iris: Implement INTEL_DEBUG=pc for pipe control logging.
[mesa.git] / src / intel / dev / gen_device_info.h
1 /*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #ifndef GEN_DEVICE_INFO_H
26 #define GEN_DEVICE_INFO_H
27
28 #include <stdbool.h>
29 #include <stdint.h>
30
31 #include "util/macros.h"
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 struct drm_i915_query_topology_info;
38
39 #define GEN_DEVICE_MAX_SLICES (6) /* Maximum on gen10 */
40 #define GEN_DEVICE_MAX_SUBSLICES (8) /* Maximum on gen11 */
41 #define GEN_DEVICE_MAX_EUS_PER_SUBSLICE (10) /* Maximum on Haswell */
42
43 /**
44 * Intel hardware information and quirks
45 */
46 struct gen_device_info
47 {
48 int gen; /**< Generation number: 4, 5, 6, 7, ... */
49 int revision;
50 int gt;
51
52 bool is_g4x;
53 bool is_ivybridge;
54 bool is_baytrail;
55 bool is_haswell;
56 bool is_broadwell;
57 bool is_cherryview;
58 bool is_skylake;
59 bool is_broxton;
60 bool is_kabylake;
61 bool is_geminilake;
62 bool is_coffeelake;
63 bool is_cannonlake;
64
65 bool has_hiz_and_separate_stencil;
66 bool must_use_separate_stencil;
67 bool has_sample_with_hiz;
68 bool has_llc;
69
70 bool has_pln;
71 bool has_64bit_types;
72 bool has_integer_dword_mul;
73 bool has_compr4;
74 bool has_surface_tile_offset;
75 bool supports_simd16_3src;
76 bool has_resource_streamer;
77
78 /**
79 * \name Intel hardware quirks
80 * @{
81 */
82 bool has_negative_rhw_bug;
83
84 /**
85 * Some versions of Gen hardware don't do centroid interpolation correctly
86 * on unlit pixels, causing incorrect values for derivatives near triangle
87 * edges. Enabling this flag causes the fragment shader to use
88 * non-centroid interpolation for unlit pixels, at the expense of two extra
89 * fragment shader instructions.
90 */
91 bool needs_unlit_centroid_workaround;
92 /** @} */
93
94 /**
95 * \name GPU hardware limits
96 *
97 * In general, you can find shader thread maximums by looking at the "Maximum
98 * Number of Threads" field in the Intel PRM description of the 3DSTATE_VS,
99 * 3DSTATE_GS, 3DSTATE_HS, 3DSTATE_DS, and 3DSTATE_PS commands. URB entry
100 * limits come from the "Number of URB Entries" field in the
101 * 3DSTATE_URB_VS command and friends.
102 *
103 * These fields are used to calculate the scratch space to allocate. The
104 * amount of scratch space can be larger without being harmful on modern
105 * GPUs, however, prior to Haswell, programming the maximum number of threads
106 * to greater than the hardware maximum would cause GPU performance to tank.
107 *
108 * @{
109 */
110 /**
111 * Total number of slices present on the device whether or not they've been
112 * fused off.
113 *
114 * XXX: CS thread counts are limited by the inability to do cross subslice
115 * communication. It is the effectively the number of logical threads which
116 * can be executed in a subslice. Fuse configurations may cause this number
117 * to change, so we program @max_cs_threads as the lower maximum.
118 */
119 unsigned num_slices;
120
121 /**
122 * Number of subslices for each slice (used to be uniform until CNL).
123 */
124 unsigned num_subslices[GEN_DEVICE_MAX_SUBSLICES];
125
126 /**
127 * Upper bound of number of EU per subslice (some SKUs might have just 1 EU
128 * fused across all subslices, like 47 EUs, in which case this number won't
129 * be acurate for one subslice).
130 */
131 unsigned num_eu_per_subslice;
132
133 /**
134 * Number of threads per eu, varies between 4 and 8 between generations.
135 */
136 unsigned num_thread_per_eu;
137
138 /**
139 * A bit mask of the slices available.
140 */
141 uint8_t slice_masks;
142
143 /**
144 * An array of bit mask of the subslices available, use subslice_slice_stride
145 * to access this array.
146 */
147 uint8_t subslice_masks[GEN_DEVICE_MAX_SLICES *
148 DIV_ROUND_UP(GEN_DEVICE_MAX_SUBSLICES, 8)];
149
150 /**
151 * An array of bit mask of EUs available, use eu_slice_stride &
152 * eu_subslice_stride to access this array.
153 */
154 uint8_t eu_masks[GEN_DEVICE_MAX_SLICES *
155 GEN_DEVICE_MAX_SUBSLICES *
156 DIV_ROUND_UP(GEN_DEVICE_MAX_EUS_PER_SUBSLICE, 8)];
157
158 /**
159 * Stride to access subslice_masks[].
160 */
161 uint16_t subslice_slice_stride;
162
163 /**
164 * Strides to access eu_masks[].
165 */
166 uint16_t eu_slice_stride;
167 uint16_t eu_subslice_stride;
168
169 unsigned l3_banks;
170 unsigned max_vs_threads; /**< Maximum Vertex Shader threads */
171 unsigned max_tcs_threads; /**< Maximum Hull Shader threads */
172 unsigned max_tes_threads; /**< Maximum Domain Shader threads */
173 unsigned max_gs_threads; /**< Maximum Geometry Shader threads. */
174 /**
175 * Theoretical maximum number of Pixel Shader threads.
176 *
177 * PSD means Pixel Shader Dispatcher. On modern Intel GPUs, hardware will
178 * automatically scale pixel shader thread count, based on a single value
179 * programmed into 3DSTATE_PS.
180 *
181 * To calculate the maximum number of threads for Gen8 beyond (which have
182 * multiple Pixel Shader Dispatchers):
183 *
184 * - Look up 3DSTATE_PS and find "Maximum Number of Threads Per PSD"
185 * - Usually there's only one PSD per subslice, so use the number of
186 * subslices for number of PSDs.
187 * - For max_wm_threads, the total should be PSD threads * #PSDs.
188 */
189 unsigned max_wm_threads;
190
191 /**
192 * Maximum Compute Shader threads.
193 *
194 * Thread count * number of EUs per subslice
195 */
196 unsigned max_cs_threads;
197
198 struct {
199 /**
200 * Hardware default URB size.
201 *
202 * The units this is expressed in are somewhat inconsistent: 512b units
203 * on Gen4-5, KB on Gen6-7, and KB times the slice count on Gen8+.
204 *
205 * Look up "URB Size" in the "Device Attributes" page, and take the
206 * maximum. Look up the slice count for each GT SKU on the same page.
207 * urb.size = URB Size (kbytes) / slice count
208 */
209 unsigned size;
210
211 /**
212 * The minimum number of URB entries. See the 3DSTATE_URB_<XS> docs.
213 */
214 unsigned min_entries[4];
215
216 /**
217 * The maximum number of URB entries. See the 3DSTATE_URB_<XS> docs.
218 */
219 unsigned max_entries[4];
220 } urb;
221
222 /**
223 * For the longest time the timestamp frequency for Gen's timestamp counter
224 * could be assumed to be 12.5MHz, where the least significant bit neatly
225 * corresponded to 80 nanoseconds.
226 *
227 * Since Gen9 the numbers aren't so round, with a a frequency of 12MHz for
228 * SKL (or scale factor of 83.33333333) and a frequency of 19200000Hz for
229 * BXT.
230 *
231 * For simplicty to fit with the current code scaling by a single constant
232 * to map from raw timestamps to nanoseconds we now do the conversion in
233 * floating point instead of integer arithmetic.
234 *
235 * In general it's probably worth noting that the documented constants we
236 * have for the per-platform timestamp frequencies aren't perfect and
237 * shouldn't be trusted for scaling and comparing timestamps with a large
238 * delta.
239 *
240 * E.g. with crude testing on my system using the 'correct' scale factor I'm
241 * seeing a drift of ~2 milliseconds per second.
242 */
243 uint64_t timestamp_frequency;
244
245 /**
246 * ID to put into the .aub files.
247 */
248 int simulator_id;
249
250 /** @} */
251 };
252
253 #define gen_device_info_is_9lp(devinfo) \
254 ((devinfo)->is_broxton || (devinfo)->is_geminilake)
255
256 static inline bool
257 gen_device_info_subslice_available(const struct gen_device_info *devinfo,
258 int slice, int subslice)
259 {
260 return (devinfo->subslice_masks[slice * devinfo->subslice_slice_stride +
261 subslice / 8] & (1U << (subslice % 8))) != 0;
262 }
263
264 int gen_get_pci_device_id_override(void);
265 int gen_device_name_to_pci_device_id(const char *name);
266 bool gen_get_device_info(int devid, struct gen_device_info *devinfo);
267 const char *gen_get_device_name(int devid);
268
269 /* Used with SLICE_MASK/SUBSLICE_MASK values from DRM_I915_GETPARAM. */
270 void gen_device_info_update_from_masks(struct gen_device_info *devinfo,
271 uint32_t slice_mask,
272 uint32_t subslice_mask,
273 uint32_t n_eus);
274 /* Used with DRM_IOCTL_I915_QUERY & DRM_I915_QUERY_TOPOLOGY_INFO. */
275 void gen_device_info_update_from_topology(struct gen_device_info *devinfo,
276 const struct drm_i915_query_topology_info *topology);
277
278 static inline uint64_t
279 gen_device_info_timebase_scale(const struct gen_device_info *devinfo,
280 uint64_t gpu_timestamp)
281 {
282 return (1000000000ull * gpu_timestamp) / devinfo->timestamp_frequency;
283 }
284
285 #ifdef __cplusplus
286 }
287 #endif
288
289 #endif /* GEN_DEVICE_INFO_H */