u_dynarray: turn util_dynarray_{grow, resize} into element-oriented macros
[mesa.git] / src / intel / compiler / brw_nir_analyze_ubo_ranges.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_nir.h"
25 #include "compiler/nir/nir.h"
26 #include "util/u_dynarray.h"
27
28 /**
29 * \file brw_nir_analyze_ubo_ranges.c
30 *
31 * This pass decides which portions of UBOs to upload as push constants,
32 * so shaders can access them as part of the thread payload, rather than
33 * having to issue expensive memory reads to pull the data.
34 *
35 * The 3DSTATE_CONSTANT_* mechanism can push data from up to 4 different
36 * buffers, in GRF (256-bit/32-byte) units.
37 *
38 * To do this, we examine NIR load_ubo intrinsics, recording the number of
39 * loads at each offset. We track offsets at a 32-byte granularity, so even
40 * fields with a bit of padding between them tend to fall into contiguous
41 * ranges. We build a list of these ranges, tracking their "cost" (number
42 * of registers required) and "benefit" (number of pull loads eliminated
43 * by pushing the range). We then sort the list to obtain the four best
44 * ranges (most benefit for the least cost).
45 */
46
47 struct ubo_range_entry
48 {
49 struct brw_ubo_range range;
50 int benefit;
51 };
52
53 static int
54 score(const struct ubo_range_entry *entry)
55 {
56 return 2 * entry->benefit - entry->range.length;
57 }
58
59 /**
60 * Compares score for two UBO range entries.
61 *
62 * For a descending qsort().
63 */
64 static int
65 cmp_ubo_range_entry(const void *va, const void *vb)
66 {
67 const struct ubo_range_entry *a = va;
68 const struct ubo_range_entry *b = vb;
69
70 /* Rank based on scores */
71 int delta = score(b) - score(a);
72
73 /* Then use the UBO block index as a tie-breaker */
74 if (delta == 0)
75 delta = b->range.block - a->range.block;
76
77 /* Finally use the UBO offset as a second tie-breaker */
78 if (delta == 0)
79 delta = b->range.block - a->range.block;
80
81 return delta;
82 }
83
84 struct ubo_block_info
85 {
86 /* Each bit in the offsets bitfield represents a 32-byte section of data.
87 * If it's set to one, there is interesting UBO data at that offset. If
88 * not, there's a "hole" - padding between data - or just nothing at all.
89 */
90 uint64_t offsets;
91 uint8_t uses[64];
92 };
93
94 struct ubo_analysis_state
95 {
96 struct hash_table *blocks;
97 bool uses_regular_uniforms;
98 };
99
100 static struct ubo_block_info *
101 get_block_info(struct ubo_analysis_state *state, int block)
102 {
103 uint32_t hash = block + 1;
104 void *key = (void *) (uintptr_t) hash;
105
106 struct hash_entry *entry =
107 _mesa_hash_table_search_pre_hashed(state->blocks, hash, key);
108
109 if (entry)
110 return (struct ubo_block_info *) entry->data;
111
112 struct ubo_block_info *info =
113 rzalloc(state->blocks, struct ubo_block_info);
114 _mesa_hash_table_insert_pre_hashed(state->blocks, hash, key, info);
115
116 return info;
117 }
118
119 static void
120 analyze_ubos_block(struct ubo_analysis_state *state, nir_block *block)
121 {
122 nir_foreach_instr(instr, block) {
123 if (instr->type != nir_instr_type_intrinsic)
124 continue;
125
126 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
127 switch (intrin->intrinsic) {
128 case nir_intrinsic_load_uniform:
129 case nir_intrinsic_image_deref_load:
130 case nir_intrinsic_image_deref_store:
131 case nir_intrinsic_image_deref_atomic_add:
132 case nir_intrinsic_image_deref_atomic_min:
133 case nir_intrinsic_image_deref_atomic_max:
134 case nir_intrinsic_image_deref_atomic_and:
135 case nir_intrinsic_image_deref_atomic_or:
136 case nir_intrinsic_image_deref_atomic_xor:
137 case nir_intrinsic_image_deref_atomic_exchange:
138 case nir_intrinsic_image_deref_atomic_comp_swap:
139 case nir_intrinsic_image_deref_size:
140 state->uses_regular_uniforms = true;
141 continue;
142
143 case nir_intrinsic_load_ubo:
144 break; /* Fall through to the analysis below */
145
146 default:
147 continue; /* Not a uniform or UBO intrinsic */
148 }
149
150 if (nir_src_is_const(intrin->src[0]) &&
151 nir_src_is_const(intrin->src[1])) {
152 const int block = nir_src_as_uint(intrin->src[0]);
153 const unsigned byte_offset = nir_src_as_uint(intrin->src[1]);
154 const int offset = byte_offset / 32;
155
156 /* Avoid shifting by larger than the width of our bitfield, as this
157 * is undefined in C. Even if we require multiple bits to represent
158 * the entire value, it's OK to record a partial value - the backend
159 * is capable of falling back to pull loads for later components of
160 * vectors, as it has to shrink ranges for other reasons anyway.
161 */
162 if (offset >= 64)
163 continue;
164
165 /* The value might span multiple 32-byte chunks. */
166 const int bytes = nir_intrinsic_dest_components(intrin) *
167 (nir_dest_bit_size(intrin->dest) / 8);
168 const int start = ROUND_DOWN_TO(byte_offset, 32);
169 const int end = ALIGN(byte_offset + bytes, 32);
170 const int chunks = (end - start) / 32;
171
172 /* TODO: should we count uses in loops as higher benefit? */
173
174 struct ubo_block_info *info = get_block_info(state, block);
175 info->offsets |= ((1ull << chunks) - 1) << offset;
176 info->uses[offset]++;
177 }
178 }
179 }
180
181 static void
182 print_ubo_entry(FILE *file,
183 const struct ubo_range_entry *entry,
184 struct ubo_analysis_state *state)
185 {
186 struct ubo_block_info *info = get_block_info(state, entry->range.block);
187
188 fprintf(file,
189 "block %2d, start %2d, length %2d, bits = %"PRIx64", "
190 "benefit %2d, cost %2d, score = %2d\n",
191 entry->range.block, entry->range.start, entry->range.length,
192 info->offsets, entry->benefit, entry->range.length, score(entry));
193 }
194
195 void
196 brw_nir_analyze_ubo_ranges(const struct brw_compiler *compiler,
197 nir_shader *nir,
198 const struct brw_vs_prog_key *vs_key,
199 struct brw_ubo_range out_ranges[4])
200 {
201 const struct gen_device_info *devinfo = compiler->devinfo;
202
203 if ((devinfo->gen <= 7 && !devinfo->is_haswell) ||
204 !compiler->scalar_stage[nir->info.stage]) {
205 memset(out_ranges, 0, 4 * sizeof(struct brw_ubo_range));
206 return;
207 }
208
209 void *mem_ctx = ralloc_context(NULL);
210
211 struct ubo_analysis_state state = {
212 .uses_regular_uniforms = false,
213 .blocks =
214 _mesa_hash_table_create(mem_ctx, NULL, _mesa_key_pointer_equal),
215 };
216
217 switch (nir->info.stage) {
218 case MESA_SHADER_VERTEX:
219 if (vs_key && vs_key->nr_userclip_plane_consts > 0)
220 state.uses_regular_uniforms = true;
221 break;
222
223 case MESA_SHADER_COMPUTE:
224 /* Compute shaders use push constants to get the subgroup ID so it's
225 * best to just assume some system values are pushed.
226 */
227 state.uses_regular_uniforms = true;
228 break;
229
230 default:
231 break;
232 }
233
234 /* Walk the IR, recording how many times each UBO block/offset is used. */
235 nir_foreach_function(function, nir) {
236 if (function->impl) {
237 nir_foreach_block(block, function->impl) {
238 analyze_ubos_block(&state, block);
239 }
240 }
241 }
242
243 /* Find ranges: a block, starting 32-byte offset, and length. */
244 struct util_dynarray ranges;
245 util_dynarray_init(&ranges, mem_ctx);
246
247 hash_table_foreach(state.blocks, entry) {
248 const int b = entry->hash - 1;
249 const struct ubo_block_info *info = entry->data;
250 uint64_t offsets = info->offsets;
251
252 /* Walk through the offsets bitfield, finding contiguous regions of
253 * set bits:
254 *
255 * 0000000001111111111111000000000000111111111111110000000011111100
256 * ^^^^^^^^^^^^^ ^^^^^^^^^^^^^^ ^^^^^^
257 *
258 * Each of these will become a UBO range.
259 */
260 while (offsets != 0) {
261 /* Find the first 1 in the offsets bitfield. This represents the
262 * start of a range of interesting UBO data. Make it zero-indexed.
263 */
264 int first_bit = ffsll(offsets) - 1;
265
266 /* Find the first 0 bit in offsets beyond first_bit. To find the
267 * first zero bit, we find the first 1 bit in the complement. In
268 * order to ignore bits before first_bit, we mask off those bits.
269 */
270 int first_hole = ffsll(~offsets & ~((1ull << first_bit) - 1)) - 1;
271
272 if (first_hole == -1) {
273 /* If we didn't find a hole, then set it to the end of the
274 * bitfield. There are no more ranges to process.
275 */
276 first_hole = 64;
277 offsets = 0;
278 } else {
279 /* We've processed all bits before first_hole. Mask them off. */
280 offsets &= ~((1ull << first_hole) - 1);
281 }
282
283 struct ubo_range_entry *entry =
284 util_dynarray_grow(&ranges, struct ubo_range_entry, 1);
285
286 entry->range.block = b;
287 entry->range.start = first_bit;
288 /* first_hole is one beyond the end, so we don't need to add 1 */
289 entry->range.length = first_hole - first_bit;
290 entry->benefit = 0;
291
292 for (int i = 0; i < entry->range.length; i++)
293 entry->benefit += info->uses[first_bit + i];
294 }
295 }
296
297 int nr_entries = ranges.size / sizeof(struct ubo_range_entry);
298
299 if (0) {
300 util_dynarray_foreach(&ranges, struct ubo_range_entry, entry) {
301 print_ubo_entry(stderr, entry, &state);
302 }
303 }
304
305 /* TODO: Consider combining ranges.
306 *
307 * We can only push 3-4 ranges via 3DSTATE_CONSTANT_XS. If there are
308 * more ranges, and two are close by with only a small hole, it may be
309 * worth combining them. The holes will waste register space, but the
310 * benefit of removing pulls may outweigh that cost.
311 */
312
313 /* Sort the list so the most beneficial ranges are at the front. */
314 qsort(ranges.data, nr_entries, sizeof(struct ubo_range_entry),
315 cmp_ubo_range_entry);
316
317 struct ubo_range_entry *entries = ranges.data;
318
319 /* Return the top 4 or so. We drop by one if regular uniforms are in
320 * use, assuming one push buffer will be dedicated to those. We may
321 * also only get 3 on Haswell if we can't write INSTPM.
322 *
323 * The backend may need to shrink these ranges to ensure that they
324 * don't exceed the maximum push constant limits. It can simply drop
325 * the tail of the list, as that's the least valuable portion. We
326 * unfortunately can't truncate it here, because we don't know what
327 * the backend is planning to do with regular uniforms.
328 */
329 const int max_ubos = (compiler->constant_buffer_0_is_relative ? 3 : 4) -
330 state.uses_regular_uniforms;
331 nr_entries = MIN2(nr_entries, max_ubos);
332
333 for (int i = 0; i < nr_entries; i++) {
334 out_ranges[i] = entries[i].range;
335 }
336 for (int i = nr_entries; i < 4; i++) {
337 out_ranges[i].block = 0;
338 out_ranges[i].start = 0;
339 out_ranges[i].length = 0;
340 }
341
342 ralloc_free(ranges.mem_ctx);
343 }