intel/compiler: fix 64bit value prints on 32bit
[mesa.git] / src / intel / compiler / brw_nir_analyze_ubo_ranges.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_nir.h"
25 #include "compiler/nir/nir.h"
26 #include "util/u_dynarray.h"
27
28 /**
29 * \file brw_nir_analyze_ubo_ranges.c
30 *
31 * This pass decides which portions of UBOs to upload as push constants,
32 * so shaders can access them as part of the thread payload, rather than
33 * having to issue expensive memory reads to pull the data.
34 *
35 * The 3DSTATE_CONSTANT_* mechanism can push data from up to 4 different
36 * buffers, in GRF (256-bit/32-byte) units.
37 *
38 * To do this, we examine NIR load_ubo intrinsics, recording the number of
39 * loads at each offset. We track offsets at a 32-byte granularity, so even
40 * fields with a bit of padding between them tend to fall into contiguous
41 * ranges. We build a list of these ranges, tracking their "cost" (number
42 * of registers required) and "benefit" (number of pull loads eliminated
43 * by pushing the range). We then sort the list to obtain the four best
44 * ranges (most benefit for the least cost).
45 */
46
47 struct ubo_range_entry
48 {
49 struct brw_ubo_range range;
50 int benefit;
51 };
52
53 static int
54 score(const struct ubo_range_entry *entry)
55 {
56 return 2 * entry->benefit - entry->range.length;
57 }
58
59 /**
60 * Compares score for two UBO range entries.
61 *
62 * For a descending qsort().
63 */
64 static int
65 cmp_ubo_range_entry(const void *va, const void *vb)
66 {
67 const struct ubo_range_entry *a = va;
68 const struct ubo_range_entry *b = vb;
69
70 /* Rank based on scores */
71 int delta = score(b) - score(a);
72
73 /* Then use the UBO block index as a tie-breaker */
74 if (delta == 0)
75 delta = b->range.block - a->range.block;
76
77 /* Finally use the UBO offset as a second tie-breaker */
78 if (delta == 0)
79 delta = b->range.block - a->range.block;
80
81 return delta;
82 }
83
84 struct ubo_block_info
85 {
86 /* Each bit in the offsets bitfield represents a 32-byte section of data.
87 * If it's set to one, there is interesting UBO data at that offset. If
88 * not, there's a "hole" - padding between data - or just nothing at all.
89 */
90 uint64_t offsets;
91 uint8_t uses[64];
92 };
93
94 struct ubo_analysis_state
95 {
96 struct hash_table *blocks;
97 bool uses_regular_uniforms;
98 };
99
100 static struct ubo_block_info *
101 get_block_info(struct ubo_analysis_state *state, int block)
102 {
103 uint32_t hash = block + 1;
104 void *key = (void *) (uintptr_t) hash;
105
106 struct hash_entry *entry =
107 _mesa_hash_table_search_pre_hashed(state->blocks, hash, key);
108
109 if (entry)
110 return (struct ubo_block_info *) entry->data;
111
112 struct ubo_block_info *info =
113 rzalloc(state->blocks, struct ubo_block_info);
114 _mesa_hash_table_insert_pre_hashed(state->blocks, hash, key, info);
115
116 return info;
117 }
118
119 static void
120 analyze_ubos_block(struct ubo_analysis_state *state, nir_block *block)
121 {
122 nir_foreach_instr(instr, block) {
123 if (instr->type != nir_instr_type_intrinsic)
124 continue;
125
126 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
127 if (intrin->intrinsic == nir_intrinsic_load_uniform)
128 state->uses_regular_uniforms = true;
129
130 if (intrin->intrinsic != nir_intrinsic_load_ubo)
131 continue;
132
133 nir_const_value *block_const = nir_src_as_const_value(intrin->src[0]);
134 nir_const_value *offset_const = nir_src_as_const_value(intrin->src[1]);
135
136 if (block_const && offset_const) {
137 const int block = block_const->u32[0];
138 const int offset = offset_const->u32[0] / 32;
139
140 /* Won't fit in our bitfield */
141 if (offset >= 64)
142 continue;
143
144 /* TODO: should we count uses in loops as higher benefit? */
145
146 struct ubo_block_info *info = get_block_info(state, block);
147 info->offsets |= 1ull << offset;
148 info->uses[offset]++;
149 }
150 }
151 }
152
153 static void
154 print_ubo_entry(FILE *file,
155 const struct ubo_range_entry *entry,
156 struct ubo_analysis_state *state)
157 {
158 struct ubo_block_info *info = get_block_info(state, entry->range.block);
159
160 fprintf(file,
161 "block %2d, start %2d, length %2d, bits = %"PRIx64", "
162 "benefit %2d, cost %2d, score = %2d\n",
163 entry->range.block, entry->range.start, entry->range.length,
164 info->offsets, entry->benefit, entry->range.length, score(entry));
165 }
166
167 void
168 brw_nir_analyze_ubo_ranges(const struct brw_compiler *compiler,
169 nir_shader *nir,
170 struct brw_ubo_range out_ranges[4])
171 {
172 const struct gen_device_info *devinfo = compiler->devinfo;
173
174 if ((devinfo->gen <= 7 && !devinfo->is_haswell) ||
175 !compiler->scalar_stage[nir->info.stage]) {
176 memset(out_ranges, 0, 4 * sizeof(struct brw_ubo_range));
177 return;
178 }
179
180 void *mem_ctx = ralloc_context(NULL);
181
182 struct ubo_analysis_state state = {
183 .uses_regular_uniforms = false,
184 .blocks =
185 _mesa_hash_table_create(mem_ctx, NULL, _mesa_key_pointer_equal),
186 };
187
188 /* Walk the IR, recording how many times each UBO block/offset is used. */
189 nir_foreach_function(function, nir) {
190 if (function->impl) {
191 nir_foreach_block(block, function->impl) {
192 analyze_ubos_block(&state, block);
193 }
194 }
195 }
196
197 /* Find ranges: a block, starting 32-byte offset, and length. */
198 struct util_dynarray ranges;
199 util_dynarray_init(&ranges, mem_ctx);
200
201 struct hash_entry *entry;
202 hash_table_foreach(state.blocks, entry) {
203 const int b = entry->hash - 1;
204 const struct ubo_block_info *info = entry->data;
205 uint64_t offsets = info->offsets;
206
207 /* Walk through the offsets bitfield, finding contiguous regions of
208 * set bits:
209 *
210 * 0000000001111111111111000000000000111111111111110000000011111100
211 * ^^^^^^^^^^^^^ ^^^^^^^^^^^^^^ ^^^^^^
212 *
213 * Each of these will become a UBO range.
214 */
215 while (offsets != 0) {
216 /* Find the first 1 in the offsets bitfield. This represents the
217 * start of a range of interesting UBO data. Make it zero-indexed.
218 */
219 int first_bit = ffsll(offsets) - 1;
220
221 /* Find the first 0 bit in offsets beyond first_bit. To find the
222 * first zero bit, we find the first 1 bit in the complement. In
223 * order to ignore bits before first_bit, we mask off those bits.
224 */
225 int first_hole = ffsll(~offsets & ~((1ull << first_bit) - 1)) - 1;
226
227 if (first_hole == -1) {
228 /* If we didn't find a hole, then set it to the end of the
229 * bitfield. There are no more ranges to process.
230 */
231 first_hole = 64;
232 offsets = 0;
233 } else {
234 /* We've processed all bits before first_hole. Mask them off. */
235 offsets &= ~((1ull << first_hole) - 1);
236 }
237
238 struct ubo_range_entry *entry =
239 util_dynarray_grow(&ranges, sizeof(struct ubo_range_entry));
240
241 entry->range.block = b;
242 entry->range.start = first_bit;
243 /* first_hole is one beyond the end, so we don't need to add 1 */
244 entry->range.length = first_hole - first_bit;
245 entry->benefit = 0;
246
247 for (int i = 0; i < entry->range.length; i++)
248 entry->benefit += info->uses[first_bit + i];
249 }
250 }
251
252 int nr_entries = ranges.size / sizeof(struct ubo_range_entry);
253
254 if (0) {
255 util_dynarray_foreach(&ranges, struct ubo_range_entry, entry) {
256 print_ubo_entry(stderr, entry, &state);
257 }
258 }
259
260 /* TODO: Consider combining ranges.
261 *
262 * We can only push 3-4 ranges via 3DSTATE_CONSTANT_XS. If there are
263 * more ranges, and two are close by with only a small hole, it may be
264 * worth combining them. The holes will waste register space, but the
265 * benefit of removing pulls may outweigh that cost.
266 */
267
268 /* Sort the list so the most beneficial ranges are at the front. */
269 qsort(ranges.data, nr_entries, sizeof(struct ubo_range_entry),
270 cmp_ubo_range_entry);
271
272 struct ubo_range_entry *entries = ranges.data;
273
274 /* Return the top 4 or so. We drop by one if regular uniforms are in
275 * use, assuming one push buffer will be dedicated to those. We may
276 * also only get 3 on Haswell if we can't write INSTPM.
277 *
278 * The backend may need to shrink these ranges to ensure that they
279 * don't exceed the maximum push constant limits. It can simply drop
280 * the tail of the list, as that's the least valuable portion. We
281 * unfortunately can't truncate it here, because we don't know what
282 * the backend is planning to do with regular uniforms.
283 */
284 const int max_ubos = (compiler->constant_buffer_0_is_relative ? 3 : 4) -
285 state.uses_regular_uniforms;
286 nr_entries = MIN2(nr_entries, max_ubos);
287
288 for (int i = 0; i < nr_entries; i++) {
289 out_ranges[i] = entries[i].range;
290 }
291 for (int i = nr_entries; i < 4; i++) {
292 out_ranges[i].block = 0;
293 out_ranges[i].start = 0;
294 out_ranges[i].length = 0;
295 }
296
297 ralloc_free(ranges.mem_ctx);
298 }