i965/vec4: Make the vec4_visitor::nir_emit_instr default case unreachable
[mesa.git] / src / intel / compiler / brw_vec4_nir.cpp
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_nir.h"
25 #include "brw_vec4.h"
26 #include "brw_vec4_builder.h"
27 #include "brw_vec4_surface_builder.h"
28
29 using namespace brw;
30 using namespace brw::surface_access;
31
32 namespace brw {
33
34 void
35 vec4_visitor::emit_nir_code()
36 {
37 if (nir->num_uniforms > 0)
38 nir_setup_uniforms();
39
40 /* get the main function and emit it */
41 nir_foreach_function(function, nir) {
42 assert(strcmp(function->name, "main") == 0);
43 assert(function->impl);
44 nir_emit_impl(function->impl);
45 }
46 }
47
48 void
49 vec4_visitor::nir_setup_uniforms()
50 {
51 uniforms = nir->num_uniforms / 16;
52 }
53
54 void
55 vec4_visitor::nir_emit_impl(nir_function_impl *impl)
56 {
57 nir_locals = ralloc_array(mem_ctx, dst_reg, impl->reg_alloc);
58 for (unsigned i = 0; i < impl->reg_alloc; i++) {
59 nir_locals[i] = dst_reg();
60 }
61
62 foreach_list_typed(nir_register, reg, node, &impl->registers) {
63 unsigned array_elems =
64 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
65 const unsigned num_regs = array_elems * DIV_ROUND_UP(reg->bit_size, 32);
66 nir_locals[reg->index] = dst_reg(VGRF, alloc.allocate(num_regs));
67
68 if (reg->bit_size == 64)
69 nir_locals[reg->index].type = BRW_REGISTER_TYPE_DF;
70 }
71
72 nir_ssa_values = ralloc_array(mem_ctx, dst_reg, impl->ssa_alloc);
73
74 nir_emit_cf_list(&impl->body);
75 }
76
77 void
78 vec4_visitor::nir_emit_cf_list(exec_list *list)
79 {
80 exec_list_validate(list);
81 foreach_list_typed(nir_cf_node, node, node, list) {
82 switch (node->type) {
83 case nir_cf_node_if:
84 nir_emit_if(nir_cf_node_as_if(node));
85 break;
86
87 case nir_cf_node_loop:
88 nir_emit_loop(nir_cf_node_as_loop(node));
89 break;
90
91 case nir_cf_node_block:
92 nir_emit_block(nir_cf_node_as_block(node));
93 break;
94
95 default:
96 unreachable("Invalid CFG node block");
97 }
98 }
99 }
100
101 void
102 vec4_visitor::nir_emit_if(nir_if *if_stmt)
103 {
104 /* First, put the condition in f0 */
105 src_reg condition = get_nir_src(if_stmt->condition, BRW_REGISTER_TYPE_D, 1);
106 vec4_instruction *inst = emit(MOV(dst_null_d(), condition));
107 inst->conditional_mod = BRW_CONDITIONAL_NZ;
108
109 /* We can just predicate based on the X channel, as the condition only
110 * goes on its own line */
111 emit(IF(BRW_PREDICATE_ALIGN16_REPLICATE_X));
112
113 nir_emit_cf_list(&if_stmt->then_list);
114
115 /* note: if the else is empty, dead CF elimination will remove it */
116 emit(BRW_OPCODE_ELSE);
117
118 nir_emit_cf_list(&if_stmt->else_list);
119
120 emit(BRW_OPCODE_ENDIF);
121 }
122
123 void
124 vec4_visitor::nir_emit_loop(nir_loop *loop)
125 {
126 emit(BRW_OPCODE_DO);
127
128 nir_emit_cf_list(&loop->body);
129
130 emit(BRW_OPCODE_WHILE);
131 }
132
133 void
134 vec4_visitor::nir_emit_block(nir_block *block)
135 {
136 nir_foreach_instr(instr, block) {
137 nir_emit_instr(instr);
138 }
139 }
140
141 void
142 vec4_visitor::nir_emit_instr(nir_instr *instr)
143 {
144 base_ir = instr;
145
146 switch (instr->type) {
147 case nir_instr_type_load_const:
148 nir_emit_load_const(nir_instr_as_load_const(instr));
149 break;
150
151 case nir_instr_type_intrinsic:
152 nir_emit_intrinsic(nir_instr_as_intrinsic(instr));
153 break;
154
155 case nir_instr_type_alu:
156 nir_emit_alu(nir_instr_as_alu(instr));
157 break;
158
159 case nir_instr_type_jump:
160 nir_emit_jump(nir_instr_as_jump(instr));
161 break;
162
163 case nir_instr_type_tex:
164 nir_emit_texture(nir_instr_as_tex(instr));
165 break;
166
167 case nir_instr_type_ssa_undef:
168 nir_emit_undef(nir_instr_as_ssa_undef(instr));
169 break;
170
171 default:
172 unreachable("VS instruction not yet implemented by NIR->vec4");
173 }
174 }
175
176 static dst_reg
177 dst_reg_for_nir_reg(vec4_visitor *v, nir_register *nir_reg,
178 unsigned base_offset, nir_src *indirect)
179 {
180 dst_reg reg;
181
182 reg = v->nir_locals[nir_reg->index];
183 if (nir_reg->bit_size == 64)
184 reg.type = BRW_REGISTER_TYPE_DF;
185 reg = offset(reg, 8, base_offset);
186 if (indirect) {
187 reg.reladdr =
188 new(v->mem_ctx) src_reg(v->get_nir_src(*indirect,
189 BRW_REGISTER_TYPE_D,
190 1));
191 }
192 return reg;
193 }
194
195 dst_reg
196 vec4_visitor::get_nir_dest(const nir_dest &dest)
197 {
198 if (dest.is_ssa) {
199 dst_reg dst =
200 dst_reg(VGRF, alloc.allocate(DIV_ROUND_UP(dest.ssa.bit_size, 32)));
201 if (dest.ssa.bit_size == 64)
202 dst.type = BRW_REGISTER_TYPE_DF;
203 nir_ssa_values[dest.ssa.index] = dst;
204 return dst;
205 } else {
206 return dst_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
207 dest.reg.indirect);
208 }
209 }
210
211 dst_reg
212 vec4_visitor::get_nir_dest(const nir_dest &dest, enum brw_reg_type type)
213 {
214 return retype(get_nir_dest(dest), type);
215 }
216
217 dst_reg
218 vec4_visitor::get_nir_dest(const nir_dest &dest, nir_alu_type type)
219 {
220 return get_nir_dest(dest, brw_type_for_nir_type(devinfo, type));
221 }
222
223 src_reg
224 vec4_visitor::get_nir_src(const nir_src &src, enum brw_reg_type type,
225 unsigned num_components)
226 {
227 dst_reg reg;
228
229 if (src.is_ssa) {
230 assert(src.ssa != NULL);
231 reg = nir_ssa_values[src.ssa->index];
232 }
233 else {
234 reg = dst_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
235 src.reg.indirect);
236 }
237
238 reg = retype(reg, type);
239
240 src_reg reg_as_src = src_reg(reg);
241 reg_as_src.swizzle = brw_swizzle_for_size(num_components);
242 return reg_as_src;
243 }
244
245 src_reg
246 vec4_visitor::get_nir_src(const nir_src &src, nir_alu_type type,
247 unsigned num_components)
248 {
249 return get_nir_src(src, brw_type_for_nir_type(devinfo, type),
250 num_components);
251 }
252
253 src_reg
254 vec4_visitor::get_nir_src(const nir_src &src, unsigned num_components)
255 {
256 /* if type is not specified, default to signed int */
257 return get_nir_src(src, nir_type_int32, num_components);
258 }
259
260 src_reg
261 vec4_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
262 {
263 nir_src *offset_src = nir_get_io_offset_src(instr);
264 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
265
266 if (const_value) {
267 /* The only constant offset we should find is 0. brw_nir.c's
268 * add_const_offset_to_base() will fold other constant offsets
269 * into instr->const_index[0].
270 */
271 assert(const_value->u32[0] == 0);
272 return src_reg();
273 }
274
275 return get_nir_src(*offset_src, BRW_REGISTER_TYPE_UD, 1);
276 }
277
278 static src_reg
279 setup_imm_df(const vec4_builder &bld, double v)
280 {
281 const gen_device_info *devinfo = bld.shader->devinfo;
282 assert(devinfo->gen >= 7);
283
284 if (devinfo->gen >= 8)
285 return brw_imm_df(v);
286
287 /* gen7.5 does not support DF immediates straighforward but the DIM
288 * instruction allows to set the 64-bit immediate value.
289 */
290 if (devinfo->is_haswell) {
291 const vec4_builder ubld = bld.exec_all();
292 const dst_reg dst = bld.vgrf(BRW_REGISTER_TYPE_DF);
293 ubld.DIM(dst, brw_imm_df(v));
294 return swizzle(src_reg(dst), BRW_SWIZZLE_XXXX);
295 }
296
297 /* gen7 does not support DF immediates */
298 union {
299 double d;
300 struct {
301 uint32_t i1;
302 uint32_t i2;
303 };
304 } di;
305
306 di.d = v;
307
308 /* Write the low 32-bit of the constant to the X:UD channel and the
309 * high 32-bit to the Y:UD channel to build the constant in a VGRF.
310 * We have to do this twice (offset 0 and offset 1), since a DF VGRF takes
311 * two SIMD8 registers in SIMD4x2 execution. Finally, return a swizzle
312 * XXXX so any access to the VGRF only reads the constant data in these
313 * channels.
314 */
315 const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
316 for (unsigned n = 0; n < 2; n++) {
317 const vec4_builder ubld = bld.exec_all().group(4, n);
318 ubld.MOV(writemask(offset(tmp, 8, n), WRITEMASK_X), brw_imm_ud(di.i1));
319 ubld.MOV(writemask(offset(tmp, 8, n), WRITEMASK_Y), brw_imm_ud(di.i2));
320 }
321
322 return swizzle(src_reg(retype(tmp, BRW_REGISTER_TYPE_DF)), BRW_SWIZZLE_XXXX);
323 }
324
325 void
326 vec4_visitor::nir_emit_load_const(nir_load_const_instr *instr)
327 {
328 dst_reg reg;
329
330 if (instr->def.bit_size == 64) {
331 reg = dst_reg(VGRF, alloc.allocate(2));
332 reg.type = BRW_REGISTER_TYPE_DF;
333 } else {
334 reg = dst_reg(VGRF, alloc.allocate(1));
335 reg.type = BRW_REGISTER_TYPE_D;
336 }
337
338 const vec4_builder ibld = vec4_builder(this).at_end();
339 unsigned remaining = brw_writemask_for_size(instr->def.num_components);
340
341 /* @FIXME: consider emitting vector operations to save some MOVs in
342 * cases where the components are representable in 8 bits.
343 * For now, we emit a MOV for each distinct value.
344 */
345 for (unsigned i = 0; i < instr->def.num_components; i++) {
346 unsigned writemask = 1 << i;
347
348 if ((remaining & writemask) == 0)
349 continue;
350
351 for (unsigned j = i; j < instr->def.num_components; j++) {
352 if ((instr->def.bit_size == 32 &&
353 instr->value.u32[i] == instr->value.u32[j]) ||
354 (instr->def.bit_size == 64 &&
355 instr->value.f64[i] == instr->value.f64[j])) {
356 writemask |= 1 << j;
357 }
358 }
359
360 reg.writemask = writemask;
361 if (instr->def.bit_size == 64) {
362 emit(MOV(reg, setup_imm_df(ibld, instr->value.f64[i])));
363 } else {
364 emit(MOV(reg, brw_imm_d(instr->value.i32[i])));
365 }
366
367 remaining &= ~writemask;
368 }
369
370 /* Set final writemask */
371 reg.writemask = brw_writemask_for_size(instr->def.num_components);
372
373 nir_ssa_values[instr->def.index] = reg;
374 }
375
376 void
377 vec4_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
378 {
379 dst_reg dest;
380 src_reg src;
381
382 switch (instr->intrinsic) {
383
384 case nir_intrinsic_load_input: {
385 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
386
387 /* We set EmitNoIndirectInput for VS */
388 assert(const_offset);
389
390 dest = get_nir_dest(instr->dest);
391 dest.writemask = brw_writemask_for_size(instr->num_components);
392
393 src = src_reg(ATTR, instr->const_index[0] + const_offset->u32[0],
394 glsl_type::uvec4_type);
395 src = retype(src, dest.type);
396
397 bool is_64bit = nir_dest_bit_size(instr->dest) == 64;
398 if (is_64bit) {
399 dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
400 src.swizzle = BRW_SWIZZLE_XYZW;
401 shuffle_64bit_data(tmp, src, false);
402 emit(MOV(dest, src_reg(tmp)));
403 } else {
404 /* Swizzle source based on component layout qualifier */
405 src.swizzle = BRW_SWZ_COMP_INPUT(nir_intrinsic_component(instr));
406 emit(MOV(dest, src));
407 }
408 break;
409 }
410
411 case nir_intrinsic_store_output: {
412 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
413 assert(const_offset);
414
415 int varying = instr->const_index[0] + const_offset->u32[0];
416
417 bool is_64bit = nir_src_bit_size(instr->src[0]) == 64;
418 if (is_64bit) {
419 src_reg data;
420 src = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_DF,
421 instr->num_components);
422 data = src_reg(this, glsl_type::dvec4_type);
423 shuffle_64bit_data(dst_reg(data), src, true);
424 src = retype(data, BRW_REGISTER_TYPE_F);
425 } else {
426 src = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F,
427 instr->num_components);
428 }
429
430 unsigned c = nir_intrinsic_component(instr);
431 output_reg[varying][c] = dst_reg(src);
432 output_num_components[varying][c] = instr->num_components;
433
434 unsigned num_components = instr->num_components;
435 if (is_64bit)
436 num_components *= 2;
437
438 output_reg[varying][c] = dst_reg(src);
439 output_num_components[varying][c] = MIN2(4, num_components);
440
441 if (is_64bit && num_components > 4) {
442 assert(num_components <= 8);
443 output_reg[varying + 1][c] = byte_offset(dst_reg(src), REG_SIZE);
444 output_num_components[varying + 1][c] = num_components - 4;
445 }
446 break;
447 }
448
449 case nir_intrinsic_get_buffer_size: {
450 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
451 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
452
453 const unsigned index =
454 prog_data->base.binding_table.ssbo_start + ssbo_index;
455 dst_reg result_dst = get_nir_dest(instr->dest);
456 vec4_instruction *inst = new(mem_ctx)
457 vec4_instruction(SHADER_OPCODE_GET_BUFFER_SIZE, result_dst);
458
459 inst->base_mrf = 2;
460 inst->mlen = 1; /* always at least one */
461 inst->src[1] = brw_imm_ud(index);
462
463 /* MRF for the first parameter */
464 src_reg lod = brw_imm_d(0);
465 int param_base = inst->base_mrf;
466 int writemask = WRITEMASK_X;
467 emit(MOV(dst_reg(MRF, param_base, glsl_type::int_type, writemask), lod));
468
469 emit(inst);
470
471 brw_mark_surface_used(&prog_data->base, index);
472 break;
473 }
474
475 case nir_intrinsic_store_ssbo: {
476 assert(devinfo->gen >= 7);
477
478 /* Block index */
479 src_reg surf_index;
480 nir_const_value *const_uniform_block =
481 nir_src_as_const_value(instr->src[1]);
482 if (const_uniform_block) {
483 unsigned index = prog_data->base.binding_table.ssbo_start +
484 const_uniform_block->u32[0];
485 surf_index = brw_imm_ud(index);
486 brw_mark_surface_used(&prog_data->base, index);
487 } else {
488 surf_index = src_reg(this, glsl_type::uint_type);
489 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[1], 1),
490 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
491 surf_index = emit_uniformize(surf_index);
492
493 brw_mark_surface_used(&prog_data->base,
494 prog_data->base.binding_table.ssbo_start +
495 nir->info.num_ssbos - 1);
496 }
497
498 /* Offset */
499 src_reg offset_reg;
500 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
501 if (const_offset) {
502 offset_reg = brw_imm_ud(const_offset->u32[0]);
503 } else {
504 offset_reg = get_nir_src(instr->src[2], 1);
505 }
506
507 /* Value */
508 src_reg val_reg = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F, 4);
509
510 /* Writemask */
511 unsigned write_mask = instr->const_index[0];
512
513 /* IvyBridge does not have a native SIMD4x2 untyped write message so untyped
514 * writes will use SIMD8 mode. In order to hide this and keep symmetry across
515 * typed and untyped messages and across hardware platforms, the
516 * current implementation of the untyped messages will transparently convert
517 * the SIMD4x2 payload into an equivalent SIMD8 payload by transposing it
518 * and enabling only channel X on the SEND instruction.
519 *
520 * The above, works well for full vector writes, but not for partial writes
521 * where we want to write some channels and not others, like when we have
522 * code such as v.xyw = vec3(1,2,4). Because the untyped write messages are
523 * quite restrictive with regards to the channel enables we can configure in
524 * the message descriptor (not all combinations are allowed) we cannot simply
525 * implement these scenarios with a single message while keeping the
526 * aforementioned symmetry in the implementation. For now we de decided that
527 * it is better to keep the symmetry to reduce complexity, so in situations
528 * such as the one described we end up emitting two untyped write messages
529 * (one for xy and another for w).
530 *
531 * The code below packs consecutive channels into a single write message,
532 * detects gaps in the vector write and if needed, sends a second message
533 * with the remaining channels. If in the future we decide that we want to
534 * emit a single message at the expense of losing the symmetry in the
535 * implementation we can:
536 *
537 * 1) For IvyBridge: Only use the red channel of the untyped write SIMD8
538 * message payload. In this mode we can write up to 8 offsets and dwords
539 * to the red channel only (for the two vec4s in the SIMD4x2 execution)
540 * and select which of the 8 channels carry data to write by setting the
541 * appropriate writemask in the dst register of the SEND instruction.
542 * It would require to write a new generator opcode specifically for
543 * IvyBridge since we would need to prepare a SIMD8 payload that could
544 * use any channel, not just X.
545 *
546 * 2) For Haswell+: Simply send a single write message but set the writemask
547 * on the dst of the SEND instruction to select the channels we want to
548 * write. It would require to modify the current messages to receive
549 * and honor the writemask provided.
550 */
551 const vec4_builder bld = vec4_builder(this).at_end()
552 .annotate(current_annotation, base_ir);
553
554 unsigned type_slots = nir_src_bit_size(instr->src[0]) / 32;
555 if (type_slots == 2) {
556 dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
557 shuffle_64bit_data(tmp, retype(val_reg, tmp.type), true);
558 val_reg = src_reg(retype(tmp, BRW_REGISTER_TYPE_F));
559 }
560
561 uint8_t swizzle[4] = { 0, 0, 0, 0};
562 int num_channels = 0;
563 unsigned skipped_channels = 0;
564 int num_components = instr->num_components;
565 for (int i = 0; i < num_components; i++) {
566 /* Read components Z/W of a dvec from the appropriate place. We will
567 * also have to adjust the swizzle (we do that with the '% 4' below)
568 */
569 if (i == 2 && type_slots == 2)
570 val_reg = byte_offset(val_reg, REG_SIZE);
571
572 /* Check if this channel needs to be written. If so, record the
573 * channel we need to take the data from in the swizzle array
574 */
575 int component_mask = 1 << i;
576 int write_test = write_mask & component_mask;
577 if (write_test) {
578 /* If we are writing doubles we have to write 2 channels worth of
579 * of data (64 bits) for each double component.
580 */
581 swizzle[num_channels++] = (i * type_slots) % 4;
582 if (type_slots == 2)
583 swizzle[num_channels++] = (i * type_slots + 1) % 4;
584 }
585
586 /* If we don't have to write this channel it means we have a gap in the
587 * vector, so write the channels we accumulated until now, if any. Do
588 * the same if this was the last component in the vector, if we have
589 * enough channels for a full vec4 write or if we have processed
590 * components XY of a dvec (since components ZW are not in the same
591 * SIMD register)
592 */
593 if (!write_test || i == num_components - 1 || num_channels == 4 ||
594 (i == 1 && type_slots == 2)) {
595 if (num_channels > 0) {
596 /* We have channels to write, so update the offset we need to
597 * write at to skip the channels we skipped, if any.
598 */
599 if (skipped_channels > 0) {
600 if (offset_reg.file == IMM) {
601 offset_reg.ud += 4 * skipped_channels;
602 } else {
603 emit(ADD(dst_reg(offset_reg), offset_reg,
604 brw_imm_ud(4 * skipped_channels)));
605 }
606 }
607
608 /* Swizzle the data register so we take the data from the channels
609 * we need to write and send the write message. This will write
610 * num_channels consecutive dwords starting at offset.
611 */
612 val_reg.swizzle =
613 BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
614 emit_untyped_write(bld, surf_index, offset_reg, val_reg,
615 1 /* dims */, num_channels /* size */,
616 BRW_PREDICATE_NONE);
617
618 /* If we have to do a second write we will have to update the
619 * offset so that we jump over the channels we have just written
620 * now.
621 */
622 skipped_channels = num_channels;
623
624 /* Restart the count for the next write message */
625 num_channels = 0;
626 }
627
628 /* If we didn't write the channel, increase skipped count */
629 if (!write_test)
630 skipped_channels += type_slots;
631 }
632 }
633
634 break;
635 }
636
637 case nir_intrinsic_load_ssbo: {
638 assert(devinfo->gen >= 7);
639
640 nir_const_value *const_uniform_block =
641 nir_src_as_const_value(instr->src[0]);
642
643 src_reg surf_index;
644 if (const_uniform_block) {
645 unsigned index = prog_data->base.binding_table.ssbo_start +
646 const_uniform_block->u32[0];
647 surf_index = brw_imm_ud(index);
648
649 brw_mark_surface_used(&prog_data->base, index);
650 } else {
651 surf_index = src_reg(this, glsl_type::uint_type);
652 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], 1),
653 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
654 surf_index = emit_uniformize(surf_index);
655
656 /* Assume this may touch any UBO. It would be nice to provide
657 * a tighter bound, but the array information is already lowered away.
658 */
659 brw_mark_surface_used(&prog_data->base,
660 prog_data->base.binding_table.ssbo_start +
661 nir->info.num_ssbos - 1);
662 }
663
664 src_reg offset_reg;
665 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
666 if (const_offset) {
667 offset_reg = brw_imm_ud(const_offset->u32[0]);
668 } else {
669 offset_reg = get_nir_src(instr->src[1], 1);
670 }
671
672 /* Read the vector */
673 const vec4_builder bld = vec4_builder(this).at_end()
674 .annotate(current_annotation, base_ir);
675
676 src_reg read_result;
677 dst_reg dest = get_nir_dest(instr->dest);
678 if (type_sz(dest.type) < 8) {
679 read_result = emit_untyped_read(bld, surf_index, offset_reg,
680 1 /* dims */, 4 /* size*/,
681 BRW_PREDICATE_NONE);
682 } else {
683 src_reg shuffled = src_reg(this, glsl_type::dvec4_type);
684
685 src_reg temp;
686 temp = emit_untyped_read(bld, surf_index, offset_reg,
687 1 /* dims */, 4 /* size*/,
688 BRW_PREDICATE_NONE);
689 emit(MOV(dst_reg(retype(shuffled, temp.type)), temp));
690
691 if (offset_reg.file == IMM)
692 offset_reg.ud += 16;
693 else
694 emit(ADD(dst_reg(offset_reg), offset_reg, brw_imm_ud(16)));
695
696 temp = emit_untyped_read(bld, surf_index, offset_reg,
697 1 /* dims */, 4 /* size*/,
698 BRW_PREDICATE_NONE);
699 emit(MOV(dst_reg(retype(byte_offset(shuffled, REG_SIZE), temp.type)),
700 temp));
701
702 read_result = src_reg(this, glsl_type::dvec4_type);
703 shuffle_64bit_data(dst_reg(read_result), shuffled, false);
704 }
705
706 read_result.type = dest.type;
707 read_result.swizzle = brw_swizzle_for_size(instr->num_components);
708 emit(MOV(dest, read_result));
709 break;
710 }
711
712 case nir_intrinsic_ssbo_atomic_add:
713 nir_emit_ssbo_atomic(BRW_AOP_ADD, instr);
714 break;
715 case nir_intrinsic_ssbo_atomic_imin:
716 nir_emit_ssbo_atomic(BRW_AOP_IMIN, instr);
717 break;
718 case nir_intrinsic_ssbo_atomic_umin:
719 nir_emit_ssbo_atomic(BRW_AOP_UMIN, instr);
720 break;
721 case nir_intrinsic_ssbo_atomic_imax:
722 nir_emit_ssbo_atomic(BRW_AOP_IMAX, instr);
723 break;
724 case nir_intrinsic_ssbo_atomic_umax:
725 nir_emit_ssbo_atomic(BRW_AOP_UMAX, instr);
726 break;
727 case nir_intrinsic_ssbo_atomic_and:
728 nir_emit_ssbo_atomic(BRW_AOP_AND, instr);
729 break;
730 case nir_intrinsic_ssbo_atomic_or:
731 nir_emit_ssbo_atomic(BRW_AOP_OR, instr);
732 break;
733 case nir_intrinsic_ssbo_atomic_xor:
734 nir_emit_ssbo_atomic(BRW_AOP_XOR, instr);
735 break;
736 case nir_intrinsic_ssbo_atomic_exchange:
737 nir_emit_ssbo_atomic(BRW_AOP_MOV, instr);
738 break;
739 case nir_intrinsic_ssbo_atomic_comp_swap:
740 nir_emit_ssbo_atomic(BRW_AOP_CMPWR, instr);
741 break;
742
743 case nir_intrinsic_load_vertex_id:
744 unreachable("should be lowered by lower_vertex_id()");
745
746 case nir_intrinsic_load_vertex_id_zero_base:
747 case nir_intrinsic_load_base_vertex:
748 case nir_intrinsic_load_instance_id:
749 case nir_intrinsic_load_base_instance:
750 case nir_intrinsic_load_draw_id:
751 case nir_intrinsic_load_invocation_id:
752 unreachable("should be lowered by brw_nir_lower_vs_inputs()");
753
754 case nir_intrinsic_load_uniform: {
755 /* Offsets are in bytes but they should always be multiples of 4 */
756 assert(nir_intrinsic_base(instr) % 4 == 0);
757
758 dest = get_nir_dest(instr->dest);
759
760 src = src_reg(dst_reg(UNIFORM, nir_intrinsic_base(instr) / 16));
761 src.type = dest.type;
762
763 /* Uniforms don't actually have to be vec4 aligned. In the case that
764 * it isn't, we have to use a swizzle to shift things around. They
765 * do still have the std140 alignment requirement that vec2's have to
766 * be vec2-aligned and vec3's and vec4's have to be vec4-aligned.
767 *
768 * The swizzle also works in the indirect case as the generator adds
769 * the swizzle to the offset for us.
770 */
771 const int type_size = type_sz(src.type);
772 unsigned shift = (nir_intrinsic_base(instr) % 16) / type_size;
773 assert(shift + instr->num_components <= 4);
774
775 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
776 if (const_offset) {
777 /* Offsets are in bytes but they should always be multiples of 4 */
778 assert(const_offset->u32[0] % 4 == 0);
779
780 src.swizzle = brw_swizzle_for_size(instr->num_components);
781 dest.writemask = brw_writemask_for_size(instr->num_components);
782 unsigned offset = const_offset->u32[0] + shift * type_size;
783 src.offset = ROUND_DOWN_TO(offset, 16);
784 shift = (offset % 16) / type_size;
785 assert(shift + instr->num_components <= 4);
786 src.swizzle += BRW_SWIZZLE4(shift, shift, shift, shift);
787
788 emit(MOV(dest, src));
789 } else {
790 /* Uniform arrays are vec4 aligned, because of std140 alignment
791 * rules.
792 */
793 assert(shift == 0);
794
795 src_reg indirect = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_UD, 1);
796
797 /* MOV_INDIRECT is going to stomp the whole thing anyway */
798 dest.writemask = WRITEMASK_XYZW;
799
800 emit(SHADER_OPCODE_MOV_INDIRECT, dest, src,
801 indirect, brw_imm_ud(instr->const_index[1]));
802 }
803 break;
804 }
805
806 case nir_intrinsic_load_ubo: {
807 nir_const_value *const_block_index = nir_src_as_const_value(instr->src[0]);
808 src_reg surf_index;
809
810 dest = get_nir_dest(instr->dest);
811
812 if (const_block_index) {
813 /* The block index is a constant, so just emit the binding table entry
814 * as an immediate.
815 */
816 const unsigned index = prog_data->base.binding_table.ubo_start +
817 const_block_index->u32[0];
818 surf_index = brw_imm_ud(index);
819 brw_mark_surface_used(&prog_data->base, index);
820 } else {
821 /* The block index is not a constant. Evaluate the index expression
822 * per-channel and add the base UBO index; we have to select a value
823 * from any live channel.
824 */
825 surf_index = src_reg(this, glsl_type::uint_type);
826 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], nir_type_int32,
827 instr->num_components),
828 brw_imm_ud(prog_data->base.binding_table.ubo_start)));
829 surf_index = emit_uniformize(surf_index);
830
831 /* Assume this may touch any UBO. It would be nice to provide
832 * a tighter bound, but the array information is already lowered away.
833 */
834 brw_mark_surface_used(&prog_data->base,
835 prog_data->base.binding_table.ubo_start +
836 nir->info.num_ubos - 1);
837 }
838
839 src_reg offset_reg;
840 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
841 if (const_offset) {
842 offset_reg = brw_imm_ud(const_offset->u32[0] & ~15);
843 } else {
844 offset_reg = src_reg(this, glsl_type::uint_type);
845 emit(MOV(dst_reg(offset_reg),
846 get_nir_src(instr->src[1], nir_type_uint32, 1)));
847 }
848
849 src_reg packed_consts;
850 if (nir_dest_bit_size(instr->dest) == 32) {
851 packed_consts = src_reg(this, glsl_type::vec4_type);
852 emit_pull_constant_load_reg(dst_reg(packed_consts),
853 surf_index,
854 offset_reg,
855 NULL, NULL /* before_block/inst */);
856 } else {
857 src_reg temp = src_reg(this, glsl_type::dvec4_type);
858 src_reg temp_float = retype(temp, BRW_REGISTER_TYPE_F);
859
860 emit_pull_constant_load_reg(dst_reg(temp_float),
861 surf_index, offset_reg, NULL, NULL);
862 if (offset_reg.file == IMM)
863 offset_reg.ud += 16;
864 else
865 emit(ADD(dst_reg(offset_reg), offset_reg, brw_imm_ud(16u)));
866 emit_pull_constant_load_reg(dst_reg(byte_offset(temp_float, REG_SIZE)),
867 surf_index, offset_reg, NULL, NULL);
868
869 packed_consts = src_reg(this, glsl_type::dvec4_type);
870 shuffle_64bit_data(dst_reg(packed_consts), temp, false);
871 }
872
873 packed_consts.swizzle = brw_swizzle_for_size(instr->num_components);
874 if (const_offset) {
875 unsigned type_size = type_sz(dest.type);
876 packed_consts.swizzle +=
877 BRW_SWIZZLE4(const_offset->u32[0] % 16 / type_size,
878 const_offset->u32[0] % 16 / type_size,
879 const_offset->u32[0] % 16 / type_size,
880 const_offset->u32[0] % 16 / type_size);
881 }
882
883 emit(MOV(dest, retype(packed_consts, dest.type)));
884
885 break;
886 }
887
888 case nir_intrinsic_memory_barrier: {
889 const vec4_builder bld =
890 vec4_builder(this).at_end().annotate(current_annotation, base_ir);
891 const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
892 bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
893 ->size_written = 2 * REG_SIZE;
894 break;
895 }
896
897 case nir_intrinsic_shader_clock: {
898 /* We cannot do anything if there is an event, so ignore it for now */
899 const src_reg shader_clock = get_timestamp();
900 const enum brw_reg_type type = brw_type_for_base_type(glsl_type::uvec2_type);
901
902 dest = get_nir_dest(instr->dest, type);
903 emit(MOV(dest, shader_clock));
904 break;
905 }
906
907 default:
908 unreachable("Unknown intrinsic");
909 }
910 }
911
912 void
913 vec4_visitor::nir_emit_ssbo_atomic(int op, nir_intrinsic_instr *instr)
914 {
915 dst_reg dest;
916 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
917 dest = get_nir_dest(instr->dest);
918
919 src_reg surface;
920 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
921 if (const_surface) {
922 unsigned surf_index = prog_data->base.binding_table.ssbo_start +
923 const_surface->u32[0];
924 surface = brw_imm_ud(surf_index);
925 brw_mark_surface_used(&prog_data->base, surf_index);
926 } else {
927 surface = src_reg(this, glsl_type::uint_type);
928 emit(ADD(dst_reg(surface), get_nir_src(instr->src[0]),
929 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
930
931 /* Assume this may touch any UBO. This is the same we do for other
932 * UBO/SSBO accesses with non-constant surface.
933 */
934 brw_mark_surface_used(&prog_data->base,
935 prog_data->base.binding_table.ssbo_start +
936 nir->info.num_ssbos - 1);
937 }
938
939 src_reg offset = get_nir_src(instr->src[1], 1);
940 src_reg data1 = get_nir_src(instr->src[2], 1);
941 src_reg data2;
942 if (op == BRW_AOP_CMPWR)
943 data2 = get_nir_src(instr->src[3], 1);
944
945 /* Emit the actual atomic operation operation */
946 const vec4_builder bld =
947 vec4_builder(this).at_end().annotate(current_annotation, base_ir);
948
949 src_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
950 data1, data2,
951 1 /* dims */, 1 /* rsize */,
952 op,
953 BRW_PREDICATE_NONE);
954 dest.type = atomic_result.type;
955 bld.MOV(dest, atomic_result);
956 }
957
958 static unsigned
959 brw_swizzle_for_nir_swizzle(uint8_t swizzle[4])
960 {
961 return BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
962 }
963
964 static enum brw_conditional_mod
965 brw_conditional_for_nir_comparison(nir_op op)
966 {
967 switch (op) {
968 case nir_op_flt:
969 case nir_op_ilt:
970 case nir_op_ult:
971 return BRW_CONDITIONAL_L;
972
973 case nir_op_fge:
974 case nir_op_ige:
975 case nir_op_uge:
976 return BRW_CONDITIONAL_GE;
977
978 case nir_op_feq:
979 case nir_op_ieq:
980 case nir_op_ball_fequal2:
981 case nir_op_ball_iequal2:
982 case nir_op_ball_fequal3:
983 case nir_op_ball_iequal3:
984 case nir_op_ball_fequal4:
985 case nir_op_ball_iequal4:
986 return BRW_CONDITIONAL_Z;
987
988 case nir_op_fne:
989 case nir_op_ine:
990 case nir_op_bany_fnequal2:
991 case nir_op_bany_inequal2:
992 case nir_op_bany_fnequal3:
993 case nir_op_bany_inequal3:
994 case nir_op_bany_fnequal4:
995 case nir_op_bany_inequal4:
996 return BRW_CONDITIONAL_NZ;
997
998 default:
999 unreachable("not reached: bad operation for comparison");
1000 }
1001 }
1002
1003 bool
1004 vec4_visitor::optimize_predicate(nir_alu_instr *instr,
1005 enum brw_predicate *predicate)
1006 {
1007 if (!instr->src[0].src.is_ssa ||
1008 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
1009 return false;
1010
1011 nir_alu_instr *cmp_instr =
1012 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
1013
1014 switch (cmp_instr->op) {
1015 case nir_op_bany_fnequal2:
1016 case nir_op_bany_inequal2:
1017 case nir_op_bany_fnequal3:
1018 case nir_op_bany_inequal3:
1019 case nir_op_bany_fnequal4:
1020 case nir_op_bany_inequal4:
1021 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1022 break;
1023 case nir_op_ball_fequal2:
1024 case nir_op_ball_iequal2:
1025 case nir_op_ball_fequal3:
1026 case nir_op_ball_iequal3:
1027 case nir_op_ball_fequal4:
1028 case nir_op_ball_iequal4:
1029 *predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1030 break;
1031 default:
1032 return false;
1033 }
1034
1035 unsigned size_swizzle =
1036 brw_swizzle_for_size(nir_op_infos[cmp_instr->op].input_sizes[0]);
1037
1038 src_reg op[2];
1039 assert(nir_op_infos[cmp_instr->op].num_inputs == 2);
1040 for (unsigned i = 0; i < 2; i++) {
1041 nir_alu_type type = nir_op_infos[cmp_instr->op].input_types[i];
1042 unsigned bit_size = nir_src_bit_size(cmp_instr->src[i].src);
1043 type = (nir_alu_type) (((unsigned) type) | bit_size);
1044 op[i] = get_nir_src(cmp_instr->src[i].src, type, 4);
1045 unsigned base_swizzle =
1046 brw_swizzle_for_nir_swizzle(cmp_instr->src[i].swizzle);
1047 op[i].swizzle = brw_compose_swizzle(size_swizzle, base_swizzle);
1048 op[i].abs = cmp_instr->src[i].abs;
1049 op[i].negate = cmp_instr->src[i].negate;
1050 }
1051
1052 emit(CMP(dst_null_d(), op[0], op[1],
1053 brw_conditional_for_nir_comparison(cmp_instr->op)));
1054
1055 return true;
1056 }
1057
1058 static void
1059 emit_find_msb_using_lzd(const vec4_builder &bld,
1060 const dst_reg &dst,
1061 const src_reg &src,
1062 bool is_signed)
1063 {
1064 vec4_instruction *inst;
1065 src_reg temp = src;
1066
1067 if (is_signed) {
1068 /* LZD of an absolute value source almost always does the right
1069 * thing. There are two problem values:
1070 *
1071 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
1072 * 0. However, findMSB(int(0x80000000)) == 30.
1073 *
1074 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
1075 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
1076 *
1077 * For a value of zero or negative one, -1 will be returned.
1078 *
1079 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
1080 * findMSB(-(1<<x)) should return x-1.
1081 *
1082 * For all negative number cases, including 0x80000000 and
1083 * 0xffffffff, the correct value is obtained from LZD if instead of
1084 * negating the (already negative) value the logical-not is used. A
1085 * conditonal logical-not can be achieved in two instructions.
1086 */
1087 temp = src_reg(bld.vgrf(BRW_REGISTER_TYPE_D));
1088
1089 bld.ASR(dst_reg(temp), src, brw_imm_d(31));
1090 bld.XOR(dst_reg(temp), temp, src);
1091 }
1092
1093 bld.LZD(retype(dst, BRW_REGISTER_TYPE_UD),
1094 retype(temp, BRW_REGISTER_TYPE_UD));
1095
1096 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
1097 * from the LSB side. Subtract the result from 31 to convert the MSB count
1098 * into an LSB count. If no bits are set, LZD will return 32. 31-32 = -1,
1099 * which is exactly what findMSB() is supposed to return.
1100 */
1101 inst = bld.ADD(dst, retype(src_reg(dst), BRW_REGISTER_TYPE_D),
1102 brw_imm_d(31));
1103 inst->src[0].negate = true;
1104 }
1105
1106 void
1107 vec4_visitor::emit_conversion_from_double(dst_reg dst, src_reg src,
1108 bool saturate)
1109 {
1110 /* BDW PRM vol 15 - workarounds:
1111 * DF->f format conversion for Align16 has wrong emask calculation when
1112 * source is immediate.
1113 */
1114 if (devinfo->gen == 8 && dst.type == BRW_REGISTER_TYPE_F &&
1115 src.file == BRW_IMMEDIATE_VALUE) {
1116 vec4_instruction *inst = emit(MOV(dst, brw_imm_f(src.df)));
1117 inst->saturate = saturate;
1118 return;
1119 }
1120
1121 enum opcode op;
1122 switch (dst.type) {
1123 case BRW_REGISTER_TYPE_D:
1124 op = VEC4_OPCODE_DOUBLE_TO_D32;
1125 break;
1126 case BRW_REGISTER_TYPE_UD:
1127 op = VEC4_OPCODE_DOUBLE_TO_U32;
1128 break;
1129 case BRW_REGISTER_TYPE_F:
1130 op = VEC4_OPCODE_DOUBLE_TO_F32;
1131 break;
1132 default:
1133 unreachable("Unknown conversion");
1134 }
1135
1136 dst_reg temp = dst_reg(this, glsl_type::dvec4_type);
1137 emit(MOV(temp, src));
1138 dst_reg temp2 = dst_reg(this, glsl_type::dvec4_type);
1139 emit(op, temp2, src_reg(temp));
1140
1141 emit(VEC4_OPCODE_PICK_LOW_32BIT, retype(temp2, dst.type), src_reg(temp2));
1142 vec4_instruction *inst = emit(MOV(dst, src_reg(retype(temp2, dst.type))));
1143 inst->saturate = saturate;
1144 }
1145
1146 void
1147 vec4_visitor::emit_conversion_to_double(dst_reg dst, src_reg src,
1148 bool saturate)
1149 {
1150 dst_reg tmp_dst = dst_reg(src_reg(this, glsl_type::dvec4_type));
1151 src_reg tmp_src = retype(src_reg(this, glsl_type::vec4_type), src.type);
1152 emit(MOV(dst_reg(tmp_src), src));
1153 emit(VEC4_OPCODE_TO_DOUBLE, tmp_dst, tmp_src);
1154 vec4_instruction *inst = emit(MOV(dst, src_reg(tmp_dst)));
1155 inst->saturate = saturate;
1156 }
1157
1158 void
1159 vec4_visitor::nir_emit_alu(nir_alu_instr *instr)
1160 {
1161 vec4_instruction *inst;
1162
1163 nir_alu_type dst_type = (nir_alu_type) (nir_op_infos[instr->op].output_type |
1164 nir_dest_bit_size(instr->dest.dest));
1165 dst_reg dst = get_nir_dest(instr->dest.dest, dst_type);
1166 dst.writemask = instr->dest.write_mask;
1167
1168 src_reg op[4];
1169 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1170 nir_alu_type src_type = (nir_alu_type)
1171 (nir_op_infos[instr->op].input_types[i] |
1172 nir_src_bit_size(instr->src[i].src));
1173 op[i] = get_nir_src(instr->src[i].src, src_type, 4);
1174 op[i].swizzle = brw_swizzle_for_nir_swizzle(instr->src[i].swizzle);
1175 op[i].abs = instr->src[i].abs;
1176 op[i].negate = instr->src[i].negate;
1177 }
1178
1179 switch (instr->op) {
1180 case nir_op_imov:
1181 case nir_op_fmov:
1182 inst = emit(MOV(dst, op[0]));
1183 inst->saturate = instr->dest.saturate;
1184 break;
1185
1186 case nir_op_vec2:
1187 case nir_op_vec3:
1188 case nir_op_vec4:
1189 unreachable("not reached: should be handled by lower_vec_to_movs()");
1190
1191 case nir_op_i2f32:
1192 case nir_op_u2f32:
1193 inst = emit(MOV(dst, op[0]));
1194 inst->saturate = instr->dest.saturate;
1195 break;
1196
1197 case nir_op_f2f32:
1198 case nir_op_f2i32:
1199 case nir_op_f2u32:
1200 if (nir_src_bit_size(instr->src[0].src) == 64)
1201 emit_conversion_from_double(dst, op[0], instr->dest.saturate);
1202 else
1203 inst = emit(MOV(dst, op[0]));
1204 break;
1205
1206 case nir_op_f2f64:
1207 case nir_op_i2f64:
1208 case nir_op_u2f64:
1209 emit_conversion_to_double(dst, op[0], instr->dest.saturate);
1210 break;
1211
1212 case nir_op_iadd:
1213 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1214 /* fall through */
1215 case nir_op_fadd:
1216 inst = emit(ADD(dst, op[0], op[1]));
1217 inst->saturate = instr->dest.saturate;
1218 break;
1219
1220 case nir_op_fmul:
1221 inst = emit(MUL(dst, op[0], op[1]));
1222 inst->saturate = instr->dest.saturate;
1223 break;
1224
1225 case nir_op_imul: {
1226 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1227 if (devinfo->gen < 8) {
1228 nir_const_value *value0 = nir_src_as_const_value(instr->src[0].src);
1229 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
1230
1231 /* For integer multiplication, the MUL uses the low 16 bits of one of
1232 * the operands (src0 through SNB, src1 on IVB and later). The MACH
1233 * accumulates in the contribution of the upper 16 bits of that
1234 * operand. If we can determine that one of the args is in the low
1235 * 16 bits, though, we can just emit a single MUL.
1236 */
1237 if (value0 && value0->u32[0] < (1 << 16)) {
1238 if (devinfo->gen < 7)
1239 emit(MUL(dst, op[0], op[1]));
1240 else
1241 emit(MUL(dst, op[1], op[0]));
1242 } else if (value1 && value1->u32[0] < (1 << 16)) {
1243 if (devinfo->gen < 7)
1244 emit(MUL(dst, op[1], op[0]));
1245 else
1246 emit(MUL(dst, op[0], op[1]));
1247 } else {
1248 struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
1249
1250 emit(MUL(acc, op[0], op[1]));
1251 emit(MACH(dst_null_d(), op[0], op[1]));
1252 emit(MOV(dst, src_reg(acc)));
1253 }
1254 } else {
1255 emit(MUL(dst, op[0], op[1]));
1256 }
1257 break;
1258 }
1259
1260 case nir_op_imul_high:
1261 case nir_op_umul_high: {
1262 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1263 struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
1264
1265 if (devinfo->gen >= 8)
1266 emit(MUL(acc, op[0], retype(op[1], BRW_REGISTER_TYPE_UW)));
1267 else
1268 emit(MUL(acc, op[0], op[1]));
1269
1270 emit(MACH(dst, op[0], op[1]));
1271 break;
1272 }
1273
1274 case nir_op_frcp:
1275 inst = emit_math(SHADER_OPCODE_RCP, dst, op[0]);
1276 inst->saturate = instr->dest.saturate;
1277 break;
1278
1279 case nir_op_fexp2:
1280 inst = emit_math(SHADER_OPCODE_EXP2, dst, op[0]);
1281 inst->saturate = instr->dest.saturate;
1282 break;
1283
1284 case nir_op_flog2:
1285 inst = emit_math(SHADER_OPCODE_LOG2, dst, op[0]);
1286 inst->saturate = instr->dest.saturate;
1287 break;
1288
1289 case nir_op_fsin:
1290 inst = emit_math(SHADER_OPCODE_SIN, dst, op[0]);
1291 inst->saturate = instr->dest.saturate;
1292 break;
1293
1294 case nir_op_fcos:
1295 inst = emit_math(SHADER_OPCODE_COS, dst, op[0]);
1296 inst->saturate = instr->dest.saturate;
1297 break;
1298
1299 case nir_op_idiv:
1300 case nir_op_udiv:
1301 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1302 emit_math(SHADER_OPCODE_INT_QUOTIENT, dst, op[0], op[1]);
1303 break;
1304
1305 case nir_op_umod:
1306 case nir_op_irem:
1307 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1308 * appears that our hardware just does the right thing for signed
1309 * remainder.
1310 */
1311 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1312 emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1313 break;
1314
1315 case nir_op_imod: {
1316 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1317 inst = emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1318
1319 /* Math instructions don't support conditional mod */
1320 inst = emit(MOV(dst_null_d(), src_reg(dst)));
1321 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1322
1323 /* Now, we need to determine if signs of the sources are different.
1324 * When we XOR the sources, the top bit is 0 if they are the same and 1
1325 * if they are different. We can then use a conditional modifier to
1326 * turn that into a predicate. This leads us to an XOR.l instruction.
1327 *
1328 * Technically, according to the PRM, you're not allowed to use .l on a
1329 * XOR instruction. However, emperical experiments and Curro's reading
1330 * of the simulator source both indicate that it's safe.
1331 */
1332 src_reg tmp = src_reg(this, glsl_type::ivec4_type);
1333 inst = emit(XOR(dst_reg(tmp), op[0], op[1]));
1334 inst->predicate = BRW_PREDICATE_NORMAL;
1335 inst->conditional_mod = BRW_CONDITIONAL_L;
1336
1337 /* If the result of the initial remainder operation is non-zero and the
1338 * two sources have different signs, add in a copy of op[1] to get the
1339 * final integer modulus value.
1340 */
1341 inst = emit(ADD(dst, src_reg(dst), op[1]));
1342 inst->predicate = BRW_PREDICATE_NORMAL;
1343 break;
1344 }
1345
1346 case nir_op_ldexp:
1347 unreachable("not reached: should be handled by ldexp_to_arith()");
1348
1349 case nir_op_fsqrt:
1350 inst = emit_math(SHADER_OPCODE_SQRT, dst, op[0]);
1351 inst->saturate = instr->dest.saturate;
1352 break;
1353
1354 case nir_op_frsq:
1355 inst = emit_math(SHADER_OPCODE_RSQ, dst, op[0]);
1356 inst->saturate = instr->dest.saturate;
1357 break;
1358
1359 case nir_op_fpow:
1360 inst = emit_math(SHADER_OPCODE_POW, dst, op[0], op[1]);
1361 inst->saturate = instr->dest.saturate;
1362 break;
1363
1364 case nir_op_uadd_carry: {
1365 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1366 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1367
1368 emit(ADDC(dst_null_ud(), op[0], op[1]));
1369 emit(MOV(dst, src_reg(acc)));
1370 break;
1371 }
1372
1373 case nir_op_usub_borrow: {
1374 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1375 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1376
1377 emit(SUBB(dst_null_ud(), op[0], op[1]));
1378 emit(MOV(dst, src_reg(acc)));
1379 break;
1380 }
1381
1382 case nir_op_ftrunc:
1383 inst = emit(RNDZ(dst, op[0]));
1384 inst->saturate = instr->dest.saturate;
1385 break;
1386
1387 case nir_op_fceil: {
1388 src_reg tmp = src_reg(this, glsl_type::float_type);
1389 tmp.swizzle =
1390 brw_swizzle_for_size(instr->src[0].src.is_ssa ?
1391 instr->src[0].src.ssa->num_components :
1392 instr->src[0].src.reg.reg->num_components);
1393
1394 op[0].negate = !op[0].negate;
1395 emit(RNDD(dst_reg(tmp), op[0]));
1396 tmp.negate = true;
1397 inst = emit(MOV(dst, tmp));
1398 inst->saturate = instr->dest.saturate;
1399 break;
1400 }
1401
1402 case nir_op_ffloor:
1403 inst = emit(RNDD(dst, op[0]));
1404 inst->saturate = instr->dest.saturate;
1405 break;
1406
1407 case nir_op_ffract:
1408 inst = emit(FRC(dst, op[0]));
1409 inst->saturate = instr->dest.saturate;
1410 break;
1411
1412 case nir_op_fround_even:
1413 inst = emit(RNDE(dst, op[0]));
1414 inst->saturate = instr->dest.saturate;
1415 break;
1416
1417 case nir_op_fquantize2f16: {
1418 /* See also vec4_visitor::emit_pack_half_2x16() */
1419 src_reg tmp16 = src_reg(this, glsl_type::uvec4_type);
1420 src_reg tmp32 = src_reg(this, glsl_type::vec4_type);
1421 src_reg zero = src_reg(this, glsl_type::vec4_type);
1422
1423 /* Check for denormal */
1424 src_reg abs_src0 = op[0];
1425 abs_src0.abs = true;
1426 emit(CMP(dst_null_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1427 BRW_CONDITIONAL_L));
1428 /* Get the appropriately signed zero */
1429 emit(AND(retype(dst_reg(zero), BRW_REGISTER_TYPE_UD),
1430 retype(op[0], BRW_REGISTER_TYPE_UD),
1431 brw_imm_ud(0x80000000)));
1432 /* Do the actual F32 -> F16 -> F32 conversion */
1433 emit(F32TO16(dst_reg(tmp16), op[0]));
1434 emit(F16TO32(dst_reg(tmp32), tmp16));
1435 /* Select that or zero based on normal status */
1436 inst = emit(BRW_OPCODE_SEL, dst, zero, tmp32);
1437 inst->predicate = BRW_PREDICATE_NORMAL;
1438 inst->saturate = instr->dest.saturate;
1439 break;
1440 }
1441
1442 case nir_op_imin:
1443 case nir_op_umin:
1444 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1445 /* fall through */
1446 case nir_op_fmin:
1447 inst = emit_minmax(BRW_CONDITIONAL_L, dst, op[0], op[1]);
1448 inst->saturate = instr->dest.saturate;
1449 break;
1450
1451 case nir_op_imax:
1452 case nir_op_umax:
1453 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1454 /* fall through */
1455 case nir_op_fmax:
1456 inst = emit_minmax(BRW_CONDITIONAL_GE, dst, op[0], op[1]);
1457 inst->saturate = instr->dest.saturate;
1458 break;
1459
1460 case nir_op_fddx:
1461 case nir_op_fddx_coarse:
1462 case nir_op_fddx_fine:
1463 case nir_op_fddy:
1464 case nir_op_fddy_coarse:
1465 case nir_op_fddy_fine:
1466 unreachable("derivatives are not valid in vertex shaders");
1467
1468 case nir_op_ilt:
1469 case nir_op_ult:
1470 case nir_op_ige:
1471 case nir_op_uge:
1472 case nir_op_ieq:
1473 case nir_op_ine:
1474 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1475 /* Fallthrough */
1476 case nir_op_flt:
1477 case nir_op_fge:
1478 case nir_op_feq:
1479 case nir_op_fne: {
1480 enum brw_conditional_mod conditional_mod =
1481 brw_conditional_for_nir_comparison(instr->op);
1482
1483 if (nir_src_bit_size(instr->src[0].src) < 64) {
1484 emit(CMP(dst, op[0], op[1], conditional_mod));
1485 } else {
1486 /* Produce a 32-bit boolean result from the DF comparison by selecting
1487 * only the low 32-bit in each DF produced. Do this in a temporary
1488 * so we can then move from there to the result using align16 again
1489 * to honor the original writemask.
1490 */
1491 dst_reg temp = dst_reg(this, glsl_type::dvec4_type);
1492 emit(CMP(temp, op[0], op[1], conditional_mod));
1493 dst_reg result = dst_reg(this, glsl_type::bvec4_type);
1494 emit(VEC4_OPCODE_PICK_LOW_32BIT, result, src_reg(temp));
1495 emit(MOV(dst, src_reg(result)));
1496 }
1497 break;
1498 }
1499
1500 case nir_op_ball_iequal2:
1501 case nir_op_ball_iequal3:
1502 case nir_op_ball_iequal4:
1503 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1504 /* Fallthrough */
1505 case nir_op_ball_fequal2:
1506 case nir_op_ball_fequal3:
1507 case nir_op_ball_fequal4: {
1508 unsigned swiz =
1509 brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1510
1511 emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1512 brw_conditional_for_nir_comparison(instr->op)));
1513 emit(MOV(dst, brw_imm_d(0)));
1514 inst = emit(MOV(dst, brw_imm_d(~0)));
1515 inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1516 break;
1517 }
1518
1519 case nir_op_bany_inequal2:
1520 case nir_op_bany_inequal3:
1521 case nir_op_bany_inequal4:
1522 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1523 /* Fallthrough */
1524 case nir_op_bany_fnequal2:
1525 case nir_op_bany_fnequal3:
1526 case nir_op_bany_fnequal4: {
1527 unsigned swiz =
1528 brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1529
1530 emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1531 brw_conditional_for_nir_comparison(instr->op)));
1532
1533 emit(MOV(dst, brw_imm_d(0)));
1534 inst = emit(MOV(dst, brw_imm_d(~0)));
1535 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1536 break;
1537 }
1538
1539 case nir_op_inot:
1540 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1541 if (devinfo->gen >= 8) {
1542 op[0] = resolve_source_modifiers(op[0]);
1543 }
1544 emit(NOT(dst, op[0]));
1545 break;
1546
1547 case nir_op_ixor:
1548 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1549 if (devinfo->gen >= 8) {
1550 op[0] = resolve_source_modifiers(op[0]);
1551 op[1] = resolve_source_modifiers(op[1]);
1552 }
1553 emit(XOR(dst, op[0], op[1]));
1554 break;
1555
1556 case nir_op_ior:
1557 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1558 if (devinfo->gen >= 8) {
1559 op[0] = resolve_source_modifiers(op[0]);
1560 op[1] = resolve_source_modifiers(op[1]);
1561 }
1562 emit(OR(dst, op[0], op[1]));
1563 break;
1564
1565 case nir_op_iand:
1566 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1567 if (devinfo->gen >= 8) {
1568 op[0] = resolve_source_modifiers(op[0]);
1569 op[1] = resolve_source_modifiers(op[1]);
1570 }
1571 emit(AND(dst, op[0], op[1]));
1572 break;
1573
1574 case nir_op_b2i:
1575 case nir_op_b2f:
1576 emit(MOV(dst, negate(op[0])));
1577 break;
1578
1579 case nir_op_f2b:
1580 if (nir_src_bit_size(instr->src[0].src) == 64) {
1581 /* We use a MOV with conditional_mod to check if the provided value is
1582 * 0.0. We want this to flush denormalized numbers to zero, so we set a
1583 * source modifier on the source operand to trigger this, as source
1584 * modifiers don't affect the result of the testing against 0.0.
1585 */
1586 src_reg value = op[0];
1587 value.abs = true;
1588 vec4_instruction *inst = emit(MOV(dst_null_df(), value));
1589 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1590
1591 src_reg one = src_reg(this, glsl_type::ivec4_type);
1592 emit(MOV(dst_reg(one), brw_imm_d(~0)));
1593 inst = emit(BRW_OPCODE_SEL, dst, one, brw_imm_d(0));
1594 inst->predicate = BRW_PREDICATE_NORMAL;
1595 } else {
1596 emit(CMP(dst, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1597 }
1598 break;
1599
1600 case nir_op_i2b:
1601 emit(CMP(dst, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1602 break;
1603
1604 case nir_op_fnoise1_1:
1605 case nir_op_fnoise1_2:
1606 case nir_op_fnoise1_3:
1607 case nir_op_fnoise1_4:
1608 case nir_op_fnoise2_1:
1609 case nir_op_fnoise2_2:
1610 case nir_op_fnoise2_3:
1611 case nir_op_fnoise2_4:
1612 case nir_op_fnoise3_1:
1613 case nir_op_fnoise3_2:
1614 case nir_op_fnoise3_3:
1615 case nir_op_fnoise3_4:
1616 case nir_op_fnoise4_1:
1617 case nir_op_fnoise4_2:
1618 case nir_op_fnoise4_3:
1619 case nir_op_fnoise4_4:
1620 unreachable("not reached: should be handled by lower_noise");
1621
1622 case nir_op_unpack_half_2x16_split_x:
1623 case nir_op_unpack_half_2x16_split_y:
1624 case nir_op_pack_half_2x16_split:
1625 unreachable("not reached: should not occur in vertex shader");
1626
1627 case nir_op_unpack_snorm_2x16:
1628 case nir_op_unpack_unorm_2x16:
1629 case nir_op_pack_snorm_2x16:
1630 case nir_op_pack_unorm_2x16:
1631 unreachable("not reached: should be handled by lower_packing_builtins");
1632
1633 case nir_op_pack_uvec4_to_uint:
1634 unreachable("not reached");
1635
1636 case nir_op_pack_uvec2_to_uint: {
1637 dst_reg tmp1 = dst_reg(this, glsl_type::uint_type);
1638 tmp1.writemask = WRITEMASK_X;
1639 op[0].swizzle = BRW_SWIZZLE_YYYY;
1640 emit(SHL(tmp1, op[0], src_reg(brw_imm_ud(16u))));
1641
1642 dst_reg tmp2 = dst_reg(this, glsl_type::uint_type);
1643 tmp2.writemask = WRITEMASK_X;
1644 op[0].swizzle = BRW_SWIZZLE_XXXX;
1645 emit(AND(tmp2, op[0], src_reg(brw_imm_ud(0xffffu))));
1646
1647 emit(OR(dst, src_reg(tmp1), src_reg(tmp2)));
1648 break;
1649 }
1650
1651 case nir_op_pack_64_2x32_split: {
1652 dst_reg result = dst_reg(this, glsl_type::dvec4_type);
1653 dst_reg tmp = dst_reg(this, glsl_type::uvec4_type);
1654 emit(MOV(tmp, retype(op[0], BRW_REGISTER_TYPE_UD)));
1655 emit(VEC4_OPCODE_SET_LOW_32BIT, result, src_reg(tmp));
1656 emit(MOV(tmp, retype(op[1], BRW_REGISTER_TYPE_UD)));
1657 emit(VEC4_OPCODE_SET_HIGH_32BIT, result, src_reg(tmp));
1658 emit(MOV(dst, src_reg(result)));
1659 break;
1660 }
1661
1662 case nir_op_unpack_64_2x32_split_x:
1663 case nir_op_unpack_64_2x32_split_y: {
1664 enum opcode oper = (instr->op == nir_op_unpack_64_2x32_split_x) ?
1665 VEC4_OPCODE_PICK_LOW_32BIT : VEC4_OPCODE_PICK_HIGH_32BIT;
1666 dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
1667 emit(MOV(tmp, op[0]));
1668 dst_reg tmp2 = dst_reg(this, glsl_type::uvec4_type);
1669 emit(oper, tmp2, src_reg(tmp));
1670 emit(MOV(dst, src_reg(tmp2)));
1671 break;
1672 }
1673
1674 case nir_op_unpack_half_2x16:
1675 /* As NIR does not guarantee that we have a correct swizzle outside the
1676 * boundaries of a vector, and the implementation of emit_unpack_half_2x16
1677 * uses the source operand in an operation with WRITEMASK_Y while our
1678 * source operand has only size 1, it accessed incorrect data producing
1679 * regressions in Piglit. We repeat the swizzle of the first component on the
1680 * rest of components to avoid regressions. In the vec4_visitor IR code path
1681 * this is not needed because the operand has already the correct swizzle.
1682 */
1683 op[0].swizzle = brw_compose_swizzle(BRW_SWIZZLE_XXXX, op[0].swizzle);
1684 emit_unpack_half_2x16(dst, op[0]);
1685 break;
1686
1687 case nir_op_pack_half_2x16:
1688 emit_pack_half_2x16(dst, op[0]);
1689 break;
1690
1691 case nir_op_unpack_unorm_4x8:
1692 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1693 emit_unpack_unorm_4x8(dst, op[0]);
1694 break;
1695
1696 case nir_op_pack_unorm_4x8:
1697 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1698 emit_pack_unorm_4x8(dst, op[0]);
1699 break;
1700
1701 case nir_op_unpack_snorm_4x8:
1702 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1703 emit_unpack_snorm_4x8(dst, op[0]);
1704 break;
1705
1706 case nir_op_pack_snorm_4x8:
1707 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1708 emit_pack_snorm_4x8(dst, op[0]);
1709 break;
1710
1711 case nir_op_bitfield_reverse:
1712 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1713 emit(BFREV(dst, op[0]));
1714 break;
1715
1716 case nir_op_bit_count:
1717 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1718 emit(CBIT(dst, op[0]));
1719 break;
1720
1721 case nir_op_ufind_msb:
1722 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1723 emit_find_msb_using_lzd(vec4_builder(this).at_end(), dst, op[0], false);
1724 break;
1725
1726 case nir_op_ifind_msb: {
1727 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1728 vec4_builder bld = vec4_builder(this).at_end();
1729 src_reg src(dst);
1730
1731 if (devinfo->gen < 7) {
1732 emit_find_msb_using_lzd(bld, dst, op[0], true);
1733 } else {
1734 emit(FBH(retype(dst, BRW_REGISTER_TYPE_UD), op[0]));
1735
1736 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1737 * count from the LSB side. If FBH didn't return an error
1738 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1739 * count into an LSB count.
1740 */
1741 bld.CMP(dst_null_d(), src, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1742
1743 inst = bld.ADD(dst, src, brw_imm_d(31));
1744 inst->predicate = BRW_PREDICATE_NORMAL;
1745 inst->src[0].negate = true;
1746 }
1747 break;
1748 }
1749
1750 case nir_op_find_lsb: {
1751 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1752 vec4_builder bld = vec4_builder(this).at_end();
1753
1754 if (devinfo->gen < 7) {
1755 dst_reg temp = bld.vgrf(BRW_REGISTER_TYPE_D);
1756
1757 /* (x & -x) generates a value that consists of only the LSB of x.
1758 * For all powers of 2, findMSB(y) == findLSB(y).
1759 */
1760 src_reg src = src_reg(retype(op[0], BRW_REGISTER_TYPE_D));
1761 src_reg negated_src = src;
1762
1763 /* One must be negated, and the other must be non-negated. It
1764 * doesn't matter which is which.
1765 */
1766 negated_src.negate = true;
1767 src.negate = false;
1768
1769 bld.AND(temp, src, negated_src);
1770 emit_find_msb_using_lzd(bld, dst, src_reg(temp), false);
1771 } else {
1772 bld.FBL(dst, op[0]);
1773 }
1774 break;
1775 }
1776
1777 case nir_op_ubitfield_extract:
1778 case nir_op_ibitfield_extract:
1779 unreachable("should have been lowered");
1780 case nir_op_ubfe:
1781 case nir_op_ibfe:
1782 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1783 op[0] = fix_3src_operand(op[0]);
1784 op[1] = fix_3src_operand(op[1]);
1785 op[2] = fix_3src_operand(op[2]);
1786
1787 emit(BFE(dst, op[2], op[1], op[0]));
1788 break;
1789
1790 case nir_op_bfm:
1791 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1792 emit(BFI1(dst, op[0], op[1]));
1793 break;
1794
1795 case nir_op_bfi:
1796 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1797 op[0] = fix_3src_operand(op[0]);
1798 op[1] = fix_3src_operand(op[1]);
1799 op[2] = fix_3src_operand(op[2]);
1800
1801 emit(BFI2(dst, op[0], op[1], op[2]));
1802 break;
1803
1804 case nir_op_bitfield_insert:
1805 unreachable("not reached: should have been lowered");
1806
1807 case nir_op_fsign:
1808 if (type_sz(op[0].type) < 8) {
1809 /* AND(val, 0x80000000) gives the sign bit.
1810 *
1811 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
1812 * zero.
1813 */
1814 emit(CMP(dst_null_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1815
1816 op[0].type = BRW_REGISTER_TYPE_UD;
1817 dst.type = BRW_REGISTER_TYPE_UD;
1818 emit(AND(dst, op[0], brw_imm_ud(0x80000000u)));
1819
1820 inst = emit(OR(dst, src_reg(dst), brw_imm_ud(0x3f800000u)));
1821 inst->predicate = BRW_PREDICATE_NORMAL;
1822 dst.type = BRW_REGISTER_TYPE_F;
1823
1824 if (instr->dest.saturate) {
1825 inst = emit(MOV(dst, src_reg(dst)));
1826 inst->saturate = true;
1827 }
1828 } else {
1829 /* For doubles we do the same but we need to consider:
1830 *
1831 * - We use a MOV with conditional_mod instead of a CMP so that we can
1832 * skip loading a 0.0 immediate. We use a source modifier on the
1833 * source of the MOV so that we flush denormalized values to 0.
1834 * Since we want to compare against 0, this won't alter the result.
1835 * - We need to extract the high 32-bit of each DF where the sign
1836 * is stored.
1837 * - We need to produce a DF result.
1838 */
1839
1840 /* Check for zero */
1841 src_reg value = op[0];
1842 value.abs = true;
1843 inst = emit(MOV(dst_null_df(), value));
1844 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1845
1846 /* AND each high 32-bit channel with 0x80000000u */
1847 dst_reg tmp = dst_reg(this, glsl_type::uvec4_type);
1848 emit(VEC4_OPCODE_PICK_HIGH_32BIT, tmp, op[0]);
1849 emit(AND(tmp, src_reg(tmp), brw_imm_ud(0x80000000u)));
1850
1851 /* Add 1.0 to each channel, predicated to skip the cases where the
1852 * channel's value was 0
1853 */
1854 inst = emit(OR(tmp, src_reg(tmp), brw_imm_ud(0x3f800000u)));
1855 inst->predicate = BRW_PREDICATE_NORMAL;
1856
1857 /* Now convert the result from float to double */
1858 emit_conversion_to_double(dst, retype(src_reg(tmp),
1859 BRW_REGISTER_TYPE_F),
1860 instr->dest.saturate);
1861 }
1862 break;
1863
1864 case nir_op_isign:
1865 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
1866 * -> non-negative val generates 0x00000000.
1867 * Predicated OR sets 1 if val is positive.
1868 */
1869 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1870 emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G));
1871 emit(ASR(dst, op[0], brw_imm_d(31)));
1872 inst = emit(OR(dst, src_reg(dst), brw_imm_d(1)));
1873 inst->predicate = BRW_PREDICATE_NORMAL;
1874 break;
1875
1876 case nir_op_ishl:
1877 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1878 emit(SHL(dst, op[0], op[1]));
1879 break;
1880
1881 case nir_op_ishr:
1882 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1883 emit(ASR(dst, op[0], op[1]));
1884 break;
1885
1886 case nir_op_ushr:
1887 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1888 emit(SHR(dst, op[0], op[1]));
1889 break;
1890
1891 case nir_op_ffma:
1892 if (type_sz(dst.type) == 8) {
1893 dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type);
1894 emit(MUL(mul_dst, op[1], op[0]));
1895 inst = emit(ADD(dst, src_reg(mul_dst), op[2]));
1896 inst->saturate = instr->dest.saturate;
1897 } else {
1898 op[0] = fix_3src_operand(op[0]);
1899 op[1] = fix_3src_operand(op[1]);
1900 op[2] = fix_3src_operand(op[2]);
1901
1902 inst = emit(MAD(dst, op[2], op[1], op[0]));
1903 inst->saturate = instr->dest.saturate;
1904 }
1905 break;
1906
1907 case nir_op_flrp:
1908 inst = emit_lrp(dst, op[0], op[1], op[2]);
1909 inst->saturate = instr->dest.saturate;
1910 break;
1911
1912 case nir_op_bcsel:
1913 enum brw_predicate predicate;
1914 if (!optimize_predicate(instr, &predicate)) {
1915 emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1916 switch (dst.writemask) {
1917 case WRITEMASK_X:
1918 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_X;
1919 break;
1920 case WRITEMASK_Y:
1921 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Y;
1922 break;
1923 case WRITEMASK_Z:
1924 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Z;
1925 break;
1926 case WRITEMASK_W:
1927 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_W;
1928 break;
1929 default:
1930 predicate = BRW_PREDICATE_NORMAL;
1931 break;
1932 }
1933 }
1934 inst = emit(BRW_OPCODE_SEL, dst, op[1], op[2]);
1935 inst->predicate = predicate;
1936 break;
1937
1938 case nir_op_fdot_replicated2:
1939 inst = emit(BRW_OPCODE_DP2, dst, op[0], op[1]);
1940 inst->saturate = instr->dest.saturate;
1941 break;
1942
1943 case nir_op_fdot_replicated3:
1944 inst = emit(BRW_OPCODE_DP3, dst, op[0], op[1]);
1945 inst->saturate = instr->dest.saturate;
1946 break;
1947
1948 case nir_op_fdot_replicated4:
1949 inst = emit(BRW_OPCODE_DP4, dst, op[0], op[1]);
1950 inst->saturate = instr->dest.saturate;
1951 break;
1952
1953 case nir_op_fdph_replicated:
1954 inst = emit(BRW_OPCODE_DPH, dst, op[0], op[1]);
1955 inst->saturate = instr->dest.saturate;
1956 break;
1957
1958 case nir_op_iabs:
1959 case nir_op_ineg:
1960 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1961 /* fall through */
1962 case nir_op_fabs:
1963 case nir_op_fneg:
1964 case nir_op_fsat:
1965 unreachable("not reached: should be lowered by lower_source mods");
1966
1967 case nir_op_fdiv:
1968 unreachable("not reached: should be lowered by DIV_TO_MUL_RCP in the compiler");
1969
1970 case nir_op_fmod:
1971 unreachable("not reached: should be lowered by MOD_TO_FLOOR in the compiler");
1972
1973 case nir_op_fsub:
1974 case nir_op_isub:
1975 unreachable("not reached: should be handled by ir_sub_to_add_neg");
1976
1977 default:
1978 unreachable("Unimplemented ALU operation");
1979 }
1980
1981 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1982 * to sign extend the low bit to 0/~0
1983 */
1984 if (devinfo->gen <= 5 &&
1985 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) ==
1986 BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1987 dst_reg masked = dst_reg(this, glsl_type::int_type);
1988 masked.writemask = dst.writemask;
1989 emit(AND(masked, src_reg(dst), brw_imm_d(1)));
1990 src_reg masked_neg = src_reg(masked);
1991 masked_neg.negate = true;
1992 emit(MOV(retype(dst, BRW_REGISTER_TYPE_D), masked_neg));
1993 }
1994 }
1995
1996 void
1997 vec4_visitor::nir_emit_jump(nir_jump_instr *instr)
1998 {
1999 switch (instr->type) {
2000 case nir_jump_break:
2001 emit(BRW_OPCODE_BREAK);
2002 break;
2003
2004 case nir_jump_continue:
2005 emit(BRW_OPCODE_CONTINUE);
2006 break;
2007
2008 case nir_jump_return:
2009 /* fall through */
2010 default:
2011 unreachable("unknown jump");
2012 }
2013 }
2014
2015 static enum ir_texture_opcode
2016 ir_texture_opcode_for_nir_texop(nir_texop texop)
2017 {
2018 enum ir_texture_opcode op;
2019
2020 switch (texop) {
2021 case nir_texop_lod: op = ir_lod; break;
2022 case nir_texop_query_levels: op = ir_query_levels; break;
2023 case nir_texop_texture_samples: op = ir_texture_samples; break;
2024 case nir_texop_tex: op = ir_tex; break;
2025 case nir_texop_tg4: op = ir_tg4; break;
2026 case nir_texop_txb: op = ir_txb; break;
2027 case nir_texop_txd: op = ir_txd; break;
2028 case nir_texop_txf: op = ir_txf; break;
2029 case nir_texop_txf_ms: op = ir_txf_ms; break;
2030 case nir_texop_txl: op = ir_txl; break;
2031 case nir_texop_txs: op = ir_txs; break;
2032 case nir_texop_samples_identical: op = ir_samples_identical; break;
2033 default:
2034 unreachable("unknown texture opcode");
2035 }
2036
2037 return op;
2038 }
2039
2040 static const glsl_type *
2041 glsl_type_for_nir_alu_type(nir_alu_type alu_type,
2042 unsigned components)
2043 {
2044 return glsl_type::get_instance(brw_glsl_base_type_for_nir_type(alu_type),
2045 components, 1);
2046 }
2047
2048 void
2049 vec4_visitor::nir_emit_texture(nir_tex_instr *instr)
2050 {
2051 unsigned texture = instr->texture_index;
2052 unsigned sampler = instr->sampler_index;
2053 src_reg texture_reg = brw_imm_ud(texture);
2054 src_reg sampler_reg = brw_imm_ud(sampler);
2055 src_reg coordinate;
2056 const glsl_type *coord_type = NULL;
2057 src_reg shadow_comparator;
2058 src_reg offset_value;
2059 src_reg lod, lod2;
2060 src_reg sample_index;
2061 src_reg mcs;
2062
2063 const glsl_type *dest_type =
2064 glsl_type_for_nir_alu_type(instr->dest_type,
2065 nir_tex_instr_dest_size(instr));
2066 dst_reg dest = get_nir_dest(instr->dest, instr->dest_type);
2067
2068 /* The hardware requires a LOD for buffer textures */
2069 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
2070 lod = brw_imm_d(0);
2071
2072 /* Load the texture operation sources */
2073 uint32_t constant_offset = 0;
2074 for (unsigned i = 0; i < instr->num_srcs; i++) {
2075 switch (instr->src[i].src_type) {
2076 case nir_tex_src_comparator:
2077 shadow_comparator = get_nir_src(instr->src[i].src,
2078 BRW_REGISTER_TYPE_F, 1);
2079 break;
2080
2081 case nir_tex_src_coord: {
2082 unsigned src_size = nir_tex_instr_src_size(instr, i);
2083
2084 switch (instr->op) {
2085 case nir_texop_txf:
2086 case nir_texop_txf_ms:
2087 case nir_texop_samples_identical:
2088 coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D,
2089 src_size);
2090 coord_type = glsl_type::ivec(src_size);
2091 break;
2092
2093 default:
2094 coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2095 src_size);
2096 coord_type = glsl_type::vec(src_size);
2097 break;
2098 }
2099 break;
2100 }
2101
2102 case nir_tex_src_ddx:
2103 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2104 nir_tex_instr_src_size(instr, i));
2105 break;
2106
2107 case nir_tex_src_ddy:
2108 lod2 = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2109 nir_tex_instr_src_size(instr, i));
2110 break;
2111
2112 case nir_tex_src_lod:
2113 switch (instr->op) {
2114 case nir_texop_txs:
2115 case nir_texop_txf:
2116 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
2117 break;
2118
2119 default:
2120 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F, 1);
2121 break;
2122 }
2123 break;
2124
2125 case nir_tex_src_ms_index: {
2126 sample_index = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
2127 break;
2128 }
2129
2130 case nir_tex_src_offset: {
2131 nir_const_value *const_offset =
2132 nir_src_as_const_value(instr->src[i].src);
2133 if (!const_offset ||
2134 !brw_texture_offset(const_offset->i32,
2135 nir_tex_instr_src_size(instr, i),
2136 &constant_offset)) {
2137 offset_value =
2138 get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 2);
2139 }
2140 break;
2141 }
2142
2143 case nir_tex_src_texture_offset: {
2144 /* The highest texture which may be used by this operation is
2145 * the last element of the array. Mark it here, because the generator
2146 * doesn't have enough information to determine the bound.
2147 */
2148 uint32_t array_size = instr->texture_array_size;
2149 uint32_t max_used = texture + array_size - 1;
2150 if (instr->op == nir_texop_tg4) {
2151 max_used += prog_data->base.binding_table.gather_texture_start;
2152 } else {
2153 max_used += prog_data->base.binding_table.texture_start;
2154 }
2155
2156 brw_mark_surface_used(&prog_data->base, max_used);
2157
2158 /* Emit code to evaluate the actual indexing expression */
2159 src_reg src = get_nir_src(instr->src[i].src, 1);
2160 src_reg temp(this, glsl_type::uint_type);
2161 emit(ADD(dst_reg(temp), src, brw_imm_ud(texture)));
2162 texture_reg = emit_uniformize(temp);
2163 break;
2164 }
2165
2166 case nir_tex_src_sampler_offset: {
2167 /* Emit code to evaluate the actual indexing expression */
2168 src_reg src = get_nir_src(instr->src[i].src, 1);
2169 src_reg temp(this, glsl_type::uint_type);
2170 emit(ADD(dst_reg(temp), src, brw_imm_ud(sampler)));
2171 sampler_reg = emit_uniformize(temp);
2172 break;
2173 }
2174
2175 case nir_tex_src_projector:
2176 unreachable("Should be lowered by do_lower_texture_projection");
2177
2178 case nir_tex_src_bias:
2179 unreachable("LOD bias is not valid for vertex shaders.\n");
2180
2181 default:
2182 unreachable("unknown texture source");
2183 }
2184 }
2185
2186 if (instr->op == nir_texop_txf_ms ||
2187 instr->op == nir_texop_samples_identical) {
2188 assert(coord_type != NULL);
2189 if (devinfo->gen >= 7 &&
2190 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
2191 mcs = emit_mcs_fetch(coord_type, coordinate, texture_reg);
2192 } else {
2193 mcs = brw_imm_ud(0u);
2194 }
2195 }
2196
2197 /* Stuff the channel select bits in the top of the texture offset */
2198 if (instr->op == nir_texop_tg4) {
2199 if (instr->component == 1 &&
2200 (key_tex->gather_channel_quirk_mask & (1 << texture))) {
2201 /* gather4 sampler is broken for green channel on RG32F --
2202 * we must ask for blue instead.
2203 */
2204 constant_offset |= 2 << 16;
2205 } else {
2206 constant_offset |= instr->component << 16;
2207 }
2208 }
2209
2210 ir_texture_opcode op = ir_texture_opcode_for_nir_texop(instr->op);
2211
2212 emit_texture(op, dest, dest_type, coordinate, instr->coord_components,
2213 shadow_comparator,
2214 lod, lod2, sample_index,
2215 constant_offset, offset_value, mcs,
2216 texture, texture_reg, sampler_reg);
2217 }
2218
2219 void
2220 vec4_visitor::nir_emit_undef(nir_ssa_undef_instr *instr)
2221 {
2222 nir_ssa_values[instr->def.index] =
2223 dst_reg(VGRF, alloc.allocate(DIV_ROUND_UP(instr->def.bit_size, 32)));
2224 }
2225
2226 /* SIMD4x2 64bit data is stored in register space like this:
2227 *
2228 * r0.0:DF x0 y0 z0 w0
2229 * r1.0:DF x1 y1 z1 w1
2230 *
2231 * When we need to write data such as this to memory using 32-bit write
2232 * messages we need to shuffle it in this fashion:
2233 *
2234 * r0.0:DF x0 y0 x1 y1 (to be written at base offset)
2235 * r0.0:DF z0 w0 z1 w1 (to be written at base offset + 16)
2236 *
2237 * We need to do the inverse operation when we read using 32-bit messages,
2238 * which we can do by applying the same exact shuffling on the 64-bit data
2239 * read, only that because the data for each vertex is positioned differently
2240 * we need to apply different channel enables.
2241 *
2242 * This function takes 64bit data and shuffles it as explained above.
2243 *
2244 * The @for_write parameter is used to specify if the shuffling is being done
2245 * for proper SIMD4x2 64-bit data that needs to be shuffled prior to a 32-bit
2246 * write message (for_write = true), or instead we are doing the inverse
2247 * operation and we have just read 64-bit data using a 32-bit messages that we
2248 * need to shuffle to create valid SIMD4x2 64-bit data (for_write = false).
2249 *
2250 * If @block and @ref are non-NULL, then the shuffling is done after @ref,
2251 * otherwise the instructions are emitted normally at the end. The function
2252 * returns the last instruction inserted.
2253 *
2254 * Notice that @src and @dst cannot be the same register.
2255 */
2256 vec4_instruction *
2257 vec4_visitor::shuffle_64bit_data(dst_reg dst, src_reg src, bool for_write,
2258 bblock_t *block, vec4_instruction *ref)
2259 {
2260 assert(type_sz(src.type) == 8);
2261 assert(type_sz(dst.type) == 8);
2262 assert(!regions_overlap(dst, 2 * REG_SIZE, src, 2 * REG_SIZE));
2263 assert(!ref == !block);
2264
2265 const vec4_builder bld = !ref ? vec4_builder(this).at_end() :
2266 vec4_builder(this).at(block, ref->next);
2267
2268 /* Resolve swizzle in src */
2269 vec4_instruction *inst;
2270 if (src.swizzle != BRW_SWIZZLE_XYZW) {
2271 dst_reg data = dst_reg(this, glsl_type::dvec4_type);
2272 inst = bld.MOV(data, src);
2273 src = src_reg(data);
2274 }
2275
2276 /* dst+0.XY = src+0.XY */
2277 inst = bld.group(4, 0).MOV(writemask(dst, WRITEMASK_XY), src);
2278
2279 /* dst+0.ZW = src+1.XY */
2280 inst = bld.group(4, for_write ? 1 : 0)
2281 .MOV(writemask(dst, WRITEMASK_ZW),
2282 swizzle(byte_offset(src, REG_SIZE), BRW_SWIZZLE_XYXY));
2283
2284 /* dst+1.XY = src+0.ZW */
2285 inst = bld.group(4, for_write ? 0 : 1)
2286 .MOV(writemask(byte_offset(dst, REG_SIZE), WRITEMASK_XY),
2287 swizzle(src, BRW_SWIZZLE_ZWZW));
2288
2289 /* dst+1.ZW = src+1.ZW */
2290 inst = bld.group(4, 1)
2291 .MOV(writemask(byte_offset(dst, REG_SIZE), WRITEMASK_ZW),
2292 byte_offset(src, REG_SIZE));
2293
2294 return inst;
2295 }
2296
2297 }