intel/vec4: Emit constants for some ALU sources as immediate values
[mesa.git] / src / intel / compiler / brw_vec4_nir.cpp
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_nir.h"
25 #include "brw_vec4.h"
26 #include "brw_vec4_builder.h"
27 #include "brw_vec4_surface_builder.h"
28
29 using namespace brw;
30 using namespace brw::surface_access;
31
32 namespace brw {
33
34 void
35 vec4_visitor::emit_nir_code()
36 {
37 if (nir->num_uniforms > 0)
38 nir_setup_uniforms();
39
40 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
41 }
42
43 void
44 vec4_visitor::nir_setup_uniforms()
45 {
46 uniforms = nir->num_uniforms / 16;
47 }
48
49 void
50 vec4_visitor::nir_emit_impl(nir_function_impl *impl)
51 {
52 nir_locals = ralloc_array(mem_ctx, dst_reg, impl->reg_alloc);
53 for (unsigned i = 0; i < impl->reg_alloc; i++) {
54 nir_locals[i] = dst_reg();
55 }
56
57 foreach_list_typed(nir_register, reg, node, &impl->registers) {
58 unsigned array_elems =
59 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
60 const unsigned num_regs = array_elems * DIV_ROUND_UP(reg->bit_size, 32);
61 nir_locals[reg->index] = dst_reg(VGRF, alloc.allocate(num_regs));
62
63 if (reg->bit_size == 64)
64 nir_locals[reg->index].type = BRW_REGISTER_TYPE_DF;
65 }
66
67 nir_ssa_values = ralloc_array(mem_ctx, dst_reg, impl->ssa_alloc);
68
69 nir_emit_cf_list(&impl->body);
70 }
71
72 void
73 vec4_visitor::nir_emit_cf_list(exec_list *list)
74 {
75 exec_list_validate(list);
76 foreach_list_typed(nir_cf_node, node, node, list) {
77 switch (node->type) {
78 case nir_cf_node_if:
79 nir_emit_if(nir_cf_node_as_if(node));
80 break;
81
82 case nir_cf_node_loop:
83 nir_emit_loop(nir_cf_node_as_loop(node));
84 break;
85
86 case nir_cf_node_block:
87 nir_emit_block(nir_cf_node_as_block(node));
88 break;
89
90 default:
91 unreachable("Invalid CFG node block");
92 }
93 }
94 }
95
96 void
97 vec4_visitor::nir_emit_if(nir_if *if_stmt)
98 {
99 /* First, put the condition in f0 */
100 src_reg condition = get_nir_src(if_stmt->condition, BRW_REGISTER_TYPE_D, 1);
101 vec4_instruction *inst = emit(MOV(dst_null_d(), condition));
102 inst->conditional_mod = BRW_CONDITIONAL_NZ;
103
104 /* We can just predicate based on the X channel, as the condition only
105 * goes on its own line */
106 emit(IF(BRW_PREDICATE_ALIGN16_REPLICATE_X));
107
108 nir_emit_cf_list(&if_stmt->then_list);
109
110 /* note: if the else is empty, dead CF elimination will remove it */
111 emit(BRW_OPCODE_ELSE);
112
113 nir_emit_cf_list(&if_stmt->else_list);
114
115 emit(BRW_OPCODE_ENDIF);
116 }
117
118 void
119 vec4_visitor::nir_emit_loop(nir_loop *loop)
120 {
121 emit(BRW_OPCODE_DO);
122
123 nir_emit_cf_list(&loop->body);
124
125 emit(BRW_OPCODE_WHILE);
126 }
127
128 void
129 vec4_visitor::nir_emit_block(nir_block *block)
130 {
131 nir_foreach_instr(instr, block) {
132 nir_emit_instr(instr);
133 }
134 }
135
136 void
137 vec4_visitor::nir_emit_instr(nir_instr *instr)
138 {
139 base_ir = instr;
140
141 switch (instr->type) {
142 case nir_instr_type_load_const:
143 nir_emit_load_const(nir_instr_as_load_const(instr));
144 break;
145
146 case nir_instr_type_intrinsic:
147 nir_emit_intrinsic(nir_instr_as_intrinsic(instr));
148 break;
149
150 case nir_instr_type_alu:
151 nir_emit_alu(nir_instr_as_alu(instr));
152 break;
153
154 case nir_instr_type_jump:
155 nir_emit_jump(nir_instr_as_jump(instr));
156 break;
157
158 case nir_instr_type_tex:
159 nir_emit_texture(nir_instr_as_tex(instr));
160 break;
161
162 case nir_instr_type_ssa_undef:
163 nir_emit_undef(nir_instr_as_ssa_undef(instr));
164 break;
165
166 default:
167 unreachable("VS instruction not yet implemented by NIR->vec4");
168 }
169 }
170
171 static dst_reg
172 dst_reg_for_nir_reg(vec4_visitor *v, nir_register *nir_reg,
173 unsigned base_offset, nir_src *indirect)
174 {
175 dst_reg reg;
176
177 reg = v->nir_locals[nir_reg->index];
178 if (nir_reg->bit_size == 64)
179 reg.type = BRW_REGISTER_TYPE_DF;
180 reg = offset(reg, 8, base_offset);
181 if (indirect) {
182 reg.reladdr =
183 new(v->mem_ctx) src_reg(v->get_nir_src(*indirect,
184 BRW_REGISTER_TYPE_D,
185 1));
186 }
187 return reg;
188 }
189
190 dst_reg
191 vec4_visitor::get_nir_dest(const nir_dest &dest)
192 {
193 if (dest.is_ssa) {
194 dst_reg dst =
195 dst_reg(VGRF, alloc.allocate(DIV_ROUND_UP(dest.ssa.bit_size, 32)));
196 if (dest.ssa.bit_size == 64)
197 dst.type = BRW_REGISTER_TYPE_DF;
198 nir_ssa_values[dest.ssa.index] = dst;
199 return dst;
200 } else {
201 return dst_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
202 dest.reg.indirect);
203 }
204 }
205
206 dst_reg
207 vec4_visitor::get_nir_dest(const nir_dest &dest, enum brw_reg_type type)
208 {
209 return retype(get_nir_dest(dest), type);
210 }
211
212 dst_reg
213 vec4_visitor::get_nir_dest(const nir_dest &dest, nir_alu_type type)
214 {
215 return get_nir_dest(dest, brw_type_for_nir_type(devinfo, type));
216 }
217
218 src_reg
219 vec4_visitor::get_nir_src(const nir_src &src, enum brw_reg_type type,
220 unsigned num_components)
221 {
222 dst_reg reg;
223
224 if (src.is_ssa) {
225 assert(src.ssa != NULL);
226 reg = nir_ssa_values[src.ssa->index];
227 }
228 else {
229 reg = dst_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
230 src.reg.indirect);
231 }
232
233 reg = retype(reg, type);
234
235 src_reg reg_as_src = src_reg(reg);
236 reg_as_src.swizzle = brw_swizzle_for_size(num_components);
237 return reg_as_src;
238 }
239
240 src_reg
241 vec4_visitor::get_nir_src(const nir_src &src, nir_alu_type type,
242 unsigned num_components)
243 {
244 return get_nir_src(src, brw_type_for_nir_type(devinfo, type),
245 num_components);
246 }
247
248 src_reg
249 vec4_visitor::get_nir_src(const nir_src &src, unsigned num_components)
250 {
251 /* if type is not specified, default to signed int */
252 return get_nir_src(src, nir_type_int32, num_components);
253 }
254
255 src_reg
256 vec4_visitor::get_nir_src_imm(const nir_src &src)
257 {
258 assert(nir_src_num_components(src) == 1);
259 assert(nir_src_bit_size(src) == 32);
260 return nir_src_is_const(src) ? src_reg(brw_imm_d(nir_src_as_int(src))) :
261 get_nir_src(src, 1);
262 }
263
264 src_reg
265 vec4_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
266 {
267 nir_src *offset_src = nir_get_io_offset_src(instr);
268
269 if (nir_src_is_const(*offset_src)) {
270 /* The only constant offset we should find is 0. brw_nir.c's
271 * add_const_offset_to_base() will fold other constant offsets
272 * into instr->const_index[0].
273 */
274 assert(nir_src_as_uint(*offset_src) == 0);
275 return src_reg();
276 }
277
278 return get_nir_src(*offset_src, BRW_REGISTER_TYPE_UD, 1);
279 }
280
281 static src_reg
282 setup_imm_df(const vec4_builder &bld, double v)
283 {
284 const gen_device_info *devinfo = bld.shader->devinfo;
285 assert(devinfo->gen >= 7);
286
287 if (devinfo->gen >= 8)
288 return brw_imm_df(v);
289
290 /* gen7.5 does not support DF immediates straighforward but the DIM
291 * instruction allows to set the 64-bit immediate value.
292 */
293 if (devinfo->is_haswell) {
294 const vec4_builder ubld = bld.exec_all();
295 const dst_reg dst = bld.vgrf(BRW_REGISTER_TYPE_DF);
296 ubld.DIM(dst, brw_imm_df(v));
297 return swizzle(src_reg(dst), BRW_SWIZZLE_XXXX);
298 }
299
300 /* gen7 does not support DF immediates */
301 union {
302 double d;
303 struct {
304 uint32_t i1;
305 uint32_t i2;
306 };
307 } di;
308
309 di.d = v;
310
311 /* Write the low 32-bit of the constant to the X:UD channel and the
312 * high 32-bit to the Y:UD channel to build the constant in a VGRF.
313 * We have to do this twice (offset 0 and offset 1), since a DF VGRF takes
314 * two SIMD8 registers in SIMD4x2 execution. Finally, return a swizzle
315 * XXXX so any access to the VGRF only reads the constant data in these
316 * channels.
317 */
318 const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
319 for (unsigned n = 0; n < 2; n++) {
320 const vec4_builder ubld = bld.exec_all().group(4, n);
321 ubld.MOV(writemask(offset(tmp, 8, n), WRITEMASK_X), brw_imm_ud(di.i1));
322 ubld.MOV(writemask(offset(tmp, 8, n), WRITEMASK_Y), brw_imm_ud(di.i2));
323 }
324
325 return swizzle(src_reg(retype(tmp, BRW_REGISTER_TYPE_DF)), BRW_SWIZZLE_XXXX);
326 }
327
328 void
329 vec4_visitor::nir_emit_load_const(nir_load_const_instr *instr)
330 {
331 dst_reg reg;
332
333 if (instr->def.bit_size == 64) {
334 reg = dst_reg(VGRF, alloc.allocate(2));
335 reg.type = BRW_REGISTER_TYPE_DF;
336 } else {
337 reg = dst_reg(VGRF, alloc.allocate(1));
338 reg.type = BRW_REGISTER_TYPE_D;
339 }
340
341 const vec4_builder ibld = vec4_builder(this).at_end();
342 unsigned remaining = brw_writemask_for_size(instr->def.num_components);
343
344 /* @FIXME: consider emitting vector operations to save some MOVs in
345 * cases where the components are representable in 8 bits.
346 * For now, we emit a MOV for each distinct value.
347 */
348 for (unsigned i = 0; i < instr->def.num_components; i++) {
349 unsigned writemask = 1 << i;
350
351 if ((remaining & writemask) == 0)
352 continue;
353
354 for (unsigned j = i; j < instr->def.num_components; j++) {
355 if ((instr->def.bit_size == 32 &&
356 instr->value.u32[i] == instr->value.u32[j]) ||
357 (instr->def.bit_size == 64 &&
358 instr->value.f64[i] == instr->value.f64[j])) {
359 writemask |= 1 << j;
360 }
361 }
362
363 reg.writemask = writemask;
364 if (instr->def.bit_size == 64) {
365 emit(MOV(reg, setup_imm_df(ibld, instr->value.f64[i])));
366 } else {
367 emit(MOV(reg, brw_imm_d(instr->value.i32[i])));
368 }
369
370 remaining &= ~writemask;
371 }
372
373 /* Set final writemask */
374 reg.writemask = brw_writemask_for_size(instr->def.num_components);
375
376 nir_ssa_values[instr->def.index] = reg;
377 }
378
379 src_reg
380 vec4_visitor::get_nir_ssbo_intrinsic_index(nir_intrinsic_instr *instr)
381 {
382 /* SSBO stores are weird in that their index is in src[1] */
383 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
384
385 src_reg surf_index;
386 if (nir_src_is_const(instr->src[src])) {
387 unsigned index = prog_data->base.binding_table.ssbo_start +
388 nir_src_as_uint(instr->src[src]);
389 surf_index = brw_imm_ud(index);
390 } else {
391 surf_index = src_reg(this, glsl_type::uint_type);
392 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[src], 1),
393 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
394 surf_index = emit_uniformize(surf_index);
395 }
396
397 return surf_index;
398 }
399
400 void
401 vec4_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
402 {
403 dst_reg dest;
404 src_reg src;
405
406 switch (instr->intrinsic) {
407
408 case nir_intrinsic_load_input: {
409 /* We set EmitNoIndirectInput for VS */
410 unsigned load_offset = nir_src_as_uint(instr->src[0]);
411
412 dest = get_nir_dest(instr->dest);
413 dest.writemask = brw_writemask_for_size(instr->num_components);
414
415 src = src_reg(ATTR, instr->const_index[0] + load_offset,
416 glsl_type::uvec4_type);
417 src = retype(src, dest.type);
418
419 bool is_64bit = nir_dest_bit_size(instr->dest) == 64;
420 if (is_64bit) {
421 dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
422 src.swizzle = BRW_SWIZZLE_XYZW;
423 shuffle_64bit_data(tmp, src, false);
424 emit(MOV(dest, src_reg(tmp)));
425 } else {
426 /* Swizzle source based on component layout qualifier */
427 src.swizzle = BRW_SWZ_COMP_INPUT(nir_intrinsic_component(instr));
428 emit(MOV(dest, src));
429 }
430 break;
431 }
432
433 case nir_intrinsic_store_output: {
434 unsigned store_offset = nir_src_as_uint(instr->src[1]);
435 int varying = instr->const_index[0] + store_offset;
436
437 bool is_64bit = nir_src_bit_size(instr->src[0]) == 64;
438 if (is_64bit) {
439 src_reg data;
440 src = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_DF,
441 instr->num_components);
442 data = src_reg(this, glsl_type::dvec4_type);
443 shuffle_64bit_data(dst_reg(data), src, true);
444 src = retype(data, BRW_REGISTER_TYPE_F);
445 } else {
446 src = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F,
447 instr->num_components);
448 }
449
450 unsigned c = nir_intrinsic_component(instr);
451 output_reg[varying][c] = dst_reg(src);
452 output_num_components[varying][c] = instr->num_components;
453
454 unsigned num_components = instr->num_components;
455 if (is_64bit)
456 num_components *= 2;
457
458 output_reg[varying][c] = dst_reg(src);
459 output_num_components[varying][c] = MIN2(4, num_components);
460
461 if (is_64bit && num_components > 4) {
462 assert(num_components <= 8);
463 output_reg[varying + 1][c] = byte_offset(dst_reg(src), REG_SIZE);
464 output_num_components[varying + 1][c] = num_components - 4;
465 }
466 break;
467 }
468
469 case nir_intrinsic_get_buffer_size: {
470 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
471 nir_src_as_uint(instr->src[0]) : 0;
472
473 const unsigned index =
474 prog_data->base.binding_table.ssbo_start + ssbo_index;
475 dst_reg result_dst = get_nir_dest(instr->dest);
476 vec4_instruction *inst = new(mem_ctx)
477 vec4_instruction(SHADER_OPCODE_GET_BUFFER_SIZE, result_dst);
478
479 inst->base_mrf = 2;
480 inst->mlen = 1; /* always at least one */
481 inst->src[1] = brw_imm_ud(index);
482
483 /* MRF for the first parameter */
484 src_reg lod = brw_imm_d(0);
485 int param_base = inst->base_mrf;
486 int writemask = WRITEMASK_X;
487 emit(MOV(dst_reg(MRF, param_base, glsl_type::int_type, writemask), lod));
488
489 emit(inst);
490 break;
491 }
492
493 case nir_intrinsic_store_ssbo: {
494 assert(devinfo->gen >= 7);
495
496 /* brw_nir_lower_mem_access_bit_sizes takes care of this */
497 assert(nir_src_bit_size(instr->src[0]) == 32);
498 assert(nir_intrinsic_write_mask(instr) ==
499 (1u << instr->num_components) - 1);
500
501 src_reg surf_index = get_nir_ssbo_intrinsic_index(instr);
502 src_reg offset_reg = retype(get_nir_src_imm(instr->src[2]),
503 BRW_REGISTER_TYPE_UD);
504
505 /* Value */
506 src_reg val_reg = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F, 4);
507
508 /* IvyBridge does not have a native SIMD4x2 untyped write message so untyped
509 * writes will use SIMD8 mode. In order to hide this and keep symmetry across
510 * typed and untyped messages and across hardware platforms, the
511 * current implementation of the untyped messages will transparently convert
512 * the SIMD4x2 payload into an equivalent SIMD8 payload by transposing it
513 * and enabling only channel X on the SEND instruction.
514 *
515 * The above, works well for full vector writes, but not for partial writes
516 * where we want to write some channels and not others, like when we have
517 * code such as v.xyw = vec3(1,2,4). Because the untyped write messages are
518 * quite restrictive with regards to the channel enables we can configure in
519 * the message descriptor (not all combinations are allowed) we cannot simply
520 * implement these scenarios with a single message while keeping the
521 * aforementioned symmetry in the implementation. For now we de decided that
522 * it is better to keep the symmetry to reduce complexity, so in situations
523 * such as the one described we end up emitting two untyped write messages
524 * (one for xy and another for w).
525 *
526 * The code below packs consecutive channels into a single write message,
527 * detects gaps in the vector write and if needed, sends a second message
528 * with the remaining channels. If in the future we decide that we want to
529 * emit a single message at the expense of losing the symmetry in the
530 * implementation we can:
531 *
532 * 1) For IvyBridge: Only use the red channel of the untyped write SIMD8
533 * message payload. In this mode we can write up to 8 offsets and dwords
534 * to the red channel only (for the two vec4s in the SIMD4x2 execution)
535 * and select which of the 8 channels carry data to write by setting the
536 * appropriate writemask in the dst register of the SEND instruction.
537 * It would require to write a new generator opcode specifically for
538 * IvyBridge since we would need to prepare a SIMD8 payload that could
539 * use any channel, not just X.
540 *
541 * 2) For Haswell+: Simply send a single write message but set the writemask
542 * on the dst of the SEND instruction to select the channels we want to
543 * write. It would require to modify the current messages to receive
544 * and honor the writemask provided.
545 */
546 const vec4_builder bld = vec4_builder(this).at_end()
547 .annotate(current_annotation, base_ir);
548
549 emit_untyped_write(bld, surf_index, offset_reg, val_reg,
550 1 /* dims */, instr->num_components /* size */,
551 BRW_PREDICATE_NONE);
552 break;
553 }
554
555 case nir_intrinsic_load_ssbo: {
556 assert(devinfo->gen >= 7);
557
558 /* brw_nir_lower_mem_access_bit_sizes takes care of this */
559 assert(nir_dest_bit_size(instr->dest) == 32);
560
561 src_reg surf_index = get_nir_ssbo_intrinsic_index(instr);
562 src_reg offset_reg = retype(get_nir_src_imm(instr->src[1]),
563 BRW_REGISTER_TYPE_UD);
564
565 /* Read the vector */
566 const vec4_builder bld = vec4_builder(this).at_end()
567 .annotate(current_annotation, base_ir);
568
569 src_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
570 1 /* dims */, 4 /* size*/,
571 BRW_PREDICATE_NONE);
572 dst_reg dest = get_nir_dest(instr->dest);
573 read_result.type = dest.type;
574 read_result.swizzle = brw_swizzle_for_size(instr->num_components);
575 emit(MOV(dest, read_result));
576 break;
577 }
578
579 case nir_intrinsic_ssbo_atomic_add: {
580 int op = BRW_AOP_ADD;
581
582 if (nir_src_is_const(instr->src[2])) {
583 int add_val = nir_src_as_int(instr->src[2]);
584 if (add_val == 1)
585 op = BRW_AOP_INC;
586 else if (add_val == -1)
587 op = BRW_AOP_DEC;
588 }
589
590 nir_emit_ssbo_atomic(op, instr);
591 break;
592 }
593 case nir_intrinsic_ssbo_atomic_imin:
594 nir_emit_ssbo_atomic(BRW_AOP_IMIN, instr);
595 break;
596 case nir_intrinsic_ssbo_atomic_umin:
597 nir_emit_ssbo_atomic(BRW_AOP_UMIN, instr);
598 break;
599 case nir_intrinsic_ssbo_atomic_imax:
600 nir_emit_ssbo_atomic(BRW_AOP_IMAX, instr);
601 break;
602 case nir_intrinsic_ssbo_atomic_umax:
603 nir_emit_ssbo_atomic(BRW_AOP_UMAX, instr);
604 break;
605 case nir_intrinsic_ssbo_atomic_and:
606 nir_emit_ssbo_atomic(BRW_AOP_AND, instr);
607 break;
608 case nir_intrinsic_ssbo_atomic_or:
609 nir_emit_ssbo_atomic(BRW_AOP_OR, instr);
610 break;
611 case nir_intrinsic_ssbo_atomic_xor:
612 nir_emit_ssbo_atomic(BRW_AOP_XOR, instr);
613 break;
614 case nir_intrinsic_ssbo_atomic_exchange:
615 nir_emit_ssbo_atomic(BRW_AOP_MOV, instr);
616 break;
617 case nir_intrinsic_ssbo_atomic_comp_swap:
618 nir_emit_ssbo_atomic(BRW_AOP_CMPWR, instr);
619 break;
620
621 case nir_intrinsic_load_vertex_id:
622 unreachable("should be lowered by lower_vertex_id()");
623
624 case nir_intrinsic_load_vertex_id_zero_base:
625 case nir_intrinsic_load_base_vertex:
626 case nir_intrinsic_load_instance_id:
627 case nir_intrinsic_load_base_instance:
628 case nir_intrinsic_load_draw_id:
629 case nir_intrinsic_load_invocation_id:
630 unreachable("should be lowered by brw_nir_lower_vs_inputs()");
631
632 case nir_intrinsic_load_uniform: {
633 /* Offsets are in bytes but they should always be multiples of 4 */
634 assert(nir_intrinsic_base(instr) % 4 == 0);
635
636 dest = get_nir_dest(instr->dest);
637
638 src = src_reg(dst_reg(UNIFORM, nir_intrinsic_base(instr) / 16));
639 src.type = dest.type;
640
641 /* Uniforms don't actually have to be vec4 aligned. In the case that
642 * it isn't, we have to use a swizzle to shift things around. They
643 * do still have the std140 alignment requirement that vec2's have to
644 * be vec2-aligned and vec3's and vec4's have to be vec4-aligned.
645 *
646 * The swizzle also works in the indirect case as the generator adds
647 * the swizzle to the offset for us.
648 */
649 const int type_size = type_sz(src.type);
650 unsigned shift = (nir_intrinsic_base(instr) % 16) / type_size;
651 assert(shift + instr->num_components <= 4);
652
653 if (nir_src_is_const(instr->src[0])) {
654 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
655 /* Offsets are in bytes but they should always be multiples of 4 */
656 assert(load_offset % 4 == 0);
657
658 src.swizzle = brw_swizzle_for_size(instr->num_components);
659 dest.writemask = brw_writemask_for_size(instr->num_components);
660 unsigned offset = load_offset + shift * type_size;
661 src.offset = ROUND_DOWN_TO(offset, 16);
662 shift = (offset % 16) / type_size;
663 assert(shift + instr->num_components <= 4);
664 src.swizzle += BRW_SWIZZLE4(shift, shift, shift, shift);
665
666 emit(MOV(dest, src));
667 } else {
668 /* Uniform arrays are vec4 aligned, because of std140 alignment
669 * rules.
670 */
671 assert(shift == 0);
672
673 src_reg indirect = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_UD, 1);
674
675 /* MOV_INDIRECT is going to stomp the whole thing anyway */
676 dest.writemask = WRITEMASK_XYZW;
677
678 emit(SHADER_OPCODE_MOV_INDIRECT, dest, src,
679 indirect, brw_imm_ud(instr->const_index[1]));
680 }
681 break;
682 }
683
684 case nir_intrinsic_load_ubo: {
685 src_reg surf_index;
686
687 dest = get_nir_dest(instr->dest);
688
689 if (nir_src_is_const(instr->src[0])) {
690 /* The block index is a constant, so just emit the binding table entry
691 * as an immediate.
692 */
693 const unsigned index = prog_data->base.binding_table.ubo_start +
694 nir_src_as_uint(instr->src[0]);
695 surf_index = brw_imm_ud(index);
696 } else {
697 /* The block index is not a constant. Evaluate the index expression
698 * per-channel and add the base UBO index; we have to select a value
699 * from any live channel.
700 */
701 surf_index = src_reg(this, glsl_type::uint_type);
702 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], nir_type_int32,
703 instr->num_components),
704 brw_imm_ud(prog_data->base.binding_table.ubo_start)));
705 surf_index = emit_uniformize(surf_index);
706 }
707
708 src_reg offset_reg;
709 if (nir_src_is_const(instr->src[1])) {
710 unsigned load_offset = nir_src_as_uint(instr->src[1]);
711 offset_reg = brw_imm_ud(load_offset & ~15);
712 } else {
713 offset_reg = src_reg(this, glsl_type::uint_type);
714 emit(MOV(dst_reg(offset_reg),
715 get_nir_src(instr->src[1], nir_type_uint32, 1)));
716 }
717
718 src_reg packed_consts;
719 if (nir_dest_bit_size(instr->dest) == 32) {
720 packed_consts = src_reg(this, glsl_type::vec4_type);
721 emit_pull_constant_load_reg(dst_reg(packed_consts),
722 surf_index,
723 offset_reg,
724 NULL, NULL /* before_block/inst */);
725 } else {
726 src_reg temp = src_reg(this, glsl_type::dvec4_type);
727 src_reg temp_float = retype(temp, BRW_REGISTER_TYPE_F);
728
729 emit_pull_constant_load_reg(dst_reg(temp_float),
730 surf_index, offset_reg, NULL, NULL);
731 if (offset_reg.file == IMM)
732 offset_reg.ud += 16;
733 else
734 emit(ADD(dst_reg(offset_reg), offset_reg, brw_imm_ud(16u)));
735 emit_pull_constant_load_reg(dst_reg(byte_offset(temp_float, REG_SIZE)),
736 surf_index, offset_reg, NULL, NULL);
737
738 packed_consts = src_reg(this, glsl_type::dvec4_type);
739 shuffle_64bit_data(dst_reg(packed_consts), temp, false);
740 }
741
742 packed_consts.swizzle = brw_swizzle_for_size(instr->num_components);
743 if (nir_src_is_const(instr->src[1])) {
744 unsigned load_offset = nir_src_as_uint(instr->src[1]);
745 unsigned type_size = type_sz(dest.type);
746 packed_consts.swizzle +=
747 BRW_SWIZZLE4(load_offset % 16 / type_size,
748 load_offset % 16 / type_size,
749 load_offset % 16 / type_size,
750 load_offset % 16 / type_size);
751 }
752
753 emit(MOV(dest, retype(packed_consts, dest.type)));
754
755 break;
756 }
757
758 case nir_intrinsic_memory_barrier: {
759 const vec4_builder bld =
760 vec4_builder(this).at_end().annotate(current_annotation, base_ir);
761 const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
762 bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
763 ->size_written = 2 * REG_SIZE;
764 break;
765 }
766
767 case nir_intrinsic_shader_clock: {
768 /* We cannot do anything if there is an event, so ignore it for now */
769 const src_reg shader_clock = get_timestamp();
770 const enum brw_reg_type type = brw_type_for_base_type(glsl_type::uvec2_type);
771
772 dest = get_nir_dest(instr->dest, type);
773 emit(MOV(dest, shader_clock));
774 break;
775 }
776
777 default:
778 unreachable("Unknown intrinsic");
779 }
780 }
781
782 void
783 vec4_visitor::nir_emit_ssbo_atomic(int op, nir_intrinsic_instr *instr)
784 {
785 dst_reg dest;
786 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
787 dest = get_nir_dest(instr->dest);
788
789 src_reg surface = get_nir_ssbo_intrinsic_index(instr);
790 src_reg offset = get_nir_src(instr->src[1], 1);
791 src_reg data1;
792 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
793 data1 = get_nir_src(instr->src[2], 1);
794 src_reg data2;
795 if (op == BRW_AOP_CMPWR)
796 data2 = get_nir_src(instr->src[3], 1);
797
798 /* Emit the actual atomic operation operation */
799 const vec4_builder bld =
800 vec4_builder(this).at_end().annotate(current_annotation, base_ir);
801
802 src_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
803 data1, data2,
804 1 /* dims */, 1 /* rsize */,
805 op,
806 BRW_PREDICATE_NONE);
807 dest.type = atomic_result.type;
808 bld.MOV(dest, atomic_result);
809 }
810
811 static unsigned
812 brw_swizzle_for_nir_swizzle(uint8_t swizzle[4])
813 {
814 return BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
815 }
816
817 static enum brw_conditional_mod
818 brw_conditional_for_nir_comparison(nir_op op)
819 {
820 switch (op) {
821 case nir_op_flt32:
822 case nir_op_ilt32:
823 case nir_op_ult32:
824 return BRW_CONDITIONAL_L;
825
826 case nir_op_fge32:
827 case nir_op_ige32:
828 case nir_op_uge32:
829 return BRW_CONDITIONAL_GE;
830
831 case nir_op_feq32:
832 case nir_op_ieq32:
833 case nir_op_b32all_fequal2:
834 case nir_op_b32all_iequal2:
835 case nir_op_b32all_fequal3:
836 case nir_op_b32all_iequal3:
837 case nir_op_b32all_fequal4:
838 case nir_op_b32all_iequal4:
839 return BRW_CONDITIONAL_Z;
840
841 case nir_op_fne32:
842 case nir_op_ine32:
843 case nir_op_b32any_fnequal2:
844 case nir_op_b32any_inequal2:
845 case nir_op_b32any_fnequal3:
846 case nir_op_b32any_inequal3:
847 case nir_op_b32any_fnequal4:
848 case nir_op_b32any_inequal4:
849 return BRW_CONDITIONAL_NZ;
850
851 default:
852 unreachable("not reached: bad operation for comparison");
853 }
854 }
855
856 bool
857 vec4_visitor::optimize_predicate(nir_alu_instr *instr,
858 enum brw_predicate *predicate)
859 {
860 if (!instr->src[0].src.is_ssa ||
861 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
862 return false;
863
864 nir_alu_instr *cmp_instr =
865 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
866
867 switch (cmp_instr->op) {
868 case nir_op_b32any_fnequal2:
869 case nir_op_b32any_inequal2:
870 case nir_op_b32any_fnequal3:
871 case nir_op_b32any_inequal3:
872 case nir_op_b32any_fnequal4:
873 case nir_op_b32any_inequal4:
874 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
875 break;
876 case nir_op_b32all_fequal2:
877 case nir_op_b32all_iequal2:
878 case nir_op_b32all_fequal3:
879 case nir_op_b32all_iequal3:
880 case nir_op_b32all_fequal4:
881 case nir_op_b32all_iequal4:
882 *predicate = BRW_PREDICATE_ALIGN16_ALL4H;
883 break;
884 default:
885 return false;
886 }
887
888 unsigned size_swizzle =
889 brw_swizzle_for_size(nir_op_infos[cmp_instr->op].input_sizes[0]);
890
891 src_reg op[2];
892 assert(nir_op_infos[cmp_instr->op].num_inputs == 2);
893 for (unsigned i = 0; i < 2; i++) {
894 nir_alu_type type = nir_op_infos[cmp_instr->op].input_types[i];
895 unsigned bit_size = nir_src_bit_size(cmp_instr->src[i].src);
896 type = (nir_alu_type) (((unsigned) type) | bit_size);
897 op[i] = get_nir_src(cmp_instr->src[i].src, type, 4);
898 unsigned base_swizzle =
899 brw_swizzle_for_nir_swizzle(cmp_instr->src[i].swizzle);
900 op[i].swizzle = brw_compose_swizzle(size_swizzle, base_swizzle);
901 op[i].abs = cmp_instr->src[i].abs;
902 op[i].negate = cmp_instr->src[i].negate;
903 }
904
905 emit(CMP(dst_null_d(), op[0], op[1],
906 brw_conditional_for_nir_comparison(cmp_instr->op)));
907
908 return true;
909 }
910
911 static void
912 emit_find_msb_using_lzd(const vec4_builder &bld,
913 const dst_reg &dst,
914 const src_reg &src,
915 bool is_signed)
916 {
917 vec4_instruction *inst;
918 src_reg temp = src;
919
920 if (is_signed) {
921 /* LZD of an absolute value source almost always does the right
922 * thing. There are two problem values:
923 *
924 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
925 * 0. However, findMSB(int(0x80000000)) == 30.
926 *
927 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
928 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
929 *
930 * For a value of zero or negative one, -1 will be returned.
931 *
932 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
933 * findMSB(-(1<<x)) should return x-1.
934 *
935 * For all negative number cases, including 0x80000000 and
936 * 0xffffffff, the correct value is obtained from LZD if instead of
937 * negating the (already negative) value the logical-not is used. A
938 * conditonal logical-not can be achieved in two instructions.
939 */
940 temp = src_reg(bld.vgrf(BRW_REGISTER_TYPE_D));
941
942 bld.ASR(dst_reg(temp), src, brw_imm_d(31));
943 bld.XOR(dst_reg(temp), temp, src);
944 }
945
946 bld.LZD(retype(dst, BRW_REGISTER_TYPE_UD),
947 retype(temp, BRW_REGISTER_TYPE_UD));
948
949 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
950 * from the LSB side. Subtract the result from 31 to convert the MSB count
951 * into an LSB count. If no bits are set, LZD will return 32. 31-32 = -1,
952 * which is exactly what findMSB() is supposed to return.
953 */
954 inst = bld.ADD(dst, retype(src_reg(dst), BRW_REGISTER_TYPE_D),
955 brw_imm_d(31));
956 inst->src[0].negate = true;
957 }
958
959 void
960 vec4_visitor::emit_conversion_from_double(dst_reg dst, src_reg src,
961 bool saturate)
962 {
963 /* BDW PRM vol 15 - workarounds:
964 * DF->f format conversion for Align16 has wrong emask calculation when
965 * source is immediate.
966 */
967 if (devinfo->gen == 8 && dst.type == BRW_REGISTER_TYPE_F &&
968 src.file == BRW_IMMEDIATE_VALUE) {
969 vec4_instruction *inst = emit(MOV(dst, brw_imm_f(src.df)));
970 inst->saturate = saturate;
971 return;
972 }
973
974 enum opcode op;
975 switch (dst.type) {
976 case BRW_REGISTER_TYPE_D:
977 op = VEC4_OPCODE_DOUBLE_TO_D32;
978 break;
979 case BRW_REGISTER_TYPE_UD:
980 op = VEC4_OPCODE_DOUBLE_TO_U32;
981 break;
982 case BRW_REGISTER_TYPE_F:
983 op = VEC4_OPCODE_DOUBLE_TO_F32;
984 break;
985 default:
986 unreachable("Unknown conversion");
987 }
988
989 dst_reg temp = dst_reg(this, glsl_type::dvec4_type);
990 emit(MOV(temp, src));
991 dst_reg temp2 = dst_reg(this, glsl_type::dvec4_type);
992 emit(op, temp2, src_reg(temp));
993
994 emit(VEC4_OPCODE_PICK_LOW_32BIT, retype(temp2, dst.type), src_reg(temp2));
995 vec4_instruction *inst = emit(MOV(dst, src_reg(retype(temp2, dst.type))));
996 inst->saturate = saturate;
997 }
998
999 void
1000 vec4_visitor::emit_conversion_to_double(dst_reg dst, src_reg src,
1001 bool saturate)
1002 {
1003 dst_reg tmp_dst = dst_reg(src_reg(this, glsl_type::dvec4_type));
1004 src_reg tmp_src = retype(src_reg(this, glsl_type::vec4_type), src.type);
1005 emit(MOV(dst_reg(tmp_src), src));
1006 emit(VEC4_OPCODE_TO_DOUBLE, tmp_dst, tmp_src);
1007 vec4_instruction *inst = emit(MOV(dst, src_reg(tmp_dst)));
1008 inst->saturate = saturate;
1009 }
1010
1011 /**
1012 * Try to use an immediate value for source 1
1013 *
1014 * In cases of flow control, constant propagation is sometimes unable to
1015 * determine that a register contains a constant value. To work around this,
1016 * try to emit a literal as the second source here.
1017 */
1018 static void
1019 try_immediate_source(const nir_alu_instr *instr, src_reg *op,
1020 MAYBE_UNUSED const gen_device_info *devinfo)
1021 {
1022 if (nir_src_num_components(instr->src[1].src) != 1 ||
1023 nir_src_bit_size(instr->src[1].src) != 32 ||
1024 !nir_src_is_const(instr->src[1].src))
1025 return;
1026
1027 const enum brw_reg_type old_type = op->type;
1028
1029 switch (old_type) {
1030 case BRW_REGISTER_TYPE_D:
1031 case BRW_REGISTER_TYPE_UD: {
1032 int d = nir_src_as_int(instr->src[1].src);
1033
1034 if (op->abs)
1035 d = MAX2(-d, d);
1036
1037 if (op->negate) {
1038 /* On Gen8+ a negation source modifier on a logical operation means
1039 * something different. Nothing should generate this, so assert that
1040 * it does not occur.
1041 */
1042 assert(devinfo->gen < 8 || (instr->op != nir_op_iand &&
1043 instr->op != nir_op_ior &&
1044 instr->op != nir_op_ixor));
1045 d = -d;
1046 }
1047
1048 *op = retype(src_reg(brw_imm_d(d)), old_type);
1049 break;
1050 }
1051
1052 case BRW_REGISTER_TYPE_F: {
1053 float f = nir_src_as_float(instr->src[1].src);
1054
1055 if (op->abs)
1056 f = fabs(f);
1057
1058 if (op->negate)
1059 f = -f;
1060
1061 *op = src_reg(brw_imm_f(f));
1062 assert(op->type == old_type);
1063 break;
1064 }
1065
1066 default:
1067 unreachable("Non-32bit type.");
1068 }
1069 }
1070
1071 void
1072 vec4_visitor::nir_emit_alu(nir_alu_instr *instr)
1073 {
1074 vec4_instruction *inst;
1075
1076 nir_alu_type dst_type = (nir_alu_type) (nir_op_infos[instr->op].output_type |
1077 nir_dest_bit_size(instr->dest.dest));
1078 dst_reg dst = get_nir_dest(instr->dest.dest, dst_type);
1079 dst.writemask = instr->dest.write_mask;
1080
1081 src_reg op[4];
1082 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1083 nir_alu_type src_type = (nir_alu_type)
1084 (nir_op_infos[instr->op].input_types[i] |
1085 nir_src_bit_size(instr->src[i].src));
1086 op[i] = get_nir_src(instr->src[i].src, src_type, 4);
1087 op[i].swizzle = brw_swizzle_for_nir_swizzle(instr->src[i].swizzle);
1088 op[i].abs = instr->src[i].abs;
1089 op[i].negate = instr->src[i].negate;
1090 }
1091
1092 switch (instr->op) {
1093 case nir_op_imov:
1094 case nir_op_fmov:
1095 inst = emit(MOV(dst, op[0]));
1096 inst->saturate = instr->dest.saturate;
1097 break;
1098
1099 case nir_op_vec2:
1100 case nir_op_vec3:
1101 case nir_op_vec4:
1102 unreachable("not reached: should be handled by lower_vec_to_movs()");
1103
1104 case nir_op_i2f32:
1105 case nir_op_u2f32:
1106 inst = emit(MOV(dst, op[0]));
1107 inst->saturate = instr->dest.saturate;
1108 break;
1109
1110 case nir_op_f2f32:
1111 case nir_op_f2i32:
1112 case nir_op_f2u32:
1113 if (nir_src_bit_size(instr->src[0].src) == 64)
1114 emit_conversion_from_double(dst, op[0], instr->dest.saturate);
1115 else
1116 inst = emit(MOV(dst, op[0]));
1117 break;
1118
1119 case nir_op_f2f64:
1120 case nir_op_i2f64:
1121 case nir_op_u2f64:
1122 emit_conversion_to_double(dst, op[0], instr->dest.saturate);
1123 break;
1124
1125 case nir_op_iadd:
1126 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1127 /* fall through */
1128 case nir_op_fadd:
1129 try_immediate_source(instr, &op[1], devinfo);
1130 inst = emit(ADD(dst, op[0], op[1]));
1131 inst->saturate = instr->dest.saturate;
1132 break;
1133
1134 case nir_op_uadd_sat:
1135 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1136 inst = emit(ADD(dst, op[0], op[1]));
1137 inst->saturate = true;
1138 break;
1139
1140 case nir_op_fmul:
1141 try_immediate_source(instr, &op[1], devinfo);
1142 inst = emit(MUL(dst, op[0], op[1]));
1143 inst->saturate = instr->dest.saturate;
1144 break;
1145
1146 case nir_op_imul: {
1147 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1148 if (devinfo->gen < 8) {
1149 /* For integer multiplication, the MUL uses the low 16 bits of one of
1150 * the operands (src0 through SNB, src1 on IVB and later). The MACH
1151 * accumulates in the contribution of the upper 16 bits of that
1152 * operand. If we can determine that one of the args is in the low
1153 * 16 bits, though, we can just emit a single MUL.
1154 */
1155 if (nir_src_is_const(instr->src[0].src) &&
1156 nir_alu_instr_src_read_mask(instr, 0) == 1 &&
1157 nir_src_comp_as_uint(instr->src[0].src, 0) < (1 << 16)) {
1158 if (devinfo->gen < 7)
1159 emit(MUL(dst, op[0], op[1]));
1160 else
1161 emit(MUL(dst, op[1], op[0]));
1162 } else if (nir_src_is_const(instr->src[1].src) &&
1163 nir_alu_instr_src_read_mask(instr, 1) == 1 &&
1164 nir_src_comp_as_uint(instr->src[1].src, 0) < (1 << 16)) {
1165 if (devinfo->gen < 7)
1166 emit(MUL(dst, op[1], op[0]));
1167 else
1168 emit(MUL(dst, op[0], op[1]));
1169 } else {
1170 struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
1171
1172 emit(MUL(acc, op[0], op[1]));
1173 emit(MACH(dst_null_d(), op[0], op[1]));
1174 emit(MOV(dst, src_reg(acc)));
1175 }
1176 } else {
1177 emit(MUL(dst, op[0], op[1]));
1178 }
1179 break;
1180 }
1181
1182 case nir_op_imul_high:
1183 case nir_op_umul_high: {
1184 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1185 struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
1186
1187 if (devinfo->gen >= 8)
1188 emit(MUL(acc, op[0], retype(op[1], BRW_REGISTER_TYPE_UW)));
1189 else
1190 emit(MUL(acc, op[0], op[1]));
1191
1192 emit(MACH(dst, op[0], op[1]));
1193 break;
1194 }
1195
1196 case nir_op_frcp:
1197 inst = emit_math(SHADER_OPCODE_RCP, dst, op[0]);
1198 inst->saturate = instr->dest.saturate;
1199 break;
1200
1201 case nir_op_fexp2:
1202 inst = emit_math(SHADER_OPCODE_EXP2, dst, op[0]);
1203 inst->saturate = instr->dest.saturate;
1204 break;
1205
1206 case nir_op_flog2:
1207 inst = emit_math(SHADER_OPCODE_LOG2, dst, op[0]);
1208 inst->saturate = instr->dest.saturate;
1209 break;
1210
1211 case nir_op_fsin:
1212 inst = emit_math(SHADER_OPCODE_SIN, dst, op[0]);
1213 inst->saturate = instr->dest.saturate;
1214 break;
1215
1216 case nir_op_fcos:
1217 inst = emit_math(SHADER_OPCODE_COS, dst, op[0]);
1218 inst->saturate = instr->dest.saturate;
1219 break;
1220
1221 case nir_op_idiv:
1222 case nir_op_udiv:
1223 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1224 emit_math(SHADER_OPCODE_INT_QUOTIENT, dst, op[0], op[1]);
1225 break;
1226
1227 case nir_op_umod:
1228 case nir_op_irem:
1229 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1230 * appears that our hardware just does the right thing for signed
1231 * remainder.
1232 */
1233 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1234 emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1235 break;
1236
1237 case nir_op_imod: {
1238 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1239 inst = emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1240
1241 /* Math instructions don't support conditional mod */
1242 inst = emit(MOV(dst_null_d(), src_reg(dst)));
1243 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1244
1245 /* Now, we need to determine if signs of the sources are different.
1246 * When we XOR the sources, the top bit is 0 if they are the same and 1
1247 * if they are different. We can then use a conditional modifier to
1248 * turn that into a predicate. This leads us to an XOR.l instruction.
1249 *
1250 * Technically, according to the PRM, you're not allowed to use .l on a
1251 * XOR instruction. However, emperical experiments and Curro's reading
1252 * of the simulator source both indicate that it's safe.
1253 */
1254 src_reg tmp = src_reg(this, glsl_type::ivec4_type);
1255 inst = emit(XOR(dst_reg(tmp), op[0], op[1]));
1256 inst->predicate = BRW_PREDICATE_NORMAL;
1257 inst->conditional_mod = BRW_CONDITIONAL_L;
1258
1259 /* If the result of the initial remainder operation is non-zero and the
1260 * two sources have different signs, add in a copy of op[1] to get the
1261 * final integer modulus value.
1262 */
1263 inst = emit(ADD(dst, src_reg(dst), op[1]));
1264 inst->predicate = BRW_PREDICATE_NORMAL;
1265 break;
1266 }
1267
1268 case nir_op_ldexp:
1269 unreachable("not reached: should be handled by ldexp_to_arith()");
1270
1271 case nir_op_fsqrt:
1272 inst = emit_math(SHADER_OPCODE_SQRT, dst, op[0]);
1273 inst->saturate = instr->dest.saturate;
1274 break;
1275
1276 case nir_op_frsq:
1277 inst = emit_math(SHADER_OPCODE_RSQ, dst, op[0]);
1278 inst->saturate = instr->dest.saturate;
1279 break;
1280
1281 case nir_op_fpow:
1282 inst = emit_math(SHADER_OPCODE_POW, dst, op[0], op[1]);
1283 inst->saturate = instr->dest.saturate;
1284 break;
1285
1286 case nir_op_uadd_carry: {
1287 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1288 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1289
1290 emit(ADDC(dst_null_ud(), op[0], op[1]));
1291 emit(MOV(dst, src_reg(acc)));
1292 break;
1293 }
1294
1295 case nir_op_usub_borrow: {
1296 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1297 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1298
1299 emit(SUBB(dst_null_ud(), op[0], op[1]));
1300 emit(MOV(dst, src_reg(acc)));
1301 break;
1302 }
1303
1304 case nir_op_ftrunc:
1305 inst = emit(RNDZ(dst, op[0]));
1306 inst->saturate = instr->dest.saturate;
1307 break;
1308
1309 case nir_op_fceil: {
1310 src_reg tmp = src_reg(this, glsl_type::float_type);
1311 tmp.swizzle =
1312 brw_swizzle_for_size(instr->src[0].src.is_ssa ?
1313 instr->src[0].src.ssa->num_components :
1314 instr->src[0].src.reg.reg->num_components);
1315
1316 op[0].negate = !op[0].negate;
1317 emit(RNDD(dst_reg(tmp), op[0]));
1318 tmp.negate = true;
1319 inst = emit(MOV(dst, tmp));
1320 inst->saturate = instr->dest.saturate;
1321 break;
1322 }
1323
1324 case nir_op_ffloor:
1325 inst = emit(RNDD(dst, op[0]));
1326 inst->saturate = instr->dest.saturate;
1327 break;
1328
1329 case nir_op_ffract:
1330 inst = emit(FRC(dst, op[0]));
1331 inst->saturate = instr->dest.saturate;
1332 break;
1333
1334 case nir_op_fround_even:
1335 inst = emit(RNDE(dst, op[0]));
1336 inst->saturate = instr->dest.saturate;
1337 break;
1338
1339 case nir_op_fquantize2f16: {
1340 /* See also vec4_visitor::emit_pack_half_2x16() */
1341 src_reg tmp16 = src_reg(this, glsl_type::uvec4_type);
1342 src_reg tmp32 = src_reg(this, glsl_type::vec4_type);
1343 src_reg zero = src_reg(this, glsl_type::vec4_type);
1344
1345 /* Check for denormal */
1346 src_reg abs_src0 = op[0];
1347 abs_src0.abs = true;
1348 emit(CMP(dst_null_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1349 BRW_CONDITIONAL_L));
1350 /* Get the appropriately signed zero */
1351 emit(AND(retype(dst_reg(zero), BRW_REGISTER_TYPE_UD),
1352 retype(op[0], BRW_REGISTER_TYPE_UD),
1353 brw_imm_ud(0x80000000)));
1354 /* Do the actual F32 -> F16 -> F32 conversion */
1355 emit(F32TO16(dst_reg(tmp16), op[0]));
1356 emit(F16TO32(dst_reg(tmp32), tmp16));
1357 /* Select that or zero based on normal status */
1358 inst = emit(BRW_OPCODE_SEL, dst, zero, tmp32);
1359 inst->predicate = BRW_PREDICATE_NORMAL;
1360 inst->saturate = instr->dest.saturate;
1361 break;
1362 }
1363
1364 case nir_op_imin:
1365 case nir_op_umin:
1366 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1367 /* fall through */
1368 case nir_op_fmin:
1369 try_immediate_source(instr, &op[1], devinfo);
1370 inst = emit_minmax(BRW_CONDITIONAL_L, dst, op[0], op[1]);
1371 inst->saturate = instr->dest.saturate;
1372 break;
1373
1374 case nir_op_imax:
1375 case nir_op_umax:
1376 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1377 /* fall through */
1378 case nir_op_fmax:
1379 try_immediate_source(instr, &op[1], devinfo);
1380 inst = emit_minmax(BRW_CONDITIONAL_GE, dst, op[0], op[1]);
1381 inst->saturate = instr->dest.saturate;
1382 break;
1383
1384 case nir_op_fddx:
1385 case nir_op_fddx_coarse:
1386 case nir_op_fddx_fine:
1387 case nir_op_fddy:
1388 case nir_op_fddy_coarse:
1389 case nir_op_fddy_fine:
1390 unreachable("derivatives are not valid in vertex shaders");
1391
1392 case nir_op_ilt32:
1393 case nir_op_ult32:
1394 case nir_op_ige32:
1395 case nir_op_uge32:
1396 case nir_op_ieq32:
1397 case nir_op_ine32:
1398 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1399 /* Fallthrough */
1400 case nir_op_flt32:
1401 case nir_op_fge32:
1402 case nir_op_feq32:
1403 case nir_op_fne32: {
1404 enum brw_conditional_mod conditional_mod =
1405 brw_conditional_for_nir_comparison(instr->op);
1406
1407 if (nir_src_bit_size(instr->src[0].src) < 64) {
1408 try_immediate_source(instr, &op[1], devinfo);
1409 emit(CMP(dst, op[0], op[1], conditional_mod));
1410 } else {
1411 /* Produce a 32-bit boolean result from the DF comparison by selecting
1412 * only the low 32-bit in each DF produced. Do this in a temporary
1413 * so we can then move from there to the result using align16 again
1414 * to honor the original writemask.
1415 */
1416 dst_reg temp = dst_reg(this, glsl_type::dvec4_type);
1417 emit(CMP(temp, op[0], op[1], conditional_mod));
1418 dst_reg result = dst_reg(this, glsl_type::bvec4_type);
1419 emit(VEC4_OPCODE_PICK_LOW_32BIT, result, src_reg(temp));
1420 emit(MOV(dst, src_reg(result)));
1421 }
1422 break;
1423 }
1424
1425 case nir_op_b32all_iequal2:
1426 case nir_op_b32all_iequal3:
1427 case nir_op_b32all_iequal4:
1428 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1429 /* Fallthrough */
1430 case nir_op_b32all_fequal2:
1431 case nir_op_b32all_fequal3:
1432 case nir_op_b32all_fequal4: {
1433 unsigned swiz =
1434 brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1435
1436 emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1437 brw_conditional_for_nir_comparison(instr->op)));
1438 emit(MOV(dst, brw_imm_d(0)));
1439 inst = emit(MOV(dst, brw_imm_d(~0)));
1440 inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1441 break;
1442 }
1443
1444 case nir_op_b32any_inequal2:
1445 case nir_op_b32any_inequal3:
1446 case nir_op_b32any_inequal4:
1447 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1448 /* Fallthrough */
1449 case nir_op_b32any_fnequal2:
1450 case nir_op_b32any_fnequal3:
1451 case nir_op_b32any_fnequal4: {
1452 unsigned swiz =
1453 brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1454
1455 emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1456 brw_conditional_for_nir_comparison(instr->op)));
1457
1458 emit(MOV(dst, brw_imm_d(0)));
1459 inst = emit(MOV(dst, brw_imm_d(~0)));
1460 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1461 break;
1462 }
1463
1464 case nir_op_inot:
1465 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1466 if (devinfo->gen >= 8) {
1467 op[0] = resolve_source_modifiers(op[0]);
1468 }
1469 emit(NOT(dst, op[0]));
1470 break;
1471
1472 case nir_op_ixor:
1473 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1474 if (devinfo->gen >= 8) {
1475 op[0] = resolve_source_modifiers(op[0]);
1476 op[1] = resolve_source_modifiers(op[1]);
1477 }
1478 try_immediate_source(instr, &op[1], devinfo);
1479 emit(XOR(dst, op[0], op[1]));
1480 break;
1481
1482 case nir_op_ior:
1483 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1484 if (devinfo->gen >= 8) {
1485 op[0] = resolve_source_modifiers(op[0]);
1486 op[1] = resolve_source_modifiers(op[1]);
1487 }
1488 try_immediate_source(instr, &op[1], devinfo);
1489 emit(OR(dst, op[0], op[1]));
1490 break;
1491
1492 case nir_op_iand:
1493 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1494 if (devinfo->gen >= 8) {
1495 op[0] = resolve_source_modifiers(op[0]);
1496 op[1] = resolve_source_modifiers(op[1]);
1497 }
1498 try_immediate_source(instr, &op[1], devinfo);
1499 emit(AND(dst, op[0], op[1]));
1500 break;
1501
1502 case nir_op_b2i32:
1503 case nir_op_b2f32:
1504 case nir_op_b2f64:
1505 if (nir_dest_bit_size(instr->dest.dest) > 32) {
1506 assert(dst.type == BRW_REGISTER_TYPE_DF);
1507 emit_conversion_to_double(dst, negate(op[0]), false);
1508 } else {
1509 emit(MOV(dst, negate(op[0])));
1510 }
1511 break;
1512
1513 case nir_op_f2b32:
1514 if (nir_src_bit_size(instr->src[0].src) == 64) {
1515 /* We use a MOV with conditional_mod to check if the provided value is
1516 * 0.0. We want this to flush denormalized numbers to zero, so we set a
1517 * source modifier on the source operand to trigger this, as source
1518 * modifiers don't affect the result of the testing against 0.0.
1519 */
1520 src_reg value = op[0];
1521 value.abs = true;
1522 vec4_instruction *inst = emit(MOV(dst_null_df(), value));
1523 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1524
1525 src_reg one = src_reg(this, glsl_type::ivec4_type);
1526 emit(MOV(dst_reg(one), brw_imm_d(~0)));
1527 inst = emit(BRW_OPCODE_SEL, dst, one, brw_imm_d(0));
1528 inst->predicate = BRW_PREDICATE_NORMAL;
1529 } else {
1530 emit(CMP(dst, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1531 }
1532 break;
1533
1534 case nir_op_i2b32:
1535 emit(CMP(dst, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1536 break;
1537
1538 case nir_op_fnoise1_1:
1539 case nir_op_fnoise1_2:
1540 case nir_op_fnoise1_3:
1541 case nir_op_fnoise1_4:
1542 case nir_op_fnoise2_1:
1543 case nir_op_fnoise2_2:
1544 case nir_op_fnoise2_3:
1545 case nir_op_fnoise2_4:
1546 case nir_op_fnoise3_1:
1547 case nir_op_fnoise3_2:
1548 case nir_op_fnoise3_3:
1549 case nir_op_fnoise3_4:
1550 case nir_op_fnoise4_1:
1551 case nir_op_fnoise4_2:
1552 case nir_op_fnoise4_3:
1553 case nir_op_fnoise4_4:
1554 unreachable("not reached: should be handled by lower_noise");
1555
1556 case nir_op_unpack_half_2x16_split_x:
1557 case nir_op_unpack_half_2x16_split_y:
1558 case nir_op_pack_half_2x16_split:
1559 unreachable("not reached: should not occur in vertex shader");
1560
1561 case nir_op_unpack_snorm_2x16:
1562 case nir_op_unpack_unorm_2x16:
1563 case nir_op_pack_snorm_2x16:
1564 case nir_op_pack_unorm_2x16:
1565 unreachable("not reached: should be handled by lower_packing_builtins");
1566
1567 case nir_op_pack_uvec4_to_uint:
1568 unreachable("not reached");
1569
1570 case nir_op_pack_uvec2_to_uint: {
1571 dst_reg tmp1 = dst_reg(this, glsl_type::uint_type);
1572 tmp1.writemask = WRITEMASK_X;
1573 op[0].swizzle = BRW_SWIZZLE_YYYY;
1574 emit(SHL(tmp1, op[0], src_reg(brw_imm_ud(16u))));
1575
1576 dst_reg tmp2 = dst_reg(this, glsl_type::uint_type);
1577 tmp2.writemask = WRITEMASK_X;
1578 op[0].swizzle = BRW_SWIZZLE_XXXX;
1579 emit(AND(tmp2, op[0], src_reg(brw_imm_ud(0xffffu))));
1580
1581 emit(OR(dst, src_reg(tmp1), src_reg(tmp2)));
1582 break;
1583 }
1584
1585 case nir_op_pack_64_2x32_split: {
1586 dst_reg result = dst_reg(this, glsl_type::dvec4_type);
1587 dst_reg tmp = dst_reg(this, glsl_type::uvec4_type);
1588 emit(MOV(tmp, retype(op[0], BRW_REGISTER_TYPE_UD)));
1589 emit(VEC4_OPCODE_SET_LOW_32BIT, result, src_reg(tmp));
1590 emit(MOV(tmp, retype(op[1], BRW_REGISTER_TYPE_UD)));
1591 emit(VEC4_OPCODE_SET_HIGH_32BIT, result, src_reg(tmp));
1592 emit(MOV(dst, src_reg(result)));
1593 break;
1594 }
1595
1596 case nir_op_unpack_64_2x32_split_x:
1597 case nir_op_unpack_64_2x32_split_y: {
1598 enum opcode oper = (instr->op == nir_op_unpack_64_2x32_split_x) ?
1599 VEC4_OPCODE_PICK_LOW_32BIT : VEC4_OPCODE_PICK_HIGH_32BIT;
1600 dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
1601 emit(MOV(tmp, op[0]));
1602 dst_reg tmp2 = dst_reg(this, glsl_type::uvec4_type);
1603 emit(oper, tmp2, src_reg(tmp));
1604 emit(MOV(dst, src_reg(tmp2)));
1605 break;
1606 }
1607
1608 case nir_op_unpack_half_2x16:
1609 /* As NIR does not guarantee that we have a correct swizzle outside the
1610 * boundaries of a vector, and the implementation of emit_unpack_half_2x16
1611 * uses the source operand in an operation with WRITEMASK_Y while our
1612 * source operand has only size 1, it accessed incorrect data producing
1613 * regressions in Piglit. We repeat the swizzle of the first component on the
1614 * rest of components to avoid regressions. In the vec4_visitor IR code path
1615 * this is not needed because the operand has already the correct swizzle.
1616 */
1617 op[0].swizzle = brw_compose_swizzle(BRW_SWIZZLE_XXXX, op[0].swizzle);
1618 emit_unpack_half_2x16(dst, op[0]);
1619 break;
1620
1621 case nir_op_pack_half_2x16:
1622 emit_pack_half_2x16(dst, op[0]);
1623 break;
1624
1625 case nir_op_unpack_unorm_4x8:
1626 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1627 emit_unpack_unorm_4x8(dst, op[0]);
1628 break;
1629
1630 case nir_op_pack_unorm_4x8:
1631 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1632 emit_pack_unorm_4x8(dst, op[0]);
1633 break;
1634
1635 case nir_op_unpack_snorm_4x8:
1636 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1637 emit_unpack_snorm_4x8(dst, op[0]);
1638 break;
1639
1640 case nir_op_pack_snorm_4x8:
1641 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1642 emit_pack_snorm_4x8(dst, op[0]);
1643 break;
1644
1645 case nir_op_bitfield_reverse:
1646 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1647 emit(BFREV(dst, op[0]));
1648 break;
1649
1650 case nir_op_bit_count:
1651 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1652 emit(CBIT(dst, op[0]));
1653 break;
1654
1655 case nir_op_ufind_msb:
1656 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1657 emit_find_msb_using_lzd(vec4_builder(this).at_end(), dst, op[0], false);
1658 break;
1659
1660 case nir_op_ifind_msb: {
1661 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1662 vec4_builder bld = vec4_builder(this).at_end();
1663 src_reg src(dst);
1664
1665 if (devinfo->gen < 7) {
1666 emit_find_msb_using_lzd(bld, dst, op[0], true);
1667 } else {
1668 emit(FBH(retype(dst, BRW_REGISTER_TYPE_UD), op[0]));
1669
1670 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1671 * count from the LSB side. If FBH didn't return an error
1672 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1673 * count into an LSB count.
1674 */
1675 bld.CMP(dst_null_d(), src, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1676
1677 inst = bld.ADD(dst, src, brw_imm_d(31));
1678 inst->predicate = BRW_PREDICATE_NORMAL;
1679 inst->src[0].negate = true;
1680 }
1681 break;
1682 }
1683
1684 case nir_op_find_lsb: {
1685 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1686 vec4_builder bld = vec4_builder(this).at_end();
1687
1688 if (devinfo->gen < 7) {
1689 dst_reg temp = bld.vgrf(BRW_REGISTER_TYPE_D);
1690
1691 /* (x & -x) generates a value that consists of only the LSB of x.
1692 * For all powers of 2, findMSB(y) == findLSB(y).
1693 */
1694 src_reg src = src_reg(retype(op[0], BRW_REGISTER_TYPE_D));
1695 src_reg negated_src = src;
1696
1697 /* One must be negated, and the other must be non-negated. It
1698 * doesn't matter which is which.
1699 */
1700 negated_src.negate = true;
1701 src.negate = false;
1702
1703 bld.AND(temp, src, negated_src);
1704 emit_find_msb_using_lzd(bld, dst, src_reg(temp), false);
1705 } else {
1706 bld.FBL(dst, op[0]);
1707 }
1708 break;
1709 }
1710
1711 case nir_op_ubitfield_extract:
1712 case nir_op_ibitfield_extract:
1713 unreachable("should have been lowered");
1714 case nir_op_ubfe:
1715 case nir_op_ibfe:
1716 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1717 op[0] = fix_3src_operand(op[0]);
1718 op[1] = fix_3src_operand(op[1]);
1719 op[2] = fix_3src_operand(op[2]);
1720
1721 emit(BFE(dst, op[2], op[1], op[0]));
1722 break;
1723
1724 case nir_op_bfm:
1725 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1726 emit(BFI1(dst, op[0], op[1]));
1727 break;
1728
1729 case nir_op_bfi:
1730 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1731 op[0] = fix_3src_operand(op[0]);
1732 op[1] = fix_3src_operand(op[1]);
1733 op[2] = fix_3src_operand(op[2]);
1734
1735 emit(BFI2(dst, op[0], op[1], op[2]));
1736 break;
1737
1738 case nir_op_bitfield_insert:
1739 unreachable("not reached: should have been lowered");
1740
1741 case nir_op_fsign:
1742 assert(!instr->dest.saturate);
1743 if (op[0].abs) {
1744 /* Straightforward since the source can be assumed to be either
1745 * strictly >= 0 or strictly <= 0 depending on the setting of the
1746 * negate flag.
1747 */
1748 inst = emit(MOV(dst, op[0]));
1749 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1750
1751 inst = (op[0].negate)
1752 ? emit(MOV(dst, brw_imm_f(-1.0f)))
1753 : emit(MOV(dst, brw_imm_f(1.0f)));
1754 inst->predicate = BRW_PREDICATE_NORMAL;
1755 } else if (type_sz(op[0].type) < 8) {
1756 /* AND(val, 0x80000000) gives the sign bit.
1757 *
1758 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
1759 * zero.
1760 */
1761 emit(CMP(dst_null_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1762
1763 op[0].type = BRW_REGISTER_TYPE_UD;
1764 dst.type = BRW_REGISTER_TYPE_UD;
1765 emit(AND(dst, op[0], brw_imm_ud(0x80000000u)));
1766
1767 inst = emit(OR(dst, src_reg(dst), brw_imm_ud(0x3f800000u)));
1768 inst->predicate = BRW_PREDICATE_NORMAL;
1769 dst.type = BRW_REGISTER_TYPE_F;
1770 } else {
1771 /* For doubles we do the same but we need to consider:
1772 *
1773 * - We use a MOV with conditional_mod instead of a CMP so that we can
1774 * skip loading a 0.0 immediate. We use a source modifier on the
1775 * source of the MOV so that we flush denormalized values to 0.
1776 * Since we want to compare against 0, this won't alter the result.
1777 * - We need to extract the high 32-bit of each DF where the sign
1778 * is stored.
1779 * - We need to produce a DF result.
1780 */
1781
1782 /* Check for zero */
1783 src_reg value = op[0];
1784 value.abs = true;
1785 inst = emit(MOV(dst_null_df(), value));
1786 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1787
1788 /* AND each high 32-bit channel with 0x80000000u */
1789 dst_reg tmp = dst_reg(this, glsl_type::uvec4_type);
1790 emit(VEC4_OPCODE_PICK_HIGH_32BIT, tmp, op[0]);
1791 emit(AND(tmp, src_reg(tmp), brw_imm_ud(0x80000000u)));
1792
1793 /* Add 1.0 to each channel, predicated to skip the cases where the
1794 * channel's value was 0
1795 */
1796 inst = emit(OR(tmp, src_reg(tmp), brw_imm_ud(0x3f800000u)));
1797 inst->predicate = BRW_PREDICATE_NORMAL;
1798
1799 /* Now convert the result from float to double */
1800 emit_conversion_to_double(dst, retype(src_reg(tmp),
1801 BRW_REGISTER_TYPE_F),
1802 false);
1803 }
1804 break;
1805
1806 case nir_op_ishl:
1807 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1808 try_immediate_source(instr, &op[1], devinfo);
1809 emit(SHL(dst, op[0], op[1]));
1810 break;
1811
1812 case nir_op_ishr:
1813 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1814 try_immediate_source(instr, &op[1], devinfo);
1815 emit(ASR(dst, op[0], op[1]));
1816 break;
1817
1818 case nir_op_ushr:
1819 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1820 try_immediate_source(instr, &op[1], devinfo);
1821 emit(SHR(dst, op[0], op[1]));
1822 break;
1823
1824 case nir_op_ffma:
1825 if (type_sz(dst.type) == 8) {
1826 dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type);
1827 emit(MUL(mul_dst, op[1], op[0]));
1828 inst = emit(ADD(dst, src_reg(mul_dst), op[2]));
1829 inst->saturate = instr->dest.saturate;
1830 } else {
1831 op[0] = fix_3src_operand(op[0]);
1832 op[1] = fix_3src_operand(op[1]);
1833 op[2] = fix_3src_operand(op[2]);
1834
1835 inst = emit(MAD(dst, op[2], op[1], op[0]));
1836 inst->saturate = instr->dest.saturate;
1837 }
1838 break;
1839
1840 case nir_op_flrp:
1841 inst = emit_lrp(dst, op[0], op[1], op[2]);
1842 inst->saturate = instr->dest.saturate;
1843 break;
1844
1845 case nir_op_b32csel:
1846 enum brw_predicate predicate;
1847 if (!optimize_predicate(instr, &predicate)) {
1848 emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1849 switch (dst.writemask) {
1850 case WRITEMASK_X:
1851 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_X;
1852 break;
1853 case WRITEMASK_Y:
1854 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Y;
1855 break;
1856 case WRITEMASK_Z:
1857 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Z;
1858 break;
1859 case WRITEMASK_W:
1860 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_W;
1861 break;
1862 default:
1863 predicate = BRW_PREDICATE_NORMAL;
1864 break;
1865 }
1866 }
1867 inst = emit(BRW_OPCODE_SEL, dst, op[1], op[2]);
1868 inst->predicate = predicate;
1869 break;
1870
1871 case nir_op_fdot_replicated2:
1872 inst = emit(BRW_OPCODE_DP2, dst, op[0], op[1]);
1873 inst->saturate = instr->dest.saturate;
1874 break;
1875
1876 case nir_op_fdot_replicated3:
1877 inst = emit(BRW_OPCODE_DP3, dst, op[0], op[1]);
1878 inst->saturate = instr->dest.saturate;
1879 break;
1880
1881 case nir_op_fdot_replicated4:
1882 inst = emit(BRW_OPCODE_DP4, dst, op[0], op[1]);
1883 inst->saturate = instr->dest.saturate;
1884 break;
1885
1886 case nir_op_fdph_replicated:
1887 inst = emit(BRW_OPCODE_DPH, dst, op[0], op[1]);
1888 inst->saturate = instr->dest.saturate;
1889 break;
1890
1891 case nir_op_iabs:
1892 case nir_op_ineg:
1893 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1894 /* fall through */
1895 case nir_op_fabs:
1896 case nir_op_fneg:
1897 case nir_op_fsat:
1898 unreachable("not reached: should be lowered by lower_source mods");
1899
1900 case nir_op_fdiv:
1901 unreachable("not reached: should be lowered by DIV_TO_MUL_RCP in the compiler");
1902
1903 case nir_op_fmod:
1904 unreachable("not reached: should be lowered by MOD_TO_FLOOR in the compiler");
1905
1906 case nir_op_fsub:
1907 case nir_op_isub:
1908 unreachable("not reached: should be handled by ir_sub_to_add_neg");
1909
1910 default:
1911 unreachable("Unimplemented ALU operation");
1912 }
1913
1914 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1915 * to sign extend the low bit to 0/~0
1916 */
1917 if (devinfo->gen <= 5 &&
1918 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) ==
1919 BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1920 dst_reg masked = dst_reg(this, glsl_type::int_type);
1921 masked.writemask = dst.writemask;
1922 emit(AND(masked, src_reg(dst), brw_imm_d(1)));
1923 src_reg masked_neg = src_reg(masked);
1924 masked_neg.negate = true;
1925 emit(MOV(retype(dst, BRW_REGISTER_TYPE_D), masked_neg));
1926 }
1927 }
1928
1929 void
1930 vec4_visitor::nir_emit_jump(nir_jump_instr *instr)
1931 {
1932 switch (instr->type) {
1933 case nir_jump_break:
1934 emit(BRW_OPCODE_BREAK);
1935 break;
1936
1937 case nir_jump_continue:
1938 emit(BRW_OPCODE_CONTINUE);
1939 break;
1940
1941 case nir_jump_return:
1942 /* fall through */
1943 default:
1944 unreachable("unknown jump");
1945 }
1946 }
1947
1948 static enum ir_texture_opcode
1949 ir_texture_opcode_for_nir_texop(nir_texop texop)
1950 {
1951 enum ir_texture_opcode op;
1952
1953 switch (texop) {
1954 case nir_texop_lod: op = ir_lod; break;
1955 case nir_texop_query_levels: op = ir_query_levels; break;
1956 case nir_texop_texture_samples: op = ir_texture_samples; break;
1957 case nir_texop_tex: op = ir_tex; break;
1958 case nir_texop_tg4: op = ir_tg4; break;
1959 case nir_texop_txb: op = ir_txb; break;
1960 case nir_texop_txd: op = ir_txd; break;
1961 case nir_texop_txf: op = ir_txf; break;
1962 case nir_texop_txf_ms: op = ir_txf_ms; break;
1963 case nir_texop_txl: op = ir_txl; break;
1964 case nir_texop_txs: op = ir_txs; break;
1965 case nir_texop_samples_identical: op = ir_samples_identical; break;
1966 default:
1967 unreachable("unknown texture opcode");
1968 }
1969
1970 return op;
1971 }
1972
1973 static const glsl_type *
1974 glsl_type_for_nir_alu_type(nir_alu_type alu_type,
1975 unsigned components)
1976 {
1977 return glsl_type::get_instance(brw_glsl_base_type_for_nir_type(alu_type),
1978 components, 1);
1979 }
1980
1981 void
1982 vec4_visitor::nir_emit_texture(nir_tex_instr *instr)
1983 {
1984 unsigned texture = instr->texture_index;
1985 unsigned sampler = instr->sampler_index;
1986 src_reg texture_reg = brw_imm_ud(texture);
1987 src_reg sampler_reg = brw_imm_ud(sampler);
1988 src_reg coordinate;
1989 const glsl_type *coord_type = NULL;
1990 src_reg shadow_comparator;
1991 src_reg offset_value;
1992 src_reg lod, lod2;
1993 src_reg sample_index;
1994 src_reg mcs;
1995
1996 const glsl_type *dest_type =
1997 glsl_type_for_nir_alu_type(instr->dest_type,
1998 nir_tex_instr_dest_size(instr));
1999 dst_reg dest = get_nir_dest(instr->dest, instr->dest_type);
2000
2001 /* The hardware requires a LOD for buffer textures */
2002 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
2003 lod = brw_imm_d(0);
2004
2005 /* Load the texture operation sources */
2006 uint32_t constant_offset = 0;
2007 for (unsigned i = 0; i < instr->num_srcs; i++) {
2008 switch (instr->src[i].src_type) {
2009 case nir_tex_src_comparator:
2010 shadow_comparator = get_nir_src(instr->src[i].src,
2011 BRW_REGISTER_TYPE_F, 1);
2012 break;
2013
2014 case nir_tex_src_coord: {
2015 unsigned src_size = nir_tex_instr_src_size(instr, i);
2016
2017 switch (instr->op) {
2018 case nir_texop_txf:
2019 case nir_texop_txf_ms:
2020 case nir_texop_samples_identical:
2021 coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D,
2022 src_size);
2023 coord_type = glsl_type::ivec(src_size);
2024 break;
2025
2026 default:
2027 coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2028 src_size);
2029 coord_type = glsl_type::vec(src_size);
2030 break;
2031 }
2032 break;
2033 }
2034
2035 case nir_tex_src_ddx:
2036 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2037 nir_tex_instr_src_size(instr, i));
2038 break;
2039
2040 case nir_tex_src_ddy:
2041 lod2 = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2042 nir_tex_instr_src_size(instr, i));
2043 break;
2044
2045 case nir_tex_src_lod:
2046 switch (instr->op) {
2047 case nir_texop_txs:
2048 case nir_texop_txf:
2049 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
2050 break;
2051
2052 default:
2053 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F, 1);
2054 break;
2055 }
2056 break;
2057
2058 case nir_tex_src_ms_index: {
2059 sample_index = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
2060 break;
2061 }
2062
2063 case nir_tex_src_offset: {
2064 nir_const_value *const_offset =
2065 nir_src_as_const_value(instr->src[i].src);
2066 assert(nir_src_bit_size(instr->src[i].src) == 32);
2067 if (!const_offset ||
2068 !brw_texture_offset(const_offset->i32,
2069 nir_tex_instr_src_size(instr, i),
2070 &constant_offset)) {
2071 offset_value =
2072 get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 2);
2073 }
2074 break;
2075 }
2076
2077 case nir_tex_src_texture_offset: {
2078 /* Emit code to evaluate the actual indexing expression */
2079 src_reg src = get_nir_src(instr->src[i].src, 1);
2080 src_reg temp(this, glsl_type::uint_type);
2081 emit(ADD(dst_reg(temp), src, brw_imm_ud(texture)));
2082 texture_reg = emit_uniformize(temp);
2083 break;
2084 }
2085
2086 case nir_tex_src_sampler_offset: {
2087 /* Emit code to evaluate the actual indexing expression */
2088 src_reg src = get_nir_src(instr->src[i].src, 1);
2089 src_reg temp(this, glsl_type::uint_type);
2090 emit(ADD(dst_reg(temp), src, brw_imm_ud(sampler)));
2091 sampler_reg = emit_uniformize(temp);
2092 break;
2093 }
2094
2095 case nir_tex_src_projector:
2096 unreachable("Should be lowered by do_lower_texture_projection");
2097
2098 case nir_tex_src_bias:
2099 unreachable("LOD bias is not valid for vertex shaders.\n");
2100
2101 default:
2102 unreachable("unknown texture source");
2103 }
2104 }
2105
2106 if (instr->op == nir_texop_txf_ms ||
2107 instr->op == nir_texop_samples_identical) {
2108 assert(coord_type != NULL);
2109 if (devinfo->gen >= 7 &&
2110 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
2111 mcs = emit_mcs_fetch(coord_type, coordinate, texture_reg);
2112 } else {
2113 mcs = brw_imm_ud(0u);
2114 }
2115 }
2116
2117 /* Stuff the channel select bits in the top of the texture offset */
2118 if (instr->op == nir_texop_tg4) {
2119 if (instr->component == 1 &&
2120 (key_tex->gather_channel_quirk_mask & (1 << texture))) {
2121 /* gather4 sampler is broken for green channel on RG32F --
2122 * we must ask for blue instead.
2123 */
2124 constant_offset |= 2 << 16;
2125 } else {
2126 constant_offset |= instr->component << 16;
2127 }
2128 }
2129
2130 ir_texture_opcode op = ir_texture_opcode_for_nir_texop(instr->op);
2131
2132 emit_texture(op, dest, dest_type, coordinate, instr->coord_components,
2133 shadow_comparator,
2134 lod, lod2, sample_index,
2135 constant_offset, offset_value, mcs,
2136 texture, texture_reg, sampler_reg);
2137 }
2138
2139 void
2140 vec4_visitor::nir_emit_undef(nir_ssa_undef_instr *instr)
2141 {
2142 nir_ssa_values[instr->def.index] =
2143 dst_reg(VGRF, alloc.allocate(DIV_ROUND_UP(instr->def.bit_size, 32)));
2144 }
2145
2146 /* SIMD4x2 64bit data is stored in register space like this:
2147 *
2148 * r0.0:DF x0 y0 z0 w0
2149 * r1.0:DF x1 y1 z1 w1
2150 *
2151 * When we need to write data such as this to memory using 32-bit write
2152 * messages we need to shuffle it in this fashion:
2153 *
2154 * r0.0:DF x0 y0 x1 y1 (to be written at base offset)
2155 * r0.0:DF z0 w0 z1 w1 (to be written at base offset + 16)
2156 *
2157 * We need to do the inverse operation when we read using 32-bit messages,
2158 * which we can do by applying the same exact shuffling on the 64-bit data
2159 * read, only that because the data for each vertex is positioned differently
2160 * we need to apply different channel enables.
2161 *
2162 * This function takes 64bit data and shuffles it as explained above.
2163 *
2164 * The @for_write parameter is used to specify if the shuffling is being done
2165 * for proper SIMD4x2 64-bit data that needs to be shuffled prior to a 32-bit
2166 * write message (for_write = true), or instead we are doing the inverse
2167 * operation and we have just read 64-bit data using a 32-bit messages that we
2168 * need to shuffle to create valid SIMD4x2 64-bit data (for_write = false).
2169 *
2170 * If @block and @ref are non-NULL, then the shuffling is done after @ref,
2171 * otherwise the instructions are emitted normally at the end. The function
2172 * returns the last instruction inserted.
2173 *
2174 * Notice that @src and @dst cannot be the same register.
2175 */
2176 vec4_instruction *
2177 vec4_visitor::shuffle_64bit_data(dst_reg dst, src_reg src, bool for_write,
2178 bblock_t *block, vec4_instruction *ref)
2179 {
2180 assert(type_sz(src.type) == 8);
2181 assert(type_sz(dst.type) == 8);
2182 assert(!regions_overlap(dst, 2 * REG_SIZE, src, 2 * REG_SIZE));
2183 assert(!ref == !block);
2184
2185 const vec4_builder bld = !ref ? vec4_builder(this).at_end() :
2186 vec4_builder(this).at(block, ref->next);
2187
2188 /* Resolve swizzle in src */
2189 vec4_instruction *inst;
2190 if (src.swizzle != BRW_SWIZZLE_XYZW) {
2191 dst_reg data = dst_reg(this, glsl_type::dvec4_type);
2192 inst = bld.MOV(data, src);
2193 src = src_reg(data);
2194 }
2195
2196 /* dst+0.XY = src+0.XY */
2197 inst = bld.group(4, 0).MOV(writemask(dst, WRITEMASK_XY), src);
2198
2199 /* dst+0.ZW = src+1.XY */
2200 inst = bld.group(4, for_write ? 1 : 0)
2201 .MOV(writemask(dst, WRITEMASK_ZW),
2202 swizzle(byte_offset(src, REG_SIZE), BRW_SWIZZLE_XYXY));
2203
2204 /* dst+1.XY = src+0.ZW */
2205 inst = bld.group(4, for_write ? 0 : 1)
2206 .MOV(writemask(byte_offset(dst, REG_SIZE), WRITEMASK_XY),
2207 swizzle(src, BRW_SWIZZLE_ZWZW));
2208
2209 /* dst+1.ZW = src+1.ZW */
2210 inst = bld.group(4, 1)
2211 .MOV(writemask(byte_offset(dst, REG_SIZE), WRITEMASK_ZW),
2212 byte_offset(src, REG_SIZE));
2213
2214 return inst;
2215 }
2216
2217 }