intel/fs: Remove program key argument from generator.
[mesa.git] / src / intel / compiler / brw_vec4.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 #include "brw_fs.h"
26 #include "brw_cfg.h"
27 #include "brw_nir.h"
28 #include "brw_vec4_builder.h"
29 #include "brw_vec4_live_variables.h"
30 #include "brw_vec4_vs.h"
31 #include "brw_dead_control_flow.h"
32 #include "common/gen_debug.h"
33 #include "program/prog_parameter.h"
34
35 #define MAX_INSTRUCTION (1 << 30)
36
37 using namespace brw;
38
39 namespace brw {
40
41 void
42 src_reg::init()
43 {
44 memset(this, 0, sizeof(*this));
45 this->file = BAD_FILE;
46 this->type = BRW_REGISTER_TYPE_UD;
47 }
48
49 src_reg::src_reg(enum brw_reg_file file, int nr, const glsl_type *type)
50 {
51 init();
52
53 this->file = file;
54 this->nr = nr;
55 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
56 this->swizzle = brw_swizzle_for_size(type->vector_elements);
57 else
58 this->swizzle = BRW_SWIZZLE_XYZW;
59 if (type)
60 this->type = brw_type_for_base_type(type);
61 }
62
63 /** Generic unset register constructor. */
64 src_reg::src_reg()
65 {
66 init();
67 }
68
69 src_reg::src_reg(struct ::brw_reg reg) :
70 backend_reg(reg)
71 {
72 this->offset = 0;
73 this->reladdr = NULL;
74 }
75
76 src_reg::src_reg(const dst_reg &reg) :
77 backend_reg(reg)
78 {
79 this->reladdr = reg.reladdr;
80 this->swizzle = brw_swizzle_for_mask(reg.writemask);
81 }
82
83 void
84 dst_reg::init()
85 {
86 memset(this, 0, sizeof(*this));
87 this->file = BAD_FILE;
88 this->type = BRW_REGISTER_TYPE_UD;
89 this->writemask = WRITEMASK_XYZW;
90 }
91
92 dst_reg::dst_reg()
93 {
94 init();
95 }
96
97 dst_reg::dst_reg(enum brw_reg_file file, int nr)
98 {
99 init();
100
101 this->file = file;
102 this->nr = nr;
103 }
104
105 dst_reg::dst_reg(enum brw_reg_file file, int nr, const glsl_type *type,
106 unsigned writemask)
107 {
108 init();
109
110 this->file = file;
111 this->nr = nr;
112 this->type = brw_type_for_base_type(type);
113 this->writemask = writemask;
114 }
115
116 dst_reg::dst_reg(enum brw_reg_file file, int nr, brw_reg_type type,
117 unsigned writemask)
118 {
119 init();
120
121 this->file = file;
122 this->nr = nr;
123 this->type = type;
124 this->writemask = writemask;
125 }
126
127 dst_reg::dst_reg(struct ::brw_reg reg) :
128 backend_reg(reg)
129 {
130 this->offset = 0;
131 this->reladdr = NULL;
132 }
133
134 dst_reg::dst_reg(const src_reg &reg) :
135 backend_reg(reg)
136 {
137 this->writemask = brw_mask_for_swizzle(reg.swizzle);
138 this->reladdr = reg.reladdr;
139 }
140
141 bool
142 dst_reg::equals(const dst_reg &r) const
143 {
144 return (this->backend_reg::equals(r) &&
145 (reladdr == r.reladdr ||
146 (reladdr && r.reladdr && reladdr->equals(*r.reladdr))));
147 }
148
149 bool
150 vec4_instruction::is_send_from_grf()
151 {
152 switch (opcode) {
153 case SHADER_OPCODE_SHADER_TIME_ADD:
154 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
155 case SHADER_OPCODE_UNTYPED_ATOMIC:
156 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
157 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
158 case SHADER_OPCODE_TYPED_ATOMIC:
159 case SHADER_OPCODE_TYPED_SURFACE_READ:
160 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
161 case VEC4_OPCODE_URB_READ:
162 case TCS_OPCODE_URB_WRITE:
163 case TCS_OPCODE_RELEASE_INPUT:
164 case SHADER_OPCODE_BARRIER:
165 return true;
166 default:
167 return false;
168 }
169 }
170
171 /**
172 * Returns true if this instruction's sources and destinations cannot
173 * safely be the same register.
174 *
175 * In most cases, a register can be written over safely by the same
176 * instruction that is its last use. For a single instruction, the
177 * sources are dereferenced before writing of the destination starts
178 * (naturally).
179 *
180 * However, there are a few cases where this can be problematic:
181 *
182 * - Virtual opcodes that translate to multiple instructions in the
183 * code generator: if src == dst and one instruction writes the
184 * destination before a later instruction reads the source, then
185 * src will have been clobbered.
186 *
187 * The register allocator uses this information to set up conflicts between
188 * GRF sources and the destination.
189 */
190 bool
191 vec4_instruction::has_source_and_destination_hazard() const
192 {
193 switch (opcode) {
194 case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
195 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
196 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
197 return true;
198 default:
199 /* 8-wide compressed DF operations are executed as two 4-wide operations,
200 * so we have a src/dst hazard if the first half of the instruction
201 * overwrites the source of the second half. Prevent this by marking
202 * compressed instructions as having src/dst hazards, so the register
203 * allocator assigns safe register regions for dst and srcs.
204 */
205 return size_written > REG_SIZE;
206 }
207 }
208
209 unsigned
210 vec4_instruction::size_read(unsigned arg) const
211 {
212 switch (opcode) {
213 case SHADER_OPCODE_SHADER_TIME_ADD:
214 case SHADER_OPCODE_UNTYPED_ATOMIC:
215 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
216 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
217 case SHADER_OPCODE_TYPED_ATOMIC:
218 case SHADER_OPCODE_TYPED_SURFACE_READ:
219 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
220 case TCS_OPCODE_URB_WRITE:
221 if (arg == 0)
222 return mlen * REG_SIZE;
223 break;
224 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
225 if (arg == 1)
226 return mlen * REG_SIZE;
227 break;
228 default:
229 break;
230 }
231
232 switch (src[arg].file) {
233 case BAD_FILE:
234 return 0;
235 case IMM:
236 case UNIFORM:
237 return 4 * type_sz(src[arg].type);
238 default:
239 /* XXX - Represent actual vertical stride. */
240 return exec_size * type_sz(src[arg].type);
241 }
242 }
243
244 bool
245 vec4_instruction::can_do_source_mods(const struct gen_device_info *devinfo)
246 {
247 if (devinfo->gen == 6 && is_math())
248 return false;
249
250 if (is_send_from_grf())
251 return false;
252
253 if (!backend_instruction::can_do_source_mods())
254 return false;
255
256 return true;
257 }
258
259 bool
260 vec4_instruction::can_do_writemask(const struct gen_device_info *devinfo)
261 {
262 switch (opcode) {
263 case SHADER_OPCODE_GEN4_SCRATCH_READ:
264 case VEC4_OPCODE_DOUBLE_TO_F32:
265 case VEC4_OPCODE_DOUBLE_TO_D32:
266 case VEC4_OPCODE_DOUBLE_TO_U32:
267 case VEC4_OPCODE_TO_DOUBLE:
268 case VEC4_OPCODE_PICK_LOW_32BIT:
269 case VEC4_OPCODE_PICK_HIGH_32BIT:
270 case VEC4_OPCODE_SET_LOW_32BIT:
271 case VEC4_OPCODE_SET_HIGH_32BIT:
272 case VS_OPCODE_PULL_CONSTANT_LOAD:
273 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
274 case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9:
275 case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
276 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
277 case TES_OPCODE_CREATE_INPUT_READ_HEADER:
278 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
279 case VEC4_OPCODE_URB_READ:
280 case SHADER_OPCODE_MOV_INDIRECT:
281 return false;
282 default:
283 /* The MATH instruction on Gen6 only executes in align1 mode, which does
284 * not support writemasking.
285 */
286 if (devinfo->gen == 6 && is_math())
287 return false;
288
289 if (is_tex())
290 return false;
291
292 return true;
293 }
294 }
295
296 bool
297 vec4_instruction::can_change_types() const
298 {
299 return dst.type == src[0].type &&
300 !src[0].abs && !src[0].negate && !saturate &&
301 (opcode == BRW_OPCODE_MOV ||
302 (opcode == BRW_OPCODE_SEL &&
303 dst.type == src[1].type &&
304 predicate != BRW_PREDICATE_NONE &&
305 !src[1].abs && !src[1].negate));
306 }
307
308 /**
309 * Returns how many MRFs an opcode will write over.
310 *
311 * Note that this is not the 0 or 1 implied writes in an actual gen
312 * instruction -- the generate_* functions generate additional MOVs
313 * for setup.
314 */
315 int
316 vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
317 {
318 if (inst->mlen == 0 || inst->is_send_from_grf())
319 return 0;
320
321 switch (inst->opcode) {
322 case SHADER_OPCODE_RCP:
323 case SHADER_OPCODE_RSQ:
324 case SHADER_OPCODE_SQRT:
325 case SHADER_OPCODE_EXP2:
326 case SHADER_OPCODE_LOG2:
327 case SHADER_OPCODE_SIN:
328 case SHADER_OPCODE_COS:
329 return 1;
330 case SHADER_OPCODE_INT_QUOTIENT:
331 case SHADER_OPCODE_INT_REMAINDER:
332 case SHADER_OPCODE_POW:
333 case TCS_OPCODE_THREAD_END:
334 return 2;
335 case VS_OPCODE_URB_WRITE:
336 return 1;
337 case VS_OPCODE_PULL_CONSTANT_LOAD:
338 return 2;
339 case SHADER_OPCODE_GEN4_SCRATCH_READ:
340 return 2;
341 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
342 return 3;
343 case GS_OPCODE_URB_WRITE:
344 case GS_OPCODE_URB_WRITE_ALLOCATE:
345 case GS_OPCODE_THREAD_END:
346 return 0;
347 case GS_OPCODE_FF_SYNC:
348 return 1;
349 case TCS_OPCODE_URB_WRITE:
350 return 0;
351 case SHADER_OPCODE_SHADER_TIME_ADD:
352 return 0;
353 case SHADER_OPCODE_TEX:
354 case SHADER_OPCODE_TXL:
355 case SHADER_OPCODE_TXD:
356 case SHADER_OPCODE_TXF:
357 case SHADER_OPCODE_TXF_CMS:
358 case SHADER_OPCODE_TXF_CMS_W:
359 case SHADER_OPCODE_TXF_MCS:
360 case SHADER_OPCODE_TXS:
361 case SHADER_OPCODE_TG4:
362 case SHADER_OPCODE_TG4_OFFSET:
363 case SHADER_OPCODE_SAMPLEINFO:
364 case SHADER_OPCODE_GET_BUFFER_SIZE:
365 return inst->header_size;
366 default:
367 unreachable("not reached");
368 }
369 }
370
371 bool
372 src_reg::equals(const src_reg &r) const
373 {
374 return (this->backend_reg::equals(r) &&
375 !reladdr && !r.reladdr);
376 }
377
378 bool
379 src_reg::negative_equals(const src_reg &r) const
380 {
381 return this->backend_reg::negative_equals(r) &&
382 !reladdr && !r.reladdr;
383 }
384
385 bool
386 vec4_visitor::opt_vector_float()
387 {
388 bool progress = false;
389
390 foreach_block(block, cfg) {
391 int last_reg = -1, last_offset = -1;
392 enum brw_reg_file last_reg_file = BAD_FILE;
393
394 uint8_t imm[4] = { 0 };
395 int inst_count = 0;
396 vec4_instruction *imm_inst[4];
397 unsigned writemask = 0;
398 enum brw_reg_type dest_type = BRW_REGISTER_TYPE_F;
399
400 foreach_inst_in_block_safe(vec4_instruction, inst, block) {
401 int vf = -1;
402 enum brw_reg_type need_type;
403
404 /* Look for unconditional MOVs from an immediate with a partial
405 * writemask. Skip type-conversion MOVs other than integer 0,
406 * where the type doesn't matter. See if the immediate can be
407 * represented as a VF.
408 */
409 if (inst->opcode == BRW_OPCODE_MOV &&
410 inst->src[0].file == IMM &&
411 inst->predicate == BRW_PREDICATE_NONE &&
412 inst->dst.writemask != WRITEMASK_XYZW &&
413 type_sz(inst->src[0].type) < 8 &&
414 (inst->src[0].type == inst->dst.type || inst->src[0].d == 0)) {
415
416 vf = brw_float_to_vf(inst->src[0].d);
417 need_type = BRW_REGISTER_TYPE_D;
418
419 if (vf == -1) {
420 vf = brw_float_to_vf(inst->src[0].f);
421 need_type = BRW_REGISTER_TYPE_F;
422 }
423 } else {
424 last_reg = -1;
425 }
426
427 /* If this wasn't a MOV, or the destination register doesn't match,
428 * or we have to switch destination types, then this breaks our
429 * sequence. Combine anything we've accumulated so far.
430 */
431 if (last_reg != inst->dst.nr ||
432 last_offset != inst->dst.offset ||
433 last_reg_file != inst->dst.file ||
434 (vf > 0 && dest_type != need_type)) {
435
436 if (inst_count > 1) {
437 unsigned vf;
438 memcpy(&vf, imm, sizeof(vf));
439 vec4_instruction *mov = MOV(imm_inst[0]->dst, brw_imm_vf(vf));
440 mov->dst.type = dest_type;
441 mov->dst.writemask = writemask;
442 inst->insert_before(block, mov);
443
444 for (int i = 0; i < inst_count; i++) {
445 imm_inst[i]->remove(block);
446 }
447
448 progress = true;
449 }
450
451 inst_count = 0;
452 last_reg = -1;
453 writemask = 0;
454 dest_type = BRW_REGISTER_TYPE_F;
455
456 for (int i = 0; i < 4; i++) {
457 imm[i] = 0;
458 }
459 }
460
461 /* Record this instruction's value (if it was representable). */
462 if (vf != -1) {
463 if ((inst->dst.writemask & WRITEMASK_X) != 0)
464 imm[0] = vf;
465 if ((inst->dst.writemask & WRITEMASK_Y) != 0)
466 imm[1] = vf;
467 if ((inst->dst.writemask & WRITEMASK_Z) != 0)
468 imm[2] = vf;
469 if ((inst->dst.writemask & WRITEMASK_W) != 0)
470 imm[3] = vf;
471
472 writemask |= inst->dst.writemask;
473 imm_inst[inst_count++] = inst;
474
475 last_reg = inst->dst.nr;
476 last_offset = inst->dst.offset;
477 last_reg_file = inst->dst.file;
478 if (vf > 0)
479 dest_type = need_type;
480 }
481 }
482 }
483
484 if (progress)
485 invalidate_live_intervals();
486
487 return progress;
488 }
489
490 /* Replaces unused channels of a swizzle with channels that are used.
491 *
492 * For instance, this pass transforms
493 *
494 * mov vgrf4.yz, vgrf5.wxzy
495 *
496 * into
497 *
498 * mov vgrf4.yz, vgrf5.xxzx
499 *
500 * This eliminates false uses of some channels, letting dead code elimination
501 * remove the instructions that wrote them.
502 */
503 bool
504 vec4_visitor::opt_reduce_swizzle()
505 {
506 bool progress = false;
507
508 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
509 if (inst->dst.file == BAD_FILE ||
510 inst->dst.file == ARF ||
511 inst->dst.file == FIXED_GRF ||
512 inst->is_send_from_grf())
513 continue;
514
515 unsigned swizzle;
516
517 /* Determine which channels of the sources are read. */
518 switch (inst->opcode) {
519 case VEC4_OPCODE_PACK_BYTES:
520 case BRW_OPCODE_DP4:
521 case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0,
522 * but all four of src1.
523 */
524 swizzle = brw_swizzle_for_size(4);
525 break;
526 case BRW_OPCODE_DP3:
527 swizzle = brw_swizzle_for_size(3);
528 break;
529 case BRW_OPCODE_DP2:
530 swizzle = brw_swizzle_for_size(2);
531 break;
532
533 case VEC4_OPCODE_TO_DOUBLE:
534 case VEC4_OPCODE_DOUBLE_TO_F32:
535 case VEC4_OPCODE_DOUBLE_TO_D32:
536 case VEC4_OPCODE_DOUBLE_TO_U32:
537 case VEC4_OPCODE_PICK_LOW_32BIT:
538 case VEC4_OPCODE_PICK_HIGH_32BIT:
539 case VEC4_OPCODE_SET_LOW_32BIT:
540 case VEC4_OPCODE_SET_HIGH_32BIT:
541 swizzle = brw_swizzle_for_size(4);
542 break;
543
544 default:
545 swizzle = brw_swizzle_for_mask(inst->dst.writemask);
546 break;
547 }
548
549 /* Update sources' swizzles. */
550 for (int i = 0; i < 3; i++) {
551 if (inst->src[i].file != VGRF &&
552 inst->src[i].file != ATTR &&
553 inst->src[i].file != UNIFORM)
554 continue;
555
556 const unsigned new_swizzle =
557 brw_compose_swizzle(swizzle, inst->src[i].swizzle);
558 if (inst->src[i].swizzle != new_swizzle) {
559 inst->src[i].swizzle = new_swizzle;
560 progress = true;
561 }
562 }
563 }
564
565 if (progress)
566 invalidate_live_intervals();
567
568 return progress;
569 }
570
571 void
572 vec4_visitor::split_uniform_registers()
573 {
574 /* Prior to this, uniforms have been in an array sized according to
575 * the number of vector uniforms present, sparsely filled (so an
576 * aggregate results in reg indices being skipped over). Now we're
577 * going to cut those aggregates up so each .nr index is one
578 * vector. The goal is to make elimination of unused uniform
579 * components easier later.
580 */
581 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
582 for (int i = 0 ; i < 3; i++) {
583 if (inst->src[i].file != UNIFORM)
584 continue;
585
586 assert(!inst->src[i].reladdr);
587
588 inst->src[i].nr += inst->src[i].offset / 16;
589 inst->src[i].offset %= 16;
590 }
591 }
592 }
593
594 /* This function returns the register number where we placed the uniform */
595 static int
596 set_push_constant_loc(const int nr_uniforms, int *new_uniform_count,
597 const int src, const int size, const int channel_size,
598 int *new_loc, int *new_chan,
599 int *new_chans_used)
600 {
601 int dst;
602 /* Find the lowest place we can slot this uniform in. */
603 for (dst = 0; dst < nr_uniforms; dst++) {
604 if (ALIGN(new_chans_used[dst], channel_size) + size <= 4)
605 break;
606 }
607
608 assert(dst < nr_uniforms);
609
610 new_loc[src] = dst;
611 new_chan[src] = ALIGN(new_chans_used[dst], channel_size);
612 new_chans_used[dst] = ALIGN(new_chans_used[dst], channel_size) + size;
613
614 *new_uniform_count = MAX2(*new_uniform_count, dst + 1);
615 return dst;
616 }
617
618 void
619 vec4_visitor::pack_uniform_registers()
620 {
621 uint8_t chans_used[this->uniforms];
622 int new_loc[this->uniforms];
623 int new_chan[this->uniforms];
624 bool is_aligned_to_dvec4[this->uniforms];
625 int new_chans_used[this->uniforms];
626 int channel_sizes[this->uniforms];
627
628 memset(chans_used, 0, sizeof(chans_used));
629 memset(new_loc, 0, sizeof(new_loc));
630 memset(new_chan, 0, sizeof(new_chan));
631 memset(new_chans_used, 0, sizeof(new_chans_used));
632 memset(is_aligned_to_dvec4, 0, sizeof(is_aligned_to_dvec4));
633 memset(channel_sizes, 0, sizeof(channel_sizes));
634
635 /* Find which uniform vectors are actually used by the program. We
636 * expect unused vector elements when we've moved array access out
637 * to pull constants, and from some GLSL code generators like wine.
638 */
639 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
640 unsigned readmask;
641 switch (inst->opcode) {
642 case VEC4_OPCODE_PACK_BYTES:
643 case BRW_OPCODE_DP4:
644 case BRW_OPCODE_DPH:
645 readmask = 0xf;
646 break;
647 case BRW_OPCODE_DP3:
648 readmask = 0x7;
649 break;
650 case BRW_OPCODE_DP2:
651 readmask = 0x3;
652 break;
653 default:
654 readmask = inst->dst.writemask;
655 break;
656 }
657
658 for (int i = 0 ; i < 3; i++) {
659 if (inst->src[i].file != UNIFORM)
660 continue;
661
662 assert(type_sz(inst->src[i].type) % 4 == 0);
663 int channel_size = type_sz(inst->src[i].type) / 4;
664
665 int reg = inst->src[i].nr;
666 for (int c = 0; c < 4; c++) {
667 if (!(readmask & (1 << c)))
668 continue;
669
670 unsigned channel = BRW_GET_SWZ(inst->src[i].swizzle, c) + 1;
671 unsigned used = MAX2(chans_used[reg], channel * channel_size);
672 if (used <= 4) {
673 chans_used[reg] = used;
674 channel_sizes[reg] = MAX2(channel_sizes[reg], channel_size);
675 } else {
676 is_aligned_to_dvec4[reg] = true;
677 is_aligned_to_dvec4[reg + 1] = true;
678 chans_used[reg + 1] = used - 4;
679 channel_sizes[reg + 1] = MAX2(channel_sizes[reg + 1], channel_size);
680 }
681 }
682 }
683
684 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
685 inst->src[0].file == UNIFORM) {
686 assert(inst->src[2].file == BRW_IMMEDIATE_VALUE);
687 assert(inst->src[0].subnr == 0);
688
689 unsigned bytes_read = inst->src[2].ud;
690 assert(bytes_read % 4 == 0);
691 unsigned vec4s_read = DIV_ROUND_UP(bytes_read, 16);
692
693 /* We just mark every register touched by a MOV_INDIRECT as being
694 * fully used. This ensures that it doesn't broken up piecewise by
695 * the next part of our packing algorithm.
696 */
697 int reg = inst->src[0].nr;
698 int channel_size = type_sz(inst->src[0].type) / 4;
699 for (unsigned i = 0; i < vec4s_read; i++) {
700 chans_used[reg + i] = 4;
701 channel_sizes[reg + i] = MAX2(channel_sizes[reg + i], channel_size);
702 }
703 }
704 }
705
706 int new_uniform_count = 0;
707
708 /* As the uniforms are going to be reordered, take the data from a temporary
709 * copy of the original param[].
710 */
711 uint32_t *param = ralloc_array(NULL, uint32_t, stage_prog_data->nr_params);
712 memcpy(param, stage_prog_data->param,
713 sizeof(uint32_t) * stage_prog_data->nr_params);
714
715 /* Now, figure out a packing of the live uniform vectors into our
716 * push constants. Start with dvec{3,4} because they are aligned to
717 * dvec4 size (2 vec4).
718 */
719 for (int src = 0; src < uniforms; src++) {
720 int size = chans_used[src];
721
722 if (size == 0 || !is_aligned_to_dvec4[src])
723 continue;
724
725 /* dvec3 are aligned to dvec4 size, apply the alignment of the size
726 * to 4 to avoid moving last component of a dvec3 to the available
727 * location at the end of a previous dvec3. These available locations
728 * could be filled by smaller variables in next loop.
729 */
730 size = ALIGN(size, 4);
731 int dst = set_push_constant_loc(uniforms, &new_uniform_count,
732 src, size, channel_sizes[src],
733 new_loc, new_chan,
734 new_chans_used);
735 /* Move the references to the data */
736 for (int j = 0; j < size; j++) {
737 stage_prog_data->param[dst * 4 + new_chan[src] + j] =
738 param[src * 4 + j];
739 }
740 }
741
742 /* Continue with the rest of data, which is aligned to vec4. */
743 for (int src = 0; src < uniforms; src++) {
744 int size = chans_used[src];
745
746 if (size == 0 || is_aligned_to_dvec4[src])
747 continue;
748
749 int dst = set_push_constant_loc(uniforms, &new_uniform_count,
750 src, size, channel_sizes[src],
751 new_loc, new_chan,
752 new_chans_used);
753 /* Move the references to the data */
754 for (int j = 0; j < size; j++) {
755 stage_prog_data->param[dst * 4 + new_chan[src] + j] =
756 param[src * 4 + j];
757 }
758 }
759
760 ralloc_free(param);
761 this->uniforms = new_uniform_count;
762
763 /* Now, update the instructions for our repacked uniforms. */
764 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
765 for (int i = 0 ; i < 3; i++) {
766 int src = inst->src[i].nr;
767
768 if (inst->src[i].file != UNIFORM)
769 continue;
770
771 int chan = new_chan[src] / channel_sizes[src];
772 inst->src[i].nr = new_loc[src];
773 inst->src[i].swizzle += BRW_SWIZZLE4(chan, chan, chan, chan);
774 }
775 }
776 }
777
778 /**
779 * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
780 *
781 * While GLSL IR also performs this optimization, we end up with it in
782 * our instruction stream for a couple of reasons. One is that we
783 * sometimes generate silly instructions, for example in array access
784 * where we'll generate "ADD offset, index, base" even if base is 0.
785 * The other is that GLSL IR's constant propagation doesn't track the
786 * components of aggregates, so some VS patterns (initialize matrix to
787 * 0, accumulate in vertex blending factors) end up breaking down to
788 * instructions involving 0.
789 */
790 bool
791 vec4_visitor::opt_algebraic()
792 {
793 bool progress = false;
794
795 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
796 switch (inst->opcode) {
797 case BRW_OPCODE_MOV:
798 if (inst->src[0].file != IMM)
799 break;
800
801 if (inst->saturate) {
802 if (inst->dst.type != inst->src[0].type)
803 assert(!"unimplemented: saturate mixed types");
804
805 if (brw_saturate_immediate(inst->dst.type,
806 &inst->src[0].as_brw_reg())) {
807 inst->saturate = false;
808 progress = true;
809 }
810 }
811 break;
812
813 case BRW_OPCODE_OR:
814 if (inst->src[1].is_zero()) {
815 inst->opcode = BRW_OPCODE_MOV;
816 inst->src[1] = src_reg();
817 progress = true;
818 }
819 break;
820
821 case VEC4_OPCODE_UNPACK_UNIFORM:
822 if (inst->src[0].file != UNIFORM) {
823 inst->opcode = BRW_OPCODE_MOV;
824 progress = true;
825 }
826 break;
827
828 case BRW_OPCODE_ADD:
829 if (inst->src[1].is_zero()) {
830 inst->opcode = BRW_OPCODE_MOV;
831 inst->src[1] = src_reg();
832 progress = true;
833 }
834 break;
835
836 case BRW_OPCODE_MUL:
837 if (inst->src[1].is_zero()) {
838 inst->opcode = BRW_OPCODE_MOV;
839 switch (inst->src[0].type) {
840 case BRW_REGISTER_TYPE_F:
841 inst->src[0] = brw_imm_f(0.0f);
842 break;
843 case BRW_REGISTER_TYPE_D:
844 inst->src[0] = brw_imm_d(0);
845 break;
846 case BRW_REGISTER_TYPE_UD:
847 inst->src[0] = brw_imm_ud(0u);
848 break;
849 default:
850 unreachable("not reached");
851 }
852 inst->src[1] = src_reg();
853 progress = true;
854 } else if (inst->src[1].is_one()) {
855 inst->opcode = BRW_OPCODE_MOV;
856 inst->src[1] = src_reg();
857 progress = true;
858 } else if (inst->src[1].is_negative_one()) {
859 inst->opcode = BRW_OPCODE_MOV;
860 inst->src[0].negate = !inst->src[0].negate;
861 inst->src[1] = src_reg();
862 progress = true;
863 }
864 break;
865 case BRW_OPCODE_CMP:
866 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
867 inst->src[0].abs &&
868 inst->src[0].negate &&
869 inst->src[1].is_zero()) {
870 inst->src[0].abs = false;
871 inst->src[0].negate = false;
872 inst->conditional_mod = BRW_CONDITIONAL_Z;
873 progress = true;
874 break;
875 }
876 break;
877 case SHADER_OPCODE_BROADCAST:
878 if (is_uniform(inst->src[0]) ||
879 inst->src[1].is_zero()) {
880 inst->opcode = BRW_OPCODE_MOV;
881 inst->src[1] = src_reg();
882 inst->force_writemask_all = true;
883 progress = true;
884 }
885 break;
886
887 default:
888 break;
889 }
890 }
891
892 if (progress)
893 invalidate_live_intervals();
894
895 return progress;
896 }
897
898 /**
899 * Only a limited number of hardware registers may be used for push
900 * constants, so this turns access to the overflowed constants into
901 * pull constants.
902 */
903 void
904 vec4_visitor::move_push_constants_to_pull_constants()
905 {
906 int pull_constant_loc[this->uniforms];
907
908 /* Only allow 32 registers (256 uniform components) as push constants,
909 * which is the limit on gen6.
910 *
911 * If changing this value, note the limitation about total_regs in
912 * brw_curbe.c.
913 */
914 int max_uniform_components = 32 * 8;
915 if (this->uniforms * 4 <= max_uniform_components)
916 return;
917
918 /* Make some sort of choice as to which uniforms get sent to pull
919 * constants. We could potentially do something clever here like
920 * look for the most infrequently used uniform vec4s, but leave
921 * that for later.
922 */
923 for (int i = 0; i < this->uniforms * 4; i += 4) {
924 pull_constant_loc[i / 4] = -1;
925
926 if (i >= max_uniform_components) {
927 uint32_t *values = &stage_prog_data->param[i];
928
929 /* Try to find an existing copy of this uniform in the pull
930 * constants if it was part of an array access already.
931 */
932 for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) {
933 int matches;
934
935 for (matches = 0; matches < 4; matches++) {
936 if (stage_prog_data->pull_param[j + matches] != values[matches])
937 break;
938 }
939
940 if (matches == 4) {
941 pull_constant_loc[i / 4] = j / 4;
942 break;
943 }
944 }
945
946 if (pull_constant_loc[i / 4] == -1) {
947 assert(stage_prog_data->nr_pull_params % 4 == 0);
948 pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4;
949
950 for (int j = 0; j < 4; j++) {
951 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
952 values[j];
953 }
954 }
955 }
956 }
957
958 /* Now actually rewrite usage of the things we've moved to pull
959 * constants.
960 */
961 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
962 for (int i = 0 ; i < 3; i++) {
963 if (inst->src[i].file != UNIFORM ||
964 pull_constant_loc[inst->src[i].nr] == -1)
965 continue;
966
967 int uniform = inst->src[i].nr;
968
969 const glsl_type *temp_type = type_sz(inst->src[i].type) == 8 ?
970 glsl_type::dvec4_type : glsl_type::vec4_type;
971 dst_reg temp = dst_reg(this, temp_type);
972
973 emit_pull_constant_load(block, inst, temp, inst->src[i],
974 pull_constant_loc[uniform], src_reg());
975
976 inst->src[i].file = temp.file;
977 inst->src[i].nr = temp.nr;
978 inst->src[i].offset %= 16;
979 inst->src[i].reladdr = NULL;
980 }
981 }
982
983 /* Repack push constants to remove the now-unused ones. */
984 pack_uniform_registers();
985 }
986
987 /* Conditions for which we want to avoid setting the dependency control bits */
988 bool
989 vec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst)
990 {
991 #define IS_DWORD(reg) \
992 (reg.type == BRW_REGISTER_TYPE_UD || \
993 reg.type == BRW_REGISTER_TYPE_D)
994
995 #define IS_64BIT(reg) (reg.file != BAD_FILE && type_sz(reg.type) == 8)
996
997 /* From the Cherryview and Broadwell PRMs:
998 *
999 * "When source or destination datatype is 64b or operation is integer DWord
1000 * multiply, DepCtrl must not be used."
1001 *
1002 * SKL PRMs don't include this restriction, however, gen7 seems to be
1003 * affected, at least by the 64b restriction, since DepCtrl with double
1004 * precision instructions seems to produce GPU hangs in some cases.
1005 */
1006 if (devinfo->gen == 8 || gen_device_info_is_9lp(devinfo)) {
1007 if (inst->opcode == BRW_OPCODE_MUL &&
1008 IS_DWORD(inst->src[0]) &&
1009 IS_DWORD(inst->src[1]))
1010 return true;
1011 }
1012
1013 if (devinfo->gen >= 7 && devinfo->gen <= 8) {
1014 if (IS_64BIT(inst->dst) || IS_64BIT(inst->src[0]) ||
1015 IS_64BIT(inst->src[1]) || IS_64BIT(inst->src[2]))
1016 return true;
1017 }
1018
1019 #undef IS_64BIT
1020 #undef IS_DWORD
1021
1022 if (devinfo->gen >= 8) {
1023 if (inst->opcode == BRW_OPCODE_F32TO16)
1024 return true;
1025 }
1026
1027 /*
1028 * mlen:
1029 * In the presence of send messages, totally interrupt dependency
1030 * control. They're long enough that the chance of dependency
1031 * control around them just doesn't matter.
1032 *
1033 * predicate:
1034 * From the Ivy Bridge PRM, volume 4 part 3.7, page 80:
1035 * When a sequence of NoDDChk and NoDDClr are used, the last instruction that
1036 * completes the scoreboard clear must have a non-zero execution mask. This
1037 * means, if any kind of predication can change the execution mask or channel
1038 * enable of the last instruction, the optimization must be avoided. This is
1039 * to avoid instructions being shot down the pipeline when no writes are
1040 * required.
1041 *
1042 * math:
1043 * Dependency control does not work well over math instructions.
1044 * NB: Discovered empirically
1045 */
1046 return (inst->mlen || inst->predicate || inst->is_math());
1047 }
1048
1049 /**
1050 * Sets the dependency control fields on instructions after register
1051 * allocation and before the generator is run.
1052 *
1053 * When you have a sequence of instructions like:
1054 *
1055 * DP4 temp.x vertex uniform[0]
1056 * DP4 temp.y vertex uniform[0]
1057 * DP4 temp.z vertex uniform[0]
1058 * DP4 temp.w vertex uniform[0]
1059 *
1060 * The hardware doesn't know that it can actually run the later instructions
1061 * while the previous ones are in flight, producing stalls. However, we have
1062 * manual fields we can set in the instructions that let it do so.
1063 */
1064 void
1065 vec4_visitor::opt_set_dependency_control()
1066 {
1067 vec4_instruction *last_grf_write[BRW_MAX_GRF];
1068 uint8_t grf_channels_written[BRW_MAX_GRF];
1069 vec4_instruction *last_mrf_write[BRW_MAX_GRF];
1070 uint8_t mrf_channels_written[BRW_MAX_GRF];
1071
1072 assert(prog_data->total_grf ||
1073 !"Must be called after register allocation");
1074
1075 foreach_block (block, cfg) {
1076 memset(last_grf_write, 0, sizeof(last_grf_write));
1077 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1078
1079 foreach_inst_in_block (vec4_instruction, inst, block) {
1080 /* If we read from a register that we were doing dependency control
1081 * on, don't do dependency control across the read.
1082 */
1083 for (int i = 0; i < 3; i++) {
1084 int reg = inst->src[i].nr + inst->src[i].offset / REG_SIZE;
1085 if (inst->src[i].file == VGRF) {
1086 last_grf_write[reg] = NULL;
1087 } else if (inst->src[i].file == FIXED_GRF) {
1088 memset(last_grf_write, 0, sizeof(last_grf_write));
1089 break;
1090 }
1091 assert(inst->src[i].file != MRF);
1092 }
1093
1094 if (is_dep_ctrl_unsafe(inst)) {
1095 memset(last_grf_write, 0, sizeof(last_grf_write));
1096 memset(last_mrf_write, 0, sizeof(last_mrf_write));
1097 continue;
1098 }
1099
1100 /* Now, see if we can do dependency control for this instruction
1101 * against a previous one writing to its destination.
1102 */
1103 int reg = inst->dst.nr + inst->dst.offset / REG_SIZE;
1104 if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) {
1105 if (last_grf_write[reg] &&
1106 last_grf_write[reg]->dst.offset == inst->dst.offset &&
1107 !(inst->dst.writemask & grf_channels_written[reg])) {
1108 last_grf_write[reg]->no_dd_clear = true;
1109 inst->no_dd_check = true;
1110 } else {
1111 grf_channels_written[reg] = 0;
1112 }
1113
1114 last_grf_write[reg] = inst;
1115 grf_channels_written[reg] |= inst->dst.writemask;
1116 } else if (inst->dst.file == MRF) {
1117 if (last_mrf_write[reg] &&
1118 last_mrf_write[reg]->dst.offset == inst->dst.offset &&
1119 !(inst->dst.writemask & mrf_channels_written[reg])) {
1120 last_mrf_write[reg]->no_dd_clear = true;
1121 inst->no_dd_check = true;
1122 } else {
1123 mrf_channels_written[reg] = 0;
1124 }
1125
1126 last_mrf_write[reg] = inst;
1127 mrf_channels_written[reg] |= inst->dst.writemask;
1128 }
1129 }
1130 }
1131 }
1132
1133 bool
1134 vec4_instruction::can_reswizzle(const struct gen_device_info *devinfo,
1135 int dst_writemask,
1136 int swizzle,
1137 int swizzle_mask)
1138 {
1139 /* Gen6 MATH instructions can not execute in align16 mode, so swizzles
1140 * are not allowed.
1141 */
1142 if (devinfo->gen == 6 && is_math() && swizzle != BRW_SWIZZLE_XYZW)
1143 return false;
1144
1145 /* We can't swizzle implicit accumulator access. We'd have to
1146 * reswizzle the producer of the accumulator value in addition
1147 * to the consumer (i.e. both MUL and MACH). Just skip this.
1148 */
1149 if (reads_accumulator_implicitly())
1150 return false;
1151
1152 if (!can_do_writemask(devinfo) && dst_writemask != WRITEMASK_XYZW)
1153 return false;
1154
1155 /* If this instruction sets anything not referenced by swizzle, then we'd
1156 * totally break it when we reswizzle.
1157 */
1158 if (dst.writemask & ~swizzle_mask)
1159 return false;
1160
1161 if (mlen > 0)
1162 return false;
1163
1164 for (int i = 0; i < 3; i++) {
1165 if (src[i].is_accumulator())
1166 return false;
1167 }
1168
1169 return true;
1170 }
1171
1172 /**
1173 * For any channels in the swizzle's source that were populated by this
1174 * instruction, rewrite the instruction to put the appropriate result directly
1175 * in those channels.
1176 *
1177 * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
1178 */
1179 void
1180 vec4_instruction::reswizzle(int dst_writemask, int swizzle)
1181 {
1182 /* Destination write mask doesn't correspond to source swizzle for the dot
1183 * product and pack_bytes instructions.
1184 */
1185 if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH &&
1186 opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2 &&
1187 opcode != VEC4_OPCODE_PACK_BYTES) {
1188 for (int i = 0; i < 3; i++) {
1189 if (src[i].file == BAD_FILE || src[i].file == IMM)
1190 continue;
1191
1192 src[i].swizzle = brw_compose_swizzle(swizzle, src[i].swizzle);
1193 }
1194 }
1195
1196 /* Apply the specified swizzle and writemask to the original mask of
1197 * written components.
1198 */
1199 dst.writemask = dst_writemask &
1200 brw_apply_swizzle_to_mask(swizzle, dst.writemask);
1201 }
1202
1203 /*
1204 * Tries to reduce extra MOV instructions by taking temporary GRFs that get
1205 * just written and then MOVed into another reg and making the original write
1206 * of the GRF write directly to the final destination instead.
1207 */
1208 bool
1209 vec4_visitor::opt_register_coalesce()
1210 {
1211 bool progress = false;
1212 int next_ip = 0;
1213
1214 calculate_live_intervals();
1215
1216 foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
1217 int ip = next_ip;
1218 next_ip++;
1219
1220 if (inst->opcode != BRW_OPCODE_MOV ||
1221 (inst->dst.file != VGRF && inst->dst.file != MRF) ||
1222 inst->predicate ||
1223 inst->src[0].file != VGRF ||
1224 inst->dst.type != inst->src[0].type ||
1225 inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
1226 continue;
1227
1228 /* Remove no-op MOVs */
1229 if (inst->dst.file == inst->src[0].file &&
1230 inst->dst.nr == inst->src[0].nr &&
1231 inst->dst.offset == inst->src[0].offset) {
1232 bool is_nop_mov = true;
1233
1234 for (unsigned c = 0; c < 4; c++) {
1235 if ((inst->dst.writemask & (1 << c)) == 0)
1236 continue;
1237
1238 if (BRW_GET_SWZ(inst->src[0].swizzle, c) != c) {
1239 is_nop_mov = false;
1240 break;
1241 }
1242 }
1243
1244 if (is_nop_mov) {
1245 inst->remove(block);
1246 progress = true;
1247 continue;
1248 }
1249 }
1250
1251 bool to_mrf = (inst->dst.file == MRF);
1252
1253 /* Can't coalesce this GRF if someone else was going to
1254 * read it later.
1255 */
1256 if (var_range_end(var_from_reg(alloc, dst_reg(inst->src[0])), 8) > ip)
1257 continue;
1258
1259 /* We need to check interference with the final destination between this
1260 * instruction and the earliest instruction involved in writing the GRF
1261 * we're eliminating. To do that, keep track of which of our source
1262 * channels we've seen initialized.
1263 */
1264 const unsigned chans_needed =
1265 brw_apply_inv_swizzle_to_mask(inst->src[0].swizzle,
1266 inst->dst.writemask);
1267 unsigned chans_remaining = chans_needed;
1268
1269 /* Now walk up the instruction stream trying to see if we can rewrite
1270 * everything writing to the temporary to write into the destination
1271 * instead.
1272 */
1273 vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev;
1274 foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst,
1275 inst) {
1276 _scan_inst = scan_inst;
1277
1278 if (regions_overlap(inst->src[0], inst->size_read(0),
1279 scan_inst->dst, scan_inst->size_written)) {
1280 /* Found something writing to the reg we want to coalesce away. */
1281 if (to_mrf) {
1282 /* SEND instructions can't have MRF as a destination. */
1283 if (scan_inst->mlen)
1284 break;
1285
1286 if (devinfo->gen == 6) {
1287 /* gen6 math instructions must have the destination be
1288 * VGRF, so no compute-to-MRF for them.
1289 */
1290 if (scan_inst->is_math()) {
1291 break;
1292 }
1293 }
1294 }
1295
1296 /* VS_OPCODE_UNPACK_FLAGS_SIMD4X2 generates a bunch of mov(1)
1297 * instructions, and this optimization pass is not capable of
1298 * handling that. Bail on these instructions and hope that some
1299 * later optimization pass can do the right thing after they are
1300 * expanded.
1301 */
1302 if (scan_inst->opcode == VS_OPCODE_UNPACK_FLAGS_SIMD4X2)
1303 break;
1304
1305 /* This doesn't handle saturation on the instruction we
1306 * want to coalesce away if the register types do not match.
1307 * But if scan_inst is a non type-converting 'mov', we can fix
1308 * the types later.
1309 */
1310 if (inst->saturate &&
1311 inst->dst.type != scan_inst->dst.type &&
1312 !(scan_inst->opcode == BRW_OPCODE_MOV &&
1313 scan_inst->dst.type == scan_inst->src[0].type))
1314 break;
1315
1316 /* Only allow coalescing between registers of the same type size.
1317 * Otherwise we would need to make the pass aware of the fact that
1318 * channel sizes are different for single and double precision.
1319 */
1320 if (type_sz(inst->src[0].type) != type_sz(scan_inst->src[0].type))
1321 break;
1322
1323 /* Check that scan_inst writes the same amount of data as the
1324 * instruction, otherwise coalescing would lead to writing a
1325 * different (larger or smaller) region of the destination
1326 */
1327 if (scan_inst->size_written != inst->size_written)
1328 break;
1329
1330 /* If we can't handle the swizzle, bail. */
1331 if (!scan_inst->can_reswizzle(devinfo, inst->dst.writemask,
1332 inst->src[0].swizzle,
1333 chans_needed)) {
1334 break;
1335 }
1336
1337 /* This only handles coalescing writes of 8 channels (1 register
1338 * for single-precision and 2 registers for double-precision)
1339 * starting at the source offset of the copy instruction.
1340 */
1341 if (DIV_ROUND_UP(scan_inst->size_written,
1342 type_sz(scan_inst->dst.type)) > 8 ||
1343 scan_inst->dst.offset != inst->src[0].offset)
1344 break;
1345
1346 /* Mark which channels we found unconditional writes for. */
1347 if (!scan_inst->predicate)
1348 chans_remaining &= ~scan_inst->dst.writemask;
1349
1350 if (chans_remaining == 0)
1351 break;
1352 }
1353
1354 /* You can't read from an MRF, so if someone else reads our MRF's
1355 * source GRF that we wanted to rewrite, that stops us. If it's a
1356 * GRF we're trying to coalesce to, we don't actually handle
1357 * rewriting sources so bail in that case as well.
1358 */
1359 bool interfered = false;
1360 for (int i = 0; i < 3; i++) {
1361 if (regions_overlap(inst->src[0], inst->size_read(0),
1362 scan_inst->src[i], scan_inst->size_read(i)))
1363 interfered = true;
1364 }
1365 if (interfered)
1366 break;
1367
1368 /* If somebody else writes the same channels of our destination here,
1369 * we can't coalesce before that.
1370 */
1371 if (regions_overlap(inst->dst, inst->size_written,
1372 scan_inst->dst, scan_inst->size_written) &&
1373 (inst->dst.writemask & scan_inst->dst.writemask) != 0) {
1374 break;
1375 }
1376
1377 /* Check for reads of the register we're trying to coalesce into. We
1378 * can't go rewriting instructions above that to put some other value
1379 * in the register instead.
1380 */
1381 if (to_mrf && scan_inst->mlen > 0) {
1382 if (inst->dst.nr >= scan_inst->base_mrf &&
1383 inst->dst.nr < scan_inst->base_mrf + scan_inst->mlen) {
1384 break;
1385 }
1386 } else {
1387 for (int i = 0; i < 3; i++) {
1388 if (regions_overlap(inst->dst, inst->size_written,
1389 scan_inst->src[i], scan_inst->size_read(i)))
1390 interfered = true;
1391 }
1392 if (interfered)
1393 break;
1394 }
1395 }
1396
1397 if (chans_remaining == 0) {
1398 /* If we've made it here, we have an MOV we want to coalesce out, and
1399 * a scan_inst pointing to the earliest instruction involved in
1400 * computing the value. Now go rewrite the instruction stream
1401 * between the two.
1402 */
1403 vec4_instruction *scan_inst = _scan_inst;
1404 while (scan_inst != inst) {
1405 if (scan_inst->dst.file == VGRF &&
1406 scan_inst->dst.nr == inst->src[0].nr &&
1407 scan_inst->dst.offset == inst->src[0].offset) {
1408 scan_inst->reswizzle(inst->dst.writemask,
1409 inst->src[0].swizzle);
1410 scan_inst->dst.file = inst->dst.file;
1411 scan_inst->dst.nr = inst->dst.nr;
1412 scan_inst->dst.offset = inst->dst.offset;
1413 if (inst->saturate &&
1414 inst->dst.type != scan_inst->dst.type) {
1415 /* If we have reached this point, scan_inst is a non
1416 * type-converting 'mov' and we can modify its register types
1417 * to match the ones in inst. Otherwise, we could have an
1418 * incorrect saturation result.
1419 */
1420 scan_inst->dst.type = inst->dst.type;
1421 scan_inst->src[0].type = inst->src[0].type;
1422 }
1423 scan_inst->saturate |= inst->saturate;
1424 }
1425 scan_inst = (vec4_instruction *)scan_inst->next;
1426 }
1427 inst->remove(block);
1428 progress = true;
1429 }
1430 }
1431
1432 if (progress)
1433 invalidate_live_intervals();
1434
1435 return progress;
1436 }
1437
1438 /**
1439 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
1440 * flow. We could probably do better here with some form of divergence
1441 * analysis.
1442 */
1443 bool
1444 vec4_visitor::eliminate_find_live_channel()
1445 {
1446 bool progress = false;
1447 unsigned depth = 0;
1448
1449 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
1450 /* The optimization below assumes that channel zero is live on thread
1451 * dispatch, which may not be the case if the fixed function dispatches
1452 * threads sparsely.
1453 */
1454 return false;
1455 }
1456
1457 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1458 switch (inst->opcode) {
1459 case BRW_OPCODE_IF:
1460 case BRW_OPCODE_DO:
1461 depth++;
1462 break;
1463
1464 case BRW_OPCODE_ENDIF:
1465 case BRW_OPCODE_WHILE:
1466 depth--;
1467 break;
1468
1469 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
1470 if (depth == 0) {
1471 inst->opcode = BRW_OPCODE_MOV;
1472 inst->src[0] = brw_imm_d(0);
1473 inst->force_writemask_all = true;
1474 progress = true;
1475 }
1476 break;
1477
1478 default:
1479 break;
1480 }
1481 }
1482
1483 return progress;
1484 }
1485
1486 /**
1487 * Splits virtual GRFs requesting more than one contiguous physical register.
1488 *
1489 * We initially create large virtual GRFs for temporary structures, arrays,
1490 * and matrices, so that the visitor functions can add offsets to work their
1491 * way down to the actual member being accessed. But when it comes to
1492 * optimization, we'd like to treat each register as individual storage if
1493 * possible.
1494 *
1495 * So far, the only thing that might prevent splitting is a send message from
1496 * a GRF on IVB.
1497 */
1498 void
1499 vec4_visitor::split_virtual_grfs()
1500 {
1501 int num_vars = this->alloc.count;
1502 int new_virtual_grf[num_vars];
1503 bool split_grf[num_vars];
1504
1505 memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
1506
1507 /* Try to split anything > 0 sized. */
1508 for (int i = 0; i < num_vars; i++) {
1509 split_grf[i] = this->alloc.sizes[i] != 1;
1510 }
1511
1512 /* Check that the instructions are compatible with the registers we're trying
1513 * to split.
1514 */
1515 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1516 if (inst->dst.file == VGRF && regs_written(inst) > 1)
1517 split_grf[inst->dst.nr] = false;
1518
1519 for (int i = 0; i < 3; i++) {
1520 if (inst->src[i].file == VGRF && regs_read(inst, i) > 1)
1521 split_grf[inst->src[i].nr] = false;
1522 }
1523 }
1524
1525 /* Allocate new space for split regs. Note that the virtual
1526 * numbers will be contiguous.
1527 */
1528 for (int i = 0; i < num_vars; i++) {
1529 if (!split_grf[i])
1530 continue;
1531
1532 new_virtual_grf[i] = alloc.allocate(1);
1533 for (unsigned j = 2; j < this->alloc.sizes[i]; j++) {
1534 unsigned reg = alloc.allocate(1);
1535 assert(reg == new_virtual_grf[i] + j - 1);
1536 (void) reg;
1537 }
1538 this->alloc.sizes[i] = 1;
1539 }
1540
1541 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1542 if (inst->dst.file == VGRF && split_grf[inst->dst.nr] &&
1543 inst->dst.offset / REG_SIZE != 0) {
1544 inst->dst.nr = (new_virtual_grf[inst->dst.nr] +
1545 inst->dst.offset / REG_SIZE - 1);
1546 inst->dst.offset %= REG_SIZE;
1547 }
1548 for (int i = 0; i < 3; i++) {
1549 if (inst->src[i].file == VGRF && split_grf[inst->src[i].nr] &&
1550 inst->src[i].offset / REG_SIZE != 0) {
1551 inst->src[i].nr = (new_virtual_grf[inst->src[i].nr] +
1552 inst->src[i].offset / REG_SIZE - 1);
1553 inst->src[i].offset %= REG_SIZE;
1554 }
1555 }
1556 }
1557 invalidate_live_intervals();
1558 }
1559
1560 void
1561 vec4_visitor::dump_instruction(backend_instruction *be_inst)
1562 {
1563 dump_instruction(be_inst, stderr);
1564 }
1565
1566 void
1567 vec4_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
1568 {
1569 vec4_instruction *inst = (vec4_instruction *)be_inst;
1570
1571 if (inst->predicate) {
1572 fprintf(file, "(%cf%d.%d%s) ",
1573 inst->predicate_inverse ? '-' : '+',
1574 inst->flag_subreg / 2,
1575 inst->flag_subreg % 2,
1576 pred_ctrl_align16[inst->predicate]);
1577 }
1578
1579 fprintf(file, "%s(%d)", brw_instruction_name(devinfo, inst->opcode),
1580 inst->exec_size);
1581 if (inst->saturate)
1582 fprintf(file, ".sat");
1583 if (inst->conditional_mod) {
1584 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
1585 if (!inst->predicate &&
1586 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
1587 inst->opcode != BRW_OPCODE_CSEL &&
1588 inst->opcode != BRW_OPCODE_IF &&
1589 inst->opcode != BRW_OPCODE_WHILE))) {
1590 fprintf(file, ".f%d.%d", inst->flag_subreg / 2, inst->flag_subreg % 2);
1591 }
1592 }
1593 fprintf(file, " ");
1594
1595 switch (inst->dst.file) {
1596 case VGRF:
1597 fprintf(file, "vgrf%d", inst->dst.nr);
1598 break;
1599 case FIXED_GRF:
1600 fprintf(file, "g%d", inst->dst.nr);
1601 break;
1602 case MRF:
1603 fprintf(file, "m%d", inst->dst.nr);
1604 break;
1605 case ARF:
1606 switch (inst->dst.nr) {
1607 case BRW_ARF_NULL:
1608 fprintf(file, "null");
1609 break;
1610 case BRW_ARF_ADDRESS:
1611 fprintf(file, "a0.%d", inst->dst.subnr);
1612 break;
1613 case BRW_ARF_ACCUMULATOR:
1614 fprintf(file, "acc%d", inst->dst.subnr);
1615 break;
1616 case BRW_ARF_FLAG:
1617 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
1618 break;
1619 default:
1620 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
1621 break;
1622 }
1623 break;
1624 case BAD_FILE:
1625 fprintf(file, "(null)");
1626 break;
1627 case IMM:
1628 case ATTR:
1629 case UNIFORM:
1630 unreachable("not reached");
1631 }
1632 if (inst->dst.offset ||
1633 (inst->dst.file == VGRF &&
1634 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
1635 const unsigned reg_size = (inst->dst.file == UNIFORM ? 16 : REG_SIZE);
1636 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
1637 inst->dst.offset % reg_size);
1638 }
1639 if (inst->dst.writemask != WRITEMASK_XYZW) {
1640 fprintf(file, ".");
1641 if (inst->dst.writemask & 1)
1642 fprintf(file, "x");
1643 if (inst->dst.writemask & 2)
1644 fprintf(file, "y");
1645 if (inst->dst.writemask & 4)
1646 fprintf(file, "z");
1647 if (inst->dst.writemask & 8)
1648 fprintf(file, "w");
1649 }
1650 fprintf(file, ":%s", brw_reg_type_to_letters(inst->dst.type));
1651
1652 if (inst->src[0].file != BAD_FILE)
1653 fprintf(file, ", ");
1654
1655 for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) {
1656 if (inst->src[i].negate)
1657 fprintf(file, "-");
1658 if (inst->src[i].abs)
1659 fprintf(file, "|");
1660 switch (inst->src[i].file) {
1661 case VGRF:
1662 fprintf(file, "vgrf%d", inst->src[i].nr);
1663 break;
1664 case FIXED_GRF:
1665 fprintf(file, "g%d.%d", inst->src[i].nr, inst->src[i].subnr);
1666 break;
1667 case ATTR:
1668 fprintf(file, "attr%d", inst->src[i].nr);
1669 break;
1670 case UNIFORM:
1671 fprintf(file, "u%d", inst->src[i].nr);
1672 break;
1673 case IMM:
1674 switch (inst->src[i].type) {
1675 case BRW_REGISTER_TYPE_F:
1676 fprintf(file, "%fF", inst->src[i].f);
1677 break;
1678 case BRW_REGISTER_TYPE_DF:
1679 fprintf(file, "%fDF", inst->src[i].df);
1680 break;
1681 case BRW_REGISTER_TYPE_D:
1682 fprintf(file, "%dD", inst->src[i].d);
1683 break;
1684 case BRW_REGISTER_TYPE_UD:
1685 fprintf(file, "%uU", inst->src[i].ud);
1686 break;
1687 case BRW_REGISTER_TYPE_VF:
1688 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
1689 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
1690 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
1691 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
1692 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
1693 break;
1694 default:
1695 fprintf(file, "???");
1696 break;
1697 }
1698 break;
1699 case ARF:
1700 switch (inst->src[i].nr) {
1701 case BRW_ARF_NULL:
1702 fprintf(file, "null");
1703 break;
1704 case BRW_ARF_ADDRESS:
1705 fprintf(file, "a0.%d", inst->src[i].subnr);
1706 break;
1707 case BRW_ARF_ACCUMULATOR:
1708 fprintf(file, "acc%d", inst->src[i].subnr);
1709 break;
1710 case BRW_ARF_FLAG:
1711 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
1712 break;
1713 default:
1714 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
1715 break;
1716 }
1717 break;
1718 case BAD_FILE:
1719 fprintf(file, "(null)");
1720 break;
1721 case MRF:
1722 unreachable("not reached");
1723 }
1724
1725 if (inst->src[i].offset ||
1726 (inst->src[i].file == VGRF &&
1727 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
1728 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 16 : REG_SIZE);
1729 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
1730 inst->src[i].offset % reg_size);
1731 }
1732
1733 if (inst->src[i].file != IMM) {
1734 static const char *chans[4] = {"x", "y", "z", "w"};
1735 fprintf(file, ".");
1736 for (int c = 0; c < 4; c++) {
1737 fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
1738 }
1739 }
1740
1741 if (inst->src[i].abs)
1742 fprintf(file, "|");
1743
1744 if (inst->src[i].file != IMM) {
1745 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
1746 }
1747
1748 if (i < 2 && inst->src[i + 1].file != BAD_FILE)
1749 fprintf(file, ", ");
1750 }
1751
1752 if (inst->force_writemask_all)
1753 fprintf(file, " NoMask");
1754
1755 if (inst->exec_size != 8)
1756 fprintf(file, " group%d", inst->group);
1757
1758 fprintf(file, "\n");
1759 }
1760
1761
1762 int
1763 vec4_vs_visitor::setup_attributes(int payload_reg)
1764 {
1765 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1766 for (int i = 0; i < 3; i++) {
1767 if (inst->src[i].file == ATTR) {
1768 assert(inst->src[i].offset % REG_SIZE == 0);
1769 int grf = payload_reg + inst->src[i].nr +
1770 inst->src[i].offset / REG_SIZE;
1771
1772 struct brw_reg reg = brw_vec8_grf(grf, 0);
1773 reg.swizzle = inst->src[i].swizzle;
1774 reg.type = inst->src[i].type;
1775 reg.abs = inst->src[i].abs;
1776 reg.negate = inst->src[i].negate;
1777 inst->src[i] = reg;
1778 }
1779 }
1780 }
1781
1782 return payload_reg + vs_prog_data->nr_attribute_slots;
1783 }
1784
1785 int
1786 vec4_visitor::setup_uniforms(int reg)
1787 {
1788 prog_data->base.dispatch_grf_start_reg = reg;
1789
1790 /* The pre-gen6 VS requires that some push constants get loaded no
1791 * matter what, or the GPU would hang.
1792 */
1793 if (devinfo->gen < 6 && this->uniforms == 0) {
1794 brw_stage_prog_data_add_params(stage_prog_data, 4);
1795 for (unsigned int i = 0; i < 4; i++) {
1796 unsigned int slot = this->uniforms * 4 + i;
1797 stage_prog_data->param[slot] = BRW_PARAM_BUILTIN_ZERO;
1798 }
1799
1800 this->uniforms++;
1801 reg++;
1802 } else {
1803 reg += ALIGN(uniforms, 2) / 2;
1804 }
1805
1806 for (int i = 0; i < 4; i++)
1807 reg += stage_prog_data->ubo_ranges[i].length;
1808
1809 stage_prog_data->nr_params = this->uniforms * 4;
1810
1811 prog_data->base.curb_read_length =
1812 reg - prog_data->base.dispatch_grf_start_reg;
1813
1814 return reg;
1815 }
1816
1817 void
1818 vec4_vs_visitor::setup_payload(void)
1819 {
1820 int reg = 0;
1821
1822 /* The payload always contains important data in g0, which contains
1823 * the URB handles that are passed on to the URB write at the end
1824 * of the thread. So, we always start push constants at g1.
1825 */
1826 reg++;
1827
1828 reg = setup_uniforms(reg);
1829
1830 reg = setup_attributes(reg);
1831
1832 this->first_non_payload_grf = reg;
1833 }
1834
1835 bool
1836 vec4_visitor::lower_minmax()
1837 {
1838 assert(devinfo->gen < 6);
1839
1840 bool progress = false;
1841
1842 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1843 const vec4_builder ibld(this, block, inst);
1844
1845 if (inst->opcode == BRW_OPCODE_SEL &&
1846 inst->predicate == BRW_PREDICATE_NONE) {
1847 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
1848 * the original SEL.L/GE instruction
1849 */
1850 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
1851 inst->conditional_mod);
1852 inst->predicate = BRW_PREDICATE_NORMAL;
1853 inst->conditional_mod = BRW_CONDITIONAL_NONE;
1854
1855 progress = true;
1856 }
1857 }
1858
1859 if (progress)
1860 invalidate_live_intervals();
1861
1862 return progress;
1863 }
1864
1865 src_reg
1866 vec4_visitor::get_timestamp()
1867 {
1868 assert(devinfo->gen >= 7);
1869
1870 src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
1871 BRW_ARF_TIMESTAMP,
1872 0,
1873 0,
1874 0,
1875 BRW_REGISTER_TYPE_UD,
1876 BRW_VERTICAL_STRIDE_0,
1877 BRW_WIDTH_4,
1878 BRW_HORIZONTAL_STRIDE_4,
1879 BRW_SWIZZLE_XYZW,
1880 WRITEMASK_XYZW));
1881
1882 dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
1883
1884 vec4_instruction *mov = emit(MOV(dst, ts));
1885 /* We want to read the 3 fields we care about (mostly field 0, but also 2)
1886 * even if it's not enabled in the dispatch.
1887 */
1888 mov->force_writemask_all = true;
1889
1890 return src_reg(dst);
1891 }
1892
1893 void
1894 vec4_visitor::emit_shader_time_begin()
1895 {
1896 current_annotation = "shader time start";
1897 shader_start_time = get_timestamp();
1898 }
1899
1900 void
1901 vec4_visitor::emit_shader_time_end()
1902 {
1903 current_annotation = "shader time end";
1904 src_reg shader_end_time = get_timestamp();
1905
1906
1907 /* Check that there weren't any timestamp reset events (assuming these
1908 * were the only two timestamp reads that happened).
1909 */
1910 src_reg reset_end = shader_end_time;
1911 reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
1912 vec4_instruction *test = emit(AND(dst_null_ud(), reset_end, brw_imm_ud(1u)));
1913 test->conditional_mod = BRW_CONDITIONAL_Z;
1914
1915 emit(IF(BRW_PREDICATE_NORMAL));
1916
1917 /* Take the current timestamp and get the delta. */
1918 shader_start_time.negate = true;
1919 dst_reg diff = dst_reg(this, glsl_type::uint_type);
1920 emit(ADD(diff, shader_start_time, shader_end_time));
1921
1922 /* If there were no instructions between the two timestamp gets, the diff
1923 * is 2 cycles. Remove that overhead, so I can forget about that when
1924 * trying to determine the time taken for single instructions.
1925 */
1926 emit(ADD(diff, src_reg(diff), brw_imm_ud(-2u)));
1927
1928 emit_shader_time_write(0, src_reg(diff));
1929 emit_shader_time_write(1, brw_imm_ud(1u));
1930 emit(BRW_OPCODE_ELSE);
1931 emit_shader_time_write(2, brw_imm_ud(1u));
1932 emit(BRW_OPCODE_ENDIF);
1933 }
1934
1935 void
1936 vec4_visitor::emit_shader_time_write(int shader_time_subindex, src_reg value)
1937 {
1938 dst_reg dst =
1939 dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
1940
1941 dst_reg offset = dst;
1942 dst_reg time = dst;
1943 time.offset += REG_SIZE;
1944
1945 offset.type = BRW_REGISTER_TYPE_UD;
1946 int index = shader_time_index * 3 + shader_time_subindex;
1947 emit(MOV(offset, brw_imm_d(index * BRW_SHADER_TIME_STRIDE)));
1948
1949 time.type = BRW_REGISTER_TYPE_UD;
1950 emit(MOV(time, value));
1951
1952 vec4_instruction *inst =
1953 emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
1954 inst->mlen = 2;
1955 }
1956
1957 static bool
1958 is_align1_df(vec4_instruction *inst)
1959 {
1960 switch (inst->opcode) {
1961 case VEC4_OPCODE_DOUBLE_TO_F32:
1962 case VEC4_OPCODE_DOUBLE_TO_D32:
1963 case VEC4_OPCODE_DOUBLE_TO_U32:
1964 case VEC4_OPCODE_TO_DOUBLE:
1965 case VEC4_OPCODE_PICK_LOW_32BIT:
1966 case VEC4_OPCODE_PICK_HIGH_32BIT:
1967 case VEC4_OPCODE_SET_LOW_32BIT:
1968 case VEC4_OPCODE_SET_HIGH_32BIT:
1969 return true;
1970 default:
1971 return false;
1972 }
1973 }
1974
1975 /**
1976 * Three source instruction must have a GRF/MRF destination register.
1977 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
1978 */
1979 void
1980 vec4_visitor::fixup_3src_null_dest()
1981 {
1982 bool progress = false;
1983
1984 foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
1985 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
1986 const unsigned size_written = type_sz(inst->dst.type);
1987 const unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE);
1988
1989 inst->dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)),
1990 inst->dst.type);
1991 progress = true;
1992 }
1993 }
1994
1995 if (progress)
1996 invalidate_live_intervals();
1997 }
1998
1999 void
2000 vec4_visitor::convert_to_hw_regs()
2001 {
2002 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
2003 for (int i = 0; i < 3; i++) {
2004 class src_reg &src = inst->src[i];
2005 struct brw_reg reg;
2006 switch (src.file) {
2007 case VGRF: {
2008 reg = byte_offset(brw_vecn_grf(4, src.nr, 0), src.offset);
2009 reg.type = src.type;
2010 reg.abs = src.abs;
2011 reg.negate = src.negate;
2012 break;
2013 }
2014
2015 case UNIFORM: {
2016 reg = stride(byte_offset(brw_vec4_grf(
2017 prog_data->base.dispatch_grf_start_reg +
2018 src.nr / 2, src.nr % 2 * 4),
2019 src.offset),
2020 0, 4, 1);
2021 reg.type = src.type;
2022 reg.abs = src.abs;
2023 reg.negate = src.negate;
2024
2025 /* This should have been moved to pull constants. */
2026 assert(!src.reladdr);
2027 break;
2028 }
2029
2030 case FIXED_GRF:
2031 if (type_sz(src.type) == 8) {
2032 reg = src.as_brw_reg();
2033 break;
2034 }
2035 /* fallthrough */
2036 case ARF:
2037 case IMM:
2038 continue;
2039
2040 case BAD_FILE:
2041 /* Probably unused. */
2042 reg = brw_null_reg();
2043 reg = retype(reg, src.type);
2044 break;
2045
2046 case MRF:
2047 case ATTR:
2048 unreachable("not reached");
2049 }
2050
2051 apply_logical_swizzle(&reg, inst, i);
2052 src = reg;
2053
2054 /* From IVB PRM, vol4, part3, "General Restrictions on Regioning
2055 * Parameters":
2056 *
2057 * "If ExecSize = Width and HorzStride ≠ 0, VertStride must be set
2058 * to Width * HorzStride."
2059 *
2060 * We can break this rule with DF sources on DF align1
2061 * instructions, because the exec_size would be 4 and width is 4.
2062 * As we know we are not accessing to next GRF, it is safe to
2063 * set vstride to the formula given by the rule itself.
2064 */
2065 if (is_align1_df(inst) && (cvt(inst->exec_size) - 1) == src.width)
2066 src.vstride = src.width + src.hstride;
2067 }
2068
2069 if (inst->is_3src(devinfo)) {
2070 /* 3-src instructions with scalar sources support arbitrary subnr,
2071 * but don't actually use swizzles. Convert swizzle into subnr.
2072 * Skip this for double-precision instructions: RepCtrl=1 is not
2073 * allowed for them and needs special handling.
2074 */
2075 for (int i = 0; i < 3; i++) {
2076 if (inst->src[i].vstride == BRW_VERTICAL_STRIDE_0 &&
2077 type_sz(inst->src[i].type) < 8) {
2078 assert(brw_is_single_value_swizzle(inst->src[i].swizzle));
2079 inst->src[i].subnr += 4 * BRW_GET_SWZ(inst->src[i].swizzle, 0);
2080 }
2081 }
2082 }
2083
2084 dst_reg &dst = inst->dst;
2085 struct brw_reg reg;
2086
2087 switch (inst->dst.file) {
2088 case VGRF:
2089 reg = byte_offset(brw_vec8_grf(dst.nr, 0), dst.offset);
2090 reg.type = dst.type;
2091 reg.writemask = dst.writemask;
2092 break;
2093
2094 case MRF:
2095 reg = byte_offset(brw_message_reg(dst.nr), dst.offset);
2096 assert((reg.nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen));
2097 reg.type = dst.type;
2098 reg.writemask = dst.writemask;
2099 break;
2100
2101 case ARF:
2102 case FIXED_GRF:
2103 reg = dst.as_brw_reg();
2104 break;
2105
2106 case BAD_FILE:
2107 reg = brw_null_reg();
2108 reg = retype(reg, dst.type);
2109 break;
2110
2111 case IMM:
2112 case ATTR:
2113 case UNIFORM:
2114 unreachable("not reached");
2115 }
2116
2117 dst = reg;
2118 }
2119 }
2120
2121 static bool
2122 stage_uses_interleaved_attributes(unsigned stage,
2123 enum shader_dispatch_mode dispatch_mode)
2124 {
2125 switch (stage) {
2126 case MESA_SHADER_TESS_EVAL:
2127 return true;
2128 case MESA_SHADER_GEOMETRY:
2129 return dispatch_mode != DISPATCH_MODE_4X2_DUAL_OBJECT;
2130 default:
2131 return false;
2132 }
2133 }
2134
2135 /**
2136 * Get the closest native SIMD width supported by the hardware for instruction
2137 * \p inst. The instruction will be left untouched by
2138 * vec4_visitor::lower_simd_width() if the returned value matches the
2139 * instruction's original execution size.
2140 */
2141 static unsigned
2142 get_lowered_simd_width(const struct gen_device_info *devinfo,
2143 enum shader_dispatch_mode dispatch_mode,
2144 unsigned stage, const vec4_instruction *inst)
2145 {
2146 /* Do not split some instructions that require special handling */
2147 switch (inst->opcode) {
2148 case SHADER_OPCODE_GEN4_SCRATCH_READ:
2149 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
2150 return inst->exec_size;
2151 default:
2152 break;
2153 }
2154
2155 unsigned lowered_width = MIN2(16, inst->exec_size);
2156
2157 /* We need to split some cases of double-precision instructions that write
2158 * 2 registers. We only need to care about this in gen7 because that is the
2159 * only hardware that implements fp64 in Align16.
2160 */
2161 if (devinfo->gen == 7 && inst->size_written > REG_SIZE) {
2162 /* Align16 8-wide double-precision SEL does not work well. Verified
2163 * empirically.
2164 */
2165 if (inst->opcode == BRW_OPCODE_SEL && type_sz(inst->dst.type) == 8)
2166 lowered_width = MIN2(lowered_width, 4);
2167
2168 /* HSW PRM, 3D Media GPGPU Engine, Region Alignment Rules for Direct
2169 * Register Addressing:
2170 *
2171 * "When destination spans two registers, the source MUST span two
2172 * registers."
2173 */
2174 for (unsigned i = 0; i < 3; i++) {
2175 if (inst->src[i].file == BAD_FILE)
2176 continue;
2177 if (inst->size_read(i) <= REG_SIZE)
2178 lowered_width = MIN2(lowered_width, 4);
2179
2180 /* Interleaved attribute setups use a vertical stride of 0, which
2181 * makes them hit the associated instruction decompression bug in gen7.
2182 * Split them to prevent this.
2183 */
2184 if (inst->src[i].file == ATTR &&
2185 stage_uses_interleaved_attributes(stage, dispatch_mode))
2186 lowered_width = MIN2(lowered_width, 4);
2187 }
2188 }
2189
2190 /* IvyBridge can manage a maximum of 4 DFs per SIMD4x2 instruction, since
2191 * it doesn't support compression in Align16 mode, no matter if it has
2192 * force_writemask_all enabled or disabled (the latter is affected by the
2193 * compressed instruction bug in gen7, which is another reason to enforce
2194 * this limit).
2195 */
2196 if (devinfo->gen == 7 && !devinfo->is_haswell &&
2197 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8))
2198 lowered_width = MIN2(lowered_width, 4);
2199
2200 return lowered_width;
2201 }
2202
2203 static bool
2204 dst_src_regions_overlap(vec4_instruction *inst)
2205 {
2206 if (inst->size_written == 0)
2207 return false;
2208
2209 unsigned dst_start = inst->dst.offset;
2210 unsigned dst_end = dst_start + inst->size_written - 1;
2211 for (int i = 0; i < 3; i++) {
2212 if (inst->src[i].file == BAD_FILE)
2213 continue;
2214
2215 if (inst->dst.file != inst->src[i].file ||
2216 inst->dst.nr != inst->src[i].nr)
2217 continue;
2218
2219 unsigned src_start = inst->src[i].offset;
2220 unsigned src_end = src_start + inst->size_read(i) - 1;
2221
2222 if ((dst_start >= src_start && dst_start <= src_end) ||
2223 (dst_end >= src_start && dst_end <= src_end) ||
2224 (dst_start <= src_start && dst_end >= src_end)) {
2225 return true;
2226 }
2227 }
2228
2229 return false;
2230 }
2231
2232 bool
2233 vec4_visitor::lower_simd_width()
2234 {
2235 bool progress = false;
2236
2237 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
2238 const unsigned lowered_width =
2239 get_lowered_simd_width(devinfo, prog_data->dispatch_mode, stage, inst);
2240 assert(lowered_width <= inst->exec_size);
2241 if (lowered_width == inst->exec_size)
2242 continue;
2243
2244 /* We need to deal with source / destination overlaps when splitting.
2245 * The hardware supports reading from and writing to the same register
2246 * in the same instruction, but we need to be careful that each split
2247 * instruction we produce does not corrupt the source of the next.
2248 *
2249 * The easiest way to handle this is to make the split instructions write
2250 * to temporaries if there is an src/dst overlap and then move from the
2251 * temporaries to the original destination. We also need to consider
2252 * instructions that do partial writes via align1 opcodes, in which case
2253 * we need to make sure that the we initialize the temporary with the
2254 * value of the instruction's dst.
2255 */
2256 bool needs_temp = dst_src_regions_overlap(inst);
2257 for (unsigned n = 0; n < inst->exec_size / lowered_width; n++) {
2258 unsigned channel_offset = lowered_width * n;
2259
2260 unsigned size_written = lowered_width * type_sz(inst->dst.type);
2261
2262 /* Create the split instruction from the original so that we copy all
2263 * relevant instruction fields, then set the width and calculate the
2264 * new dst/src regions.
2265 */
2266 vec4_instruction *linst = new(mem_ctx) vec4_instruction(*inst);
2267 linst->exec_size = lowered_width;
2268 linst->group = channel_offset;
2269 linst->size_written = size_written;
2270
2271 /* Compute split dst region */
2272 dst_reg dst;
2273 if (needs_temp) {
2274 unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE);
2275 dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)),
2276 inst->dst.type);
2277 if (inst->is_align1_partial_write()) {
2278 vec4_instruction *copy = MOV(dst, src_reg(inst->dst));
2279 copy->exec_size = lowered_width;
2280 copy->group = channel_offset;
2281 copy->size_written = size_written;
2282 inst->insert_before(block, copy);
2283 }
2284 } else {
2285 dst = horiz_offset(inst->dst, channel_offset);
2286 }
2287 linst->dst = dst;
2288
2289 /* Compute split source regions */
2290 for (int i = 0; i < 3; i++) {
2291 if (linst->src[i].file == BAD_FILE)
2292 continue;
2293
2294 bool is_interleaved_attr =
2295 linst->src[i].file == ATTR &&
2296 stage_uses_interleaved_attributes(stage,
2297 prog_data->dispatch_mode);
2298
2299 if (!is_uniform(linst->src[i]) && !is_interleaved_attr)
2300 linst->src[i] = horiz_offset(linst->src[i], channel_offset);
2301 }
2302
2303 inst->insert_before(block, linst);
2304
2305 /* If we used a temporary to store the result of the split
2306 * instruction, copy the result to the original destination
2307 */
2308 if (needs_temp) {
2309 vec4_instruction *mov =
2310 MOV(offset(inst->dst, lowered_width, n), src_reg(dst));
2311 mov->exec_size = lowered_width;
2312 mov->group = channel_offset;
2313 mov->size_written = size_written;
2314 mov->predicate = inst->predicate;
2315 inst->insert_before(block, mov);
2316 }
2317 }
2318
2319 inst->remove(block);
2320 progress = true;
2321 }
2322
2323 if (progress)
2324 invalidate_live_intervals();
2325
2326 return progress;
2327 }
2328
2329 static brw_predicate
2330 scalarize_predicate(brw_predicate predicate, unsigned writemask)
2331 {
2332 if (predicate != BRW_PREDICATE_NORMAL)
2333 return predicate;
2334
2335 switch (writemask) {
2336 case WRITEMASK_X:
2337 return BRW_PREDICATE_ALIGN16_REPLICATE_X;
2338 case WRITEMASK_Y:
2339 return BRW_PREDICATE_ALIGN16_REPLICATE_Y;
2340 case WRITEMASK_Z:
2341 return BRW_PREDICATE_ALIGN16_REPLICATE_Z;
2342 case WRITEMASK_W:
2343 return BRW_PREDICATE_ALIGN16_REPLICATE_W;
2344 default:
2345 unreachable("invalid writemask");
2346 }
2347 }
2348
2349 /* Gen7 has a hardware decompression bug that we can exploit to represent
2350 * handful of additional swizzles natively.
2351 */
2352 static bool
2353 is_gen7_supported_64bit_swizzle(vec4_instruction *inst, unsigned arg)
2354 {
2355 switch (inst->src[arg].swizzle) {
2356 case BRW_SWIZZLE_XXXX:
2357 case BRW_SWIZZLE_YYYY:
2358 case BRW_SWIZZLE_ZZZZ:
2359 case BRW_SWIZZLE_WWWW:
2360 case BRW_SWIZZLE_XYXY:
2361 case BRW_SWIZZLE_YXYX:
2362 case BRW_SWIZZLE_ZWZW:
2363 case BRW_SWIZZLE_WZWZ:
2364 return true;
2365 default:
2366 return false;
2367 }
2368 }
2369
2370 /* 64-bit sources use regions with a width of 2. These 2 elements in each row
2371 * can be addressed using 32-bit swizzles (which is what the hardware supports)
2372 * but it also means that the swizzle we apply on the first two components of a
2373 * dvec4 is coupled with the swizzle we use for the last 2. In other words,
2374 * only some specific swizzle combinations can be natively supported.
2375 *
2376 * FIXME: we can go an step further and implement even more swizzle
2377 * variations using only partial scalarization.
2378 *
2379 * For more details see:
2380 * https://bugs.freedesktop.org/show_bug.cgi?id=92760#c82
2381 */
2382 bool
2383 vec4_visitor::is_supported_64bit_region(vec4_instruction *inst, unsigned arg)
2384 {
2385 const src_reg &src = inst->src[arg];
2386 assert(type_sz(src.type) == 8);
2387
2388 /* Uniform regions have a vstride=0. Because we use 2-wide rows with
2389 * 64-bit regions it means that we cannot access components Z/W, so
2390 * return false for any such case. Interleaved attributes will also be
2391 * mapped to GRF registers with a vstride of 0, so apply the same
2392 * treatment.
2393 */
2394 if ((is_uniform(src) ||
2395 (stage_uses_interleaved_attributes(stage, prog_data->dispatch_mode) &&
2396 src.file == ATTR)) &&
2397 (brw_mask_for_swizzle(src.swizzle) & 12))
2398 return false;
2399
2400 switch (src.swizzle) {
2401 case BRW_SWIZZLE_XYZW:
2402 case BRW_SWIZZLE_XXZZ:
2403 case BRW_SWIZZLE_YYWW:
2404 case BRW_SWIZZLE_YXWZ:
2405 return true;
2406 default:
2407 return devinfo->gen == 7 && is_gen7_supported_64bit_swizzle(inst, arg);
2408 }
2409 }
2410
2411 bool
2412 vec4_visitor::scalarize_df()
2413 {
2414 bool progress = false;
2415
2416 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
2417 /* Skip DF instructions that operate in Align1 mode */
2418 if (is_align1_df(inst))
2419 continue;
2420
2421 /* Check if this is a double-precision instruction */
2422 bool is_double = type_sz(inst->dst.type) == 8;
2423 for (int arg = 0; !is_double && arg < 3; arg++) {
2424 is_double = inst->src[arg].file != BAD_FILE &&
2425 type_sz(inst->src[arg].type) == 8;
2426 }
2427
2428 if (!is_double)
2429 continue;
2430
2431 /* Skip the lowering for specific regioning scenarios that we can
2432 * support natively.
2433 */
2434 bool skip_lowering = true;
2435
2436 /* XY and ZW writemasks operate in 32-bit, which means that they don't
2437 * have a native 64-bit representation and they should always be split.
2438 */
2439 if (inst->dst.writemask == WRITEMASK_XY ||
2440 inst->dst.writemask == WRITEMASK_ZW) {
2441 skip_lowering = false;
2442 } else {
2443 for (unsigned i = 0; i < 3; i++) {
2444 if (inst->src[i].file == BAD_FILE || type_sz(inst->src[i].type) < 8)
2445 continue;
2446 skip_lowering = skip_lowering && is_supported_64bit_region(inst, i);
2447 }
2448 }
2449
2450 if (skip_lowering)
2451 continue;
2452
2453 /* Generate scalar instructions for each enabled channel */
2454 for (unsigned chan = 0; chan < 4; chan++) {
2455 unsigned chan_mask = 1 << chan;
2456 if (!(inst->dst.writemask & chan_mask))
2457 continue;
2458
2459 vec4_instruction *scalar_inst = new(mem_ctx) vec4_instruction(*inst);
2460
2461 for (unsigned i = 0; i < 3; i++) {
2462 unsigned swz = BRW_GET_SWZ(inst->src[i].swizzle, chan);
2463 scalar_inst->src[i].swizzle = BRW_SWIZZLE4(swz, swz, swz, swz);
2464 }
2465
2466 scalar_inst->dst.writemask = chan_mask;
2467
2468 if (inst->predicate != BRW_PREDICATE_NONE) {
2469 scalar_inst->predicate =
2470 scalarize_predicate(inst->predicate, chan_mask);
2471 }
2472
2473 inst->insert_before(block, scalar_inst);
2474 }
2475
2476 inst->remove(block);
2477 progress = true;
2478 }
2479
2480 if (progress)
2481 invalidate_live_intervals();
2482
2483 return progress;
2484 }
2485
2486 bool
2487 vec4_visitor::lower_64bit_mad_to_mul_add()
2488 {
2489 bool progress = false;
2490
2491 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
2492 if (inst->opcode != BRW_OPCODE_MAD)
2493 continue;
2494
2495 if (type_sz(inst->dst.type) != 8)
2496 continue;
2497
2498 dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type);
2499
2500 /* Use the copy constructor so we copy all relevant instruction fields
2501 * from the original mad into the add and mul instructions
2502 */
2503 vec4_instruction *mul = new(mem_ctx) vec4_instruction(*inst);
2504 mul->opcode = BRW_OPCODE_MUL;
2505 mul->dst = mul_dst;
2506 mul->src[0] = inst->src[1];
2507 mul->src[1] = inst->src[2];
2508 mul->src[2].file = BAD_FILE;
2509
2510 vec4_instruction *add = new(mem_ctx) vec4_instruction(*inst);
2511 add->opcode = BRW_OPCODE_ADD;
2512 add->src[0] = src_reg(mul_dst);
2513 add->src[1] = inst->src[0];
2514 add->src[2].file = BAD_FILE;
2515
2516 inst->insert_before(block, mul);
2517 inst->insert_before(block, add);
2518 inst->remove(block);
2519
2520 progress = true;
2521 }
2522
2523 if (progress)
2524 invalidate_live_intervals();
2525
2526 return progress;
2527 }
2528
2529 /* The align16 hardware can only do 32-bit swizzle channels, so we need to
2530 * translate the logical 64-bit swizzle channels that we use in the Vec4 IR
2531 * to 32-bit swizzle channels in hardware registers.
2532 *
2533 * @inst and @arg identify the original vec4 IR source operand we need to
2534 * translate the swizzle for and @hw_reg is the hardware register where we
2535 * will write the hardware swizzle to use.
2536 *
2537 * This pass assumes that Align16/DF instructions have been fully scalarized
2538 * previously so there is just one 64-bit swizzle channel to deal with for any
2539 * given Vec4 IR source.
2540 */
2541 void
2542 vec4_visitor::apply_logical_swizzle(struct brw_reg *hw_reg,
2543 vec4_instruction *inst, int arg)
2544 {
2545 src_reg reg = inst->src[arg];
2546
2547 if (reg.file == BAD_FILE || reg.file == BRW_IMMEDIATE_VALUE)
2548 return;
2549
2550 /* If this is not a 64-bit operand or this is a scalar instruction we don't
2551 * need to do anything about the swizzles.
2552 */
2553 if(type_sz(reg.type) < 8 || is_align1_df(inst)) {
2554 hw_reg->swizzle = reg.swizzle;
2555 return;
2556 }
2557
2558 /* Take the 64-bit logical swizzle channel and translate it to 32-bit */
2559 assert(brw_is_single_value_swizzle(reg.swizzle) ||
2560 is_supported_64bit_region(inst, arg));
2561
2562 /* Apply the region <2, 2, 1> for GRF or <0, 2, 1> for uniforms, as align16
2563 * HW can only do 32-bit swizzle channels.
2564 */
2565 hw_reg->width = BRW_WIDTH_2;
2566
2567 if (is_supported_64bit_region(inst, arg) &&
2568 !is_gen7_supported_64bit_swizzle(inst, arg)) {
2569 /* Supported 64-bit swizzles are those such that their first two
2570 * components, when expanded to 32-bit swizzles, match the semantics
2571 * of the original 64-bit swizzle with 2-wide row regioning.
2572 */
2573 unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0);
2574 unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1);
2575 hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1,
2576 swizzle1 * 2, swizzle1 * 2 + 1);
2577 } else {
2578 /* If we got here then we have one of the following:
2579 *
2580 * 1. An unsupported swizzle, which should be single-value thanks to the
2581 * scalarization pass.
2582 *
2583 * 2. A gen7 supported swizzle. These can be single-value or double-value
2584 * swizzles. If the latter, they are never cross-dvec2 channels. For
2585 * these we always need to activate the gen7 vstride=0 exploit.
2586 */
2587 unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0);
2588 unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1);
2589 assert((swizzle0 < 2) == (swizzle1 < 2));
2590
2591 /* To gain access to Z/W components we need to select the second half
2592 * of the register and then use a X/Y swizzle to select Z/W respectively.
2593 */
2594 if (swizzle0 >= 2) {
2595 *hw_reg = suboffset(*hw_reg, 2);
2596 swizzle0 -= 2;
2597 swizzle1 -= 2;
2598 }
2599
2600 /* All gen7-specific supported swizzles require the vstride=0 exploit */
2601 if (devinfo->gen == 7 && is_gen7_supported_64bit_swizzle(inst, arg))
2602 hw_reg->vstride = BRW_VERTICAL_STRIDE_0;
2603
2604 /* Any 64-bit source with an offset at 16B is intended to address the
2605 * second half of a register and needs a vertical stride of 0 so we:
2606 *
2607 * 1. Don't violate register region restrictions.
2608 * 2. Activate the gen7 instruction decompresion bug exploit when
2609 * execsize > 4
2610 */
2611 if (hw_reg->subnr % REG_SIZE == 16) {
2612 assert(devinfo->gen == 7);
2613 hw_reg->vstride = BRW_VERTICAL_STRIDE_0;
2614 }
2615
2616 hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1,
2617 swizzle1 * 2, swizzle1 * 2 + 1);
2618 }
2619 }
2620
2621 bool
2622 vec4_visitor::run()
2623 {
2624 if (shader_time_index >= 0)
2625 emit_shader_time_begin();
2626
2627 emit_prolog();
2628
2629 emit_nir_code();
2630 if (failed)
2631 return false;
2632 base_ir = NULL;
2633
2634 emit_thread_end();
2635
2636 calculate_cfg();
2637
2638 /* Before any optimization, push array accesses out to scratch
2639 * space where we need them to be. This pass may allocate new
2640 * virtual GRFs, so we want to do it early. It also makes sure
2641 * that we have reladdr computations available for CSE, since we'll
2642 * often do repeated subexpressions for those.
2643 */
2644 move_grf_array_access_to_scratch();
2645 move_uniform_array_access_to_pull_constants();
2646
2647 pack_uniform_registers();
2648 move_push_constants_to_pull_constants();
2649 split_virtual_grfs();
2650
2651 #define OPT(pass, args...) ({ \
2652 pass_num++; \
2653 bool this_progress = pass(args); \
2654 \
2655 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
2656 char filename[64]; \
2657 snprintf(filename, 64, "%s-%s-%02d-%02d-" #pass, \
2658 stage_abbrev, nir->info.name, iteration, pass_num); \
2659 \
2660 backend_shader::dump_instructions(filename); \
2661 } \
2662 \
2663 progress = progress || this_progress; \
2664 this_progress; \
2665 })
2666
2667
2668 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
2669 char filename[64];
2670 snprintf(filename, 64, "%s-%s-00-00-start",
2671 stage_abbrev, nir->info.name);
2672
2673 backend_shader::dump_instructions(filename);
2674 }
2675
2676 bool progress;
2677 int iteration = 0;
2678 int pass_num = 0;
2679 do {
2680 progress = false;
2681 pass_num = 0;
2682 iteration++;
2683
2684 OPT(opt_predicated_break, this);
2685 OPT(opt_reduce_swizzle);
2686 OPT(dead_code_eliminate);
2687 OPT(dead_control_flow_eliminate, this);
2688 OPT(opt_copy_propagation);
2689 OPT(opt_cmod_propagation);
2690 OPT(opt_cse);
2691 OPT(opt_algebraic);
2692 OPT(opt_register_coalesce);
2693 OPT(eliminate_find_live_channel);
2694 } while (progress);
2695
2696 pass_num = 0;
2697
2698 if (OPT(opt_vector_float)) {
2699 OPT(opt_cse);
2700 OPT(opt_copy_propagation, false);
2701 OPT(opt_copy_propagation, true);
2702 OPT(dead_code_eliminate);
2703 }
2704
2705 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
2706 OPT(opt_cmod_propagation);
2707 OPT(opt_cse);
2708 OPT(opt_copy_propagation);
2709 OPT(dead_code_eliminate);
2710 }
2711
2712 if (OPT(lower_simd_width)) {
2713 OPT(opt_copy_propagation);
2714 OPT(dead_code_eliminate);
2715 }
2716
2717 if (failed)
2718 return false;
2719
2720 OPT(lower_64bit_mad_to_mul_add);
2721
2722 /* Run this before payload setup because tesselation shaders
2723 * rely on it to prevent cross dvec2 regioning on DF attributes
2724 * that are setup so that XY are on the second half of register and
2725 * ZW are in the first half of the next.
2726 */
2727 OPT(scalarize_df);
2728
2729 setup_payload();
2730
2731 if (unlikely(INTEL_DEBUG & DEBUG_SPILL_VEC4)) {
2732 /* Debug of register spilling: Go spill everything. */
2733 const int grf_count = alloc.count;
2734 float spill_costs[alloc.count];
2735 bool no_spill[alloc.count];
2736 evaluate_spill_costs(spill_costs, no_spill);
2737 for (int i = 0; i < grf_count; i++) {
2738 if (no_spill[i])
2739 continue;
2740 spill_reg(i);
2741 }
2742
2743 /* We want to run this after spilling because 64-bit (un)spills need to
2744 * emit code to shuffle 64-bit data for the 32-bit scratch read/write
2745 * messages that can produce unsupported 64-bit swizzle regions.
2746 */
2747 OPT(scalarize_df);
2748 }
2749
2750 fixup_3src_null_dest();
2751
2752 bool allocated_without_spills = reg_allocate();
2753
2754 if (!allocated_without_spills) {
2755 compiler->shader_perf_log(log_data,
2756 "%s shader triggered register spilling. "
2757 "Try reducing the number of live vec4 values "
2758 "to improve performance.\n",
2759 stage_name);
2760
2761 while (!reg_allocate()) {
2762 if (failed)
2763 return false;
2764 }
2765
2766 /* We want to run this after spilling because 64-bit (un)spills need to
2767 * emit code to shuffle 64-bit data for the 32-bit scratch read/write
2768 * messages that can produce unsupported 64-bit swizzle regions.
2769 */
2770 OPT(scalarize_df);
2771 }
2772
2773 opt_schedule_instructions();
2774
2775 opt_set_dependency_control();
2776
2777 convert_to_hw_regs();
2778
2779 if (last_scratch > 0) {
2780 prog_data->base.total_scratch =
2781 brw_get_scratch_size(last_scratch * REG_SIZE);
2782 }
2783
2784 return !failed;
2785 }
2786
2787 } /* namespace brw */
2788
2789 extern "C" {
2790
2791 /**
2792 * Compile a vertex shader.
2793 *
2794 * Returns the final assembly and the program's size.
2795 */
2796 const unsigned *
2797 brw_compile_vs(const struct brw_compiler *compiler, void *log_data,
2798 void *mem_ctx,
2799 const struct brw_vs_prog_key *key,
2800 struct brw_vs_prog_data *prog_data,
2801 const nir_shader *src_shader,
2802 int shader_time_index,
2803 char **error_str)
2804 {
2805 const bool is_scalar = compiler->scalar_stage[MESA_SHADER_VERTEX];
2806 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
2807 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, is_scalar);
2808
2809 const unsigned *assembly = NULL;
2810
2811 if (prog_data->base.vue_map.varying_to_slot[VARYING_SLOT_EDGE] != -1) {
2812 /* If the output VUE map contains VARYING_SLOT_EDGE then we need to copy
2813 * the edge flag from VERT_ATTRIB_EDGEFLAG. This will be done
2814 * automatically by brw_vec4_visitor::emit_urb_slot but we need to
2815 * ensure that prog_data->inputs_read is accurate.
2816 *
2817 * In order to make late NIR passes aware of the change, we actually
2818 * whack shader->info.inputs_read instead. This is safe because we just
2819 * made a copy of the shader.
2820 */
2821 assert(!is_scalar);
2822 assert(key->copy_edgeflag);
2823 shader->info.inputs_read |= VERT_BIT_EDGEFLAG;
2824 }
2825
2826 prog_data->inputs_read = shader->info.inputs_read;
2827 prog_data->double_inputs_read = shader->info.vs.double_inputs;
2828
2829 brw_nir_lower_vs_inputs(shader, key->gl_attrib_wa_flags);
2830 brw_nir_lower_vue_outputs(shader, is_scalar);
2831 shader = brw_postprocess_nir(shader, compiler, is_scalar);
2832
2833 prog_data->base.clip_distance_mask =
2834 ((1 << shader->info.clip_distance_array_size) - 1);
2835 prog_data->base.cull_distance_mask =
2836 ((1 << shader->info.cull_distance_array_size) - 1) <<
2837 shader->info.clip_distance_array_size;
2838
2839 unsigned nr_attribute_slots = _mesa_bitcount_64(prog_data->inputs_read);
2840
2841 /* gl_VertexID and gl_InstanceID are system values, but arrive via an
2842 * incoming vertex attribute. So, add an extra slot.
2843 */
2844 if (shader->info.system_values_read &
2845 (BITFIELD64_BIT(SYSTEM_VALUE_FIRST_VERTEX) |
2846 BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) |
2847 BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) |
2848 BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID))) {
2849 nr_attribute_slots++;
2850 }
2851
2852 /* gl_DrawID and IsIndexedDraw share its very own vec4 */
2853 if (shader->info.system_values_read &
2854 (BITFIELD64_BIT(SYSTEM_VALUE_DRAW_ID) |
2855 BITFIELD64_BIT(SYSTEM_VALUE_IS_INDEXED_DRAW))) {
2856 nr_attribute_slots++;
2857 }
2858
2859 if (shader->info.system_values_read &
2860 BITFIELD64_BIT(SYSTEM_VALUE_IS_INDEXED_DRAW))
2861 prog_data->uses_is_indexed_draw = true;
2862
2863 if (shader->info.system_values_read &
2864 BITFIELD64_BIT(SYSTEM_VALUE_FIRST_VERTEX))
2865 prog_data->uses_firstvertex = true;
2866
2867 if (shader->info.system_values_read &
2868 BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE))
2869 prog_data->uses_baseinstance = true;
2870
2871 if (shader->info.system_values_read &
2872 BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE))
2873 prog_data->uses_vertexid = true;
2874
2875 if (shader->info.system_values_read &
2876 BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID))
2877 prog_data->uses_instanceid = true;
2878
2879 if (shader->info.system_values_read &
2880 BITFIELD64_BIT(SYSTEM_VALUE_DRAW_ID))
2881 prog_data->uses_drawid = true;
2882
2883 /* The 3DSTATE_VS documentation lists the lower bound on "Vertex URB Entry
2884 * Read Length" as 1 in vec4 mode, and 0 in SIMD8 mode. Empirically, in
2885 * vec4 mode, the hardware appears to wedge unless we read something.
2886 */
2887 if (is_scalar)
2888 prog_data->base.urb_read_length =
2889 DIV_ROUND_UP(nr_attribute_slots, 2);
2890 else
2891 prog_data->base.urb_read_length =
2892 DIV_ROUND_UP(MAX2(nr_attribute_slots, 1), 2);
2893
2894 prog_data->nr_attribute_slots = nr_attribute_slots;
2895
2896 /* Since vertex shaders reuse the same VUE entry for inputs and outputs
2897 * (overwriting the original contents), we need to make sure the size is
2898 * the larger of the two.
2899 */
2900 const unsigned vue_entries =
2901 MAX2(nr_attribute_slots, (unsigned)prog_data->base.vue_map.num_slots);
2902
2903 if (compiler->devinfo->gen == 6) {
2904 prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 8);
2905 } else {
2906 prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 4);
2907 /* On Cannonlake software shall not program an allocation size that
2908 * specifies a size that is a multiple of 3 64B (512-bit) cachelines.
2909 */
2910 if (compiler->devinfo->gen == 10 &&
2911 prog_data->base.urb_entry_size % 3 == 0)
2912 prog_data->base.urb_entry_size++;
2913 }
2914
2915 if (INTEL_DEBUG & DEBUG_VS) {
2916 fprintf(stderr, "VS Output ");
2917 brw_print_vue_map(stderr, &prog_data->base.vue_map);
2918 }
2919
2920 if (is_scalar) {
2921 prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
2922
2923 fs_visitor v(compiler, log_data, mem_ctx, key, &prog_data->base.base,
2924 NULL, /* prog; Only used for TEXTURE_RECTANGLE on gen < 8 */
2925 shader, 8, shader_time_index);
2926 if (!v.run_vs()) {
2927 if (error_str)
2928 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
2929
2930 return NULL;
2931 }
2932
2933 prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
2934
2935 fs_generator g(compiler, log_data, mem_ctx,
2936 &prog_data->base.base, v.promoted_constants,
2937 v.runtime_check_aads_emit, MESA_SHADER_VERTEX);
2938 if (INTEL_DEBUG & DEBUG_VS) {
2939 const char *debug_name =
2940 ralloc_asprintf(mem_ctx, "%s vertex shader %s",
2941 shader->info.label ? shader->info.label :
2942 "unnamed",
2943 shader->info.name);
2944
2945 g.enable_debug(debug_name);
2946 }
2947 g.generate_code(v.cfg, 8);
2948 assembly = g.get_assembly();
2949 }
2950
2951 if (!assembly) {
2952 prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT;
2953
2954 vec4_vs_visitor v(compiler, log_data, key, prog_data,
2955 shader, mem_ctx, shader_time_index);
2956 if (!v.run()) {
2957 if (error_str)
2958 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
2959
2960 return NULL;
2961 }
2962
2963 assembly = brw_vec4_generate_assembly(compiler, log_data, mem_ctx,
2964 shader, &prog_data->base, v.cfg);
2965 }
2966
2967 return assembly;
2968 }
2969
2970 } /* extern "C" */