intel/compiler: Don't left-shift by >= the number of bits of the type
[mesa.git] / src / intel / compiler / brw_vec4.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 #include "brw_fs.h"
26 #include "brw_cfg.h"
27 #include "brw_nir.h"
28 #include "brw_vec4_builder.h"
29 #include "brw_vec4_live_variables.h"
30 #include "brw_vec4_vs.h"
31 #include "brw_dead_control_flow.h"
32 #include "dev/gen_debug.h"
33 #include "program/prog_parameter.h"
34 #include "util/u_math.h"
35
36 #define MAX_INSTRUCTION (1 << 30)
37
38 using namespace brw;
39
40 namespace brw {
41
42 void
43 src_reg::init()
44 {
45 memset((void*)this, 0, sizeof(*this));
46 this->file = BAD_FILE;
47 this->type = BRW_REGISTER_TYPE_UD;
48 }
49
50 src_reg::src_reg(enum brw_reg_file file, int nr, const glsl_type *type)
51 {
52 init();
53
54 this->file = file;
55 this->nr = nr;
56 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
57 this->swizzle = brw_swizzle_for_size(type->vector_elements);
58 else
59 this->swizzle = BRW_SWIZZLE_XYZW;
60 if (type)
61 this->type = brw_type_for_base_type(type);
62 }
63
64 /** Generic unset register constructor. */
65 src_reg::src_reg()
66 {
67 init();
68 }
69
70 src_reg::src_reg(struct ::brw_reg reg) :
71 backend_reg(reg)
72 {
73 this->offset = 0;
74 this->reladdr = NULL;
75 }
76
77 src_reg::src_reg(const dst_reg &reg) :
78 backend_reg(reg)
79 {
80 this->reladdr = reg.reladdr;
81 this->swizzle = brw_swizzle_for_mask(reg.writemask);
82 }
83
84 void
85 dst_reg::init()
86 {
87 memset((void*)this, 0, sizeof(*this));
88 this->file = BAD_FILE;
89 this->type = BRW_REGISTER_TYPE_UD;
90 this->writemask = WRITEMASK_XYZW;
91 }
92
93 dst_reg::dst_reg()
94 {
95 init();
96 }
97
98 dst_reg::dst_reg(enum brw_reg_file file, int nr)
99 {
100 init();
101
102 this->file = file;
103 this->nr = nr;
104 }
105
106 dst_reg::dst_reg(enum brw_reg_file file, int nr, const glsl_type *type,
107 unsigned writemask)
108 {
109 init();
110
111 this->file = file;
112 this->nr = nr;
113 this->type = brw_type_for_base_type(type);
114 this->writemask = writemask;
115 }
116
117 dst_reg::dst_reg(enum brw_reg_file file, int nr, brw_reg_type type,
118 unsigned writemask)
119 {
120 init();
121
122 this->file = file;
123 this->nr = nr;
124 this->type = type;
125 this->writemask = writemask;
126 }
127
128 dst_reg::dst_reg(struct ::brw_reg reg) :
129 backend_reg(reg)
130 {
131 this->offset = 0;
132 this->reladdr = NULL;
133 }
134
135 dst_reg::dst_reg(const src_reg &reg) :
136 backend_reg(reg)
137 {
138 this->writemask = brw_mask_for_swizzle(reg.swizzle);
139 this->reladdr = reg.reladdr;
140 }
141
142 bool
143 dst_reg::equals(const dst_reg &r) const
144 {
145 return (this->backend_reg::equals(r) &&
146 (reladdr == r.reladdr ||
147 (reladdr && r.reladdr && reladdr->equals(*r.reladdr))));
148 }
149
150 bool
151 vec4_instruction::is_send_from_grf()
152 {
153 switch (opcode) {
154 case SHADER_OPCODE_SHADER_TIME_ADD:
155 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
156 case VEC4_OPCODE_UNTYPED_ATOMIC:
157 case VEC4_OPCODE_UNTYPED_SURFACE_READ:
158 case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
159 case VEC4_OPCODE_URB_READ:
160 case TCS_OPCODE_URB_WRITE:
161 case TCS_OPCODE_RELEASE_INPUT:
162 case SHADER_OPCODE_BARRIER:
163 return true;
164 default:
165 return false;
166 }
167 }
168
169 /**
170 * Returns true if this instruction's sources and destinations cannot
171 * safely be the same register.
172 *
173 * In most cases, a register can be written over safely by the same
174 * instruction that is its last use. For a single instruction, the
175 * sources are dereferenced before writing of the destination starts
176 * (naturally).
177 *
178 * However, there are a few cases where this can be problematic:
179 *
180 * - Virtual opcodes that translate to multiple instructions in the
181 * code generator: if src == dst and one instruction writes the
182 * destination before a later instruction reads the source, then
183 * src will have been clobbered.
184 *
185 * The register allocator uses this information to set up conflicts between
186 * GRF sources and the destination.
187 */
188 bool
189 vec4_instruction::has_source_and_destination_hazard() const
190 {
191 switch (opcode) {
192 case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
193 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
194 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
195 return true;
196 default:
197 /* 8-wide compressed DF operations are executed as two 4-wide operations,
198 * so we have a src/dst hazard if the first half of the instruction
199 * overwrites the source of the second half. Prevent this by marking
200 * compressed instructions as having src/dst hazards, so the register
201 * allocator assigns safe register regions for dst and srcs.
202 */
203 return size_written > REG_SIZE;
204 }
205 }
206
207 unsigned
208 vec4_instruction::size_read(unsigned arg) const
209 {
210 switch (opcode) {
211 case SHADER_OPCODE_SHADER_TIME_ADD:
212 case VEC4_OPCODE_UNTYPED_ATOMIC:
213 case VEC4_OPCODE_UNTYPED_SURFACE_READ:
214 case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
215 case TCS_OPCODE_URB_WRITE:
216 if (arg == 0)
217 return mlen * REG_SIZE;
218 break;
219 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
220 if (arg == 1)
221 return mlen * REG_SIZE;
222 break;
223 default:
224 break;
225 }
226
227 switch (src[arg].file) {
228 case BAD_FILE:
229 return 0;
230 case IMM:
231 case UNIFORM:
232 return 4 * type_sz(src[arg].type);
233 default:
234 /* XXX - Represent actual vertical stride. */
235 return exec_size * type_sz(src[arg].type);
236 }
237 }
238
239 bool
240 vec4_instruction::can_do_source_mods(const struct gen_device_info *devinfo)
241 {
242 if (devinfo->gen == 6 && is_math())
243 return false;
244
245 if (is_send_from_grf())
246 return false;
247
248 if (!backend_instruction::can_do_source_mods())
249 return false;
250
251 return true;
252 }
253
254 bool
255 vec4_instruction::can_do_cmod()
256 {
257 if (!backend_instruction::can_do_cmod())
258 return false;
259
260 /* The accumulator result appears to get used for the conditional modifier
261 * generation. When negating a UD value, there is a 33rd bit generated for
262 * the sign in the accumulator value, so now you can't check, for example,
263 * equality with a 32-bit value. See piglit fs-op-neg-uvec4.
264 */
265 for (unsigned i = 0; i < 3; i++) {
266 if (src[i].file != BAD_FILE &&
267 type_is_unsigned_int(src[i].type) && src[i].negate)
268 return false;
269 }
270
271 return true;
272 }
273
274 bool
275 vec4_instruction::can_do_writemask(const struct gen_device_info *devinfo)
276 {
277 switch (opcode) {
278 case SHADER_OPCODE_GEN4_SCRATCH_READ:
279 case VEC4_OPCODE_DOUBLE_TO_F32:
280 case VEC4_OPCODE_DOUBLE_TO_D32:
281 case VEC4_OPCODE_DOUBLE_TO_U32:
282 case VEC4_OPCODE_TO_DOUBLE:
283 case VEC4_OPCODE_PICK_LOW_32BIT:
284 case VEC4_OPCODE_PICK_HIGH_32BIT:
285 case VEC4_OPCODE_SET_LOW_32BIT:
286 case VEC4_OPCODE_SET_HIGH_32BIT:
287 case VS_OPCODE_PULL_CONSTANT_LOAD:
288 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
289 case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9:
290 case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
291 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
292 case TES_OPCODE_CREATE_INPUT_READ_HEADER:
293 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
294 case VEC4_OPCODE_URB_READ:
295 case SHADER_OPCODE_MOV_INDIRECT:
296 return false;
297 default:
298 /* The MATH instruction on Gen6 only executes in align1 mode, which does
299 * not support writemasking.
300 */
301 if (devinfo->gen == 6 && is_math())
302 return false;
303
304 if (is_tex())
305 return false;
306
307 return true;
308 }
309 }
310
311 bool
312 vec4_instruction::can_change_types() const
313 {
314 return dst.type == src[0].type &&
315 !src[0].abs && !src[0].negate && !saturate &&
316 (opcode == BRW_OPCODE_MOV ||
317 (opcode == BRW_OPCODE_SEL &&
318 dst.type == src[1].type &&
319 predicate != BRW_PREDICATE_NONE &&
320 !src[1].abs && !src[1].negate));
321 }
322
323 /**
324 * Returns how many MRFs an opcode will write over.
325 *
326 * Note that this is not the 0 or 1 implied writes in an actual gen
327 * instruction -- the generate_* functions generate additional MOVs
328 * for setup.
329 */
330 int
331 vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
332 {
333 if (inst->mlen == 0 || inst->is_send_from_grf())
334 return 0;
335
336 switch (inst->opcode) {
337 case SHADER_OPCODE_RCP:
338 case SHADER_OPCODE_RSQ:
339 case SHADER_OPCODE_SQRT:
340 case SHADER_OPCODE_EXP2:
341 case SHADER_OPCODE_LOG2:
342 case SHADER_OPCODE_SIN:
343 case SHADER_OPCODE_COS:
344 return 1;
345 case SHADER_OPCODE_INT_QUOTIENT:
346 case SHADER_OPCODE_INT_REMAINDER:
347 case SHADER_OPCODE_POW:
348 case TCS_OPCODE_THREAD_END:
349 return 2;
350 case VS_OPCODE_URB_WRITE:
351 return 1;
352 case VS_OPCODE_PULL_CONSTANT_LOAD:
353 return 2;
354 case SHADER_OPCODE_GEN4_SCRATCH_READ:
355 return 2;
356 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
357 return 3;
358 case GS_OPCODE_URB_WRITE:
359 case GS_OPCODE_URB_WRITE_ALLOCATE:
360 case GS_OPCODE_THREAD_END:
361 return 0;
362 case GS_OPCODE_FF_SYNC:
363 return 1;
364 case TCS_OPCODE_URB_WRITE:
365 return 0;
366 case SHADER_OPCODE_SHADER_TIME_ADD:
367 return 0;
368 case SHADER_OPCODE_TEX:
369 case SHADER_OPCODE_TXL:
370 case SHADER_OPCODE_TXD:
371 case SHADER_OPCODE_TXF:
372 case SHADER_OPCODE_TXF_CMS:
373 case SHADER_OPCODE_TXF_CMS_W:
374 case SHADER_OPCODE_TXF_MCS:
375 case SHADER_OPCODE_TXS:
376 case SHADER_OPCODE_TG4:
377 case SHADER_OPCODE_TG4_OFFSET:
378 case SHADER_OPCODE_SAMPLEINFO:
379 case SHADER_OPCODE_GET_BUFFER_SIZE:
380 return inst->header_size;
381 default:
382 unreachable("not reached");
383 }
384 }
385
386 bool
387 src_reg::equals(const src_reg &r) const
388 {
389 return (this->backend_reg::equals(r) &&
390 !reladdr && !r.reladdr);
391 }
392
393 bool
394 src_reg::negative_equals(const src_reg &r) const
395 {
396 return this->backend_reg::negative_equals(r) &&
397 !reladdr && !r.reladdr;
398 }
399
400 bool
401 vec4_visitor::opt_vector_float()
402 {
403 bool progress = false;
404
405 foreach_block(block, cfg) {
406 unsigned last_reg = ~0u, last_offset = ~0u;
407 enum brw_reg_file last_reg_file = BAD_FILE;
408
409 uint8_t imm[4] = { 0 };
410 int inst_count = 0;
411 vec4_instruction *imm_inst[4];
412 unsigned writemask = 0;
413 enum brw_reg_type dest_type = BRW_REGISTER_TYPE_F;
414
415 foreach_inst_in_block_safe(vec4_instruction, inst, block) {
416 int vf = -1;
417 enum brw_reg_type need_type = BRW_REGISTER_TYPE_LAST;
418
419 /* Look for unconditional MOVs from an immediate with a partial
420 * writemask. Skip type-conversion MOVs other than integer 0,
421 * where the type doesn't matter. See if the immediate can be
422 * represented as a VF.
423 */
424 if (inst->opcode == BRW_OPCODE_MOV &&
425 inst->src[0].file == IMM &&
426 inst->predicate == BRW_PREDICATE_NONE &&
427 inst->dst.writemask != WRITEMASK_XYZW &&
428 type_sz(inst->src[0].type) < 8 &&
429 (inst->src[0].type == inst->dst.type || inst->src[0].d == 0)) {
430
431 vf = brw_float_to_vf(inst->src[0].d);
432 need_type = BRW_REGISTER_TYPE_D;
433
434 if (vf == -1) {
435 vf = brw_float_to_vf(inst->src[0].f);
436 need_type = BRW_REGISTER_TYPE_F;
437 }
438 } else {
439 last_reg = ~0u;
440 }
441
442 /* If this wasn't a MOV, or the destination register doesn't match,
443 * or we have to switch destination types, then this breaks our
444 * sequence. Combine anything we've accumulated so far.
445 */
446 if (last_reg != inst->dst.nr ||
447 last_offset != inst->dst.offset ||
448 last_reg_file != inst->dst.file ||
449 (vf > 0 && dest_type != need_type)) {
450
451 if (inst_count > 1) {
452 unsigned vf;
453 memcpy(&vf, imm, sizeof(vf));
454 vec4_instruction *mov = MOV(imm_inst[0]->dst, brw_imm_vf(vf));
455 mov->dst.type = dest_type;
456 mov->dst.writemask = writemask;
457 inst->insert_before(block, mov);
458
459 for (int i = 0; i < inst_count; i++) {
460 imm_inst[i]->remove(block);
461 }
462
463 progress = true;
464 }
465
466 inst_count = 0;
467 last_reg = ~0u;;
468 writemask = 0;
469 dest_type = BRW_REGISTER_TYPE_F;
470
471 for (int i = 0; i < 4; i++) {
472 imm[i] = 0;
473 }
474 }
475
476 /* Record this instruction's value (if it was representable). */
477 if (vf != -1) {
478 if ((inst->dst.writemask & WRITEMASK_X) != 0)
479 imm[0] = vf;
480 if ((inst->dst.writemask & WRITEMASK_Y) != 0)
481 imm[1] = vf;
482 if ((inst->dst.writemask & WRITEMASK_Z) != 0)
483 imm[2] = vf;
484 if ((inst->dst.writemask & WRITEMASK_W) != 0)
485 imm[3] = vf;
486
487 writemask |= inst->dst.writemask;
488 imm_inst[inst_count++] = inst;
489
490 last_reg = inst->dst.nr;
491 last_offset = inst->dst.offset;
492 last_reg_file = inst->dst.file;
493 if (vf > 0)
494 dest_type = need_type;
495 }
496 }
497 }
498
499 if (progress)
500 invalidate_live_intervals();
501
502 return progress;
503 }
504
505 /* Replaces unused channels of a swizzle with channels that are used.
506 *
507 * For instance, this pass transforms
508 *
509 * mov vgrf4.yz, vgrf5.wxzy
510 *
511 * into
512 *
513 * mov vgrf4.yz, vgrf5.xxzx
514 *
515 * This eliminates false uses of some channels, letting dead code elimination
516 * remove the instructions that wrote them.
517 */
518 bool
519 vec4_visitor::opt_reduce_swizzle()
520 {
521 bool progress = false;
522
523 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
524 if (inst->dst.file == BAD_FILE ||
525 inst->dst.file == ARF ||
526 inst->dst.file == FIXED_GRF ||
527 inst->is_send_from_grf())
528 continue;
529
530 unsigned swizzle;
531
532 /* Determine which channels of the sources are read. */
533 switch (inst->opcode) {
534 case VEC4_OPCODE_PACK_BYTES:
535 case BRW_OPCODE_DP4:
536 case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0,
537 * but all four of src1.
538 */
539 swizzle = brw_swizzle_for_size(4);
540 break;
541 case BRW_OPCODE_DP3:
542 swizzle = brw_swizzle_for_size(3);
543 break;
544 case BRW_OPCODE_DP2:
545 swizzle = brw_swizzle_for_size(2);
546 break;
547
548 case VEC4_OPCODE_TO_DOUBLE:
549 case VEC4_OPCODE_DOUBLE_TO_F32:
550 case VEC4_OPCODE_DOUBLE_TO_D32:
551 case VEC4_OPCODE_DOUBLE_TO_U32:
552 case VEC4_OPCODE_PICK_LOW_32BIT:
553 case VEC4_OPCODE_PICK_HIGH_32BIT:
554 case VEC4_OPCODE_SET_LOW_32BIT:
555 case VEC4_OPCODE_SET_HIGH_32BIT:
556 swizzle = brw_swizzle_for_size(4);
557 break;
558
559 default:
560 swizzle = brw_swizzle_for_mask(inst->dst.writemask);
561 break;
562 }
563
564 /* Update sources' swizzles. */
565 for (int i = 0; i < 3; i++) {
566 if (inst->src[i].file != VGRF &&
567 inst->src[i].file != ATTR &&
568 inst->src[i].file != UNIFORM)
569 continue;
570
571 const unsigned new_swizzle =
572 brw_compose_swizzle(swizzle, inst->src[i].swizzle);
573 if (inst->src[i].swizzle != new_swizzle) {
574 inst->src[i].swizzle = new_swizzle;
575 progress = true;
576 }
577 }
578 }
579
580 if (progress)
581 invalidate_live_intervals();
582
583 return progress;
584 }
585
586 void
587 vec4_visitor::split_uniform_registers()
588 {
589 /* Prior to this, uniforms have been in an array sized according to
590 * the number of vector uniforms present, sparsely filled (so an
591 * aggregate results in reg indices being skipped over). Now we're
592 * going to cut those aggregates up so each .nr index is one
593 * vector. The goal is to make elimination of unused uniform
594 * components easier later.
595 */
596 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
597 for (int i = 0 ; i < 3; i++) {
598 if (inst->src[i].file != UNIFORM)
599 continue;
600
601 assert(!inst->src[i].reladdr);
602
603 inst->src[i].nr += inst->src[i].offset / 16;
604 inst->src[i].offset %= 16;
605 }
606 }
607 }
608
609 /* This function returns the register number where we placed the uniform */
610 static int
611 set_push_constant_loc(const int nr_uniforms, int *new_uniform_count,
612 const int src, const int size, const int channel_size,
613 int *new_loc, int *new_chan,
614 int *new_chans_used)
615 {
616 int dst;
617 /* Find the lowest place we can slot this uniform in. */
618 for (dst = 0; dst < nr_uniforms; dst++) {
619 if (ALIGN(new_chans_used[dst], channel_size) + size <= 4)
620 break;
621 }
622
623 assert(dst < nr_uniforms);
624
625 new_loc[src] = dst;
626 new_chan[src] = ALIGN(new_chans_used[dst], channel_size);
627 new_chans_used[dst] = ALIGN(new_chans_used[dst], channel_size) + size;
628
629 *new_uniform_count = MAX2(*new_uniform_count, dst + 1);
630 return dst;
631 }
632
633 void
634 vec4_visitor::pack_uniform_registers()
635 {
636 uint8_t chans_used[this->uniforms];
637 int new_loc[this->uniforms];
638 int new_chan[this->uniforms];
639 bool is_aligned_to_dvec4[this->uniforms];
640 int new_chans_used[this->uniforms];
641 int channel_sizes[this->uniforms];
642
643 memset(chans_used, 0, sizeof(chans_used));
644 memset(new_loc, 0, sizeof(new_loc));
645 memset(new_chan, 0, sizeof(new_chan));
646 memset(new_chans_used, 0, sizeof(new_chans_used));
647 memset(is_aligned_to_dvec4, 0, sizeof(is_aligned_to_dvec4));
648 memset(channel_sizes, 0, sizeof(channel_sizes));
649
650 /* Find which uniform vectors are actually used by the program. We
651 * expect unused vector elements when we've moved array access out
652 * to pull constants, and from some GLSL code generators like wine.
653 */
654 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
655 unsigned readmask;
656 switch (inst->opcode) {
657 case VEC4_OPCODE_PACK_BYTES:
658 case BRW_OPCODE_DP4:
659 case BRW_OPCODE_DPH:
660 readmask = 0xf;
661 break;
662 case BRW_OPCODE_DP3:
663 readmask = 0x7;
664 break;
665 case BRW_OPCODE_DP2:
666 readmask = 0x3;
667 break;
668 default:
669 readmask = inst->dst.writemask;
670 break;
671 }
672
673 for (int i = 0 ; i < 3; i++) {
674 if (inst->src[i].file != UNIFORM)
675 continue;
676
677 assert(type_sz(inst->src[i].type) % 4 == 0);
678 int channel_size = type_sz(inst->src[i].type) / 4;
679
680 int reg = inst->src[i].nr;
681 for (int c = 0; c < 4; c++) {
682 if (!(readmask & (1 << c)))
683 continue;
684
685 unsigned channel = BRW_GET_SWZ(inst->src[i].swizzle, c) + 1;
686 unsigned used = MAX2(chans_used[reg], channel * channel_size);
687 if (used <= 4) {
688 chans_used[reg] = used;
689 channel_sizes[reg] = MAX2(channel_sizes[reg], channel_size);
690 } else {
691 is_aligned_to_dvec4[reg] = true;
692 is_aligned_to_dvec4[reg + 1] = true;
693 chans_used[reg + 1] = used - 4;
694 channel_sizes[reg + 1] = MAX2(channel_sizes[reg + 1], channel_size);
695 }
696 }
697 }
698
699 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
700 inst->src[0].file == UNIFORM) {
701 assert(inst->src[2].file == BRW_IMMEDIATE_VALUE);
702 assert(inst->src[0].subnr == 0);
703
704 unsigned bytes_read = inst->src[2].ud;
705 assert(bytes_read % 4 == 0);
706 unsigned vec4s_read = DIV_ROUND_UP(bytes_read, 16);
707
708 /* We just mark every register touched by a MOV_INDIRECT as being
709 * fully used. This ensures that it doesn't broken up piecewise by
710 * the next part of our packing algorithm.
711 */
712 int reg = inst->src[0].nr;
713 int channel_size = type_sz(inst->src[0].type) / 4;
714 for (unsigned i = 0; i < vec4s_read; i++) {
715 chans_used[reg + i] = 4;
716 channel_sizes[reg + i] = MAX2(channel_sizes[reg + i], channel_size);
717 }
718 }
719 }
720
721 int new_uniform_count = 0;
722
723 /* As the uniforms are going to be reordered, take the data from a temporary
724 * copy of the original param[].
725 */
726 uint32_t *param = ralloc_array(NULL, uint32_t, stage_prog_data->nr_params);
727 memcpy(param, stage_prog_data->param,
728 sizeof(uint32_t) * stage_prog_data->nr_params);
729
730 /* Now, figure out a packing of the live uniform vectors into our
731 * push constants. Start with dvec{3,4} because they are aligned to
732 * dvec4 size (2 vec4).
733 */
734 for (int src = 0; src < uniforms; src++) {
735 int size = chans_used[src];
736
737 if (size == 0 || !is_aligned_to_dvec4[src])
738 continue;
739
740 /* dvec3 are aligned to dvec4 size, apply the alignment of the size
741 * to 4 to avoid moving last component of a dvec3 to the available
742 * location at the end of a previous dvec3. These available locations
743 * could be filled by smaller variables in next loop.
744 */
745 size = ALIGN(size, 4);
746 int dst = set_push_constant_loc(uniforms, &new_uniform_count,
747 src, size, channel_sizes[src],
748 new_loc, new_chan,
749 new_chans_used);
750 /* Move the references to the data */
751 for (int j = 0; j < size; j++) {
752 stage_prog_data->param[dst * 4 + new_chan[src] + j] =
753 param[src * 4 + j];
754 }
755 }
756
757 /* Continue with the rest of data, which is aligned to vec4. */
758 for (int src = 0; src < uniforms; src++) {
759 int size = chans_used[src];
760
761 if (size == 0 || is_aligned_to_dvec4[src])
762 continue;
763
764 int dst = set_push_constant_loc(uniforms, &new_uniform_count,
765 src, size, channel_sizes[src],
766 new_loc, new_chan,
767 new_chans_used);
768 /* Move the references to the data */
769 for (int j = 0; j < size; j++) {
770 stage_prog_data->param[dst * 4 + new_chan[src] + j] =
771 param[src * 4 + j];
772 }
773 }
774
775 ralloc_free(param);
776 this->uniforms = new_uniform_count;
777
778 /* Now, update the instructions for our repacked uniforms. */
779 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
780 for (int i = 0 ; i < 3; i++) {
781 int src = inst->src[i].nr;
782
783 if (inst->src[i].file != UNIFORM)
784 continue;
785
786 int chan = new_chan[src] / channel_sizes[src];
787 inst->src[i].nr = new_loc[src];
788 inst->src[i].swizzle += BRW_SWIZZLE4(chan, chan, chan, chan);
789 }
790 }
791 }
792
793 /**
794 * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
795 *
796 * While GLSL IR also performs this optimization, we end up with it in
797 * our instruction stream for a couple of reasons. One is that we
798 * sometimes generate silly instructions, for example in array access
799 * where we'll generate "ADD offset, index, base" even if base is 0.
800 * The other is that GLSL IR's constant propagation doesn't track the
801 * components of aggregates, so some VS patterns (initialize matrix to
802 * 0, accumulate in vertex blending factors) end up breaking down to
803 * instructions involving 0.
804 */
805 bool
806 vec4_visitor::opt_algebraic()
807 {
808 bool progress = false;
809
810 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
811 switch (inst->opcode) {
812 case BRW_OPCODE_MOV:
813 if (inst->src[0].file != IMM)
814 break;
815
816 if (inst->saturate) {
817 /* Full mixed-type saturates don't happen. However, we can end up
818 * with things like:
819 *
820 * mov.sat(8) g21<1>DF -1F
821 *
822 * Other mixed-size-but-same-base-type cases may also be possible.
823 */
824 if (inst->dst.type != inst->src[0].type &&
825 inst->dst.type != BRW_REGISTER_TYPE_DF &&
826 inst->src[0].type != BRW_REGISTER_TYPE_F)
827 assert(!"unimplemented: saturate mixed types");
828
829 if (brw_saturate_immediate(inst->src[0].type,
830 &inst->src[0].as_brw_reg())) {
831 inst->saturate = false;
832 progress = true;
833 }
834 }
835 break;
836
837 case BRW_OPCODE_OR:
838 if (inst->src[1].is_zero()) {
839 inst->opcode = BRW_OPCODE_MOV;
840 inst->src[1] = src_reg();
841 progress = true;
842 }
843 break;
844
845 case VEC4_OPCODE_UNPACK_UNIFORM:
846 if (inst->src[0].file != UNIFORM) {
847 inst->opcode = BRW_OPCODE_MOV;
848 progress = true;
849 }
850 break;
851
852 case BRW_OPCODE_ADD:
853 if (inst->src[1].is_zero()) {
854 inst->opcode = BRW_OPCODE_MOV;
855 inst->src[1] = src_reg();
856 progress = true;
857 }
858 break;
859
860 case BRW_OPCODE_MUL:
861 if (inst->src[1].is_zero()) {
862 inst->opcode = BRW_OPCODE_MOV;
863 switch (inst->src[0].type) {
864 case BRW_REGISTER_TYPE_F:
865 inst->src[0] = brw_imm_f(0.0f);
866 break;
867 case BRW_REGISTER_TYPE_D:
868 inst->src[0] = brw_imm_d(0);
869 break;
870 case BRW_REGISTER_TYPE_UD:
871 inst->src[0] = brw_imm_ud(0u);
872 break;
873 default:
874 unreachable("not reached");
875 }
876 inst->src[1] = src_reg();
877 progress = true;
878 } else if (inst->src[1].is_one()) {
879 inst->opcode = BRW_OPCODE_MOV;
880 inst->src[1] = src_reg();
881 progress = true;
882 } else if (inst->src[1].is_negative_one()) {
883 inst->opcode = BRW_OPCODE_MOV;
884 inst->src[0].negate = !inst->src[0].negate;
885 inst->src[1] = src_reg();
886 progress = true;
887 }
888 break;
889 case SHADER_OPCODE_BROADCAST:
890 if (is_uniform(inst->src[0]) ||
891 inst->src[1].is_zero()) {
892 inst->opcode = BRW_OPCODE_MOV;
893 inst->src[1] = src_reg();
894 inst->force_writemask_all = true;
895 progress = true;
896 }
897 break;
898
899 default:
900 break;
901 }
902 }
903
904 if (progress)
905 invalidate_live_intervals();
906
907 return progress;
908 }
909
910 /**
911 * Only a limited number of hardware registers may be used for push
912 * constants, so this turns access to the overflowed constants into
913 * pull constants.
914 */
915 void
916 vec4_visitor::move_push_constants_to_pull_constants()
917 {
918 int pull_constant_loc[this->uniforms];
919
920 /* Only allow 32 registers (256 uniform components) as push constants,
921 * which is the limit on gen6.
922 *
923 * If changing this value, note the limitation about total_regs in
924 * brw_curbe.c.
925 */
926 int max_uniform_components = 32 * 8;
927 if (this->uniforms * 4 <= max_uniform_components)
928 return;
929
930 /* Make some sort of choice as to which uniforms get sent to pull
931 * constants. We could potentially do something clever here like
932 * look for the most infrequently used uniform vec4s, but leave
933 * that for later.
934 */
935 for (int i = 0; i < this->uniforms * 4; i += 4) {
936 pull_constant_loc[i / 4] = -1;
937
938 if (i >= max_uniform_components) {
939 uint32_t *values = &stage_prog_data->param[i];
940
941 /* Try to find an existing copy of this uniform in the pull
942 * constants if it was part of an array access already.
943 */
944 for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) {
945 int matches;
946
947 for (matches = 0; matches < 4; matches++) {
948 if (stage_prog_data->pull_param[j + matches] != values[matches])
949 break;
950 }
951
952 if (matches == 4) {
953 pull_constant_loc[i / 4] = j / 4;
954 break;
955 }
956 }
957
958 if (pull_constant_loc[i / 4] == -1) {
959 assert(stage_prog_data->nr_pull_params % 4 == 0);
960 pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4;
961
962 for (int j = 0; j < 4; j++) {
963 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
964 values[j];
965 }
966 }
967 }
968 }
969
970 /* Now actually rewrite usage of the things we've moved to pull
971 * constants.
972 */
973 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
974 for (int i = 0 ; i < 3; i++) {
975 if (inst->src[i].file != UNIFORM ||
976 pull_constant_loc[inst->src[i].nr] == -1)
977 continue;
978
979 int uniform = inst->src[i].nr;
980
981 const glsl_type *temp_type = type_sz(inst->src[i].type) == 8 ?
982 glsl_type::dvec4_type : glsl_type::vec4_type;
983 dst_reg temp = dst_reg(this, temp_type);
984
985 emit_pull_constant_load(block, inst, temp, inst->src[i],
986 pull_constant_loc[uniform], src_reg());
987
988 inst->src[i].file = temp.file;
989 inst->src[i].nr = temp.nr;
990 inst->src[i].offset %= 16;
991 inst->src[i].reladdr = NULL;
992 }
993 }
994
995 /* Repack push constants to remove the now-unused ones. */
996 pack_uniform_registers();
997 }
998
999 /* Conditions for which we want to avoid setting the dependency control bits */
1000 bool
1001 vec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst)
1002 {
1003 #define IS_DWORD(reg) \
1004 (reg.type == BRW_REGISTER_TYPE_UD || \
1005 reg.type == BRW_REGISTER_TYPE_D)
1006
1007 #define IS_64BIT(reg) (reg.file != BAD_FILE && type_sz(reg.type) == 8)
1008
1009 /* From the Cherryview and Broadwell PRMs:
1010 *
1011 * "When source or destination datatype is 64b or operation is integer DWord
1012 * multiply, DepCtrl must not be used."
1013 *
1014 * SKL PRMs don't include this restriction, however, gen7 seems to be
1015 * affected, at least by the 64b restriction, since DepCtrl with double
1016 * precision instructions seems to produce GPU hangs in some cases.
1017 */
1018 if (devinfo->gen == 8 || gen_device_info_is_9lp(devinfo)) {
1019 if (inst->opcode == BRW_OPCODE_MUL &&
1020 IS_DWORD(inst->src[0]) &&
1021 IS_DWORD(inst->src[1]))
1022 return true;
1023 }
1024
1025 if (devinfo->gen >= 7 && devinfo->gen <= 8) {
1026 if (IS_64BIT(inst->dst) || IS_64BIT(inst->src[0]) ||
1027 IS_64BIT(inst->src[1]) || IS_64BIT(inst->src[2]))
1028 return true;
1029 }
1030
1031 #undef IS_64BIT
1032 #undef IS_DWORD
1033
1034 if (devinfo->gen >= 8) {
1035 if (inst->opcode == BRW_OPCODE_F32TO16)
1036 return true;
1037 }
1038
1039 /*
1040 * mlen:
1041 * In the presence of send messages, totally interrupt dependency
1042 * control. They're long enough that the chance of dependency
1043 * control around them just doesn't matter.
1044 *
1045 * predicate:
1046 * From the Ivy Bridge PRM, volume 4 part 3.7, page 80:
1047 * When a sequence of NoDDChk and NoDDClr are used, the last instruction that
1048 * completes the scoreboard clear must have a non-zero execution mask. This
1049 * means, if any kind of predication can change the execution mask or channel
1050 * enable of the last instruction, the optimization must be avoided. This is
1051 * to avoid instructions being shot down the pipeline when no writes are
1052 * required.
1053 *
1054 * math:
1055 * Dependency control does not work well over math instructions.
1056 * NB: Discovered empirically
1057 */
1058 return (inst->mlen || inst->predicate || inst->is_math());
1059 }
1060
1061 /**
1062 * Sets the dependency control fields on instructions after register
1063 * allocation and before the generator is run.
1064 *
1065 * When you have a sequence of instructions like:
1066 *
1067 * DP4 temp.x vertex uniform[0]
1068 * DP4 temp.y vertex uniform[0]
1069 * DP4 temp.z vertex uniform[0]
1070 * DP4 temp.w vertex uniform[0]
1071 *
1072 * The hardware doesn't know that it can actually run the later instructions
1073 * while the previous ones are in flight, producing stalls. However, we have
1074 * manual fields we can set in the instructions that let it do so.
1075 */
1076 void
1077 vec4_visitor::opt_set_dependency_control()
1078 {
1079 vec4_instruction *last_grf_write[BRW_MAX_GRF];
1080 uint8_t grf_channels_written[BRW_MAX_GRF];
1081 vec4_instruction *last_mrf_write[BRW_MAX_GRF];
1082 uint8_t mrf_channels_written[BRW_MAX_GRF];
1083
1084 assert(prog_data->total_grf ||
1085 !"Must be called after register allocation");
1086
1087 foreach_block (block, cfg) {
1088 memset(last_grf_write, 0, sizeof(last_grf_write));
1089 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1090
1091 foreach_inst_in_block (vec4_instruction, inst, block) {
1092 /* If we read from a register that we were doing dependency control
1093 * on, don't do dependency control across the read.
1094 */
1095 for (int i = 0; i < 3; i++) {
1096 int reg = inst->src[i].nr + inst->src[i].offset / REG_SIZE;
1097 if (inst->src[i].file == VGRF) {
1098 last_grf_write[reg] = NULL;
1099 } else if (inst->src[i].file == FIXED_GRF) {
1100 memset(last_grf_write, 0, sizeof(last_grf_write));
1101 break;
1102 }
1103 assert(inst->src[i].file != MRF);
1104 }
1105
1106 if (is_dep_ctrl_unsafe(inst)) {
1107 memset(last_grf_write, 0, sizeof(last_grf_write));
1108 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1109 continue;
1110 }
1111
1112 /* Now, see if we can do dependency control for this instruction
1113 * against a previous one writing to its destination.
1114 */
1115 int reg = inst->dst.nr + inst->dst.offset / REG_SIZE;
1116 if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) {
1117 if (last_grf_write[reg] &&
1118 last_grf_write[reg]->dst.offset == inst->dst.offset &&
1119 !(inst->dst.writemask & grf_channels_written[reg])) {
1120 last_grf_write[reg]->no_dd_clear = true;
1121 inst->no_dd_check = true;
1122 } else {
1123 grf_channels_written[reg] = 0;
1124 }
1125
1126 last_grf_write[reg] = inst;
1127 grf_channels_written[reg] |= inst->dst.writemask;
1128 } else if (inst->dst.file == MRF) {
1129 if (last_mrf_write[reg] &&
1130 last_mrf_write[reg]->dst.offset == inst->dst.offset &&
1131 !(inst->dst.writemask & mrf_channels_written[reg])) {
1132 last_mrf_write[reg]->no_dd_clear = true;
1133 inst->no_dd_check = true;
1134 } else {
1135 mrf_channels_written[reg] = 0;
1136 }
1137
1138 last_mrf_write[reg] = inst;
1139 mrf_channels_written[reg] |= inst->dst.writemask;
1140 }
1141 }
1142 }
1143 }
1144
1145 bool
1146 vec4_instruction::can_reswizzle(const struct gen_device_info *devinfo,
1147 int dst_writemask,
1148 int swizzle,
1149 int swizzle_mask)
1150 {
1151 /* Gen6 MATH instructions can not execute in align16 mode, so swizzles
1152 * are not allowed.
1153 */
1154 if (devinfo->gen == 6 && is_math() && swizzle != BRW_SWIZZLE_XYZW)
1155 return false;
1156
1157 /* If we write to the flag register changing the swizzle would change
1158 * what channels are written to the flag register.
1159 */
1160 if (writes_flag())
1161 return false;
1162
1163 /* We can't swizzle implicit accumulator access. We'd have to
1164 * reswizzle the producer of the accumulator value in addition
1165 * to the consumer (i.e. both MUL and MACH). Just skip this.
1166 */
1167 if (reads_accumulator_implicitly())
1168 return false;
1169
1170 if (!can_do_writemask(devinfo) && dst_writemask != WRITEMASK_XYZW)
1171 return false;
1172
1173 /* If this instruction sets anything not referenced by swizzle, then we'd
1174 * totally break it when we reswizzle.
1175 */
1176 if (dst.writemask & ~swizzle_mask)
1177 return false;
1178
1179 if (mlen > 0)
1180 return false;
1181
1182 for (int i = 0; i < 3; i++) {
1183 if (src[i].is_accumulator())
1184 return false;
1185 }
1186
1187 return true;
1188 }
1189
1190 /**
1191 * For any channels in the swizzle's source that were populated by this
1192 * instruction, rewrite the instruction to put the appropriate result directly
1193 * in those channels.
1194 *
1195 * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
1196 */
1197 void
1198 vec4_instruction::reswizzle(int dst_writemask, int swizzle)
1199 {
1200 /* Destination write mask doesn't correspond to source swizzle for the dot
1201 * product and pack_bytes instructions.
1202 */
1203 if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH &&
1204 opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2 &&
1205 opcode != VEC4_OPCODE_PACK_BYTES) {
1206 for (int i = 0; i < 3; i++) {
1207 if (src[i].file == BAD_FILE)
1208 continue;
1209
1210 if (src[i].file == IMM) {
1211 assert(src[i].type != BRW_REGISTER_TYPE_V &&
1212 src[i].type != BRW_REGISTER_TYPE_UV);
1213
1214 /* Vector immediate types need to be reswizzled. */
1215 if (src[i].type == BRW_REGISTER_TYPE_VF) {
1216 const unsigned imm[] = {
1217 (src[i].ud >> 0) & 0x0ff,
1218 (src[i].ud >> 8) & 0x0ff,
1219 (src[i].ud >> 16) & 0x0ff,
1220 (src[i].ud >> 24) & 0x0ff,
1221 };
1222
1223 src[i] = brw_imm_vf4(imm[BRW_GET_SWZ(swizzle, 0)],
1224 imm[BRW_GET_SWZ(swizzle, 1)],
1225 imm[BRW_GET_SWZ(swizzle, 2)],
1226 imm[BRW_GET_SWZ(swizzle, 3)]);
1227 }
1228
1229 continue;
1230 }
1231
1232 src[i].swizzle = brw_compose_swizzle(swizzle, src[i].swizzle);
1233 }
1234 }
1235
1236 /* Apply the specified swizzle and writemask to the original mask of
1237 * written components.
1238 */
1239 dst.writemask = dst_writemask &
1240 brw_apply_swizzle_to_mask(swizzle, dst.writemask);
1241 }
1242
1243 /*
1244 * Tries to reduce extra MOV instructions by taking temporary GRFs that get
1245 * just written and then MOVed into another reg and making the original write
1246 * of the GRF write directly to the final destination instead.
1247 */
1248 bool
1249 vec4_visitor::opt_register_coalesce()
1250 {
1251 bool progress = false;
1252 int next_ip = 0;
1253
1254 calculate_live_intervals();
1255
1256 foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
1257 int ip = next_ip;
1258 next_ip++;
1259
1260 if (inst->opcode != BRW_OPCODE_MOV ||
1261 (inst->dst.file != VGRF && inst->dst.file != MRF) ||
1262 inst->predicate ||
1263 inst->src[0].file != VGRF ||
1264 inst->dst.type != inst->src[0].type ||
1265 inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
1266 continue;
1267
1268 /* Remove no-op MOVs */
1269 if (inst->dst.file == inst->src[0].file &&
1270 inst->dst.nr == inst->src[0].nr &&
1271 inst->dst.offset == inst->src[0].offset) {
1272 bool is_nop_mov = true;
1273
1274 for (unsigned c = 0; c < 4; c++) {
1275 if ((inst->dst.writemask & (1 << c)) == 0)
1276 continue;
1277
1278 if (BRW_GET_SWZ(inst->src[0].swizzle, c) != c) {
1279 is_nop_mov = false;
1280 break;
1281 }
1282 }
1283
1284 if (is_nop_mov) {
1285 inst->remove(block);
1286 progress = true;
1287 continue;
1288 }
1289 }
1290
1291 bool to_mrf = (inst->dst.file == MRF);
1292
1293 /* Can't coalesce this GRF if someone else was going to
1294 * read it later.
1295 */
1296 if (var_range_end(var_from_reg(alloc, dst_reg(inst->src[0])), 8) > ip)
1297 continue;
1298
1299 /* We need to check interference with the final destination between this
1300 * instruction and the earliest instruction involved in writing the GRF
1301 * we're eliminating. To do that, keep track of which of our source
1302 * channels we've seen initialized.
1303 */
1304 const unsigned chans_needed =
1305 brw_apply_inv_swizzle_to_mask(inst->src[0].swizzle,
1306 inst->dst.writemask);
1307 unsigned chans_remaining = chans_needed;
1308
1309 /* Now walk up the instruction stream trying to see if we can rewrite
1310 * everything writing to the temporary to write into the destination
1311 * instead.
1312 */
1313 vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev;
1314 foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst,
1315 inst) {
1316 _scan_inst = scan_inst;
1317
1318 if (regions_overlap(inst->src[0], inst->size_read(0),
1319 scan_inst->dst, scan_inst->size_written)) {
1320 /* Found something writing to the reg we want to coalesce away. */
1321 if (to_mrf) {
1322 /* SEND instructions can't have MRF as a destination. */
1323 if (scan_inst->mlen)
1324 break;
1325
1326 if (devinfo->gen == 6) {
1327 /* gen6 math instructions must have the destination be
1328 * VGRF, so no compute-to-MRF for them.
1329 */
1330 if (scan_inst->is_math()) {
1331 break;
1332 }
1333 }
1334 }
1335
1336 /* VS_OPCODE_UNPACK_FLAGS_SIMD4X2 generates a bunch of mov(1)
1337 * instructions, and this optimization pass is not capable of
1338 * handling that. Bail on these instructions and hope that some
1339 * later optimization pass can do the right thing after they are
1340 * expanded.
1341 */
1342 if (scan_inst->opcode == VS_OPCODE_UNPACK_FLAGS_SIMD4X2)
1343 break;
1344
1345 /* This doesn't handle saturation on the instruction we
1346 * want to coalesce away if the register types do not match.
1347 * But if scan_inst is a non type-converting 'mov', we can fix
1348 * the types later.
1349 */
1350 if (inst->saturate &&
1351 inst->dst.type != scan_inst->dst.type &&
1352 !(scan_inst->opcode == BRW_OPCODE_MOV &&
1353 scan_inst->dst.type == scan_inst->src[0].type))
1354 break;
1355
1356 /* Only allow coalescing between registers of the same type size.
1357 * Otherwise we would need to make the pass aware of the fact that
1358 * channel sizes are different for single and double precision.
1359 */
1360 if (type_sz(inst->src[0].type) != type_sz(scan_inst->src[0].type))
1361 break;
1362
1363 /* Check that scan_inst writes the same amount of data as the
1364 * instruction, otherwise coalescing would lead to writing a
1365 * different (larger or smaller) region of the destination
1366 */
1367 if (scan_inst->size_written != inst->size_written)
1368 break;
1369
1370 /* If we can't handle the swizzle, bail. */
1371 if (!scan_inst->can_reswizzle(devinfo, inst->dst.writemask,
1372 inst->src[0].swizzle,
1373 chans_needed)) {
1374 break;
1375 }
1376
1377 /* This only handles coalescing writes of 8 channels (1 register
1378 * for single-precision and 2 registers for double-precision)
1379 * starting at the source offset of the copy instruction.
1380 */
1381 if (DIV_ROUND_UP(scan_inst->size_written,
1382 type_sz(scan_inst->dst.type)) > 8 ||
1383 scan_inst->dst.offset != inst->src[0].offset)
1384 break;
1385
1386 /* Mark which channels we found unconditional writes for. */
1387 if (!scan_inst->predicate)
1388 chans_remaining &= ~scan_inst->dst.writemask;
1389
1390 if (chans_remaining == 0)
1391 break;
1392 }
1393
1394 /* You can't read from an MRF, so if someone else reads our MRF's
1395 * source GRF that we wanted to rewrite, that stops us. If it's a
1396 * GRF we're trying to coalesce to, we don't actually handle
1397 * rewriting sources so bail in that case as well.
1398 */
1399 bool interfered = false;
1400 for (int i = 0; i < 3; i++) {
1401 if (regions_overlap(inst->src[0], inst->size_read(0),
1402 scan_inst->src[i], scan_inst->size_read(i)))
1403 interfered = true;
1404 }
1405 if (interfered)
1406 break;
1407
1408 /* If somebody else writes the same channels of our destination here,
1409 * we can't coalesce before that.
1410 */
1411 if (regions_overlap(inst->dst, inst->size_written,
1412 scan_inst->dst, scan_inst->size_written) &&
1413 (inst->dst.writemask & scan_inst->dst.writemask) != 0) {
1414 break;
1415 }
1416
1417 /* Check for reads of the register we're trying to coalesce into. We
1418 * can't go rewriting instructions above that to put some other value
1419 * in the register instead.
1420 */
1421 if (to_mrf && scan_inst->mlen > 0) {
1422 unsigned start = scan_inst->base_mrf;
1423 unsigned end = scan_inst->base_mrf + scan_inst->mlen;
1424
1425 if (inst->dst.nr >= start && inst->dst.nr < end) {
1426 break;
1427 }
1428 } else {
1429 for (int i = 0; i < 3; i++) {
1430 if (regions_overlap(inst->dst, inst->size_written,
1431 scan_inst->src[i], scan_inst->size_read(i)))
1432 interfered = true;
1433 }
1434 if (interfered)
1435 break;
1436 }
1437 }
1438
1439 if (chans_remaining == 0) {
1440 /* If we've made it here, we have an MOV we want to coalesce out, and
1441 * a scan_inst pointing to the earliest instruction involved in
1442 * computing the value. Now go rewrite the instruction stream
1443 * between the two.
1444 */
1445 vec4_instruction *scan_inst = _scan_inst;
1446 while (scan_inst != inst) {
1447 if (scan_inst->dst.file == VGRF &&
1448 scan_inst->dst.nr == inst->src[0].nr &&
1449 scan_inst->dst.offset == inst->src[0].offset) {
1450 scan_inst->reswizzle(inst->dst.writemask,
1451 inst->src[0].swizzle);
1452 scan_inst->dst.file = inst->dst.file;
1453 scan_inst->dst.nr = inst->dst.nr;
1454 scan_inst->dst.offset = inst->dst.offset;
1455 if (inst->saturate &&
1456 inst->dst.type != scan_inst->dst.type) {
1457 /* If we have reached this point, scan_inst is a non
1458 * type-converting 'mov' and we can modify its register types
1459 * to match the ones in inst. Otherwise, we could have an
1460 * incorrect saturation result.
1461 */
1462 scan_inst->dst.type = inst->dst.type;
1463 scan_inst->src[0].type = inst->src[0].type;
1464 }
1465 scan_inst->saturate |= inst->saturate;
1466 }
1467 scan_inst = (vec4_instruction *)scan_inst->next;
1468 }
1469 inst->remove(block);
1470 progress = true;
1471 }
1472 }
1473
1474 if (progress)
1475 invalidate_live_intervals();
1476
1477 return progress;
1478 }
1479
1480 /**
1481 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
1482 * flow. We could probably do better here with some form of divergence
1483 * analysis.
1484 */
1485 bool
1486 vec4_visitor::eliminate_find_live_channel()
1487 {
1488 bool progress = false;
1489 unsigned depth = 0;
1490
1491 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
1492 /* The optimization below assumes that channel zero is live on thread
1493 * dispatch, which may not be the case if the fixed function dispatches
1494 * threads sparsely.
1495 */
1496 return false;
1497 }
1498
1499 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1500 switch (inst->opcode) {
1501 case BRW_OPCODE_IF:
1502 case BRW_OPCODE_DO:
1503 depth++;
1504 break;
1505
1506 case BRW_OPCODE_ENDIF:
1507 case BRW_OPCODE_WHILE:
1508 depth--;
1509 break;
1510
1511 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
1512 if (depth == 0) {
1513 inst->opcode = BRW_OPCODE_MOV;
1514 inst->src[0] = brw_imm_d(0);
1515 inst->force_writemask_all = true;
1516 progress = true;
1517 }
1518 break;
1519
1520 default:
1521 break;
1522 }
1523 }
1524
1525 return progress;
1526 }
1527
1528 /**
1529 * Splits virtual GRFs requesting more than one contiguous physical register.
1530 *
1531 * We initially create large virtual GRFs for temporary structures, arrays,
1532 * and matrices, so that the visitor functions can add offsets to work their
1533 * way down to the actual member being accessed. But when it comes to
1534 * optimization, we'd like to treat each register as individual storage if
1535 * possible.
1536 *
1537 * So far, the only thing that might prevent splitting is a send message from
1538 * a GRF on IVB.
1539 */
1540 void
1541 vec4_visitor::split_virtual_grfs()
1542 {
1543 int num_vars = this->alloc.count;
1544 int new_virtual_grf[num_vars];
1545 bool split_grf[num_vars];
1546
1547 memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
1548
1549 /* Try to split anything > 0 sized. */
1550 for (int i = 0; i < num_vars; i++) {
1551 split_grf[i] = this->alloc.sizes[i] != 1;
1552 }
1553
1554 /* Check that the instructions are compatible with the registers we're trying
1555 * to split.
1556 */
1557 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1558 if (inst->dst.file == VGRF && regs_written(inst) > 1)
1559 split_grf[inst->dst.nr] = false;
1560
1561 for (int i = 0; i < 3; i++) {
1562 if (inst->src[i].file == VGRF && regs_read(inst, i) > 1)
1563 split_grf[inst->src[i].nr] = false;
1564 }
1565 }
1566
1567 /* Allocate new space for split regs. Note that the virtual
1568 * numbers will be contiguous.
1569 */
1570 for (int i = 0; i < num_vars; i++) {
1571 if (!split_grf[i])
1572 continue;
1573
1574 new_virtual_grf[i] = alloc.allocate(1);
1575 for (unsigned j = 2; j < this->alloc.sizes[i]; j++) {
1576 unsigned reg = alloc.allocate(1);
1577 assert(reg == new_virtual_grf[i] + j - 1);
1578 (void) reg;
1579 }
1580 this->alloc.sizes[i] = 1;
1581 }
1582
1583 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1584 if (inst->dst.file == VGRF && split_grf[inst->dst.nr] &&
1585 inst->dst.offset / REG_SIZE != 0) {
1586 inst->dst.nr = (new_virtual_grf[inst->dst.nr] +
1587 inst->dst.offset / REG_SIZE - 1);
1588 inst->dst.offset %= REG_SIZE;
1589 }
1590 for (int i = 0; i < 3; i++) {
1591 if (inst->src[i].file == VGRF && split_grf[inst->src[i].nr] &&
1592 inst->src[i].offset / REG_SIZE != 0) {
1593 inst->src[i].nr = (new_virtual_grf[inst->src[i].nr] +
1594 inst->src[i].offset / REG_SIZE - 1);
1595 inst->src[i].offset %= REG_SIZE;
1596 }
1597 }
1598 }
1599 invalidate_live_intervals();
1600 }
1601
1602 void
1603 vec4_visitor::dump_instruction(backend_instruction *be_inst)
1604 {
1605 dump_instruction(be_inst, stderr);
1606 }
1607
1608 void
1609 vec4_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
1610 {
1611 vec4_instruction *inst = (vec4_instruction *)be_inst;
1612
1613 if (inst->predicate) {
1614 fprintf(file, "(%cf%d.%d%s) ",
1615 inst->predicate_inverse ? '-' : '+',
1616 inst->flag_subreg / 2,
1617 inst->flag_subreg % 2,
1618 pred_ctrl_align16[inst->predicate]);
1619 }
1620
1621 fprintf(file, "%s(%d)", brw_instruction_name(devinfo, inst->opcode),
1622 inst->exec_size);
1623 if (inst->saturate)
1624 fprintf(file, ".sat");
1625 if (inst->conditional_mod) {
1626 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
1627 if (!inst->predicate &&
1628 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
1629 inst->opcode != BRW_OPCODE_CSEL &&
1630 inst->opcode != BRW_OPCODE_IF &&
1631 inst->opcode != BRW_OPCODE_WHILE))) {
1632 fprintf(file, ".f%d.%d", inst->flag_subreg / 2, inst->flag_subreg % 2);
1633 }
1634 }
1635 fprintf(file, " ");
1636
1637 switch (inst->dst.file) {
1638 case VGRF:
1639 fprintf(file, "vgrf%d", inst->dst.nr);
1640 break;
1641 case FIXED_GRF:
1642 fprintf(file, "g%d", inst->dst.nr);
1643 break;
1644 case MRF:
1645 fprintf(file, "m%d", inst->dst.nr);
1646 break;
1647 case ARF:
1648 switch (inst->dst.nr) {
1649 case BRW_ARF_NULL:
1650 fprintf(file, "null");
1651 break;
1652 case BRW_ARF_ADDRESS:
1653 fprintf(file, "a0.%d", inst->dst.subnr);
1654 break;
1655 case BRW_ARF_ACCUMULATOR:
1656 fprintf(file, "acc%d", inst->dst.subnr);
1657 break;
1658 case BRW_ARF_FLAG:
1659 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
1660 break;
1661 default:
1662 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
1663 break;
1664 }
1665 break;
1666 case BAD_FILE:
1667 fprintf(file, "(null)");
1668 break;
1669 case IMM:
1670 case ATTR:
1671 case UNIFORM:
1672 unreachable("not reached");
1673 }
1674 if (inst->dst.offset ||
1675 (inst->dst.file == VGRF &&
1676 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
1677 const unsigned reg_size = (inst->dst.file == UNIFORM ? 16 : REG_SIZE);
1678 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
1679 inst->dst.offset % reg_size);
1680 }
1681 if (inst->dst.writemask != WRITEMASK_XYZW) {
1682 fprintf(file, ".");
1683 if (inst->dst.writemask & 1)
1684 fprintf(file, "x");
1685 if (inst->dst.writemask & 2)
1686 fprintf(file, "y");
1687 if (inst->dst.writemask & 4)
1688 fprintf(file, "z");
1689 if (inst->dst.writemask & 8)
1690 fprintf(file, "w");
1691 }
1692 fprintf(file, ":%s", brw_reg_type_to_letters(inst->dst.type));
1693
1694 if (inst->src[0].file != BAD_FILE)
1695 fprintf(file, ", ");
1696
1697 for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) {
1698 if (inst->src[i].negate)
1699 fprintf(file, "-");
1700 if (inst->src[i].abs)
1701 fprintf(file, "|");
1702 switch (inst->src[i].file) {
1703 case VGRF:
1704 fprintf(file, "vgrf%d", inst->src[i].nr);
1705 break;
1706 case FIXED_GRF:
1707 fprintf(file, "g%d.%d", inst->src[i].nr, inst->src[i].subnr);
1708 break;
1709 case ATTR:
1710 fprintf(file, "attr%d", inst->src[i].nr);
1711 break;
1712 case UNIFORM:
1713 fprintf(file, "u%d", inst->src[i].nr);
1714 break;
1715 case IMM:
1716 switch (inst->src[i].type) {
1717 case BRW_REGISTER_TYPE_F:
1718 fprintf(file, "%fF", inst->src[i].f);
1719 break;
1720 case BRW_REGISTER_TYPE_DF:
1721 fprintf(file, "%fDF", inst->src[i].df);
1722 break;
1723 case BRW_REGISTER_TYPE_D:
1724 fprintf(file, "%dD", inst->src[i].d);
1725 break;
1726 case BRW_REGISTER_TYPE_UD:
1727 fprintf(file, "%uU", inst->src[i].ud);
1728 break;
1729 case BRW_REGISTER_TYPE_VF:
1730 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
1731 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
1732 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
1733 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
1734 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
1735 break;
1736 default:
1737 fprintf(file, "???");
1738 break;
1739 }
1740 break;
1741 case ARF:
1742 switch (inst->src[i].nr) {
1743 case BRW_ARF_NULL:
1744 fprintf(file, "null");
1745 break;
1746 case BRW_ARF_ADDRESS:
1747 fprintf(file, "a0.%d", inst->src[i].subnr);
1748 break;
1749 case BRW_ARF_ACCUMULATOR:
1750 fprintf(file, "acc%d", inst->src[i].subnr);
1751 break;
1752 case BRW_ARF_FLAG:
1753 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
1754 break;
1755 default:
1756 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
1757 break;
1758 }
1759 break;
1760 case BAD_FILE:
1761 fprintf(file, "(null)");
1762 break;
1763 case MRF:
1764 unreachable("not reached");
1765 }
1766
1767 if (inst->src[i].offset ||
1768 (inst->src[i].file == VGRF &&
1769 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
1770 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 16 : REG_SIZE);
1771 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
1772 inst->src[i].offset % reg_size);
1773 }
1774
1775 if (inst->src[i].file != IMM) {
1776 static const char *chans[4] = {"x", "y", "z", "w"};
1777 fprintf(file, ".");
1778 for (int c = 0; c < 4; c++) {
1779 fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
1780 }
1781 }
1782
1783 if (inst->src[i].abs)
1784 fprintf(file, "|");
1785
1786 if (inst->src[i].file != IMM) {
1787 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
1788 }
1789
1790 if (i < 2 && inst->src[i + 1].file != BAD_FILE)
1791 fprintf(file, ", ");
1792 }
1793
1794 if (inst->force_writemask_all)
1795 fprintf(file, " NoMask");
1796
1797 if (inst->exec_size != 8)
1798 fprintf(file, " group%d", inst->group);
1799
1800 fprintf(file, "\n");
1801 }
1802
1803
1804 int
1805 vec4_vs_visitor::setup_attributes(int payload_reg)
1806 {
1807 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1808 for (int i = 0; i < 3; i++) {
1809 if (inst->src[i].file == ATTR) {
1810 assert(inst->src[i].offset % REG_SIZE == 0);
1811 int grf = payload_reg + inst->src[i].nr +
1812 inst->src[i].offset / REG_SIZE;
1813
1814 struct brw_reg reg = brw_vec8_grf(grf, 0);
1815 reg.swizzle = inst->src[i].swizzle;
1816 reg.type = inst->src[i].type;
1817 reg.abs = inst->src[i].abs;
1818 reg.negate = inst->src[i].negate;
1819 inst->src[i] = reg;
1820 }
1821 }
1822 }
1823
1824 return payload_reg + vs_prog_data->nr_attribute_slots;
1825 }
1826
1827 int
1828 vec4_visitor::setup_uniforms(int reg)
1829 {
1830 prog_data->base.dispatch_grf_start_reg = reg;
1831
1832 /* The pre-gen6 VS requires that some push constants get loaded no
1833 * matter what, or the GPU would hang.
1834 */
1835 if (devinfo->gen < 6 && this->uniforms == 0) {
1836 brw_stage_prog_data_add_params(stage_prog_data, 4);
1837 for (unsigned int i = 0; i < 4; i++) {
1838 unsigned int slot = this->uniforms * 4 + i;
1839 stage_prog_data->param[slot] = BRW_PARAM_BUILTIN_ZERO;
1840 }
1841
1842 this->uniforms++;
1843 reg++;
1844 } else {
1845 reg += ALIGN(uniforms, 2) / 2;
1846 }
1847
1848 for (int i = 0; i < 4; i++)
1849 reg += stage_prog_data->ubo_ranges[i].length;
1850
1851 stage_prog_data->nr_params = this->uniforms * 4;
1852
1853 prog_data->base.curb_read_length =
1854 reg - prog_data->base.dispatch_grf_start_reg;
1855
1856 return reg;
1857 }
1858
1859 void
1860 vec4_vs_visitor::setup_payload(void)
1861 {
1862 int reg = 0;
1863
1864 /* The payload always contains important data in g0, which contains
1865 * the URB handles that are passed on to the URB write at the end
1866 * of the thread. So, we always start push constants at g1.
1867 */
1868 reg++;
1869
1870 reg = setup_uniforms(reg);
1871
1872 reg = setup_attributes(reg);
1873
1874 this->first_non_payload_grf = reg;
1875 }
1876
1877 bool
1878 vec4_visitor::lower_minmax()
1879 {
1880 assert(devinfo->gen < 6);
1881
1882 bool progress = false;
1883
1884 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1885 const vec4_builder ibld(this, block, inst);
1886
1887 if (inst->opcode == BRW_OPCODE_SEL &&
1888 inst->predicate == BRW_PREDICATE_NONE) {
1889 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
1890 * the original SEL.L/GE instruction
1891 */
1892 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
1893 inst->conditional_mod);
1894 inst->predicate = BRW_PREDICATE_NORMAL;
1895 inst->conditional_mod = BRW_CONDITIONAL_NONE;
1896
1897 progress = true;
1898 }
1899 }
1900
1901 if (progress)
1902 invalidate_live_intervals();
1903
1904 return progress;
1905 }
1906
1907 src_reg
1908 vec4_visitor::get_timestamp()
1909 {
1910 assert(devinfo->gen >= 7);
1911
1912 src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
1913 BRW_ARF_TIMESTAMP,
1914 0,
1915 0,
1916 0,
1917 BRW_REGISTER_TYPE_UD,
1918 BRW_VERTICAL_STRIDE_0,
1919 BRW_WIDTH_4,
1920 BRW_HORIZONTAL_STRIDE_4,
1921 BRW_SWIZZLE_XYZW,
1922 WRITEMASK_XYZW));
1923
1924 dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
1925
1926 vec4_instruction *mov = emit(MOV(dst, ts));
1927 /* We want to read the 3 fields we care about (mostly field 0, but also 2)
1928 * even if it's not enabled in the dispatch.
1929 */
1930 mov->force_writemask_all = true;
1931
1932 return src_reg(dst);
1933 }
1934
1935 void
1936 vec4_visitor::emit_shader_time_begin()
1937 {
1938 current_annotation = "shader time start";
1939 shader_start_time = get_timestamp();
1940 }
1941
1942 void
1943 vec4_visitor::emit_shader_time_end()
1944 {
1945 current_annotation = "shader time end";
1946 src_reg shader_end_time = get_timestamp();
1947
1948
1949 /* Check that there weren't any timestamp reset events (assuming these
1950 * were the only two timestamp reads that happened).
1951 */
1952 src_reg reset_end = shader_end_time;
1953 reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
1954 vec4_instruction *test = emit(AND(dst_null_ud(), reset_end, brw_imm_ud(1u)));
1955 test->conditional_mod = BRW_CONDITIONAL_Z;
1956
1957 emit(IF(BRW_PREDICATE_NORMAL));
1958
1959 /* Take the current timestamp and get the delta. */
1960 shader_start_time.negate = true;
1961 dst_reg diff = dst_reg(this, glsl_type::uint_type);
1962 emit(ADD(diff, shader_start_time, shader_end_time));
1963
1964 /* If there were no instructions between the two timestamp gets, the diff
1965 * is 2 cycles. Remove that overhead, so I can forget about that when
1966 * trying to determine the time taken for single instructions.
1967 */
1968 emit(ADD(diff, src_reg(diff), brw_imm_ud(-2u)));
1969
1970 emit_shader_time_write(0, src_reg(diff));
1971 emit_shader_time_write(1, brw_imm_ud(1u));
1972 emit(BRW_OPCODE_ELSE);
1973 emit_shader_time_write(2, brw_imm_ud(1u));
1974 emit(BRW_OPCODE_ENDIF);
1975 }
1976
1977 void
1978 vec4_visitor::emit_shader_time_write(int shader_time_subindex, src_reg value)
1979 {
1980 dst_reg dst =
1981 dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
1982
1983 dst_reg offset = dst;
1984 dst_reg time = dst;
1985 time.offset += REG_SIZE;
1986
1987 offset.type = BRW_REGISTER_TYPE_UD;
1988 int index = shader_time_index * 3 + shader_time_subindex;
1989 emit(MOV(offset, brw_imm_d(index * BRW_SHADER_TIME_STRIDE)));
1990
1991 time.type = BRW_REGISTER_TYPE_UD;
1992 emit(MOV(time, value));
1993
1994 vec4_instruction *inst =
1995 emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
1996 inst->mlen = 2;
1997 }
1998
1999 static bool
2000 is_align1_df(vec4_instruction *inst)
2001 {
2002 switch (inst->opcode) {
2003 case VEC4_OPCODE_DOUBLE_TO_F32:
2004 case VEC4_OPCODE_DOUBLE_TO_D32:
2005 case VEC4_OPCODE_DOUBLE_TO_U32:
2006 case VEC4_OPCODE_TO_DOUBLE:
2007 case VEC4_OPCODE_PICK_LOW_32BIT:
2008 case VEC4_OPCODE_PICK_HIGH_32BIT:
2009 case VEC4_OPCODE_SET_LOW_32BIT:
2010 case VEC4_OPCODE_SET_HIGH_32BIT:
2011 return true;
2012 default:
2013 return false;
2014 }
2015 }
2016
2017 /**
2018 * Three source instruction must have a GRF/MRF destination register.
2019 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
2020 */
2021 void
2022 vec4_visitor::fixup_3src_null_dest()
2023 {
2024 bool progress = false;
2025
2026 foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
2027 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
2028 const unsigned size_written = type_sz(inst->dst.type);
2029 const unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE);
2030
2031 inst->dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)),
2032 inst->dst.type);
2033 progress = true;
2034 }
2035 }
2036
2037 if (progress)
2038 invalidate_live_intervals();
2039 }
2040
2041 void
2042 vec4_visitor::convert_to_hw_regs()
2043 {
2044 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
2045 for (int i = 0; i < 3; i++) {
2046 class src_reg &src = inst->src[i];
2047 struct brw_reg reg;
2048 switch (src.file) {
2049 case VGRF: {
2050 reg = byte_offset(brw_vecn_grf(4, src.nr, 0), src.offset);
2051 reg.type = src.type;
2052 reg.abs = src.abs;
2053 reg.negate = src.negate;
2054 break;
2055 }
2056
2057 case UNIFORM: {
2058 reg = stride(byte_offset(brw_vec4_grf(
2059 prog_data->base.dispatch_grf_start_reg +
2060 src.nr / 2, src.nr % 2 * 4),
2061 src.offset),
2062 0, 4, 1);
2063 reg.type = src.type;
2064 reg.abs = src.abs;
2065 reg.negate = src.negate;
2066
2067 /* This should have been moved to pull constants. */
2068 assert(!src.reladdr);
2069 break;
2070 }
2071
2072 case FIXED_GRF:
2073 if (type_sz(src.type) == 8) {
2074 reg = src.as_brw_reg();
2075 break;
2076 }
2077 /* fallthrough */
2078 case ARF:
2079 case IMM:
2080 continue;
2081
2082 case BAD_FILE:
2083 /* Probably unused. */
2084 reg = brw_null_reg();
2085 reg = retype(reg, src.type);
2086 break;
2087
2088 case MRF:
2089 case ATTR:
2090 unreachable("not reached");
2091 }
2092
2093 apply_logical_swizzle(&reg, inst, i);
2094 src = reg;
2095
2096 /* From IVB PRM, vol4, part3, "General Restrictions on Regioning
2097 * Parameters":
2098 *
2099 * "If ExecSize = Width and HorzStride ≠ 0, VertStride must be set
2100 * to Width * HorzStride."
2101 *
2102 * We can break this rule with DF sources on DF align1
2103 * instructions, because the exec_size would be 4 and width is 4.
2104 * As we know we are not accessing to next GRF, it is safe to
2105 * set vstride to the formula given by the rule itself.
2106 */
2107 if (is_align1_df(inst) && (cvt(inst->exec_size) - 1) == src.width)
2108 src.vstride = src.width + src.hstride;
2109 }
2110
2111 if (inst->is_3src(devinfo)) {
2112 /* 3-src instructions with scalar sources support arbitrary subnr,
2113 * but don't actually use swizzles. Convert swizzle into subnr.
2114 * Skip this for double-precision instructions: RepCtrl=1 is not
2115 * allowed for them and needs special handling.
2116 */
2117 for (int i = 0; i < 3; i++) {
2118 if (inst->src[i].vstride == BRW_VERTICAL_STRIDE_0 &&
2119 type_sz(inst->src[i].type) < 8) {
2120 assert(brw_is_single_value_swizzle(inst->src[i].swizzle));
2121 inst->src[i].subnr += 4 * BRW_GET_SWZ(inst->src[i].swizzle, 0);
2122 }
2123 }
2124 }
2125
2126 dst_reg &dst = inst->dst;
2127 struct brw_reg reg;
2128
2129 switch (inst->dst.file) {
2130 case VGRF:
2131 reg = byte_offset(brw_vec8_grf(dst.nr, 0), dst.offset);
2132 reg.type = dst.type;
2133 reg.writemask = dst.writemask;
2134 break;
2135
2136 case MRF:
2137 reg = byte_offset(brw_message_reg(dst.nr), dst.offset);
2138 assert((reg.nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
2139 reg.type = dst.type;
2140 reg.writemask = dst.writemask;
2141 break;
2142
2143 case ARF:
2144 case FIXED_GRF:
2145 reg = dst.as_brw_reg();
2146 break;
2147
2148 case BAD_FILE:
2149 reg = brw_null_reg();
2150 reg = retype(reg, dst.type);
2151 break;
2152
2153 case IMM:
2154 case ATTR:
2155 case UNIFORM:
2156 unreachable("not reached");
2157 }
2158
2159 dst = reg;
2160 }
2161 }
2162
2163 static bool
2164 stage_uses_interleaved_attributes(unsigned stage,
2165 enum shader_dispatch_mode dispatch_mode)
2166 {
2167 switch (stage) {
2168 case MESA_SHADER_TESS_EVAL:
2169 return true;
2170 case MESA_SHADER_GEOMETRY:
2171 return dispatch_mode != DISPATCH_MODE_4X2_DUAL_OBJECT;
2172 default:
2173 return false;
2174 }
2175 }
2176
2177 /**
2178 * Get the closest native SIMD width supported by the hardware for instruction
2179 * \p inst. The instruction will be left untouched by
2180 * vec4_visitor::lower_simd_width() if the returned value matches the
2181 * instruction's original execution size.
2182 */
2183 static unsigned
2184 get_lowered_simd_width(const struct gen_device_info *devinfo,
2185 enum shader_dispatch_mode dispatch_mode,
2186 unsigned stage, const vec4_instruction *inst)
2187 {
2188 /* Do not split some instructions that require special handling */
2189 switch (inst->opcode) {
2190 case SHADER_OPCODE_GEN4_SCRATCH_READ:
2191 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2192 return inst->exec_size;
2193 default:
2194 break;
2195 }
2196
2197 unsigned lowered_width = MIN2(16, inst->exec_size);
2198
2199 /* We need to split some cases of double-precision instructions that write
2200 * 2 registers. We only need to care about this in gen7 because that is the
2201 * only hardware that implements fp64 in Align16.
2202 */
2203 if (devinfo->gen == 7 && inst->size_written > REG_SIZE) {
2204 /* Align16 8-wide double-precision SEL does not work well. Verified
2205 * empirically.
2206 */
2207 if (inst->opcode == BRW_OPCODE_SEL && type_sz(inst->dst.type) == 8)
2208 lowered_width = MIN2(lowered_width, 4);
2209
2210 /* HSW PRM, 3D Media GPGPU Engine, Region Alignment Rules for Direct
2211 * Register Addressing:
2212 *
2213 * "When destination spans two registers, the source MUST span two
2214 * registers."
2215 */
2216 for (unsigned i = 0; i < 3; i++) {
2217 if (inst->src[i].file == BAD_FILE)
2218 continue;
2219 if (inst->size_read(i) <= REG_SIZE)
2220 lowered_width = MIN2(lowered_width, 4);
2221
2222 /* Interleaved attribute setups use a vertical stride of 0, which
2223 * makes them hit the associated instruction decompression bug in gen7.
2224 * Split them to prevent this.
2225 */
2226 if (inst->src[i].file == ATTR &&
2227 stage_uses_interleaved_attributes(stage, dispatch_mode))
2228 lowered_width = MIN2(lowered_width, 4);
2229 }
2230 }
2231
2232 /* IvyBridge can manage a maximum of 4 DFs per SIMD4x2 instruction, since
2233 * it doesn't support compression in Align16 mode, no matter if it has
2234 * force_writemask_all enabled or disabled (the latter is affected by the
2235 * compressed instruction bug in gen7, which is another reason to enforce
2236 * this limit).
2237 */
2238 if (devinfo->gen == 7 && !devinfo->is_haswell &&
2239 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8))
2240 lowered_width = MIN2(lowered_width, 4);
2241
2242 return lowered_width;
2243 }
2244
2245 static bool
2246 dst_src_regions_overlap(vec4_instruction *inst)
2247 {
2248 if (inst->size_written == 0)
2249 return false;
2250
2251 unsigned dst_start = inst->dst.offset;
2252 unsigned dst_end = dst_start + inst->size_written - 1;
2253 for (int i = 0; i < 3; i++) {
2254 if (inst->src[i].file == BAD_FILE)
2255 continue;
2256
2257 if (inst->dst.file != inst->src[i].file ||
2258 inst->dst.nr != inst->src[i].nr)
2259 continue;
2260
2261 unsigned src_start = inst->src[i].offset;
2262 unsigned src_end = src_start + inst->size_read(i) - 1;
2263
2264 if ((dst_start >= src_start && dst_start <= src_end) ||
2265 (dst_end >= src_start && dst_end <= src_end) ||
2266 (dst_start <= src_start && dst_end >= src_end)) {
2267 return true;
2268 }
2269 }
2270
2271 return false;
2272 }
2273
2274 bool
2275 vec4_visitor::lower_simd_width()
2276 {
2277 bool progress = false;
2278
2279 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
2280 const unsigned lowered_width =
2281 get_lowered_simd_width(devinfo, prog_data->dispatch_mode, stage, inst);
2282 assert(lowered_width <= inst->exec_size);
2283 if (lowered_width == inst->exec_size)
2284 continue;
2285
2286 /* We need to deal with source / destination overlaps when splitting.
2287 * The hardware supports reading from and writing to the same register
2288 * in the same instruction, but we need to be careful that each split
2289 * instruction we produce does not corrupt the source of the next.
2290 *
2291 * The easiest way to handle this is to make the split instructions write
2292 * to temporaries if there is an src/dst overlap and then move from the
2293 * temporaries to the original destination. We also need to consider
2294 * instructions that do partial writes via align1 opcodes, in which case
2295 * we need to make sure that the we initialize the temporary with the
2296 * value of the instruction's dst.
2297 */
2298 bool needs_temp = dst_src_regions_overlap(inst);
2299 for (unsigned n = 0; n < inst->exec_size / lowered_width; n++) {
2300 unsigned channel_offset = lowered_width * n;
2301
2302 unsigned size_written = lowered_width * type_sz(inst->dst.type);
2303
2304 /* Create the split instruction from the original so that we copy all
2305 * relevant instruction fields, then set the width and calculate the
2306 * new dst/src regions.
2307 */
2308 vec4_instruction *linst = new(mem_ctx) vec4_instruction(*inst);
2309 linst->exec_size = lowered_width;
2310 linst->group = channel_offset;
2311 linst->size_written = size_written;
2312
2313 /* Compute split dst region */
2314 dst_reg dst;
2315 if (needs_temp) {
2316 unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE);
2317 dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)),
2318 inst->dst.type);
2319 if (inst->is_align1_partial_write()) {
2320 vec4_instruction *copy = MOV(dst, src_reg(inst->dst));
2321 copy->exec_size = lowered_width;
2322 copy->group = channel_offset;
2323 copy->size_written = size_written;
2324 inst->insert_before(block, copy);
2325 }
2326 } else {
2327 dst = horiz_offset(inst->dst, channel_offset);
2328 }
2329 linst->dst = dst;
2330
2331 /* Compute split source regions */
2332 for (int i = 0; i < 3; i++) {
2333 if (linst->src[i].file == BAD_FILE)
2334 continue;
2335
2336 bool is_interleaved_attr =
2337 linst->src[i].file == ATTR &&
2338 stage_uses_interleaved_attributes(stage,
2339 prog_data->dispatch_mode);
2340
2341 if (!is_uniform(linst->src[i]) && !is_interleaved_attr)
2342 linst->src[i] = horiz_offset(linst->src[i], channel_offset);
2343 }
2344
2345 inst->insert_before(block, linst);
2346
2347 /* If we used a temporary to store the result of the split
2348 * instruction, copy the result to the original destination
2349 */
2350 if (needs_temp) {
2351 vec4_instruction *mov =
2352 MOV(offset(inst->dst, lowered_width, n), src_reg(dst));
2353 mov->exec_size = lowered_width;
2354 mov->group = channel_offset;
2355 mov->size_written = size_written;
2356 mov->predicate = inst->predicate;
2357 inst->insert_before(block, mov);
2358 }
2359 }
2360
2361 inst->remove(block);
2362 progress = true;
2363 }
2364
2365 if (progress)
2366 invalidate_live_intervals();
2367
2368 return progress;
2369 }
2370
2371 static brw_predicate
2372 scalarize_predicate(brw_predicate predicate, unsigned writemask)
2373 {
2374 if (predicate != BRW_PREDICATE_NORMAL)
2375 return predicate;
2376
2377 switch (writemask) {
2378 case WRITEMASK_X:
2379 return BRW_PREDICATE_ALIGN16_REPLICATE_X;
2380 case WRITEMASK_Y:
2381 return BRW_PREDICATE_ALIGN16_REPLICATE_Y;
2382 case WRITEMASK_Z:
2383 return BRW_PREDICATE_ALIGN16_REPLICATE_Z;
2384 case WRITEMASK_W:
2385 return BRW_PREDICATE_ALIGN16_REPLICATE_W;
2386 default:
2387 unreachable("invalid writemask");
2388 }
2389 }
2390
2391 /* Gen7 has a hardware decompression bug that we can exploit to represent
2392 * handful of additional swizzles natively.
2393 */
2394 static bool
2395 is_gen7_supported_64bit_swizzle(vec4_instruction *inst, unsigned arg)
2396 {
2397 switch (inst->src[arg].swizzle) {
2398 case BRW_SWIZZLE_XXXX:
2399 case BRW_SWIZZLE_YYYY:
2400 case BRW_SWIZZLE_ZZZZ:
2401 case BRW_SWIZZLE_WWWW:
2402 case BRW_SWIZZLE_XYXY:
2403 case BRW_SWIZZLE_YXYX:
2404 case BRW_SWIZZLE_ZWZW:
2405 case BRW_SWIZZLE_WZWZ:
2406 return true;
2407 default:
2408 return false;
2409 }
2410 }
2411
2412 /* 64-bit sources use regions with a width of 2. These 2 elements in each row
2413 * can be addressed using 32-bit swizzles (which is what the hardware supports)
2414 * but it also means that the swizzle we apply on the first two components of a
2415 * dvec4 is coupled with the swizzle we use for the last 2. In other words,
2416 * only some specific swizzle combinations can be natively supported.
2417 *
2418 * FIXME: we can go an step further and implement even more swizzle
2419 * variations using only partial scalarization.
2420 *
2421 * For more details see:
2422 * https://bugs.freedesktop.org/show_bug.cgi?id=92760#c82
2423 */
2424 bool
2425 vec4_visitor::is_supported_64bit_region(vec4_instruction *inst, unsigned arg)
2426 {
2427 const src_reg &src = inst->src[arg];
2428 assert(type_sz(src.type) == 8);
2429
2430 /* Uniform regions have a vstride=0. Because we use 2-wide rows with
2431 * 64-bit regions it means that we cannot access components Z/W, so
2432 * return false for any such case. Interleaved attributes will also be
2433 * mapped to GRF registers with a vstride of 0, so apply the same
2434 * treatment.
2435 */
2436 if ((is_uniform(src) ||
2437 (stage_uses_interleaved_attributes(stage, prog_data->dispatch_mode) &&
2438 src.file == ATTR)) &&
2439 (brw_mask_for_swizzle(src.swizzle) & 12))
2440 return false;
2441
2442 switch (src.swizzle) {
2443 case BRW_SWIZZLE_XYZW:
2444 case BRW_SWIZZLE_XXZZ:
2445 case BRW_SWIZZLE_YYWW:
2446 case BRW_SWIZZLE_YXWZ:
2447 return true;
2448 default:
2449 return devinfo->gen == 7 && is_gen7_supported_64bit_swizzle(inst, arg);
2450 }
2451 }
2452
2453 bool
2454 vec4_visitor::scalarize_df()
2455 {
2456 bool progress = false;
2457
2458 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
2459 /* Skip DF instructions that operate in Align1 mode */
2460 if (is_align1_df(inst))
2461 continue;
2462
2463 /* Check if this is a double-precision instruction */
2464 bool is_double = type_sz(inst->dst.type) == 8;
2465 for (int arg = 0; !is_double && arg < 3; arg++) {
2466 is_double = inst->src[arg].file != BAD_FILE &&
2467 type_sz(inst->src[arg].type) == 8;
2468 }
2469
2470 if (!is_double)
2471 continue;
2472
2473 /* Skip the lowering for specific regioning scenarios that we can
2474 * support natively.
2475 */
2476 bool skip_lowering = true;
2477
2478 /* XY and ZW writemasks operate in 32-bit, which means that they don't
2479 * have a native 64-bit representation and they should always be split.
2480 */
2481 if (inst->dst.writemask == WRITEMASK_XY ||
2482 inst->dst.writemask == WRITEMASK_ZW) {
2483 skip_lowering = false;
2484 } else {
2485 for (unsigned i = 0; i < 3; i++) {
2486 if (inst->src[i].file == BAD_FILE || type_sz(inst->src[i].type) < 8)
2487 continue;
2488 skip_lowering = skip_lowering && is_supported_64bit_region(inst, i);
2489 }
2490 }
2491
2492 if (skip_lowering)
2493 continue;
2494
2495 /* Generate scalar instructions for each enabled channel */
2496 for (unsigned chan = 0; chan < 4; chan++) {
2497 unsigned chan_mask = 1 << chan;
2498 if (!(inst->dst.writemask & chan_mask))
2499 continue;
2500
2501 vec4_instruction *scalar_inst = new(mem_ctx) vec4_instruction(*inst);
2502
2503 for (unsigned i = 0; i < 3; i++) {
2504 unsigned swz = BRW_GET_SWZ(inst->src[i].swizzle, chan);
2505 scalar_inst->src[i].swizzle = BRW_SWIZZLE4(swz, swz, swz, swz);
2506 }
2507
2508 scalar_inst->dst.writemask = chan_mask;
2509
2510 if (inst->predicate != BRW_PREDICATE_NONE) {
2511 scalar_inst->predicate =
2512 scalarize_predicate(inst->predicate, chan_mask);
2513 }
2514
2515 inst->insert_before(block, scalar_inst);
2516 }
2517
2518 inst->remove(block);
2519 progress = true;
2520 }
2521
2522 if (progress)
2523 invalidate_live_intervals();
2524
2525 return progress;
2526 }
2527
2528 bool
2529 vec4_visitor::lower_64bit_mad_to_mul_add()
2530 {
2531 bool progress = false;
2532
2533 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
2534 if (inst->opcode != BRW_OPCODE_MAD)
2535 continue;
2536
2537 if (type_sz(inst->dst.type) != 8)
2538 continue;
2539
2540 dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type);
2541
2542 /* Use the copy constructor so we copy all relevant instruction fields
2543 * from the original mad into the add and mul instructions
2544 */
2545 vec4_instruction *mul = new(mem_ctx) vec4_instruction(*inst);
2546 mul->opcode = BRW_OPCODE_MUL;
2547 mul->dst = mul_dst;
2548 mul->src[0] = inst->src[1];
2549 mul->src[1] = inst->src[2];
2550 mul->src[2].file = BAD_FILE;
2551
2552 vec4_instruction *add = new(mem_ctx) vec4_instruction(*inst);
2553 add->opcode = BRW_OPCODE_ADD;
2554 add->src[0] = src_reg(mul_dst);
2555 add->src[1] = inst->src[0];
2556 add->src[2].file = BAD_FILE;
2557
2558 inst->insert_before(block, mul);
2559 inst->insert_before(block, add);
2560 inst->remove(block);
2561
2562 progress = true;
2563 }
2564
2565 if (progress)
2566 invalidate_live_intervals();
2567
2568 return progress;
2569 }
2570
2571 /* The align16 hardware can only do 32-bit swizzle channels, so we need to
2572 * translate the logical 64-bit swizzle channels that we use in the Vec4 IR
2573 * to 32-bit swizzle channels in hardware registers.
2574 *
2575 * @inst and @arg identify the original vec4 IR source operand we need to
2576 * translate the swizzle for and @hw_reg is the hardware register where we
2577 * will write the hardware swizzle to use.
2578 *
2579 * This pass assumes that Align16/DF instructions have been fully scalarized
2580 * previously so there is just one 64-bit swizzle channel to deal with for any
2581 * given Vec4 IR source.
2582 */
2583 void
2584 vec4_visitor::apply_logical_swizzle(struct brw_reg *hw_reg,
2585 vec4_instruction *inst, int arg)
2586 {
2587 src_reg reg = inst->src[arg];
2588
2589 if (reg.file == BAD_FILE || reg.file == BRW_IMMEDIATE_VALUE)
2590 return;
2591
2592 /* If this is not a 64-bit operand or this is a scalar instruction we don't
2593 * need to do anything about the swizzles.
2594 */
2595 if(type_sz(reg.type) < 8 || is_align1_df(inst)) {
2596 hw_reg->swizzle = reg.swizzle;
2597 return;
2598 }
2599
2600 /* Take the 64-bit logical swizzle channel and translate it to 32-bit */
2601 assert(brw_is_single_value_swizzle(reg.swizzle) ||
2602 is_supported_64bit_region(inst, arg));
2603
2604 /* Apply the region <2, 2, 1> for GRF or <0, 2, 1> for uniforms, as align16
2605 * HW can only do 32-bit swizzle channels.
2606 */
2607 hw_reg->width = BRW_WIDTH_2;
2608
2609 if (is_supported_64bit_region(inst, arg) &&
2610 !is_gen7_supported_64bit_swizzle(inst, arg)) {
2611 /* Supported 64-bit swizzles are those such that their first two
2612 * components, when expanded to 32-bit swizzles, match the semantics
2613 * of the original 64-bit swizzle with 2-wide row regioning.
2614 */
2615 unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0);
2616 unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1);
2617 hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1,
2618 swizzle1 * 2, swizzle1 * 2 + 1);
2619 } else {
2620 /* If we got here then we have one of the following:
2621 *
2622 * 1. An unsupported swizzle, which should be single-value thanks to the
2623 * scalarization pass.
2624 *
2625 * 2. A gen7 supported swizzle. These can be single-value or double-value
2626 * swizzles. If the latter, they are never cross-dvec2 channels. For
2627 * these we always need to activate the gen7 vstride=0 exploit.
2628 */
2629 unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0);
2630 unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1);
2631 assert((swizzle0 < 2) == (swizzle1 < 2));
2632
2633 /* To gain access to Z/W components we need to select the second half
2634 * of the register and then use a X/Y swizzle to select Z/W respectively.
2635 */
2636 if (swizzle0 >= 2) {
2637 *hw_reg = suboffset(*hw_reg, 2);
2638 swizzle0 -= 2;
2639 swizzle1 -= 2;
2640 }
2641
2642 /* All gen7-specific supported swizzles require the vstride=0 exploit */
2643 if (devinfo->gen == 7 && is_gen7_supported_64bit_swizzle(inst, arg))
2644 hw_reg->vstride = BRW_VERTICAL_STRIDE_0;
2645
2646 /* Any 64-bit source with an offset at 16B is intended to address the
2647 * second half of a register and needs a vertical stride of 0 so we:
2648 *
2649 * 1. Don't violate register region restrictions.
2650 * 2. Activate the gen7 instruction decompresion bug exploit when
2651 * execsize > 4
2652 */
2653 if (hw_reg->subnr % REG_SIZE == 16) {
2654 assert(devinfo->gen == 7);
2655 hw_reg->vstride = BRW_VERTICAL_STRIDE_0;
2656 }
2657
2658 hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1,
2659 swizzle1 * 2, swizzle1 * 2 + 1);
2660 }
2661 }
2662
2663 bool
2664 vec4_visitor::run()
2665 {
2666 if (shader_time_index >= 0)
2667 emit_shader_time_begin();
2668
2669 emit_prolog();
2670
2671 emit_nir_code();
2672 if (failed)
2673 return false;
2674 base_ir = NULL;
2675
2676 emit_thread_end();
2677
2678 calculate_cfg();
2679
2680 /* Before any optimization, push array accesses out to scratch
2681 * space where we need them to be. This pass may allocate new
2682 * virtual GRFs, so we want to do it early. It also makes sure
2683 * that we have reladdr computations available for CSE, since we'll
2684 * often do repeated subexpressions for those.
2685 */
2686 move_grf_array_access_to_scratch();
2687 move_uniform_array_access_to_pull_constants();
2688
2689 pack_uniform_registers();
2690 move_push_constants_to_pull_constants();
2691 split_virtual_grfs();
2692
2693 #define OPT(pass, args...) ({ \
2694 pass_num++; \
2695 bool this_progress = pass(args); \
2696 \
2697 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
2698 char filename[64]; \
2699 snprintf(filename, 64, "%s-%s-%02d-%02d-" #pass, \
2700 stage_abbrev, nir->info.name, iteration, pass_num); \
2701 \
2702 backend_shader::dump_instructions(filename); \
2703 } \
2704 \
2705 progress = progress || this_progress; \
2706 this_progress; \
2707 })
2708
2709
2710 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
2711 char filename[64];
2712 snprintf(filename, 64, "%s-%s-00-00-start",
2713 stage_abbrev, nir->info.name);
2714
2715 backend_shader::dump_instructions(filename);
2716 }
2717
2718 bool progress;
2719 int iteration = 0;
2720 int pass_num = 0;
2721 do {
2722 progress = false;
2723 pass_num = 0;
2724 iteration++;
2725
2726 OPT(opt_predicated_break, this);
2727 OPT(opt_reduce_swizzle);
2728 OPT(dead_code_eliminate);
2729 OPT(dead_control_flow_eliminate, this);
2730 OPT(opt_copy_propagation);
2731 OPT(opt_cmod_propagation);
2732 OPT(opt_cse);
2733 OPT(opt_algebraic);
2734 OPT(opt_register_coalesce);
2735 OPT(eliminate_find_live_channel);
2736 } while (progress);
2737
2738 pass_num = 0;
2739
2740 if (OPT(opt_vector_float)) {
2741 OPT(opt_cse);
2742 OPT(opt_copy_propagation, false);
2743 OPT(opt_copy_propagation, true);
2744 OPT(dead_code_eliminate);
2745 }
2746
2747 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
2748 OPT(opt_cmod_propagation);
2749 OPT(opt_cse);
2750 OPT(opt_copy_propagation);
2751 OPT(dead_code_eliminate);
2752 }
2753
2754 if (OPT(lower_simd_width)) {
2755 OPT(opt_copy_propagation);
2756 OPT(dead_code_eliminate);
2757 }
2758
2759 if (failed)
2760 return false;
2761
2762 OPT(lower_64bit_mad_to_mul_add);
2763
2764 /* Run this before payload setup because tesselation shaders
2765 * rely on it to prevent cross dvec2 regioning on DF attributes
2766 * that are setup so that XY are on the second half of register and
2767 * ZW are in the first half of the next.
2768 */
2769 OPT(scalarize_df);
2770
2771 setup_payload();
2772
2773 if (unlikely(INTEL_DEBUG & DEBUG_SPILL_VEC4)) {
2774 /* Debug of register spilling: Go spill everything. */
2775 const int grf_count = alloc.count;
2776 float spill_costs[alloc.count];
2777 bool no_spill[alloc.count];
2778 evaluate_spill_costs(spill_costs, no_spill);
2779 for (int i = 0; i < grf_count; i++) {
2780 if (no_spill[i])
2781 continue;
2782 spill_reg(i);
2783 }
2784
2785 /* We want to run this after spilling because 64-bit (un)spills need to
2786 * emit code to shuffle 64-bit data for the 32-bit scratch read/write
2787 * messages that can produce unsupported 64-bit swizzle regions.
2788 */
2789 OPT(scalarize_df);
2790 }
2791
2792 fixup_3src_null_dest();
2793
2794 bool allocated_without_spills = reg_allocate();
2795
2796 if (!allocated_without_spills) {
2797 compiler->shader_perf_log(log_data,
2798 "%s shader triggered register spilling. "
2799 "Try reducing the number of live vec4 values "
2800 "to improve performance.\n",
2801 stage_name);
2802
2803 while (!reg_allocate()) {
2804 if (failed)
2805 return false;
2806 }
2807
2808 /* We want to run this after spilling because 64-bit (un)spills need to
2809 * emit code to shuffle 64-bit data for the 32-bit scratch read/write
2810 * messages that can produce unsupported 64-bit swizzle regions.
2811 */
2812 OPT(scalarize_df);
2813 }
2814
2815 opt_schedule_instructions();
2816
2817 opt_set_dependency_control();
2818
2819 convert_to_hw_regs();
2820
2821 if (last_scratch > 0) {
2822 prog_data->base.total_scratch =
2823 brw_get_scratch_size(last_scratch * REG_SIZE);
2824 }
2825
2826 return !failed;
2827 }
2828
2829 } /* namespace brw */
2830
2831 extern "C" {
2832
2833 /**
2834 * Compile a vertex shader.
2835 *
2836 * Returns the final assembly and the program's size.
2837 */
2838 const unsigned *
2839 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
2840 void *mem_ctx,
2841 const struct brw_vs_prog_key *key,
2842 struct brw_vs_prog_data *prog_data,
2843 nir_shader *shader,
2844 int shader_time_index,
2845 struct brw_compile_stats *stats,
2846 char **error_str)
2847 {
2848 const bool is_scalar = compiler->scalar_stage[MESA_SHADER_VERTEX];
2849 brw_nir_apply_key(shader, compiler, &key->base, 8, is_scalar);
2850
2851 const unsigned *assembly = NULL;
2852
2853 if (prog_data->base.vue_map.varying_to_slot[VARYING_SLOT_EDGE] != -1) {
2854 /* If the output VUE map contains VARYING_SLOT_EDGE then we need to copy
2855 * the edge flag from VERT_ATTRIB_EDGEFLAG. This will be done
2856 * automatically by brw_vec4_visitor::emit_urb_slot but we need to
2857 * ensure that prog_data->inputs_read is accurate.
2858 *
2859 * In order to make late NIR passes aware of the change, we actually
2860 * whack shader->info.inputs_read instead. This is safe because we just
2861 * made a copy of the shader.
2862 */
2863 assert(!is_scalar);
2864 assert(key->copy_edgeflag);
2865 shader->info.inputs_read |= VERT_BIT_EDGEFLAG;
2866 }
2867
2868 prog_data->inputs_read = shader->info.inputs_read;
2869 prog_data->double_inputs_read = shader->info.vs.double_inputs;
2870
2871 brw_nir_lower_vs_inputs(shader, key->gl_attrib_wa_flags);
2872 brw_nir_lower_vue_outputs(shader);
2873 brw_postprocess_nir(shader, compiler, is_scalar);
2874
2875 prog_data->base.clip_distance_mask =
2876 ((1 << shader->info.clip_distance_array_size) - 1);
2877 prog_data->base.cull_distance_mask =
2878 ((1 << shader->info.cull_distance_array_size) - 1) <<
2879 shader->info.clip_distance_array_size;
2880
2881 unsigned nr_attribute_slots = util_bitcount64(prog_data->inputs_read);
2882
2883 /* gl_VertexID and gl_InstanceID are system values, but arrive via an
2884 * incoming vertex attribute. So, add an extra slot.
2885 */
2886 if (shader->info.system_values_read &
2887 (BITFIELD64_BIT(SYSTEM_VALUE_FIRST_VERTEX) |
2888 BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) |
2889 BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) |
2890 BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID))) {
2891 nr_attribute_slots++;
2892 }
2893
2894 /* gl_DrawID and IsIndexedDraw share its very own vec4 */
2895 if (shader->info.system_values_read &
2896 (BITFIELD64_BIT(SYSTEM_VALUE_DRAW_ID) |
2897 BITFIELD64_BIT(SYSTEM_VALUE_IS_INDEXED_DRAW))) {
2898 nr_attribute_slots++;
2899 }
2900
2901 if (shader->info.system_values_read &
2902 BITFIELD64_BIT(SYSTEM_VALUE_IS_INDEXED_DRAW))
2903 prog_data->uses_is_indexed_draw = true;
2904
2905 if (shader->info.system_values_read &
2906 BITFIELD64_BIT(SYSTEM_VALUE_FIRST_VERTEX))
2907 prog_data->uses_firstvertex = true;
2908
2909 if (shader->info.system_values_read &
2910 BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE))
2911 prog_data->uses_baseinstance = true;
2912
2913 if (shader->info.system_values_read &
2914 BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE))
2915 prog_data->uses_vertexid = true;
2916
2917 if (shader->info.system_values_read &
2918 BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID))
2919 prog_data->uses_instanceid = true;
2920
2921 if (shader->info.system_values_read &
2922 BITFIELD64_BIT(SYSTEM_VALUE_DRAW_ID))
2923 prog_data->uses_drawid = true;
2924
2925 /* The 3DSTATE_VS documentation lists the lower bound on "Vertex URB Entry
2926 * Read Length" as 1 in vec4 mode, and 0 in SIMD8 mode. Empirically, in
2927 * vec4 mode, the hardware appears to wedge unless we read something.
2928 */
2929 if (is_scalar)
2930 prog_data->base.urb_read_length =
2931 DIV_ROUND_UP(nr_attribute_slots, 2);
2932 else
2933 prog_data->base.urb_read_length =
2934 DIV_ROUND_UP(MAX2(nr_attribute_slots, 1), 2);
2935
2936 prog_data->nr_attribute_slots = nr_attribute_slots;
2937
2938 /* Since vertex shaders reuse the same VUE entry for inputs and outputs
2939 * (overwriting the original contents), we need to make sure the size is
2940 * the larger of the two.
2941 */
2942 const unsigned vue_entries =
2943 MAX2(nr_attribute_slots, (unsigned)prog_data->base.vue_map.num_slots);
2944
2945 if (compiler->devinfo->gen == 6) {
2946 prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 8);
2947 } else {
2948 prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 4);
2949 /* On Cannonlake software shall not program an allocation size that
2950 * specifies a size that is a multiple of 3 64B (512-bit) cachelines.
2951 */
2952 if (compiler->devinfo->gen == 10 &&
2953 prog_data->base.urb_entry_size % 3 == 0)
2954 prog_data->base.urb_entry_size++;
2955 }
2956
2957 if (INTEL_DEBUG & DEBUG_VS) {
2958 fprintf(stderr, "VS Output ");
2959 brw_print_vue_map(stderr, &prog_data->base.vue_map);
2960 }
2961
2962 if (is_scalar) {
2963 prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
2964
2965 fs_visitor v(compiler, log_data, mem_ctx, &key->base,
2966 &prog_data->base.base,
2967 shader, 8, shader_time_index);
2968 if (!v.run_vs()) {
2969 if (error_str)
2970 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
2971
2972 return NULL;
2973 }
2974
2975 prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
2976
2977 fs_generator g(compiler, log_data, mem_ctx,
2978 &prog_data->base.base, v.shader_stats,
2979 v.runtime_check_aads_emit, MESA_SHADER_VERTEX);
2980 if (INTEL_DEBUG & DEBUG_VS) {
2981 const char *debug_name =
2982 ralloc_asprintf(mem_ctx, "%s vertex shader %s",
2983 shader->info.label ? shader->info.label :
2984 "unnamed",
2985 shader->info.name);
2986
2987 g.enable_debug(debug_name);
2988 }
2989 g.generate_code(v.cfg, 8, stats);
2990 assembly = g.get_assembly();
2991 }
2992
2993 if (!assembly) {
2994 prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT;
2995
2996 vec4_vs_visitor v(compiler, log_data, key, prog_data,
2997 shader, mem_ctx, shader_time_index);
2998 if (!v.run()) {
2999 if (error_str)
3000 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
3001
3002 return NULL;
3003 }
3004
3005 assembly = brw_vec4_generate_assembly(compiler, log_data, mem_ctx,
3006 shader, &prog_data->base,
3007 v.cfg, stats);
3008 }
3009
3010 return assembly;
3011 }
3012
3013 } /* extern "C" */