intel/compiler: Don't left-shift by >= the number of bits of the type
[mesa.git] / src / intel / compiler / brw_ir_fs.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010-2015 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 */
24
25 #ifndef BRW_IR_FS_H
26 #define BRW_IR_FS_H
27
28 #include "brw_shader.h"
29
30 class fs_inst;
31
32 class fs_reg : public backend_reg {
33 public:
34 DECLARE_RALLOC_CXX_OPERATORS(fs_reg)
35
36 void init();
37
38 fs_reg();
39 fs_reg(struct ::brw_reg reg);
40 fs_reg(enum brw_reg_file file, int nr);
41 fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type);
42
43 bool equals(const fs_reg &r) const;
44 bool negative_equals(const fs_reg &r) const;
45 bool is_contiguous() const;
46
47 /**
48 * Return the size in bytes of a single logical component of the
49 * register assuming the given execution width.
50 */
51 unsigned component_size(unsigned width) const;
52
53 /** Register region horizontal stride */
54 uint8_t stride;
55 };
56
57 static inline fs_reg
58 negate(fs_reg reg)
59 {
60 assert(reg.file != IMM);
61 reg.negate = !reg.negate;
62 return reg;
63 }
64
65 static inline fs_reg
66 retype(fs_reg reg, enum brw_reg_type type)
67 {
68 reg.type = type;
69 return reg;
70 }
71
72 static inline fs_reg
73 byte_offset(fs_reg reg, unsigned delta)
74 {
75 switch (reg.file) {
76 case BAD_FILE:
77 break;
78 case VGRF:
79 case ATTR:
80 case UNIFORM:
81 reg.offset += delta;
82 break;
83 case MRF: {
84 const unsigned suboffset = reg.offset + delta;
85 reg.nr += suboffset / REG_SIZE;
86 reg.offset = suboffset % REG_SIZE;
87 break;
88 }
89 case ARF:
90 case FIXED_GRF: {
91 const unsigned suboffset = reg.subnr + delta;
92 reg.nr += suboffset / REG_SIZE;
93 reg.subnr = suboffset % REG_SIZE;
94 break;
95 }
96 case IMM:
97 default:
98 assert(delta == 0);
99 }
100 return reg;
101 }
102
103 static inline fs_reg
104 horiz_offset(const fs_reg &reg, unsigned delta)
105 {
106 switch (reg.file) {
107 case BAD_FILE:
108 case UNIFORM:
109 case IMM:
110 /* These only have a single component that is implicitly splatted. A
111 * horizontal offset should be a harmless no-op.
112 * XXX - Handle vector immediates correctly.
113 */
114 return reg;
115 case VGRF:
116 case MRF:
117 case ATTR:
118 return byte_offset(reg, delta * reg.stride * type_sz(reg.type));
119 case ARF:
120 case FIXED_GRF:
121 if (reg.is_null()) {
122 return reg;
123 } else {
124 const unsigned stride = reg.hstride ? 1 << (reg.hstride - 1) : 0;
125 return byte_offset(reg, delta * stride * type_sz(reg.type));
126 }
127 }
128 unreachable("Invalid register file");
129 }
130
131 static inline fs_reg
132 offset(fs_reg reg, unsigned width, unsigned delta)
133 {
134 switch (reg.file) {
135 case BAD_FILE:
136 break;
137 case ARF:
138 case FIXED_GRF:
139 case MRF:
140 case VGRF:
141 case ATTR:
142 case UNIFORM:
143 return byte_offset(reg, delta * reg.component_size(width));
144 case IMM:
145 assert(delta == 0);
146 }
147 return reg;
148 }
149
150 /**
151 * Get the scalar channel of \p reg given by \p idx and replicate it to all
152 * channels of the result.
153 */
154 static inline fs_reg
155 component(fs_reg reg, unsigned idx)
156 {
157 reg = horiz_offset(reg, idx);
158 reg.stride = 0;
159 return reg;
160 }
161
162 /**
163 * Return an integer identifying the discrete address space a register is
164 * contained in. A register is by definition fully contained in the single
165 * reg_space it belongs to, so two registers with different reg_space ids are
166 * guaranteed not to overlap. Most register files are a single reg_space of
167 * its own, only the VGRF file is composed of multiple discrete address
168 * spaces, one for each VGRF allocation.
169 */
170 static inline uint32_t
171 reg_space(const fs_reg &r)
172 {
173 return r.file << 16 | (r.file == VGRF ? r.nr : 0);
174 }
175
176 /**
177 * Return the base offset in bytes of a register relative to the start of its
178 * reg_space().
179 */
180 static inline unsigned
181 reg_offset(const fs_reg &r)
182 {
183 return (r.file == VGRF || r.file == IMM ? 0 : r.nr) *
184 (r.file == UNIFORM ? 4 : REG_SIZE) + r.offset +
185 (r.file == ARF || r.file == FIXED_GRF ? r.subnr : 0);
186 }
187
188 /**
189 * Return the amount of padding in bytes left unused between individual
190 * components of register \p r due to a (horizontal) stride value greater than
191 * one, or zero if components are tightly packed in the register file.
192 */
193 static inline unsigned
194 reg_padding(const fs_reg &r)
195 {
196 const unsigned stride = ((r.file != ARF && r.file != FIXED_GRF) ? r.stride :
197 r.hstride == 0 ? 0 :
198 1 << (r.hstride - 1));
199 return (MAX2(1, stride) - 1) * type_sz(r.type);
200 }
201
202 /**
203 * Return whether the register region starting at \p r and spanning \p dr
204 * bytes could potentially overlap the register region starting at \p s and
205 * spanning \p ds bytes.
206 */
207 static inline bool
208 regions_overlap(const fs_reg &r, unsigned dr, const fs_reg &s, unsigned ds)
209 {
210 if (r.file == MRF && (r.nr & BRW_MRF_COMPR4)) {
211 fs_reg t = r;
212 t.nr &= ~BRW_MRF_COMPR4;
213 /* COMPR4 regions are translated by the hardware during decompression
214 * into two separate half-regions 4 MRFs apart from each other.
215 */
216 return regions_overlap(t, dr / 2, s, ds) ||
217 regions_overlap(byte_offset(t, 4 * REG_SIZE), dr / 2, s, ds);
218
219 } else if (s.file == MRF && (s.nr & BRW_MRF_COMPR4)) {
220 return regions_overlap(s, ds, r, dr);
221
222 } else {
223 return reg_space(r) == reg_space(s) &&
224 !(reg_offset(r) + dr <= reg_offset(s) ||
225 reg_offset(s) + ds <= reg_offset(r));
226 }
227 }
228
229 /**
230 * Check that the register region given by r [r.offset, r.offset + dr[
231 * is fully contained inside the register region given by s
232 * [s.offset, s.offset + ds[.
233 */
234 static inline bool
235 region_contained_in(const fs_reg &r, unsigned dr, const fs_reg &s, unsigned ds)
236 {
237 return reg_space(r) == reg_space(s) &&
238 reg_offset(r) >= reg_offset(s) &&
239 reg_offset(r) + dr <= reg_offset(s) + ds;
240 }
241
242 /**
243 * Return whether the given register region is n-periodic, i.e. whether the
244 * original region remains invariant after shifting it by \p n scalar
245 * channels.
246 */
247 static inline bool
248 is_periodic(const fs_reg &reg, unsigned n)
249 {
250 if (reg.file == BAD_FILE || reg.is_null()) {
251 return true;
252
253 } else if (reg.file == IMM) {
254 const unsigned period = (reg.type == BRW_REGISTER_TYPE_UV ||
255 reg.type == BRW_REGISTER_TYPE_V ? 8 :
256 reg.type == BRW_REGISTER_TYPE_VF ? 4 :
257 1);
258 return n % period == 0;
259
260 } else if (reg.file == ARF || reg.file == FIXED_GRF) {
261 const unsigned period = (reg.hstride == 0 && reg.vstride == 0 ? 1 :
262 reg.vstride == 0 ? 1 << reg.width :
263 ~0);
264 return n % period == 0;
265
266 } else {
267 return reg.stride == 0;
268 }
269 }
270
271 static inline bool
272 is_uniform(const fs_reg &reg)
273 {
274 return is_periodic(reg, 1);
275 }
276
277 /**
278 * Get the specified 8-component quarter of a register.
279 * XXX - Maybe come up with a less misleading name for this (e.g. quarter())?
280 */
281 static inline fs_reg
282 half(const fs_reg &reg, unsigned idx)
283 {
284 assert(idx < 2);
285 return horiz_offset(reg, 8 * idx);
286 }
287
288 /**
289 * Reinterpret each channel of register \p reg as a vector of values of the
290 * given smaller type and take the i-th subcomponent from each.
291 */
292 static inline fs_reg
293 subscript(fs_reg reg, brw_reg_type type, unsigned i)
294 {
295 assert((i + 1) * type_sz(type) <= type_sz(reg.type));
296
297 if (reg.file == ARF || reg.file == FIXED_GRF) {
298 /* The stride is encoded inconsistently for fixed GRF and ARF registers
299 * as the log2 of the actual vertical and horizontal strides.
300 */
301 const int delta = _mesa_logbase2(type_sz(reg.type)) -
302 _mesa_logbase2(type_sz(type));
303 reg.hstride += (reg.hstride ? delta : 0);
304 reg.vstride += (reg.vstride ? delta : 0);
305
306 } else if (reg.file == IMM) {
307 assert(reg.type == type);
308
309 } else {
310 reg.stride *= type_sz(reg.type) / type_sz(type);
311 }
312
313 return byte_offset(retype(reg, type), i * type_sz(type));
314 }
315
316 static inline fs_reg
317 horiz_stride(fs_reg reg, unsigned s)
318 {
319 reg.stride *= s;
320 return reg;
321 }
322
323 static const fs_reg reg_undef;
324
325 class fs_inst : public backend_instruction {
326 fs_inst &operator=(const fs_inst &);
327
328 void init(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
329 const fs_reg *src, unsigned sources);
330
331 public:
332 DECLARE_RALLOC_CXX_OPERATORS(fs_inst)
333
334 fs_inst();
335 fs_inst(enum opcode opcode, uint8_t exec_size);
336 fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst);
337 fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
338 const fs_reg &src0);
339 fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
340 const fs_reg &src0, const fs_reg &src1);
341 fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
342 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2);
343 fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
344 const fs_reg src[], unsigned sources);
345 fs_inst(const fs_inst &that);
346 ~fs_inst();
347
348 void resize_sources(uint8_t num_sources);
349
350 bool is_send_from_grf() const;
351 bool is_payload(unsigned arg) const;
352 bool is_partial_write() const;
353 bool is_copy_payload(const brw::simple_allocator &grf_alloc) const;
354 unsigned components_read(unsigned i) const;
355 unsigned size_read(int arg) const;
356 bool can_do_source_mods(const struct gen_device_info *devinfo) const;
357 bool can_do_cmod();
358 bool can_change_types() const;
359 bool has_source_and_destination_hazard() const;
360
361 /**
362 * Return whether \p arg is a control source of a virtual instruction which
363 * shouldn't contribute to the execution type and usual regioning
364 * restriction calculations of arithmetic instructions.
365 */
366 bool is_control_source(unsigned arg) const;
367
368 /**
369 * Return the subset of flag registers read by the instruction as a bitset
370 * with byte granularity.
371 */
372 unsigned flags_read(const gen_device_info *devinfo) const;
373
374 /**
375 * Return the subset of flag registers updated by the instruction (either
376 * partially or fully) as a bitset with byte granularity.
377 */
378 unsigned flags_written() const;
379
380 fs_reg dst;
381 fs_reg *src;
382
383 uint8_t sources; /**< Number of fs_reg sources. */
384
385 bool last_rt:1;
386 bool pi_noperspective:1; /**< Pixel interpolator noperspective flag */
387
388 tgl_swsb sched; /**< Scheduling info. */
389 };
390
391 /**
392 * Make the execution of \p inst dependent on the evaluation of a possibly
393 * inverted predicate.
394 */
395 static inline fs_inst *
396 set_predicate_inv(enum brw_predicate pred, bool inverse,
397 fs_inst *inst)
398 {
399 inst->predicate = pred;
400 inst->predicate_inverse = inverse;
401 return inst;
402 }
403
404 /**
405 * Make the execution of \p inst dependent on the evaluation of a predicate.
406 */
407 static inline fs_inst *
408 set_predicate(enum brw_predicate pred, fs_inst *inst)
409 {
410 return set_predicate_inv(pred, false, inst);
411 }
412
413 /**
414 * Write the result of evaluating the condition given by \p mod to a flag
415 * register.
416 */
417 static inline fs_inst *
418 set_condmod(enum brw_conditional_mod mod, fs_inst *inst)
419 {
420 inst->conditional_mod = mod;
421 return inst;
422 }
423
424 /**
425 * Clamp the result of \p inst to the saturation range of its destination
426 * datatype.
427 */
428 static inline fs_inst *
429 set_saturate(bool saturate, fs_inst *inst)
430 {
431 inst->saturate = saturate;
432 return inst;
433 }
434
435 /**
436 * Return the number of dataflow registers written by the instruction (either
437 * fully or partially) counted from 'floor(reg_offset(inst->dst) /
438 * register_size)'. The somewhat arbitrary register size unit is 4B for the
439 * UNIFORM and IMM files and 32B for all other files.
440 */
441 inline unsigned
442 regs_written(const fs_inst *inst)
443 {
444 assert(inst->dst.file != UNIFORM && inst->dst.file != IMM);
445 return DIV_ROUND_UP(reg_offset(inst->dst) % REG_SIZE +
446 inst->size_written -
447 MIN2(inst->size_written, reg_padding(inst->dst)),
448 REG_SIZE);
449 }
450
451 /**
452 * Return the number of dataflow registers read by the instruction (either
453 * fully or partially) counted from 'floor(reg_offset(inst->src[i]) /
454 * register_size)'. The somewhat arbitrary register size unit is 4B for the
455 * UNIFORM and IMM files and 32B for all other files.
456 */
457 inline unsigned
458 regs_read(const fs_inst *inst, unsigned i)
459 {
460 const unsigned reg_size =
461 inst->src[i].file == UNIFORM || inst->src[i].file == IMM ? 4 : REG_SIZE;
462 return DIV_ROUND_UP(reg_offset(inst->src[i]) % reg_size +
463 inst->size_read(i) -
464 MIN2(inst->size_read(i), reg_padding(inst->src[i])),
465 reg_size);
466 }
467
468 static inline enum brw_reg_type
469 get_exec_type(const fs_inst *inst)
470 {
471 brw_reg_type exec_type = BRW_REGISTER_TYPE_B;
472
473 for (int i = 0; i < inst->sources; i++) {
474 if (inst->src[i].file != BAD_FILE &&
475 !inst->is_control_source(i)) {
476 const brw_reg_type t = get_exec_type(inst->src[i].type);
477 if (type_sz(t) > type_sz(exec_type))
478 exec_type = t;
479 else if (type_sz(t) == type_sz(exec_type) &&
480 brw_reg_type_is_floating_point(t))
481 exec_type = t;
482 }
483 }
484
485 if (exec_type == BRW_REGISTER_TYPE_B)
486 exec_type = inst->dst.type;
487
488 assert(exec_type != BRW_REGISTER_TYPE_B);
489
490 /* Promotion of the execution type to 32-bit for conversions from or to
491 * half-float seems to be consistent with the following text from the
492 * Cherryview PRM Vol. 7, "Execution Data Type":
493 *
494 * "When single precision and half precision floats are mixed between
495 * source operands or between source and destination operand [..] single
496 * precision float is the execution datatype."
497 *
498 * and from "Register Region Restrictions":
499 *
500 * "Conversion between Integer and HF (Half Float) must be DWord aligned
501 * and strided by a DWord on the destination."
502 */
503 if (type_sz(exec_type) == 2 &&
504 inst->dst.type != exec_type) {
505 if (exec_type == BRW_REGISTER_TYPE_HF)
506 exec_type = BRW_REGISTER_TYPE_F;
507 else if (inst->dst.type == BRW_REGISTER_TYPE_HF)
508 exec_type = BRW_REGISTER_TYPE_D;
509 }
510
511 return exec_type;
512 }
513
514 static inline unsigned
515 get_exec_type_size(const fs_inst *inst)
516 {
517 return type_sz(get_exec_type(inst));
518 }
519
520 static inline bool
521 is_send(const fs_inst *inst)
522 {
523 return inst->mlen || inst->is_send_from_grf();
524 }
525
526 /**
527 * Return whether the instruction isn't an ALU instruction and cannot be
528 * assumed to complete in-order.
529 */
530 static inline bool
531 is_unordered(const fs_inst *inst)
532 {
533 return is_send(inst) || inst->is_math();
534 }
535
536 /**
537 * Return whether the following regioning restriction applies to the specified
538 * instruction. From the Cherryview PRM Vol 7. "Register Region
539 * Restrictions":
540 *
541 * "When source or destination datatype is 64b or operation is integer DWord
542 * multiply, regioning in Align1 must follow these rules:
543 *
544 * 1. Source and Destination horizontal stride must be aligned to the same qword.
545 * 2. Regioning must ensure Src.Vstride = Src.Width * Src.Hstride.
546 * 3. Source and Destination offset must be the same, except the case of
547 * scalar source."
548 */
549 static inline bool
550 has_dst_aligned_region_restriction(const gen_device_info *devinfo,
551 const fs_inst *inst)
552 {
553 const brw_reg_type exec_type = get_exec_type(inst);
554 /* Even though the hardware spec claims that "integer DWord multiply"
555 * operations are restricted, empirical evidence and the behavior of the
556 * simulator suggest that only 32x32-bit integer multiplication is
557 * restricted.
558 */
559 const bool is_dword_multiply = !brw_reg_type_is_floating_point(exec_type) &&
560 ((inst->opcode == BRW_OPCODE_MUL &&
561 MIN2(type_sz(inst->src[0].type), type_sz(inst->src[1].type)) >= 4) ||
562 (inst->opcode == BRW_OPCODE_MAD &&
563 MIN2(type_sz(inst->src[1].type), type_sz(inst->src[2].type)) >= 4));
564
565 if (type_sz(inst->dst.type) > 4 || type_sz(exec_type) > 4 ||
566 (type_sz(exec_type) == 4 && is_dword_multiply))
567 return devinfo->is_cherryview || gen_device_info_is_9lp(devinfo);
568 else
569 return false;
570 }
571
572 #endif