs_prog_data->output_vertex_size_hwords * 2;
616
617 if (gs_vertex_count.file == IMM) {
618 per_slot_offsets = brw_imm_ud(output_vertex_size_owords *
619 gs_vertex_count.ud);
620 } else {
621 per_slot_offsets = vgrf(glsl_type::int_type);
622 bld.MUL(per_slot_offsets, gs_vertex_count,
623 brw_imm_ud(output_vertex_size_owords));
624 }
625 }
626
627 length = 0;
628 urb_offset = starting_urb_offset;
629 flush = false;
630
631 /* SSO shaders can have VUE slots allocated which are never actually
632 * written to, so ignore them when looking for the last (written) slot.
633 */
634 int last_slot = vue_map->num_slots - 1;
635 while (last_slot > 0 &&
636 (vue_map->slot_to_varying[last_slot] == BRW_VARYING_SLOT_PAD ||
637 outputs[vue_map->slot_to_varying[last_slot]].file == BAD_FILE)) {
638 last_slot--;
639 }
640
641 for (slot = 0; slot < vue_map->num_slots; slot++) {
642 int varying = vue_map->slot_to_varying[slot];
643 switch (varying) {
644 case VARYING_SLOT_PSIZ: {
645 /* The point size varying slot is the vue header and is always in the
646 * vue map. But often none of the special varyings that live there
647 * are written and in that case we can skip writing to the vue
648 * header, provided the corresponding state properly clamps the
649 * values further down the pipeline. */
650 if ((vue_map->slots_valid & psiz_mask) == 0) {
651 assert(length == 0);
652 urb_offset++;
653 break;
654 }
655
656 fs_reg zero(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
657 bld.MOV(zero, brw_imm_ud(0u));
658
659 sources[length++] = zero;
660 if (vue_map->slots_valid & VARYING_BIT_LAYER)
661 sources[length++] = this->outputs[VARYING_SLOT_LAYER];
662 else
663 sources[length++] = zero;
664
665 if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
666 sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
667 else
668 sources[length++] = zero;
669
670 if (vue_map->slots_valid & VARYING_BIT_PSIZ)
671 sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
672 else
673 sources[length++] = zero;
674 break;
675 }
676 case BRW_VARYING_SLOT_NDC:
677 case VARYING_SLOT_EDGE:
678 unreachable("unexpected scalar vs output");
679 break;
680
681 default:
682 /* gl_Position is always in the vue map, but isn't always written by
683 * the shader. Other varyings (clip distances) get added to the vue
684 * map but don't always get written. In those cases, the
685 * corresponding this->output[] slot will be invalid we and can skip
686 * the urb write for the varying. If we've already queued up a vue
687 * slot for writing we flush a mlen 5 urb write, otherwise we just
688 * advance the urb_offset.
689 */
690 if (varying == BRW_VARYING_SLOT_PAD ||
691 this->outputs[varying].file == BAD_FILE) {
692 if (length > 0)
693 flush = true;
694 else
695 urb_offset++;
696 break;
697 }
698
699 if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
700 (varying == VARYING_SLOT_COL0 ||
701 varying == VARYING_SLOT_COL1 ||
702 varying == VARYING_SLOT_BFC0 ||
703 varying == VARYING_SLOT_BFC1)) {
704 /* We need to clamp these guys, so do a saturating MOV into a
705 * temp register and use that for the payload.
706 */
707 for (int i = 0; i < 4; i++) {
708 fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
709 fs_reg src = offset(this->outputs[varying], bld, i);
710 set_saturate(true, bld.MOV(reg, src));
711 sources[length++] = reg;
712 }
713 } else {
714 for (unsigned i = 0; i < 4; i++)
715 sources[length++] = offset(this->outputs[varying], bld, i);
716 }
717 break;
718 }
719
720 const fs_builder abld = bld.annotate("URB write");
721
722 /* If we've queued up 8 registers of payload (2 VUE slots), if this is
723 * the last slot or if we need to flush (see BAD_FILE varying case
724 * above), emit a URB write send now to flush out the data.
725 */
726 if (length == 8 || slot == last_slot)
727 flush = true;
728 if (flush) {
729 fs_reg *payload_sources =
730 ralloc_array(mem_ctx, fs_reg, length + header_size);
731 fs_reg payload = fs_reg(VGRF, alloc.allocate(length + header_size),
732 BRW_REGISTER_TYPE_F);
733 payload_sources[0] = urb_handle;
734
735 if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT)
736 payload_sources[1] = per_slot_offsets;
737
738 memcpy(&payload_sources[header_size], sources,
739 length * sizeof sources[0]);
740
741 abld.LOAD_PAYLOAD(payload, payload_sources, length + header_size,
742 header_size);
743
744 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
745 inst->eot = slot == last_slot && stage != MESA_SHADER_GEOMETRY;
746 inst->mlen = length + header_size;
747 inst->offset = urb_offset;
748 urb_offset = starting_urb_offset + slot + 1;
749 length = 0;
750 flush = false;
751 }
752 }
753 }
754
755 void
756 fs_visitor::emit_cs_terminate()
757 {
758 assert(devinfo->gen >= 7);
759
760 /* We are getting the thread ID from the compute shader header */
761 assert(stage == MESA_SHADER_COMPUTE);
762
763 /* We can't directly send from g0, since sends with EOT have to use
764 * g112-127. So, copy it to a virtual register, The register allocator will
765 * make sure it uses the appropriate register range.
766 */
767 struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
768 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
769 bld.group(8, 0).exec_all().MOV(payload, g0);
770
771 /* Send a message to the thread spawner to terminate the thread. */
772 fs_inst *inst = bld.exec_all()
773 .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
774 inst->eot = true;
775 }
776
777 void
778 fs_visitor::emit_barrier()
779 {
780 assert(devinfo->gen >= 7);
781 const uint32_t barrier_id_mask =
782 devinfo->gen >= 9 ? 0x8f000000u : 0x0f000000u;
783
784 /* We are getting the barrier ID from the compute shader header */
785 assert(stage == MESA_SHADER_COMPUTE);
786
787 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
788
789 const fs_builder pbld = bld.exec_all().group(8, 0);
790
791 /* Clear the message payload */
792 pbld.MOV(payload, brw_imm_ud(0u));
793
794 /* Copy the barrier id from r0.2 to the message payload reg.2 */
795 fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
796 pbld.AND(component(payload, 2), r0_2, brw_imm_ud(barrier_id_mask));
797
798 /* Emit a gateway "barrier" message using the payload we set up, followed
799 * by a wait instruction.
800 */
801 bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
802 }
803
804 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
805 void *mem_ctx,
806 const void *key,
807 struct brw_stage_prog_data *prog_data,
808 struct gl_program *prog,
809 const nir_shader *shader,
810 unsigned dispatch_width,
811 int shader_time_index,
812 const struct brw_vue_map *input_vue_map)
813 : backend_shader(compiler, log_data, mem_ctx, shader, prog_data),
814 key(key), gs_compile(NULL), prog_data(prog_data), prog(prog),
815 input_vue_map(input_vue_map),
816 dispatch_width(dispatch_width),
817 shader_time_index(shader_time_index),
818 bld(fs_builder(this, dispatch_width).at_end())
819 {
820 init();
821 }
822
823 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
824 void *mem_ctx,
825 struct brw_gs_compile *c,
826 struct brw_gs_prog_data *prog_data,
827 const nir_shader *shader,
828 int shader_time_index)
829 : backend_shader(compiler, log_data, mem_ctx, shader,
830 &prog_data->base.base),
831 key(&c->key), gs_compile(c),
832 prog_data(&prog_data->base.base), prog(NULL),
833 dispatch_width(8),
834 shader_time_index(shader_time_index),
835 bld(fs_builder(this, dispatch_width).at_end())
836 {
837 init();
838 }
839
840
841 void
842 fs_visitor::init()
843 {
844 switch (stage) {
845 case MESA_SHADER_FRAGMENT:
846 key_tex = &((const brw_wm_prog_key *) key)->tex;
847 break;
848 case MESA_SHADER_VERTEX:
849 key_tex = &((const brw_vs_prog_key *) key)->tex;
850 break;
851 case MESA_SHADER_TESS_CTRL:
852 key_tex = &((const brw_tcs_prog_key *) key)->tex;
853 break;
854 case MESA_SHADER_TESS_EVAL:
855 key_tex = &((const brw_tes_prog_key *) key)->tex;
856 break;
857 case MESA_SHADER_GEOMETRY:
858 key_tex = &((const brw_gs_prog_key *) key)->tex;
859 break;
860 case MESA_SHADER_COMPUTE:
861 key_tex = &((const brw_cs_prog_key*) key)->tex;
862 break;
863 default:
864 unreachable("unhandled shader stage");
865 }
866
867 if (stage == MESA_SHADER_COMPUTE) {
868 const struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
869 unsigned size = cs_prog_data->local_size[0] *
870 cs_prog_data->local_size[1] *
871 cs_prog_data->local_size[2];
872 size = DIV_ROUND_UP(size, devinfo->max_cs_threads);
873 min_dispatch_width = size > 16 ? 32 : (size > 8 ? 16 : 8);
874 } else {
875 min_dispatch_width = 8;
876 }
877
878 this->max_dispatch_width = 32;
879 this->prog_data = this->stage_prog_data;
880
881 this->failed = false;
882
883 this->nir_locals = NULL;
884 this->nir_ssa_values = NULL;
885
886 memset(&this->payload, 0, sizeof(this->payload));
887 this->source_depth_to_render_target = false;
888 this->runtime_check_aads_emit = false;
889 this->first_non_payload_grf = 0;
890 this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
891
892 this->virtual_grf_start = NULL;
893 this->virtual_grf_end = NULL;
894 this->live_intervals = NULL;
895 this->regs_live_at_ip = NULL;
896
897 this->uniforms = 0;
898 this->last_scratch = 0;
899 this->pull_constant_loc = NULL;
900 this->push_constant_loc = NULL;
901
902 this->promoted_constants = 0,
903
904 this->spilled_any_registers = false;
905 }
906
907 fs_visitor::~fs_visitor()
908 {
909 }