intel/compiler: Don't left-shift by >= the number of bits of the type
[mesa.git] / src / intel / compiler / brw_schedule_instructions.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_fs.h"
29 #include "brw_fs_live_variables.h"
30 #include "brw_vec4.h"
31 #include "brw_cfg.h"
32 #include "brw_shader.h"
33
34 using namespace brw;
35
36 /** @file brw_fs_schedule_instructions.cpp
37 *
38 * List scheduling of FS instructions.
39 *
40 * The basic model of the list scheduler is to take a basic block,
41 * compute a DAG of the dependencies (RAW ordering with latency, WAW
42 * ordering with latency, WAR ordering), and make a list of the DAG heads.
43 * Heuristically pick a DAG head, then put all the children that are
44 * now DAG heads into the list of things to schedule.
45 *
46 * The heuristic is the important part. We're trying to be cheap,
47 * since actually computing the optimal scheduling is NP complete.
48 * What we do is track a "current clock". When we schedule a node, we
49 * update the earliest-unblocked clock time of its children, and
50 * increment the clock. Then, when trying to schedule, we just pick
51 * the earliest-unblocked instruction to schedule.
52 *
53 * Note that often there will be many things which could execute
54 * immediately, and there are a range of heuristic options to choose
55 * from in picking among those.
56 */
57
58 static bool debug = false;
59
60 class instruction_scheduler;
61
62 class schedule_node : public exec_node
63 {
64 public:
65 schedule_node(backend_instruction *inst, instruction_scheduler *sched);
66 void set_latency_gen4();
67 void set_latency_gen7(bool is_haswell);
68
69 backend_instruction *inst;
70 schedule_node **children;
71 int *child_latency;
72 int child_count;
73 int parent_count;
74 int child_array_size;
75 int unblocked_time;
76 int latency;
77
78 /**
79 * Which iteration of pushing groups of children onto the candidates list
80 * this node was a part of.
81 */
82 unsigned cand_generation;
83
84 /**
85 * This is the sum of the instruction's latency plus the maximum delay of
86 * its children, or just the issue_time if it's a leaf node.
87 */
88 int delay;
89
90 /**
91 * Preferred exit node among the (direct or indirect) successors of this
92 * node. Among the scheduler nodes blocked by this node, this will be the
93 * one that may cause earliest program termination, or NULL if none of the
94 * successors is an exit node.
95 */
96 schedule_node *exit;
97 };
98
99 /**
100 * Lower bound of the scheduling time after which one of the instructions
101 * blocked by this node may lead to program termination.
102 *
103 * exit_unblocked_time() determines a strict partial ordering relation '«' on
104 * the set of scheduler nodes as follows:
105 *
106 * n « m <-> exit_unblocked_time(n) < exit_unblocked_time(m)
107 *
108 * which can be used to heuristically order nodes according to how early they
109 * can unblock an exit node and lead to program termination.
110 */
111 static inline int
112 exit_unblocked_time(const schedule_node *n)
113 {
114 return n->exit ? n->exit->unblocked_time : INT_MAX;
115 }
116
117 void
118 schedule_node::set_latency_gen4()
119 {
120 int chans = 8;
121 int math_latency = 22;
122
123 switch (inst->opcode) {
124 case SHADER_OPCODE_RCP:
125 this->latency = 1 * chans * math_latency;
126 break;
127 case SHADER_OPCODE_RSQ:
128 this->latency = 2 * chans * math_latency;
129 break;
130 case SHADER_OPCODE_INT_QUOTIENT:
131 case SHADER_OPCODE_SQRT:
132 case SHADER_OPCODE_LOG2:
133 /* full precision log. partial is 2. */
134 this->latency = 3 * chans * math_latency;
135 break;
136 case SHADER_OPCODE_INT_REMAINDER:
137 case SHADER_OPCODE_EXP2:
138 /* full precision. partial is 3, same throughput. */
139 this->latency = 4 * chans * math_latency;
140 break;
141 case SHADER_OPCODE_POW:
142 this->latency = 8 * chans * math_latency;
143 break;
144 case SHADER_OPCODE_SIN:
145 case SHADER_OPCODE_COS:
146 /* minimum latency, max is 12 rounds. */
147 this->latency = 5 * chans * math_latency;
148 break;
149 default:
150 this->latency = 2;
151 break;
152 }
153 }
154
155 void
156 schedule_node::set_latency_gen7(bool is_haswell)
157 {
158 switch (inst->opcode) {
159 case BRW_OPCODE_MAD:
160 /* 2 cycles
161 * (since the last two src operands are in different register banks):
162 * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
163 *
164 * 3 cycles on IVB, 4 on HSW
165 * (since the last two src operands are in the same register bank):
166 * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
167 *
168 * 18 cycles on IVB, 16 on HSW
169 * (since the last two src operands are in different register banks):
170 * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
171 * mov(8) null g4<4,5,1>F { align16 WE_normal 1Q };
172 *
173 * 20 cycles on IVB, 18 on HSW
174 * (since the last two src operands are in the same register bank):
175 * mad(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
176 * mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
177 */
178
179 /* Our register allocator doesn't know about register banks, so use the
180 * higher latency.
181 */
182 latency = is_haswell ? 16 : 18;
183 break;
184
185 case BRW_OPCODE_LRP:
186 /* 2 cycles
187 * (since the last two src operands are in different register banks):
188 * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
189 *
190 * 3 cycles on IVB, 4 on HSW
191 * (since the last two src operands are in the same register bank):
192 * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
193 *
194 * 16 cycles on IVB, 14 on HSW
195 * (since the last two src operands are in different register banks):
196 * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
197 * mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
198 *
199 * 16 cycles
200 * (since the last two src operands are in the same register bank):
201 * lrp(8) g4<1>F g2.2<4,4,1>F.x g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
202 * mov(8) null g4<4,4,1>F { align16 WE_normal 1Q };
203 */
204
205 /* Our register allocator doesn't know about register banks, so use the
206 * higher latency.
207 */
208 latency = 14;
209 break;
210
211 case SHADER_OPCODE_RCP:
212 case SHADER_OPCODE_RSQ:
213 case SHADER_OPCODE_SQRT:
214 case SHADER_OPCODE_LOG2:
215 case SHADER_OPCODE_EXP2:
216 case SHADER_OPCODE_SIN:
217 case SHADER_OPCODE_COS:
218 /* 2 cycles:
219 * math inv(8) g4<1>F g2<0,1,0>F null { align1 WE_normal 1Q };
220 *
221 * 18 cycles:
222 * math inv(8) g4<1>F g2<0,1,0>F null { align1 WE_normal 1Q };
223 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
224 *
225 * Same for exp2, log2, rsq, sqrt, sin, cos.
226 */
227 latency = is_haswell ? 14 : 16;
228 break;
229
230 case SHADER_OPCODE_POW:
231 /* 2 cycles:
232 * math pow(8) g4<1>F g2<0,1,0>F g2.1<0,1,0>F { align1 WE_normal 1Q };
233 *
234 * 26 cycles:
235 * math pow(8) g4<1>F g2<0,1,0>F g2.1<0,1,0>F { align1 WE_normal 1Q };
236 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
237 */
238 latency = is_haswell ? 22 : 24;
239 break;
240
241 case SHADER_OPCODE_TEX:
242 case SHADER_OPCODE_TXD:
243 case SHADER_OPCODE_TXF:
244 case SHADER_OPCODE_TXF_LZ:
245 case SHADER_OPCODE_TXL:
246 case SHADER_OPCODE_TXL_LZ:
247 /* 18 cycles:
248 * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
249 * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
250 * send(8) g4<1>UW g114<8,8,1>F
251 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
252 *
253 * 697 +/-49 cycles (min 610, n=26):
254 * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
255 * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
256 * send(8) g4<1>UW g114<8,8,1>F
257 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
258 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
259 *
260 * So the latency on our first texture load of the batchbuffer takes
261 * ~700 cycles, since the caches are cold at that point.
262 *
263 * 840 +/- 92 cycles (min 720, n=25):
264 * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
265 * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
266 * send(8) g4<1>UW g114<8,8,1>F
267 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
268 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
269 * send(8) g4<1>UW g114<8,8,1>F
270 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
271 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
272 *
273 * On the second load, it takes just an extra ~140 cycles, and after
274 * accounting for the 14 cycles of the MOV's latency, that makes ~130.
275 *
276 * 683 +/- 49 cycles (min = 602, n=47):
277 * mov(8) g115<1>F 0F { align1 WE_normal 1Q };
278 * mov(8) g114<1>F 0F { align1 WE_normal 1Q };
279 * send(8) g4<1>UW g114<8,8,1>F
280 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
281 * send(8) g50<1>UW g114<8,8,1>F
282 * sampler (10, 0, 0, 1) mlen 2 rlen 4 { align1 WE_normal 1Q };
283 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
284 *
285 * The unit appears to be pipelined, since this matches up with the
286 * cache-cold case, despite there being two loads here. If you replace
287 * the g4 in the MOV to null with g50, it's still 693 +/- 52 (n=39).
288 *
289 * So, take some number between the cache-hot 140 cycles and the
290 * cache-cold 700 cycles. No particular tuning was done on this.
291 *
292 * I haven't done significant testing of the non-TEX opcodes. TXL at
293 * least looked about the same as TEX.
294 */
295 latency = 200;
296 break;
297
298 case SHADER_OPCODE_TXS:
299 /* Testing textureSize(sampler2D, 0), one load was 420 +/- 41
300 * cycles (n=15):
301 * mov(8) g114<1>UD 0D { align1 WE_normal 1Q };
302 * send(8) g6<1>UW g114<8,8,1>F
303 * sampler (10, 0, 10, 1) mlen 1 rlen 4 { align1 WE_normal 1Q };
304 * mov(16) g6<1>F g6<8,8,1>D { align1 WE_normal 1Q };
305 *
306 *
307 * Two loads was 535 +/- 30 cycles (n=19):
308 * mov(16) g114<1>UD 0D { align1 WE_normal 1H };
309 * send(16) g6<1>UW g114<8,8,1>F
310 * sampler (10, 0, 10, 2) mlen 2 rlen 8 { align1 WE_normal 1H };
311 * mov(16) g114<1>UD 0D { align1 WE_normal 1H };
312 * mov(16) g6<1>F g6<8,8,1>D { align1 WE_normal 1H };
313 * send(16) g8<1>UW g114<8,8,1>F
314 * sampler (10, 0, 10, 2) mlen 2 rlen 8 { align1 WE_normal 1H };
315 * mov(16) g8<1>F g8<8,8,1>D { align1 WE_normal 1H };
316 * add(16) g6<1>F g6<8,8,1>F g8<8,8,1>F { align1 WE_normal 1H };
317 *
318 * Since the only caches that should matter are just the
319 * instruction/state cache containing the surface state, assume that we
320 * always have hot caches.
321 */
322 latency = 100;
323 break;
324
325 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
326 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
327 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
328 case VS_OPCODE_PULL_CONSTANT_LOAD:
329 /* testing using varying-index pull constants:
330 *
331 * 16 cycles:
332 * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
333 * send(8) g4<1>F g4<8,8,1>D
334 * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
335 *
336 * ~480 cycles:
337 * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
338 * send(8) g4<1>F g4<8,8,1>D
339 * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
340 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
341 *
342 * ~620 cycles:
343 * mov(8) g4<1>D g2.1<0,1,0>F { align1 WE_normal 1Q };
344 * send(8) g4<1>F g4<8,8,1>D
345 * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
346 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
347 * send(8) g4<1>F g4<8,8,1>D
348 * data (9, 2, 3) mlen 1 rlen 1 { align1 WE_normal 1Q };
349 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
350 *
351 * So, if it's cache-hot, it's about 140. If it's cache cold, it's
352 * about 460. We expect to mostly be cache hot, so pick something more
353 * in that direction.
354 */
355 latency = 200;
356 break;
357
358 case SHADER_OPCODE_GEN7_SCRATCH_READ:
359 /* Testing a load from offset 0, that had been previously written:
360 *
361 * send(8) g114<1>UW g0<8,8,1>F data (0, 0, 0) mlen 1 rlen 1 { align1 WE_normal 1Q };
362 * mov(8) null g114<8,8,1>F { align1 WE_normal 1Q };
363 *
364 * The cycles spent seemed to be grouped around 40-50 (as low as 38),
365 * then around 140. Presumably this is cache hit vs miss.
366 */
367 latency = 50;
368 break;
369
370 case VEC4_OPCODE_UNTYPED_ATOMIC:
371 /* See GEN7_DATAPORT_DC_UNTYPED_ATOMIC_OP */
372 latency = 14000;
373 break;
374
375 case VEC4_OPCODE_UNTYPED_SURFACE_READ:
376 case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
377 /* See also GEN7_DATAPORT_DC_UNTYPED_SURFACE_READ */
378 latency = is_haswell ? 300 : 600;
379 break;
380
381 case SHADER_OPCODE_SEND:
382 switch (inst->sfid) {
383 case BRW_SFID_SAMPLER: {
384 unsigned msg_type = (inst->desc >> 12) & 0x1f;
385 switch (msg_type) {
386 case GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO:
387 case GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO:
388 /* See also SHADER_OPCODE_TXS */
389 latency = 100;
390 break;
391
392 default:
393 /* See also SHADER_OPCODE_TEX */
394 latency = 200;
395 break;
396 }
397 break;
398 }
399
400 case GEN6_SFID_DATAPORT_RENDER_CACHE:
401 switch ((inst->desc >> 14) & 0x1f) {
402 case GEN7_DATAPORT_RC_TYPED_SURFACE_WRITE:
403 case GEN7_DATAPORT_RC_TYPED_SURFACE_READ:
404 /* See also SHADER_OPCODE_TYPED_SURFACE_READ */
405 assert(!is_haswell);
406 latency = 600;
407 break;
408
409 case GEN7_DATAPORT_RC_TYPED_ATOMIC_OP:
410 /* See also SHADER_OPCODE_TYPED_ATOMIC */
411 assert(!is_haswell);
412 latency = 14000;
413 break;
414
415 case GEN6_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_WRITE:
416 /* completely fabricated number */
417 latency = 600;
418 break;
419
420 default:
421 unreachable("Unknown render cache message");
422 }
423 break;
424
425 case GEN7_SFID_DATAPORT_DATA_CACHE:
426 switch ((inst->desc >> 14) & 0x1f) {
427 case HSW_DATAPORT_DC_PORT0_BYTE_SCATTERED_READ:
428 case HSW_DATAPORT_DC_PORT0_BYTE_SCATTERED_WRITE:
429 /* We have no data for this but assume it's roughly the same as
430 * untyped surface read/write.
431 */
432 latency = 300;
433 break;
434
435 case GEN7_DATAPORT_DC_UNTYPED_SURFACE_READ:
436 case GEN7_DATAPORT_DC_UNTYPED_SURFACE_WRITE:
437 /* Test code:
438 * mov(8) g112<1>UD 0x00000000UD { align1 WE_all 1Q };
439 * mov(1) g112.7<1>UD g1.7<0,1,0>UD { align1 WE_all };
440 * mov(8) g113<1>UD 0x00000000UD { align1 WE_normal 1Q };
441 * send(8) g4<1>UD g112<8,8,1>UD
442 * data (38, 6, 5) mlen 2 rlen 1 { align1 WE_normal 1Q };
443 * .
444 * . [repeats 8 times]
445 * .
446 * mov(8) g112<1>UD 0x00000000UD { align1 WE_all 1Q };
447 * mov(1) g112.7<1>UD g1.7<0,1,0>UD { align1 WE_all };
448 * mov(8) g113<1>UD 0x00000000UD { align1 WE_normal 1Q };
449 * send(8) g4<1>UD g112<8,8,1>UD
450 * data (38, 6, 5) mlen 2 rlen 1 { align1 WE_normal 1Q };
451 *
452 * Running it 100 times as fragment shader on a 128x128 quad
453 * gives an average latency of 583 cycles per surface read,
454 * standard deviation 0.9%.
455 */
456 assert(!is_haswell);
457 latency = 600;
458 break;
459
460 case GEN7_DATAPORT_DC_UNTYPED_ATOMIC_OP:
461 /* Test code:
462 * mov(8) g112<1>ud 0x00000000ud { align1 WE_all 1Q };
463 * mov(1) g112.7<1>ud g1.7<0,1,0>ud { align1 WE_all };
464 * mov(8) g113<1>ud 0x00000000ud { align1 WE_normal 1Q };
465 * send(8) g4<1>ud g112<8,8,1>ud
466 * data (38, 5, 6) mlen 2 rlen 1 { align1 WE_normal 1Q };
467 *
468 * Running it 100 times as fragment shader on a 128x128 quad
469 * gives an average latency of 13867 cycles per atomic op,
470 * standard deviation 3%. Note that this is a rather
471 * pessimistic estimate, the actual latency in cases with few
472 * collisions between threads and favorable pipelining has been
473 * seen to be reduced by a factor of 100.
474 */
475 assert(!is_haswell);
476 latency = 14000;
477 break;
478
479 default:
480 unreachable("Unknown data cache message");
481 }
482 break;
483
484 case HSW_SFID_DATAPORT_DATA_CACHE_1:
485 switch ((inst->desc >> 14) & 0x1f) {
486 case HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_READ:
487 case HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_WRITE:
488 case HSW_DATAPORT_DC_PORT1_TYPED_SURFACE_READ:
489 case HSW_DATAPORT_DC_PORT1_TYPED_SURFACE_WRITE:
490 case GEN8_DATAPORT_DC_PORT1_A64_UNTYPED_SURFACE_WRITE:
491 case GEN8_DATAPORT_DC_PORT1_A64_UNTYPED_SURFACE_READ:
492 case GEN8_DATAPORT_DC_PORT1_A64_SCATTERED_WRITE:
493 case GEN9_DATAPORT_DC_PORT1_A64_SCATTERED_READ:
494 /* See also GEN7_DATAPORT_DC_UNTYPED_SURFACE_READ */
495 latency = 300;
496 break;
497
498 case HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP:
499 case HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP_SIMD4X2:
500 case HSW_DATAPORT_DC_PORT1_TYPED_ATOMIC_OP_SIMD4X2:
501 case HSW_DATAPORT_DC_PORT1_TYPED_ATOMIC_OP:
502 case GEN9_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_FLOAT_OP:
503 case GEN8_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_OP:
504 case GEN9_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_FLOAT_OP:
505 /* See also GEN7_DATAPORT_DC_UNTYPED_ATOMIC_OP */
506 latency = 14000;
507 break;
508
509 default:
510 unreachable("Unknown data cache message");
511 }
512 break;
513
514 default:
515 unreachable("Unknown SFID");
516 }
517 break;
518
519 default:
520 /* 2 cycles:
521 * mul(8) g4<1>F g2<0,1,0>F 0.5F { align1 WE_normal 1Q };
522 *
523 * 16 cycles:
524 * mul(8) g4<1>F g2<0,1,0>F 0.5F { align1 WE_normal 1Q };
525 * mov(8) null g4<8,8,1>F { align1 WE_normal 1Q };
526 */
527 latency = 14;
528 break;
529 }
530 }
531
532 class instruction_scheduler {
533 public:
534 instruction_scheduler(backend_shader *s, int grf_count,
535 unsigned hw_reg_count, int block_count,
536 instruction_scheduler_mode mode)
537 {
538 this->bs = s;
539 this->mem_ctx = ralloc_context(NULL);
540 this->grf_count = grf_count;
541 this->hw_reg_count = hw_reg_count;
542 this->instructions.make_empty();
543 this->instructions_to_schedule = 0;
544 this->post_reg_alloc = (mode == SCHEDULE_POST);
545 this->mode = mode;
546 if (!post_reg_alloc) {
547 this->reg_pressure_in = rzalloc_array(mem_ctx, int, block_count);
548
549 this->livein = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
550 for (int i = 0; i < block_count; i++)
551 this->livein[i] = rzalloc_array(mem_ctx, BITSET_WORD,
552 BITSET_WORDS(grf_count));
553
554 this->liveout = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
555 for (int i = 0; i < block_count; i++)
556 this->liveout[i] = rzalloc_array(mem_ctx, BITSET_WORD,
557 BITSET_WORDS(grf_count));
558
559 this->hw_liveout = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
560 for (int i = 0; i < block_count; i++)
561 this->hw_liveout[i] = rzalloc_array(mem_ctx, BITSET_WORD,
562 BITSET_WORDS(hw_reg_count));
563
564 this->written = rzalloc_array(mem_ctx, bool, grf_count);
565
566 this->reads_remaining = rzalloc_array(mem_ctx, int, grf_count);
567
568 this->hw_reads_remaining = rzalloc_array(mem_ctx, int, hw_reg_count);
569 } else {
570 this->reg_pressure_in = NULL;
571 this->livein = NULL;
572 this->liveout = NULL;
573 this->hw_liveout = NULL;
574 this->written = NULL;
575 this->reads_remaining = NULL;
576 this->hw_reads_remaining = NULL;
577 }
578 }
579
580 ~instruction_scheduler()
581 {
582 ralloc_free(this->mem_ctx);
583 }
584 void add_barrier_deps(schedule_node *n);
585 void add_dep(schedule_node *before, schedule_node *after, int latency);
586 void add_dep(schedule_node *before, schedule_node *after);
587
588 void run(cfg_t *cfg);
589 void add_insts_from_block(bblock_t *block);
590 void compute_delays();
591 void compute_exits();
592 virtual void calculate_deps() = 0;
593 virtual schedule_node *choose_instruction_to_schedule() = 0;
594
595 /**
596 * Returns how many cycles it takes the instruction to issue.
597 *
598 * Instructions in gen hardware are handled one simd4 vector at a time,
599 * with 1 cycle per vector dispatched. Thus SIMD8 pixel shaders take 2
600 * cycles to dispatch and SIMD16 (compressed) instructions take 4.
601 */
602 virtual int issue_time(backend_instruction *inst) = 0;
603
604 virtual void count_reads_remaining(backend_instruction *inst) = 0;
605 virtual void setup_liveness(cfg_t *cfg) = 0;
606 virtual void update_register_pressure(backend_instruction *inst) = 0;
607 virtual int get_register_pressure_benefit(backend_instruction *inst) = 0;
608
609 void schedule_instructions(bblock_t *block);
610
611 void *mem_ctx;
612
613 bool post_reg_alloc;
614 int instructions_to_schedule;
615 int grf_count;
616 unsigned hw_reg_count;
617 int reg_pressure;
618 int block_idx;
619 exec_list instructions;
620 backend_shader *bs;
621
622 instruction_scheduler_mode mode;
623
624 /*
625 * The register pressure at the beginning of each basic block.
626 */
627
628 int *reg_pressure_in;
629
630 /*
631 * The virtual GRF's whose range overlaps the beginning of each basic block.
632 */
633
634 BITSET_WORD **livein;
635
636 /*
637 * The virtual GRF's whose range overlaps the end of each basic block.
638 */
639
640 BITSET_WORD **liveout;
641
642 /*
643 * The hardware GRF's whose range overlaps the end of each basic block.
644 */
645
646 BITSET_WORD **hw_liveout;
647
648 /*
649 * Whether we've scheduled a write for this virtual GRF yet.
650 */
651
652 bool *written;
653
654 /*
655 * How many reads we haven't scheduled for this virtual GRF yet.
656 */
657
658 int *reads_remaining;
659
660 /*
661 * How many reads we haven't scheduled for this hardware GRF yet.
662 */
663
664 int *hw_reads_remaining;
665 };
666
667 class fs_instruction_scheduler : public instruction_scheduler
668 {
669 public:
670 fs_instruction_scheduler(fs_visitor *v, int grf_count, int hw_reg_count,
671 int block_count,
672 instruction_scheduler_mode mode);
673 void calculate_deps();
674 bool is_compressed(fs_inst *inst);
675 schedule_node *choose_instruction_to_schedule();
676 int issue_time(backend_instruction *inst);
677 fs_visitor *v;
678
679 void count_reads_remaining(backend_instruction *inst);
680 void setup_liveness(cfg_t *cfg);
681 void update_register_pressure(backend_instruction *inst);
682 int get_register_pressure_benefit(backend_instruction *inst);
683 };
684
685 fs_instruction_scheduler::fs_instruction_scheduler(fs_visitor *v,
686 int grf_count, int hw_reg_count,
687 int block_count,
688 instruction_scheduler_mode mode)
689 : instruction_scheduler(v, grf_count, hw_reg_count, block_count, mode),
690 v(v)
691 {
692 }
693
694 static bool
695 is_src_duplicate(fs_inst *inst, int src)
696 {
697 for (int i = 0; i < src; i++)
698 if (inst->src[i].equals(inst->src[src]))
699 return true;
700
701 return false;
702 }
703
704 void
705 fs_instruction_scheduler::count_reads_remaining(backend_instruction *be)
706 {
707 fs_inst *inst = (fs_inst *)be;
708
709 if (!reads_remaining)
710 return;
711
712 for (int i = 0; i < inst->sources; i++) {
713 if (is_src_duplicate(inst, i))
714 continue;
715
716 if (inst->src[i].file == VGRF) {
717 reads_remaining[inst->src[i].nr]++;
718 } else if (inst->src[i].file == FIXED_GRF) {
719 if (inst->src[i].nr >= hw_reg_count)
720 continue;
721
722 for (unsigned j = 0; j < regs_read(inst, i); j++)
723 hw_reads_remaining[inst->src[i].nr + j]++;
724 }
725 }
726 }
727
728 void
729 fs_instruction_scheduler::setup_liveness(cfg_t *cfg)
730 {
731 /* First, compute liveness on a per-GRF level using the in/out sets from
732 * liveness calculation.
733 */
734 for (int block = 0; block < cfg->num_blocks; block++) {
735 for (int i = 0; i < v->live_intervals->num_vars; i++) {
736 if (BITSET_TEST(v->live_intervals->block_data[block].livein, i)) {
737 int vgrf = v->live_intervals->vgrf_from_var[i];
738 if (!BITSET_TEST(livein[block], vgrf)) {
739 reg_pressure_in[block] += v->alloc.sizes[vgrf];
740 BITSET_SET(livein[block], vgrf);
741 }
742 }
743
744 if (BITSET_TEST(v->live_intervals->block_data[block].liveout, i))
745 BITSET_SET(liveout[block], v->live_intervals->vgrf_from_var[i]);
746 }
747 }
748
749 /* Now, extend the live in/live out sets for when a range crosses a block
750 * boundary, which matches what our register allocator/interference code
751 * does to account for force_writemask_all and incompatible exec_mask's.
752 */
753 for (int block = 0; block < cfg->num_blocks - 1; block++) {
754 for (int i = 0; i < grf_count; i++) {
755 if (v->virtual_grf_start[i] <= cfg->blocks[block]->end_ip &&
756 v->virtual_grf_end[i] >= cfg->blocks[block + 1]->start_ip) {
757 if (!BITSET_TEST(livein[block + 1], i)) {
758 reg_pressure_in[block + 1] += v->alloc.sizes[i];
759 BITSET_SET(livein[block + 1], i);
760 }
761
762 BITSET_SET(liveout[block], i);
763 }
764 }
765 }
766
767 int payload_last_use_ip[hw_reg_count];
768 v->calculate_payload_ranges(hw_reg_count, payload_last_use_ip);
769
770 for (unsigned i = 0; i < hw_reg_count; i++) {
771 if (payload_last_use_ip[i] == -1)
772 continue;
773
774 for (int block = 0; block < cfg->num_blocks; block++) {
775 if (cfg->blocks[block]->start_ip <= payload_last_use_ip[i])
776 reg_pressure_in[block]++;
777
778 if (cfg->blocks[block]->end_ip <= payload_last_use_ip[i])
779 BITSET_SET(hw_liveout[block], i);
780 }
781 }
782 }
783
784 void
785 fs_instruction_scheduler::update_register_pressure(backend_instruction *be)
786 {
787 fs_inst *inst = (fs_inst *)be;
788
789 if (!reads_remaining)
790 return;
791
792 if (inst->dst.file == VGRF) {
793 written[inst->dst.nr] = true;
794 }
795
796 for (int i = 0; i < inst->sources; i++) {
797 if (is_src_duplicate(inst, i))
798 continue;
799
800 if (inst->src[i].file == VGRF) {
801 reads_remaining[inst->src[i].nr]--;
802 } else if (inst->src[i].file == FIXED_GRF &&
803 inst->src[i].nr < hw_reg_count) {
804 for (unsigned off = 0; off < regs_read(inst, i); off++)
805 hw_reads_remaining[inst->src[i].nr + off]--;
806 }
807 }
808 }
809
810 int
811 fs_instruction_scheduler::get_register_pressure_benefit(backend_instruction *be)
812 {
813 fs_inst *inst = (fs_inst *)be;
814 int benefit = 0;
815
816 if (inst->dst.file == VGRF) {
817 if (!BITSET_TEST(livein[block_idx], inst->dst.nr) &&
818 !written[inst->dst.nr])
819 benefit -= v->alloc.sizes[inst->dst.nr];
820 }
821
822 for (int i = 0; i < inst->sources; i++) {
823 if (is_src_duplicate(inst, i))
824 continue;
825
826 if (inst->src[i].file == VGRF &&
827 !BITSET_TEST(liveout[block_idx], inst->src[i].nr) &&
828 reads_remaining[inst->src[i].nr] == 1)
829 benefit += v->alloc.sizes[inst->src[i].nr];
830
831 if (inst->src[i].file == FIXED_GRF &&
832 inst->src[i].nr < hw_reg_count) {
833 for (unsigned off = 0; off < regs_read(inst, i); off++) {
834 int reg = inst->src[i].nr + off;
835 if (!BITSET_TEST(hw_liveout[block_idx], reg) &&
836 hw_reads_remaining[reg] == 1) {
837 benefit++;
838 }
839 }
840 }
841 }
842
843 return benefit;
844 }
845
846 class vec4_instruction_scheduler : public instruction_scheduler
847 {
848 public:
849 vec4_instruction_scheduler(vec4_visitor *v, int grf_count);
850 void calculate_deps();
851 schedule_node *choose_instruction_to_schedule();
852 int issue_time(backend_instruction *inst);
853 vec4_visitor *v;
854
855 void count_reads_remaining(backend_instruction *inst);
856 void setup_liveness(cfg_t *cfg);
857 void update_register_pressure(backend_instruction *inst);
858 int get_register_pressure_benefit(backend_instruction *inst);
859 };
860
861 vec4_instruction_scheduler::vec4_instruction_scheduler(vec4_visitor *v,
862 int grf_count)
863 : instruction_scheduler(v, grf_count, 0, 0, SCHEDULE_POST),
864 v(v)
865 {
866 }
867
868 void
869 vec4_instruction_scheduler::count_reads_remaining(backend_instruction *)
870 {
871 }
872
873 void
874 vec4_instruction_scheduler::setup_liveness(cfg_t *)
875 {
876 }
877
878 void
879 vec4_instruction_scheduler::update_register_pressure(backend_instruction *)
880 {
881 }
882
883 int
884 vec4_instruction_scheduler::get_register_pressure_benefit(backend_instruction *)
885 {
886 return 0;
887 }
888
889 schedule_node::schedule_node(backend_instruction *inst,
890 instruction_scheduler *sched)
891 {
892 const struct gen_device_info *devinfo = sched->bs->devinfo;
893
894 this->inst = inst;
895 this->child_array_size = 0;
896 this->children = NULL;
897 this->child_latency = NULL;
898 this->child_count = 0;
899 this->parent_count = 0;
900 this->unblocked_time = 0;
901 this->cand_generation = 0;
902 this->delay = 0;
903 this->exit = NULL;
904
905 /* We can't measure Gen6 timings directly but expect them to be much
906 * closer to Gen7 than Gen4.
907 */
908 if (!sched->post_reg_alloc)
909 this->latency = 1;
910 else if (devinfo->gen >= 6)
911 set_latency_gen7(devinfo->is_haswell);
912 else
913 set_latency_gen4();
914 }
915
916 void
917 instruction_scheduler::add_insts_from_block(bblock_t *block)
918 {
919 foreach_inst_in_block(backend_instruction, inst, block) {
920 schedule_node *n = new(mem_ctx) schedule_node(inst, this);
921
922 instructions.push_tail(n);
923 }
924
925 this->instructions_to_schedule = block->end_ip - block->start_ip + 1;
926 }
927
928 /** Computation of the delay member of each node. */
929 void
930 instruction_scheduler::compute_delays()
931 {
932 foreach_in_list_reverse(schedule_node, n, &instructions) {
933 if (!n->child_count) {
934 n->delay = issue_time(n->inst);
935 } else {
936 for (int i = 0; i < n->child_count; i++) {
937 assert(n->children[i]->delay);
938 n->delay = MAX2(n->delay, n->latency + n->children[i]->delay);
939 }
940 }
941 }
942 }
943
944 void
945 instruction_scheduler::compute_exits()
946 {
947 /* Calculate a lower bound of the scheduling time of each node in the
948 * graph. This is analogous to the node's critical path but calculated
949 * from the top instead of from the bottom of the block.
950 */
951 foreach_in_list(schedule_node, n, &instructions) {
952 for (int i = 0; i < n->child_count; i++) {
953 n->children[i]->unblocked_time =
954 MAX2(n->children[i]->unblocked_time,
955 n->unblocked_time + issue_time(n->inst) + n->child_latency[i]);
956 }
957 }
958
959 /* Calculate the exit of each node by induction based on the exit nodes of
960 * its children. The preferred exit of a node is the one among the exit
961 * nodes of its children which can be unblocked first according to the
962 * optimistic unblocked time estimate calculated above.
963 */
964 foreach_in_list_reverse(schedule_node, n, &instructions) {
965 n->exit = (n->inst->opcode == FS_OPCODE_DISCARD_JUMP ? n : NULL);
966
967 for (int i = 0; i < n->child_count; i++) {
968 if (exit_unblocked_time(n->children[i]) < exit_unblocked_time(n))
969 n->exit = n->children[i]->exit;
970 }
971 }
972 }
973
974 /**
975 * Add a dependency between two instruction nodes.
976 *
977 * The @after node will be scheduled after @before. We will try to
978 * schedule it @latency cycles after @before, but no guarantees there.
979 */
980 void
981 instruction_scheduler::add_dep(schedule_node *before, schedule_node *after,
982 int latency)
983 {
984 if (!before || !after)
985 return;
986
987 assert(before != after);
988
989 for (int i = 0; i < before->child_count; i++) {
990 if (before->children[i] == after) {
991 before->child_latency[i] = MAX2(before->child_latency[i], latency);
992 return;
993 }
994 }
995
996 if (before->child_array_size <= before->child_count) {
997 if (before->child_array_size < 16)
998 before->child_array_size = 16;
999 else
1000 before->child_array_size *= 2;
1001
1002 before->children = reralloc(mem_ctx, before->children,
1003 schedule_node *,
1004 before->child_array_size);
1005 before->child_latency = reralloc(mem_ctx, before->child_latency,
1006 int, before->child_array_size);
1007 }
1008
1009 before->children[before->child_count] = after;
1010 before->child_latency[before->child_count] = latency;
1011 before->child_count++;
1012 after->parent_count++;
1013 }
1014
1015 void
1016 instruction_scheduler::add_dep(schedule_node *before, schedule_node *after)
1017 {
1018 if (!before)
1019 return;
1020
1021 add_dep(before, after, before->latency);
1022 }
1023
1024 static bool
1025 is_scheduling_barrier(const backend_instruction *inst)
1026 {
1027 return inst->opcode == FS_OPCODE_PLACEHOLDER_HALT ||
1028 inst->is_control_flow() ||
1029 inst->has_side_effects();
1030 }
1031
1032 /**
1033 * Sometimes we really want this node to execute after everything that
1034 * was before it and before everything that followed it. This adds
1035 * the deps to do so.
1036 */
1037 void
1038 instruction_scheduler::add_barrier_deps(schedule_node *n)
1039 {
1040 schedule_node *prev = (schedule_node *)n->prev;
1041 schedule_node *next = (schedule_node *)n->next;
1042
1043 if (prev) {
1044 while (!prev->is_head_sentinel()) {
1045 add_dep(prev, n, 0);
1046 if (is_scheduling_barrier(prev->inst))
1047 break;
1048 prev = (schedule_node *)prev->prev;
1049 }
1050 }
1051
1052 if (next) {
1053 while (!next->is_tail_sentinel()) {
1054 add_dep(n, next, 0);
1055 if (is_scheduling_barrier(next->inst))
1056 break;
1057 next = (schedule_node *)next->next;
1058 }
1059 }
1060 }
1061
1062 /* instruction scheduling needs to be aware of when an MRF write
1063 * actually writes 2 MRFs.
1064 */
1065 bool
1066 fs_instruction_scheduler::is_compressed(fs_inst *inst)
1067 {
1068 return inst->exec_size == 16;
1069 }
1070
1071 void
1072 fs_instruction_scheduler::calculate_deps()
1073 {
1074 /* Pre-register-allocation, this tracks the last write per VGRF offset.
1075 * After register allocation, reg_offsets are gone and we track individual
1076 * GRF registers.
1077 */
1078 schedule_node **last_grf_write;
1079 schedule_node *last_mrf_write[BRW_MAX_MRF(v->devinfo->gen)];
1080 schedule_node *last_conditional_mod[8] = {};
1081 schedule_node *last_accumulator_write = NULL;
1082 /* Fixed HW registers are assumed to be separate from the virtual
1083 * GRFs, so they can be tracked separately. We don't really write
1084 * to fixed GRFs much, so don't bother tracking them on a more
1085 * granular level.
1086 */
1087 schedule_node *last_fixed_grf_write = NULL;
1088
1089 last_grf_write = (schedule_node **)calloc(sizeof(schedule_node *), grf_count * 16);
1090 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1091
1092 /* top-to-bottom dependencies: RAW and WAW. */
1093 foreach_in_list(schedule_node, n, &instructions) {
1094 fs_inst *inst = (fs_inst *)n->inst;
1095
1096 if (is_scheduling_barrier(inst))
1097 add_barrier_deps(n);
1098
1099 /* read-after-write deps. */
1100 for (int i = 0; i < inst->sources; i++) {
1101 if (inst->src[i].file == VGRF) {
1102 if (post_reg_alloc) {
1103 for (unsigned r = 0; r < regs_read(inst, i); r++)
1104 add_dep(last_grf_write[inst->src[i].nr + r], n);
1105 } else {
1106 for (unsigned r = 0; r < regs_read(inst, i); r++) {
1107 add_dep(last_grf_write[inst->src[i].nr * 16 +
1108 inst->src[i].offset / REG_SIZE + r], n);
1109 }
1110 }
1111 } else if (inst->src[i].file == FIXED_GRF) {
1112 if (post_reg_alloc) {
1113 for (unsigned r = 0; r < regs_read(inst, i); r++)
1114 add_dep(last_grf_write[inst->src[i].nr + r], n);
1115 } else {
1116 add_dep(last_fixed_grf_write, n);
1117 }
1118 } else if (inst->src[i].is_accumulator()) {
1119 add_dep(last_accumulator_write, n);
1120 } else if (inst->src[i].file == ARF) {
1121 add_barrier_deps(n);
1122 }
1123 }
1124
1125 if (inst->base_mrf != -1) {
1126 for (int i = 0; i < inst->mlen; i++) {
1127 /* It looks like the MRF regs are released in the send
1128 * instruction once it's sent, not when the result comes
1129 * back.
1130 */
1131 add_dep(last_mrf_write[inst->base_mrf + i], n);
1132 }
1133 }
1134
1135 if (const unsigned mask = inst->flags_read(v->devinfo)) {
1136 assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1137
1138 for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1139 if (mask & (1 << i))
1140 add_dep(last_conditional_mod[i], n);
1141 }
1142 }
1143
1144 if (inst->reads_accumulator_implicitly()) {
1145 add_dep(last_accumulator_write, n);
1146 }
1147
1148 /* write-after-write deps. */
1149 if (inst->dst.file == VGRF) {
1150 if (post_reg_alloc) {
1151 for (unsigned r = 0; r < regs_written(inst); r++) {
1152 add_dep(last_grf_write[inst->dst.nr + r], n);
1153 last_grf_write[inst->dst.nr + r] = n;
1154 }
1155 } else {
1156 for (unsigned r = 0; r < regs_written(inst); r++) {
1157 add_dep(last_grf_write[inst->dst.nr * 16 +
1158 inst->dst.offset / REG_SIZE + r], n);
1159 last_grf_write[inst->dst.nr * 16 +
1160 inst->dst.offset / REG_SIZE + r] = n;
1161 }
1162 }
1163 } else if (inst->dst.file == MRF) {
1164 int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
1165
1166 add_dep(last_mrf_write[reg], n);
1167 last_mrf_write[reg] = n;
1168 if (is_compressed(inst)) {
1169 if (inst->dst.nr & BRW_MRF_COMPR4)
1170 reg += 4;
1171 else
1172 reg++;
1173 add_dep(last_mrf_write[reg], n);
1174 last_mrf_write[reg] = n;
1175 }
1176 } else if (inst->dst.file == FIXED_GRF) {
1177 if (post_reg_alloc) {
1178 for (unsigned r = 0; r < regs_written(inst); r++)
1179 last_grf_write[inst->dst.nr + r] = n;
1180 } else {
1181 last_fixed_grf_write = n;
1182 }
1183 } else if (inst->dst.is_accumulator()) {
1184 add_dep(last_accumulator_write, n);
1185 last_accumulator_write = n;
1186 } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1187 add_barrier_deps(n);
1188 }
1189
1190 if (inst->mlen > 0 && inst->base_mrf != -1) {
1191 for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
1192 add_dep(last_mrf_write[inst->base_mrf + i], n);
1193 last_mrf_write[inst->base_mrf + i] = n;
1194 }
1195 }
1196
1197 if (const unsigned mask = inst->flags_written()) {
1198 assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1199
1200 for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1201 if (mask & (1 << i)) {
1202 add_dep(last_conditional_mod[i], n, 0);
1203 last_conditional_mod[i] = n;
1204 }
1205 }
1206 }
1207
1208 if (inst->writes_accumulator_implicitly(v->devinfo) &&
1209 !inst->dst.is_accumulator()) {
1210 add_dep(last_accumulator_write, n);
1211 last_accumulator_write = n;
1212 }
1213 }
1214
1215 /* bottom-to-top dependencies: WAR */
1216 memset(last_grf_write, 0, sizeof(schedule_node *) * grf_count * 16);
1217 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1218 memset(last_conditional_mod, 0, sizeof(last_conditional_mod));
1219 last_accumulator_write = NULL;
1220 last_fixed_grf_write = NULL;
1221
1222 foreach_in_list_reverse_safe(schedule_node, n, &instructions) {
1223 fs_inst *inst = (fs_inst *)n->inst;
1224
1225 /* write-after-read deps. */
1226 for (int i = 0; i < inst->sources; i++) {
1227 if (inst->src[i].file == VGRF) {
1228 if (post_reg_alloc) {
1229 for (unsigned r = 0; r < regs_read(inst, i); r++)
1230 add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
1231 } else {
1232 for (unsigned r = 0; r < regs_read(inst, i); r++) {
1233 add_dep(n, last_grf_write[inst->src[i].nr * 16 +
1234 inst->src[i].offset / REG_SIZE + r], 0);
1235 }
1236 }
1237 } else if (inst->src[i].file == FIXED_GRF) {
1238 if (post_reg_alloc) {
1239 for (unsigned r = 0; r < regs_read(inst, i); r++)
1240 add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
1241 } else {
1242 add_dep(n, last_fixed_grf_write, 0);
1243 }
1244 } else if (inst->src[i].is_accumulator()) {
1245 add_dep(n, last_accumulator_write, 0);
1246 } else if (inst->src[i].file == ARF) {
1247 add_barrier_deps(n);
1248 }
1249 }
1250
1251 if (inst->base_mrf != -1) {
1252 for (int i = 0; i < inst->mlen; i++) {
1253 /* It looks like the MRF regs are released in the send
1254 * instruction once it's sent, not when the result comes
1255 * back.
1256 */
1257 add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
1258 }
1259 }
1260
1261 if (const unsigned mask = inst->flags_read(v->devinfo)) {
1262 assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1263
1264 for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1265 if (mask & (1 << i))
1266 add_dep(n, last_conditional_mod[i]);
1267 }
1268 }
1269
1270 if (inst->reads_accumulator_implicitly()) {
1271 add_dep(n, last_accumulator_write);
1272 }
1273
1274 /* Update the things this instruction wrote, so earlier reads
1275 * can mark this as WAR dependency.
1276 */
1277 if (inst->dst.file == VGRF) {
1278 if (post_reg_alloc) {
1279 for (unsigned r = 0; r < regs_written(inst); r++)
1280 last_grf_write[inst->dst.nr + r] = n;
1281 } else {
1282 for (unsigned r = 0; r < regs_written(inst); r++) {
1283 last_grf_write[inst->dst.nr * 16 +
1284 inst->dst.offset / REG_SIZE + r] = n;
1285 }
1286 }
1287 } else if (inst->dst.file == MRF) {
1288 int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
1289
1290 last_mrf_write[reg] = n;
1291
1292 if (is_compressed(inst)) {
1293 if (inst->dst.nr & BRW_MRF_COMPR4)
1294 reg += 4;
1295 else
1296 reg++;
1297
1298 last_mrf_write[reg] = n;
1299 }
1300 } else if (inst->dst.file == FIXED_GRF) {
1301 if (post_reg_alloc) {
1302 for (unsigned r = 0; r < regs_written(inst); r++)
1303 last_grf_write[inst->dst.nr + r] = n;
1304 } else {
1305 last_fixed_grf_write = n;
1306 }
1307 } else if (inst->dst.is_accumulator()) {
1308 last_accumulator_write = n;
1309 } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1310 add_barrier_deps(n);
1311 }
1312
1313 if (inst->mlen > 0 && inst->base_mrf != -1) {
1314 for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
1315 last_mrf_write[inst->base_mrf + i] = n;
1316 }
1317 }
1318
1319 if (const unsigned mask = inst->flags_written()) {
1320 assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1321
1322 for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1323 if (mask & (1 << i))
1324 last_conditional_mod[i] = n;
1325 }
1326 }
1327
1328 if (inst->writes_accumulator_implicitly(v->devinfo)) {
1329 last_accumulator_write = n;
1330 }
1331 }
1332
1333 free(last_grf_write);
1334 }
1335
1336 void
1337 vec4_instruction_scheduler::calculate_deps()
1338 {
1339 schedule_node *last_grf_write[grf_count];
1340 schedule_node *last_mrf_write[BRW_MAX_MRF(v->devinfo->gen)];
1341 schedule_node *last_conditional_mod = NULL;
1342 schedule_node *last_accumulator_write = NULL;
1343 /* Fixed HW registers are assumed to be separate from the virtual
1344 * GRFs, so they can be tracked separately. We don't really write
1345 * to fixed GRFs much, so don't bother tracking them on a more
1346 * granular level.
1347 */
1348 schedule_node *last_fixed_grf_write = NULL;
1349
1350 memset(last_grf_write, 0, sizeof(last_grf_write));
1351 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1352
1353 /* top-to-bottom dependencies: RAW and WAW. */
1354 foreach_in_list(schedule_node, n, &instructions) {
1355 vec4_instruction *inst = (vec4_instruction *)n->inst;
1356
1357 if (is_scheduling_barrier(inst))
1358 add_barrier_deps(n);
1359
1360 /* read-after-write deps. */
1361 for (int i = 0; i < 3; i++) {
1362 if (inst->src[i].file == VGRF) {
1363 for (unsigned j = 0; j < regs_read(inst, i); ++j)
1364 add_dep(last_grf_write[inst->src[i].nr + j], n);
1365 } else if (inst->src[i].file == FIXED_GRF) {
1366 add_dep(last_fixed_grf_write, n);
1367 } else if (inst->src[i].is_accumulator()) {
1368 assert(last_accumulator_write);
1369 add_dep(last_accumulator_write, n);
1370 } else if (inst->src[i].file == ARF) {
1371 add_barrier_deps(n);
1372 }
1373 }
1374
1375 if (inst->reads_g0_implicitly())
1376 add_dep(last_fixed_grf_write, n);
1377
1378 if (!inst->is_send_from_grf()) {
1379 for (int i = 0; i < inst->mlen; i++) {
1380 /* It looks like the MRF regs are released in the send
1381 * instruction once it's sent, not when the result comes
1382 * back.
1383 */
1384 add_dep(last_mrf_write[inst->base_mrf + i], n);
1385 }
1386 }
1387
1388 if (inst->reads_flag()) {
1389 assert(last_conditional_mod);
1390 add_dep(last_conditional_mod, n);
1391 }
1392
1393 if (inst->reads_accumulator_implicitly()) {
1394 assert(last_accumulator_write);
1395 add_dep(last_accumulator_write, n);
1396 }
1397
1398 /* write-after-write deps. */
1399 if (inst->dst.file == VGRF) {
1400 for (unsigned j = 0; j < regs_written(inst); ++j) {
1401 add_dep(last_grf_write[inst->dst.nr + j], n);
1402 last_grf_write[inst->dst.nr + j] = n;
1403 }
1404 } else if (inst->dst.file == MRF) {
1405 add_dep(last_mrf_write[inst->dst.nr], n);
1406 last_mrf_write[inst->dst.nr] = n;
1407 } else if (inst->dst.file == FIXED_GRF) {
1408 last_fixed_grf_write = n;
1409 } else if (inst->dst.is_accumulator()) {
1410 add_dep(last_accumulator_write, n);
1411 last_accumulator_write = n;
1412 } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1413 add_barrier_deps(n);
1414 }
1415
1416 if (inst->mlen > 0 && !inst->is_send_from_grf()) {
1417 for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
1418 add_dep(last_mrf_write[inst->base_mrf + i], n);
1419 last_mrf_write[inst->base_mrf + i] = n;
1420 }
1421 }
1422
1423 if (inst->writes_flag()) {
1424 add_dep(last_conditional_mod, n, 0);
1425 last_conditional_mod = n;
1426 }
1427
1428 if (inst->writes_accumulator_implicitly(v->devinfo) &&
1429 !inst->dst.is_accumulator()) {
1430 add_dep(last_accumulator_write, n);
1431 last_accumulator_write = n;
1432 }
1433 }
1434
1435 /* bottom-to-top dependencies: WAR */
1436 memset(last_grf_write, 0, sizeof(last_grf_write));
1437 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1438 last_conditional_mod = NULL;
1439 last_accumulator_write = NULL;
1440 last_fixed_grf_write = NULL;
1441
1442 foreach_in_list_reverse_safe(schedule_node, n, &instructions) {
1443 vec4_instruction *inst = (vec4_instruction *)n->inst;
1444
1445 /* write-after-read deps. */
1446 for (int i = 0; i < 3; i++) {
1447 if (inst->src[i].file == VGRF) {
1448 for (unsigned j = 0; j < regs_read(inst, i); ++j)
1449 add_dep(n, last_grf_write[inst->src[i].nr + j]);
1450 } else if (inst->src[i].file == FIXED_GRF) {
1451 add_dep(n, last_fixed_grf_write);
1452 } else if (inst->src[i].is_accumulator()) {
1453 add_dep(n, last_accumulator_write);
1454 } else if (inst->src[i].file == ARF) {
1455 add_barrier_deps(n);
1456 }
1457 }
1458
1459 if (!inst->is_send_from_grf()) {
1460 for (int i = 0; i < inst->mlen; i++) {
1461 /* It looks like the MRF regs are released in the send
1462 * instruction once it's sent, not when the result comes
1463 * back.
1464 */
1465 add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
1466 }
1467 }
1468
1469 if (inst->reads_flag()) {
1470 add_dep(n, last_conditional_mod);
1471 }
1472
1473 if (inst->reads_accumulator_implicitly()) {
1474 add_dep(n, last_accumulator_write);
1475 }
1476
1477 /* Update the things this instruction wrote, so earlier reads
1478 * can mark this as WAR dependency.
1479 */
1480 if (inst->dst.file == VGRF) {
1481 for (unsigned j = 0; j < regs_written(inst); ++j)
1482 last_grf_write[inst->dst.nr + j] = n;
1483 } else if (inst->dst.file == MRF) {
1484 last_mrf_write[inst->dst.nr] = n;
1485 } else if (inst->dst.file == FIXED_GRF) {
1486 last_fixed_grf_write = n;
1487 } else if (inst->dst.is_accumulator()) {
1488 last_accumulator_write = n;
1489 } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1490 add_barrier_deps(n);
1491 }
1492
1493 if (inst->mlen > 0 && !inst->is_send_from_grf()) {
1494 for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
1495 last_mrf_write[inst->base_mrf + i] = n;
1496 }
1497 }
1498
1499 if (inst->writes_flag()) {
1500 last_conditional_mod = n;
1501 }
1502
1503 if (inst->writes_accumulator_implicitly(v->devinfo)) {
1504 last_accumulator_write = n;
1505 }
1506 }
1507 }
1508
1509 schedule_node *
1510 fs_instruction_scheduler::choose_instruction_to_schedule()
1511 {
1512 schedule_node *chosen = NULL;
1513
1514 if (mode == SCHEDULE_PRE || mode == SCHEDULE_POST) {
1515 int chosen_time = 0;
1516
1517 /* Of the instructions ready to execute or the closest to being ready,
1518 * choose the one most likely to unblock an early program exit, or
1519 * otherwise the oldest one.
1520 */
1521 foreach_in_list(schedule_node, n, &instructions) {
1522 if (!chosen ||
1523 exit_unblocked_time(n) < exit_unblocked_time(chosen) ||
1524 (exit_unblocked_time(n) == exit_unblocked_time(chosen) &&
1525 n->unblocked_time < chosen_time)) {
1526 chosen = n;
1527 chosen_time = n->unblocked_time;
1528 }
1529 }
1530 } else {
1531 /* Before register allocation, we don't care about the latencies of
1532 * instructions. All we care about is reducing live intervals of
1533 * variables so that we can avoid register spilling, or get SIMD16
1534 * shaders which naturally do a better job of hiding instruction
1535 * latency.
1536 */
1537 foreach_in_list(schedule_node, n, &instructions) {
1538 fs_inst *inst = (fs_inst *)n->inst;
1539
1540 if (!chosen) {
1541 chosen = n;
1542 continue;
1543 }
1544
1545 /* Most important: If we can definitely reduce register pressure, do
1546 * so immediately.
1547 */
1548 int register_pressure_benefit = get_register_pressure_benefit(n->inst);
1549 int chosen_register_pressure_benefit =
1550 get_register_pressure_benefit(chosen->inst);
1551
1552 if (register_pressure_benefit > 0 &&
1553 register_pressure_benefit > chosen_register_pressure_benefit) {
1554 chosen = n;
1555 continue;
1556 } else if (chosen_register_pressure_benefit > 0 &&
1557 (register_pressure_benefit <
1558 chosen_register_pressure_benefit)) {
1559 continue;
1560 }
1561
1562 if (mode == SCHEDULE_PRE_LIFO) {
1563 /* Prefer instructions that recently became available for
1564 * scheduling. These are the things that are most likely to
1565 * (eventually) make a variable dead and reduce register pressure.
1566 * Typical register pressure estimates don't work for us because
1567 * most of our pressure comes from texturing, where no single
1568 * instruction to schedule will make a vec4 value dead.
1569 */
1570 if (n->cand_generation > chosen->cand_generation) {
1571 chosen = n;
1572 continue;
1573 } else if (n->cand_generation < chosen->cand_generation) {
1574 continue;
1575 }
1576
1577 /* On MRF-using chips, prefer non-SEND instructions. If we don't
1578 * do this, then because we prefer instructions that just became
1579 * candidates, we'll end up in a pattern of scheduling a SEND,
1580 * then the MRFs for the next SEND, then the next SEND, then the
1581 * MRFs, etc., without ever consuming the results of a send.
1582 */
1583 if (v->devinfo->gen < 7) {
1584 fs_inst *chosen_inst = (fs_inst *)chosen->inst;
1585
1586 /* We use size_written > 4 * exec_size as our test for the kind
1587 * of send instruction to avoid -- only sends generate many
1588 * regs, and a single-result send is probably actually reducing
1589 * register pressure.
1590 */
1591 if (inst->size_written <= 4 * inst->exec_size &&
1592 chosen_inst->size_written > 4 * chosen_inst->exec_size) {
1593 chosen = n;
1594 continue;
1595 } else if (inst->size_written > chosen_inst->size_written) {
1596 continue;
1597 }
1598 }
1599 }
1600
1601 /* For instructions pushed on the cands list at the same time, prefer
1602 * the one with the highest delay to the end of the program. This is
1603 * most likely to have its values able to be consumed first (such as
1604 * for a large tree of lowered ubo loads, which appear reversed in
1605 * the instruction stream with respect to when they can be consumed).
1606 */
1607 if (n->delay > chosen->delay) {
1608 chosen = n;
1609 continue;
1610 } else if (n->delay < chosen->delay) {
1611 continue;
1612 }
1613
1614 /* Prefer the node most likely to unblock an early program exit.
1615 */
1616 if (exit_unblocked_time(n) < exit_unblocked_time(chosen)) {
1617 chosen = n;
1618 continue;
1619 } else if (exit_unblocked_time(n) > exit_unblocked_time(chosen)) {
1620 continue;
1621 }
1622
1623 /* If all other metrics are equal, we prefer the first instruction in
1624 * the list (program execution).
1625 */
1626 }
1627 }
1628
1629 return chosen;
1630 }
1631
1632 schedule_node *
1633 vec4_instruction_scheduler::choose_instruction_to_schedule()
1634 {
1635 schedule_node *chosen = NULL;
1636 int chosen_time = 0;
1637
1638 /* Of the instructions ready to execute or the closest to being ready,
1639 * choose the oldest one.
1640 */
1641 foreach_in_list(schedule_node, n, &instructions) {
1642 if (!chosen || n->unblocked_time < chosen_time) {
1643 chosen = n;
1644 chosen_time = n->unblocked_time;
1645 }
1646 }
1647
1648 return chosen;
1649 }
1650
1651 int
1652 fs_instruction_scheduler::issue_time(backend_instruction *inst)
1653 {
1654 const unsigned overhead = v->bank_conflict_cycles((fs_inst *)inst);
1655 if (is_compressed((fs_inst *)inst))
1656 return 4 + overhead;
1657 else
1658 return 2 + overhead;
1659 }
1660
1661 int
1662 vec4_instruction_scheduler::issue_time(backend_instruction *)
1663 {
1664 /* We always execute as two vec4s in parallel. */
1665 return 2;
1666 }
1667
1668 void
1669 instruction_scheduler::schedule_instructions(bblock_t *block)
1670 {
1671 const struct gen_device_info *devinfo = bs->devinfo;
1672 int time = 0;
1673 if (!post_reg_alloc)
1674 reg_pressure = reg_pressure_in[block->num];
1675 block_idx = block->num;
1676
1677 /* Remove non-DAG heads from the list. */
1678 foreach_in_list_safe(schedule_node, n, &instructions) {
1679 if (n->parent_count != 0)
1680 n->remove();
1681 }
1682
1683 unsigned cand_generation = 1;
1684 while (!instructions.is_empty()) {
1685 schedule_node *chosen = choose_instruction_to_schedule();
1686
1687 /* Schedule this instruction. */
1688 assert(chosen);
1689 chosen->remove();
1690 chosen->inst->exec_node::remove();
1691 block->instructions.push_tail(chosen->inst);
1692 instructions_to_schedule--;
1693
1694 if (!post_reg_alloc) {
1695 reg_pressure -= get_register_pressure_benefit(chosen->inst);
1696 update_register_pressure(chosen->inst);
1697 }
1698
1699 /* If we expected a delay for scheduling, then bump the clock to reflect
1700 * that. In reality, the hardware will switch to another hyperthread
1701 * and may not return to dispatching our thread for a while even after
1702 * we're unblocked. After this, we have the time when the chosen
1703 * instruction will start executing.
1704 */
1705 time = MAX2(time, chosen->unblocked_time);
1706
1707 /* Update the clock for how soon an instruction could start after the
1708 * chosen one.
1709 */
1710 time += issue_time(chosen->inst);
1711
1712 if (debug) {
1713 fprintf(stderr, "clock %4d, scheduled: ", time);
1714 bs->dump_instruction(chosen->inst);
1715 if (!post_reg_alloc)
1716 fprintf(stderr, "(register pressure %d)\n", reg_pressure);
1717 }
1718
1719 /* Now that we've scheduled a new instruction, some of its
1720 * children can be promoted to the list of instructions ready to
1721 * be scheduled. Update the children's unblocked time for this
1722 * DAG edge as we do so.
1723 */
1724 for (int i = chosen->child_count - 1; i >= 0; i--) {
1725 schedule_node *child = chosen->children[i];
1726
1727 child->unblocked_time = MAX2(child->unblocked_time,
1728 time + chosen->child_latency[i]);
1729
1730 if (debug) {
1731 fprintf(stderr, "\tchild %d, %d parents: ", i, child->parent_count);
1732 bs->dump_instruction(child->inst);
1733 }
1734
1735 child->cand_generation = cand_generation;
1736 child->parent_count--;
1737 if (child->parent_count == 0) {
1738 if (debug) {
1739 fprintf(stderr, "\t\tnow available\n");
1740 }
1741 instructions.push_head(child);
1742 }
1743 }
1744 cand_generation++;
1745
1746 /* Shared resource: the mathbox. There's one mathbox per EU on Gen6+
1747 * but it's more limited pre-gen6, so if we send something off to it then
1748 * the next math instruction isn't going to make progress until the first
1749 * is done.
1750 */
1751 if (devinfo->gen < 6 && chosen->inst->is_math()) {
1752 foreach_in_list(schedule_node, n, &instructions) {
1753 if (n->inst->is_math())
1754 n->unblocked_time = MAX2(n->unblocked_time,
1755 time + chosen->latency);
1756 }
1757 }
1758 }
1759
1760 assert(instructions_to_schedule == 0);
1761
1762 block->cycle_count = time;
1763 }
1764
1765 static unsigned get_cycle_count(cfg_t *cfg)
1766 {
1767 unsigned count = 0, multiplier = 1;
1768 foreach_block(block, cfg) {
1769 if (block->start()->opcode == BRW_OPCODE_DO)
1770 multiplier *= 10; /* assume that loops execute ~10 times */
1771
1772 count += block->cycle_count * multiplier;
1773
1774 if (block->end()->opcode == BRW_OPCODE_WHILE)
1775 multiplier /= 10;
1776 }
1777
1778 return count;
1779 }
1780
1781 void
1782 instruction_scheduler::run(cfg_t *cfg)
1783 {
1784 if (debug && !post_reg_alloc) {
1785 fprintf(stderr, "\nInstructions before scheduling (reg_alloc %d)\n",
1786 post_reg_alloc);
1787 bs->dump_instructions();
1788 }
1789
1790 if (!post_reg_alloc)
1791 setup_liveness(cfg);
1792
1793 foreach_block(block, cfg) {
1794 if (reads_remaining) {
1795 memset(reads_remaining, 0,
1796 grf_count * sizeof(*reads_remaining));
1797 memset(hw_reads_remaining, 0,
1798 hw_reg_count * sizeof(*hw_reads_remaining));
1799 memset(written, 0, grf_count * sizeof(*written));
1800
1801 foreach_inst_in_block(fs_inst, inst, block)
1802 count_reads_remaining(inst);
1803 }
1804
1805 add_insts_from_block(block);
1806
1807 calculate_deps();
1808
1809 compute_delays();
1810 compute_exits();
1811
1812 schedule_instructions(block);
1813 }
1814
1815 if (debug && !post_reg_alloc) {
1816 fprintf(stderr, "\nInstructions after scheduling (reg_alloc %d)\n",
1817 post_reg_alloc);
1818 bs->dump_instructions();
1819 }
1820
1821 cfg->cycle_count = get_cycle_count(cfg);
1822 }
1823
1824 void
1825 fs_visitor::schedule_instructions(instruction_scheduler_mode mode)
1826 {
1827 if (mode != SCHEDULE_POST)
1828 calculate_live_intervals();
1829
1830 int grf_count;
1831 if (mode == SCHEDULE_POST)
1832 grf_count = grf_used;
1833 else
1834 grf_count = alloc.count;
1835
1836 fs_instruction_scheduler sched(this, grf_count, first_non_payload_grf,
1837 cfg->num_blocks, mode);
1838 sched.run(cfg);
1839
1840 invalidate_live_intervals();
1841 }
1842
1843 void
1844 vec4_visitor::opt_schedule_instructions()
1845 {
1846 vec4_instruction_scheduler sched(this, prog_data->total_grf);
1847 sched.run(cfg);
1848
1849 invalidate_live_intervals();
1850 }