meson: replace libmesa_util with idep_mesautil
[mesa.git] / src / intel / isl / isl.c
1 /*
2 * Copyright 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdarg.h>
26 #include <stdio.h>
27
28 #include "genxml/genX_bits.h"
29
30 #include "isl.h"
31 #include "isl_gen4.h"
32 #include "isl_gen6.h"
33 #include "isl_gen7.h"
34 #include "isl_gen8.h"
35 #include "isl_gen9.h"
36 #include "isl_priv.h"
37
38 void
39 isl_memcpy_linear_to_tiled(uint32_t xt1, uint32_t xt2,
40 uint32_t yt1, uint32_t yt2,
41 char *dst, const char *src,
42 uint32_t dst_pitch, int32_t src_pitch,
43 bool has_swizzling,
44 enum isl_tiling tiling,
45 isl_memcpy_type copy_type)
46 {
47 #ifdef USE_SSE41
48 if (copy_type == ISL_MEMCPY_STREAMING_LOAD) {
49 _isl_memcpy_linear_to_tiled_sse41(
50 xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling,
51 tiling, copy_type);
52 return;
53 }
54 #endif
55
56 _isl_memcpy_linear_to_tiled(
57 xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling,
58 tiling, copy_type);
59 }
60
61 void
62 isl_memcpy_tiled_to_linear(uint32_t xt1, uint32_t xt2,
63 uint32_t yt1, uint32_t yt2,
64 char *dst, const char *src,
65 int32_t dst_pitch, uint32_t src_pitch,
66 bool has_swizzling,
67 enum isl_tiling tiling,
68 isl_memcpy_type copy_type)
69 {
70 #ifdef USE_SSE41
71 if (copy_type == ISL_MEMCPY_STREAMING_LOAD) {
72 _isl_memcpy_tiled_to_linear_sse41(
73 xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling,
74 tiling, copy_type);
75 return;
76 }
77 #endif
78
79 _isl_memcpy_tiled_to_linear(
80 xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling,
81 tiling, copy_type);
82 }
83
84 void PRINTFLIKE(3, 4) UNUSED
85 __isl_finishme(const char *file, int line, const char *fmt, ...)
86 {
87 va_list ap;
88 char buf[512];
89
90 va_start(ap, fmt);
91 vsnprintf(buf, sizeof(buf), fmt, ap);
92 va_end(ap);
93
94 fprintf(stderr, "%s:%d: FINISHME: %s\n", file, line, buf);
95 }
96
97 void
98 isl_device_init(struct isl_device *dev,
99 const struct gen_device_info *info,
100 bool has_bit6_swizzling)
101 {
102 /* Gen8+ don't have bit6 swizzling, ensure callsite is not confused. */
103 assert(!(has_bit6_swizzling && info->gen >= 8));
104
105 dev->info = info;
106 dev->use_separate_stencil = ISL_DEV_GEN(dev) >= 6;
107 dev->has_bit6_swizzling = has_bit6_swizzling;
108
109 /* The ISL_DEV macros may be defined in the CFLAGS, thus hardcoding some
110 * device properties at buildtime. Verify that the macros with the device
111 * properties chosen during runtime.
112 */
113 ISL_DEV_GEN_SANITIZE(dev);
114 ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(dev);
115
116 /* Did we break hiz or stencil? */
117 if (ISL_DEV_USE_SEPARATE_STENCIL(dev))
118 assert(info->has_hiz_and_separate_stencil);
119 if (info->must_use_separate_stencil)
120 assert(ISL_DEV_USE_SEPARATE_STENCIL(dev));
121
122 dev->ss.size = RENDER_SURFACE_STATE_length(info) * 4;
123 dev->ss.align = isl_align(dev->ss.size, 32);
124
125 dev->ss.clear_color_state_size =
126 isl_align(CLEAR_COLOR_length(info) * 4, 64);
127 dev->ss.clear_color_state_offset =
128 RENDER_SURFACE_STATE_ClearValueAddress_start(info) / 32 * 4;
129
130 dev->ss.clear_value_size =
131 isl_align(RENDER_SURFACE_STATE_RedClearColor_bits(info) +
132 RENDER_SURFACE_STATE_GreenClearColor_bits(info) +
133 RENDER_SURFACE_STATE_BlueClearColor_bits(info) +
134 RENDER_SURFACE_STATE_AlphaClearColor_bits(info), 32) / 8;
135
136 dev->ss.clear_value_offset =
137 RENDER_SURFACE_STATE_RedClearColor_start(info) / 32 * 4;
138
139 assert(RENDER_SURFACE_STATE_SurfaceBaseAddress_start(info) % 8 == 0);
140 dev->ss.addr_offset =
141 RENDER_SURFACE_STATE_SurfaceBaseAddress_start(info) / 8;
142
143 /* The "Auxiliary Surface Base Address" field starts a bit higher up
144 * because the bottom 12 bits are used for other things. Round down to
145 * the nearest dword before.
146 */
147 dev->ss.aux_addr_offset =
148 (RENDER_SURFACE_STATE_AuxiliarySurfaceBaseAddress_start(info) & ~31) / 8;
149
150 dev->ds.size = _3DSTATE_DEPTH_BUFFER_length(info) * 4;
151 assert(_3DSTATE_DEPTH_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0);
152 dev->ds.depth_offset =
153 _3DSTATE_DEPTH_BUFFER_SurfaceBaseAddress_start(info) / 8;
154
155 if (dev->use_separate_stencil) {
156 dev->ds.size += _3DSTATE_STENCIL_BUFFER_length(info) * 4 +
157 _3DSTATE_HIER_DEPTH_BUFFER_length(info) * 4 +
158 _3DSTATE_CLEAR_PARAMS_length(info) * 4;
159
160 assert(_3DSTATE_STENCIL_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0);
161 dev->ds.stencil_offset =
162 _3DSTATE_DEPTH_BUFFER_length(info) * 4 +
163 _3DSTATE_STENCIL_BUFFER_SurfaceBaseAddress_start(info) / 8;
164
165 assert(_3DSTATE_HIER_DEPTH_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0);
166 dev->ds.hiz_offset =
167 _3DSTATE_DEPTH_BUFFER_length(info) * 4 +
168 _3DSTATE_STENCIL_BUFFER_length(info) * 4 +
169 _3DSTATE_HIER_DEPTH_BUFFER_SurfaceBaseAddress_start(info) / 8;
170 } else {
171 dev->ds.stencil_offset = 0;
172 dev->ds.hiz_offset = 0;
173 }
174 }
175
176 /**
177 * @brief Query the set of multisamples supported by the device.
178 *
179 * This function always returns non-zero, as ISL_SAMPLE_COUNT_1_BIT is always
180 * supported.
181 */
182 isl_sample_count_mask_t ATTRIBUTE_CONST
183 isl_device_get_sample_counts(struct isl_device *dev)
184 {
185 if (ISL_DEV_GEN(dev) >= 9) {
186 return ISL_SAMPLE_COUNT_1_BIT |
187 ISL_SAMPLE_COUNT_2_BIT |
188 ISL_SAMPLE_COUNT_4_BIT |
189 ISL_SAMPLE_COUNT_8_BIT |
190 ISL_SAMPLE_COUNT_16_BIT;
191 } else if (ISL_DEV_GEN(dev) >= 8) {
192 return ISL_SAMPLE_COUNT_1_BIT |
193 ISL_SAMPLE_COUNT_2_BIT |
194 ISL_SAMPLE_COUNT_4_BIT |
195 ISL_SAMPLE_COUNT_8_BIT;
196 } else if (ISL_DEV_GEN(dev) >= 7) {
197 return ISL_SAMPLE_COUNT_1_BIT |
198 ISL_SAMPLE_COUNT_4_BIT |
199 ISL_SAMPLE_COUNT_8_BIT;
200 } else if (ISL_DEV_GEN(dev) >= 6) {
201 return ISL_SAMPLE_COUNT_1_BIT |
202 ISL_SAMPLE_COUNT_4_BIT;
203 } else {
204 return ISL_SAMPLE_COUNT_1_BIT;
205 }
206 }
207
208 /**
209 * @param[out] info is written only on success
210 */
211 static void
212 isl_tiling_get_info(enum isl_tiling tiling,
213 uint32_t format_bpb,
214 struct isl_tile_info *tile_info)
215 {
216 const uint32_t bs = format_bpb / 8;
217 struct isl_extent2d logical_el, phys_B;
218
219 if (tiling != ISL_TILING_LINEAR && !isl_is_pow2(format_bpb)) {
220 /* It is possible to have non-power-of-two formats in a tiled buffer.
221 * The easiest way to handle this is to treat the tile as if it is three
222 * times as wide. This way no pixel will ever cross a tile boundary.
223 * This really only works on legacy X and Y tiling formats.
224 */
225 assert(tiling == ISL_TILING_X || tiling == ISL_TILING_Y0);
226 assert(bs % 3 == 0 && isl_is_pow2(format_bpb / 3));
227 isl_tiling_get_info(tiling, format_bpb / 3, tile_info);
228 return;
229 }
230
231 switch (tiling) {
232 case ISL_TILING_LINEAR:
233 assert(bs > 0);
234 logical_el = isl_extent2d(1, 1);
235 phys_B = isl_extent2d(bs, 1);
236 break;
237
238 case ISL_TILING_X:
239 assert(bs > 0);
240 logical_el = isl_extent2d(512 / bs, 8);
241 phys_B = isl_extent2d(512, 8);
242 break;
243
244 case ISL_TILING_Y0:
245 assert(bs > 0);
246 logical_el = isl_extent2d(128 / bs, 32);
247 phys_B = isl_extent2d(128, 32);
248 break;
249
250 case ISL_TILING_W:
251 assert(bs == 1);
252 logical_el = isl_extent2d(64, 64);
253 /* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfacePitch:
254 *
255 * "If the surface is a stencil buffer (and thus has Tile Mode set
256 * to TILEMODE_WMAJOR), the pitch must be set to 2x the value
257 * computed based on width, as the stencil buffer is stored with two
258 * rows interleaved."
259 *
260 * This, together with the fact that stencil buffers are referred to as
261 * being Y-tiled in the PRMs for older hardware implies that the
262 * physical size of a W-tile is actually the same as for a Y-tile.
263 */
264 phys_B = isl_extent2d(128, 32);
265 break;
266
267 case ISL_TILING_Yf:
268 case ISL_TILING_Ys: {
269 bool is_Ys = tiling == ISL_TILING_Ys;
270
271 assert(bs > 0);
272 unsigned width = 1 << (6 + (ffs(bs) / 2) + (2 * is_Ys));
273 unsigned height = 1 << (6 - (ffs(bs) / 2) + (2 * is_Ys));
274
275 logical_el = isl_extent2d(width / bs, height);
276 phys_B = isl_extent2d(width, height);
277 break;
278 }
279
280 case ISL_TILING_HIZ:
281 /* HiZ buffers are required to have ISL_FORMAT_HIZ which is an 8x4
282 * 128bpb format. The tiling has the same physical dimensions as
283 * Y-tiling but actually has two HiZ columns per Y-tiled column.
284 */
285 assert(bs == 16);
286 logical_el = isl_extent2d(16, 16);
287 phys_B = isl_extent2d(128, 32);
288 break;
289
290 case ISL_TILING_CCS:
291 /* CCS surfaces are required to have one of the GENX_CCS_* formats which
292 * have a block size of 1 or 2 bits per block and each CCS element
293 * corresponds to one cache-line pair in the main surface. From the Sky
294 * Lake PRM Vol. 12 in the section on planes:
295 *
296 * "The Color Control Surface (CCS) contains the compression status
297 * of the cache-line pairs. The compression state of the cache-line
298 * pair is specified by 2 bits in the CCS. Each CCS cache-line
299 * represents an area on the main surface of 16x16 sets of 128 byte
300 * Y-tiled cache-line-pairs. CCS is always Y tiled."
301 *
302 * The CCS being Y-tiled implies that it's an 8x8 grid of cache-lines.
303 * Since each cache line corresponds to a 16x16 set of cache-line pairs,
304 * that yields total tile area of 128x128 cache-line pairs or CCS
305 * elements. On older hardware, each CCS element is 1 bit and the tile
306 * is 128x256 elements.
307 */
308 assert(format_bpb == 1 || format_bpb == 2);
309 logical_el = isl_extent2d(128, 256 / format_bpb);
310 phys_B = isl_extent2d(128, 32);
311 break;
312
313 default:
314 unreachable("not reached");
315 } /* end switch */
316
317 *tile_info = (struct isl_tile_info) {
318 .tiling = tiling,
319 .format_bpb = format_bpb,
320 .logical_extent_el = logical_el,
321 .phys_extent_B = phys_B,
322 };
323 }
324
325 bool
326 isl_color_value_is_zero(union isl_color_value value,
327 enum isl_format format)
328 {
329 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
330
331 #define RETURN_FALSE_IF_NOT_0(c, i) \
332 if (fmtl->channels.c.bits && value.u32[i] != 0) \
333 return false
334
335 RETURN_FALSE_IF_NOT_0(r, 0);
336 RETURN_FALSE_IF_NOT_0(g, 1);
337 RETURN_FALSE_IF_NOT_0(b, 2);
338 RETURN_FALSE_IF_NOT_0(a, 3);
339
340 #undef RETURN_FALSE_IF_NOT_0
341
342 return true;
343 }
344
345 bool
346 isl_color_value_is_zero_one(union isl_color_value value,
347 enum isl_format format)
348 {
349 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
350
351 #define RETURN_FALSE_IF_NOT_0_1(c, i, field) \
352 if (fmtl->channels.c.bits && value.field[i] != 0 && value.field[i] != 1) \
353 return false
354
355 if (isl_format_has_int_channel(format)) {
356 RETURN_FALSE_IF_NOT_0_1(r, 0, u32);
357 RETURN_FALSE_IF_NOT_0_1(g, 1, u32);
358 RETURN_FALSE_IF_NOT_0_1(b, 2, u32);
359 RETURN_FALSE_IF_NOT_0_1(a, 3, u32);
360 } else {
361 RETURN_FALSE_IF_NOT_0_1(r, 0, f32);
362 RETURN_FALSE_IF_NOT_0_1(g, 1, f32);
363 RETURN_FALSE_IF_NOT_0_1(b, 2, f32);
364 RETURN_FALSE_IF_NOT_0_1(a, 3, f32);
365 }
366
367 #undef RETURN_FALSE_IF_NOT_0_1
368
369 return true;
370 }
371
372 /**
373 * @param[out] tiling is set only on success
374 */
375 static bool
376 isl_surf_choose_tiling(const struct isl_device *dev,
377 const struct isl_surf_init_info *restrict info,
378 enum isl_tiling *tiling)
379 {
380 isl_tiling_flags_t tiling_flags = info->tiling_flags;
381
382 /* HiZ surfaces always use the HiZ tiling */
383 if (info->usage & ISL_SURF_USAGE_HIZ_BIT) {
384 assert(info->format == ISL_FORMAT_HIZ);
385 assert(tiling_flags == ISL_TILING_HIZ_BIT);
386 *tiling = ISL_TILING_HIZ;
387 return true;
388 }
389
390 /* CCS surfaces always use the CCS tiling */
391 if (info->usage & ISL_SURF_USAGE_CCS_BIT) {
392 assert(isl_format_get_layout(info->format)->txc == ISL_TXC_CCS);
393 assert(tiling_flags == ISL_TILING_CCS_BIT);
394 *tiling = ISL_TILING_CCS;
395 return true;
396 }
397
398 if (ISL_DEV_GEN(dev) >= 6) {
399 isl_gen6_filter_tiling(dev, info, &tiling_flags);
400 } else {
401 isl_gen4_filter_tiling(dev, info, &tiling_flags);
402 }
403
404 #define CHOOSE(__tiling) \
405 do { \
406 if (tiling_flags & (1u << (__tiling))) { \
407 *tiling = (__tiling); \
408 return true; \
409 } \
410 } while (0)
411
412 /* Of the tiling modes remaining, choose the one that offers the best
413 * performance.
414 */
415
416 if (info->dim == ISL_SURF_DIM_1D) {
417 /* Prefer linear for 1D surfaces because they do not benefit from
418 * tiling. To the contrary, tiling leads to wasted memory and poor
419 * memory locality due to the swizzling and alignment restrictions
420 * required in tiled surfaces.
421 */
422 CHOOSE(ISL_TILING_LINEAR);
423 }
424
425 CHOOSE(ISL_TILING_Ys);
426 CHOOSE(ISL_TILING_Yf);
427 CHOOSE(ISL_TILING_Y0);
428 CHOOSE(ISL_TILING_X);
429 CHOOSE(ISL_TILING_W);
430 CHOOSE(ISL_TILING_LINEAR);
431
432 #undef CHOOSE
433
434 /* No tiling mode accomodates the inputs. */
435 return false;
436 }
437
438 static bool
439 isl_choose_msaa_layout(const struct isl_device *dev,
440 const struct isl_surf_init_info *info,
441 enum isl_tiling tiling,
442 enum isl_msaa_layout *msaa_layout)
443 {
444 if (ISL_DEV_GEN(dev) >= 8) {
445 return isl_gen8_choose_msaa_layout(dev, info, tiling, msaa_layout);
446 } else if (ISL_DEV_GEN(dev) >= 7) {
447 return isl_gen7_choose_msaa_layout(dev, info, tiling, msaa_layout);
448 } else if (ISL_DEV_GEN(dev) >= 6) {
449 return isl_gen6_choose_msaa_layout(dev, info, tiling, msaa_layout);
450 } else {
451 return isl_gen4_choose_msaa_layout(dev, info, tiling, msaa_layout);
452 }
453 }
454
455 struct isl_extent2d
456 isl_get_interleaved_msaa_px_size_sa(uint32_t samples)
457 {
458 assert(isl_is_pow2(samples));
459
460 /* From the Broadwell PRM >> Volume 5: Memory Views >> Computing Mip Level
461 * Sizes (p133):
462 *
463 * If the surface is multisampled and it is a depth or stencil surface
464 * or Multisampled Surface StorageFormat in SURFACE_STATE is
465 * MSFMT_DEPTH_STENCIL, W_L and H_L must be adjusted as follows before
466 * proceeding: [...]
467 */
468 return (struct isl_extent2d) {
469 .width = 1 << ((ffs(samples) - 0) / 2),
470 .height = 1 << ((ffs(samples) - 1) / 2),
471 };
472 }
473
474 static void
475 isl_msaa_interleaved_scale_px_to_sa(uint32_t samples,
476 uint32_t *width, uint32_t *height)
477 {
478 const struct isl_extent2d px_size_sa =
479 isl_get_interleaved_msaa_px_size_sa(samples);
480
481 if (width)
482 *width = isl_align(*width, 2) * px_size_sa.width;
483 if (height)
484 *height = isl_align(*height, 2) * px_size_sa.height;
485 }
486
487 static enum isl_array_pitch_span
488 isl_choose_array_pitch_span(const struct isl_device *dev,
489 const struct isl_surf_init_info *restrict info,
490 enum isl_dim_layout dim_layout,
491 const struct isl_extent4d *phys_level0_sa)
492 {
493 switch (dim_layout) {
494 case ISL_DIM_LAYOUT_GEN9_1D:
495 case ISL_DIM_LAYOUT_GEN4_2D:
496 if (ISL_DEV_GEN(dev) >= 8) {
497 /* QPitch becomes programmable in Broadwell. So choose the
498 * most compact QPitch possible in order to conserve memory.
499 *
500 * From the Broadwell PRM >> Volume 2d: Command Reference: Structures
501 * >> RENDER_SURFACE_STATE Surface QPitch (p325):
502 *
503 * - Software must ensure that this field is set to a value
504 * sufficiently large such that the array slices in the surface
505 * do not overlap. Refer to the Memory Data Formats section for
506 * information on how surfaces are stored in memory.
507 *
508 * - This field specifies the distance in rows between array
509 * slices. It is used only in the following cases:
510 *
511 * - Surface Array is enabled OR
512 * - Number of Mulitsamples is not NUMSAMPLES_1 and
513 * Multisampled Surface Storage Format set to MSFMT_MSS OR
514 * - Surface Type is SURFTYPE_CUBE
515 */
516 return ISL_ARRAY_PITCH_SPAN_COMPACT;
517 } else if (ISL_DEV_GEN(dev) >= 7) {
518 /* Note that Ivybridge introduces
519 * RENDER_SURFACE_STATE.SurfaceArraySpacing, which provides the
520 * driver more control over the QPitch.
521 */
522
523 if (phys_level0_sa->array_len == 1) {
524 /* The hardware will never use the QPitch. So choose the most
525 * compact QPitch possible in order to conserve memory.
526 */
527 return ISL_ARRAY_PITCH_SPAN_COMPACT;
528 }
529
530 if (isl_surf_usage_is_depth_or_stencil(info->usage) ||
531 (info->usage & ISL_SURF_USAGE_HIZ_BIT)) {
532 /* From the Ivybridge PRM >> Volume 1 Part 1: Graphics Core >>
533 * Section 6.18.4.7: Surface Arrays (p112):
534 *
535 * If Surface Array Spacing is set to ARYSPC_FULL (note that
536 * the depth buffer and stencil buffer have an implied value of
537 * ARYSPC_FULL):
538 */
539 return ISL_ARRAY_PITCH_SPAN_FULL;
540 }
541
542 if (info->levels == 1) {
543 /* We are able to set RENDER_SURFACE_STATE.SurfaceArraySpacing
544 * to ARYSPC_LOD0.
545 */
546 return ISL_ARRAY_PITCH_SPAN_COMPACT;
547 }
548
549 return ISL_ARRAY_PITCH_SPAN_FULL;
550 } else if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) &&
551 ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
552 isl_surf_usage_is_stencil(info->usage)) {
553 /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
554 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
555 *
556 * The separate stencil buffer does not support mip mapping, thus
557 * the storage for LODs other than LOD 0 is not needed.
558 */
559 assert(info->levels == 1);
560 return ISL_ARRAY_PITCH_SPAN_COMPACT;
561 } else {
562 if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) &&
563 ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
564 isl_surf_usage_is_stencil(info->usage)) {
565 /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
566 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
567 *
568 * The separate stencil buffer does not support mip mapping,
569 * thus the storage for LODs other than LOD 0 is not needed.
570 */
571 assert(info->levels == 1);
572 assert(phys_level0_sa->array_len == 1);
573 return ISL_ARRAY_PITCH_SPAN_COMPACT;
574 }
575
576 if (phys_level0_sa->array_len == 1) {
577 /* The hardware will never use the QPitch. So choose the most
578 * compact QPitch possible in order to conserve memory.
579 */
580 return ISL_ARRAY_PITCH_SPAN_COMPACT;
581 }
582
583 return ISL_ARRAY_PITCH_SPAN_FULL;
584 }
585
586 case ISL_DIM_LAYOUT_GEN4_3D:
587 /* The hardware will never use the QPitch. So choose the most
588 * compact QPitch possible in order to conserve memory.
589 */
590 return ISL_ARRAY_PITCH_SPAN_COMPACT;
591
592 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
593 /* Each array image in the gen6 stencil of HiZ surface is compact in the
594 * sense that every LOD is a compact array of the same size as LOD0.
595 */
596 return ISL_ARRAY_PITCH_SPAN_COMPACT;
597 }
598
599 unreachable("bad isl_dim_layout");
600 return ISL_ARRAY_PITCH_SPAN_FULL;
601 }
602
603 static void
604 isl_choose_image_alignment_el(const struct isl_device *dev,
605 const struct isl_surf_init_info *restrict info,
606 enum isl_tiling tiling,
607 enum isl_dim_layout dim_layout,
608 enum isl_msaa_layout msaa_layout,
609 struct isl_extent3d *image_align_el)
610 {
611 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
612 if (fmtl->txc == ISL_TXC_MCS) {
613 assert(tiling == ISL_TILING_Y0);
614
615 /*
616 * IvyBrigde PRM Vol 2, Part 1, "11.7 MCS Buffer for Render Target(s)":
617 *
618 * Height, width, and layout of MCS buffer in this case must match with
619 * Render Target height, width, and layout. MCS buffer is tiledY.
620 *
621 * To avoid wasting memory, choose the smallest alignment possible:
622 * HALIGN_4 and VALIGN_4.
623 */
624 *image_align_el = isl_extent3d(4, 4, 1);
625 return;
626 } else if (info->format == ISL_FORMAT_HIZ) {
627 assert(ISL_DEV_GEN(dev) >= 6);
628 if (ISL_DEV_GEN(dev) == 6) {
629 /* HiZ surfaces on Sandy Bridge are packed tightly. */
630 *image_align_el = isl_extent3d(1, 1, 1);
631 } else {
632 /* On gen7+, HiZ surfaces are always aligned to 16x8 pixels in the
633 * primary surface which works out to 2x2 HiZ elments.
634 */
635 *image_align_el = isl_extent3d(2, 2, 1);
636 }
637 return;
638 }
639
640 if (ISL_DEV_GEN(dev) >= 9) {
641 isl_gen9_choose_image_alignment_el(dev, info, tiling, dim_layout,
642 msaa_layout, image_align_el);
643 } else if (ISL_DEV_GEN(dev) >= 8) {
644 isl_gen8_choose_image_alignment_el(dev, info, tiling, dim_layout,
645 msaa_layout, image_align_el);
646 } else if (ISL_DEV_GEN(dev) >= 7) {
647 isl_gen7_choose_image_alignment_el(dev, info, tiling, dim_layout,
648 msaa_layout, image_align_el);
649 } else if (ISL_DEV_GEN(dev) >= 6) {
650 isl_gen6_choose_image_alignment_el(dev, info, tiling, dim_layout,
651 msaa_layout, image_align_el);
652 } else {
653 isl_gen4_choose_image_alignment_el(dev, info, tiling, dim_layout,
654 msaa_layout, image_align_el);
655 }
656 }
657
658 static enum isl_dim_layout
659 isl_surf_choose_dim_layout(const struct isl_device *dev,
660 enum isl_surf_dim logical_dim,
661 enum isl_tiling tiling,
662 isl_surf_usage_flags_t usage)
663 {
664 /* Sandy bridge needs a special layout for HiZ and stencil. */
665 if (ISL_DEV_GEN(dev) == 6 &&
666 (tiling == ISL_TILING_W || tiling == ISL_TILING_HIZ))
667 return ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ;
668
669 if (ISL_DEV_GEN(dev) >= 9) {
670 switch (logical_dim) {
671 case ISL_SURF_DIM_1D:
672 /* From the Sky Lake PRM Vol. 5, "1D Surfaces":
673 *
674 * One-dimensional surfaces use a tiling mode of linear.
675 * Technically, they are not tiled resources, but the Tiled
676 * Resource Mode field in RENDER_SURFACE_STATE is still used to
677 * indicate the alignment requirements for this linear surface
678 * (See 1D Alignment requirements for how 4K and 64KB Tiled
679 * Resource Modes impact alignment). Alternatively, a 1D surface
680 * can be defined as a 2D tiled surface (e.g. TileY or TileX) with
681 * a height of 0.
682 *
683 * In other words, ISL_DIM_LAYOUT_GEN9_1D is only used for linear
684 * surfaces and, for tiled surfaces, ISL_DIM_LAYOUT_GEN4_2D is used.
685 */
686 if (tiling == ISL_TILING_LINEAR)
687 return ISL_DIM_LAYOUT_GEN9_1D;
688 else
689 return ISL_DIM_LAYOUT_GEN4_2D;
690 case ISL_SURF_DIM_2D:
691 case ISL_SURF_DIM_3D:
692 return ISL_DIM_LAYOUT_GEN4_2D;
693 }
694 } else {
695 switch (logical_dim) {
696 case ISL_SURF_DIM_1D:
697 case ISL_SURF_DIM_2D:
698 /* From the G45 PRM Vol. 1a, "6.17.4.1 Hardware Cube Map Layout":
699 *
700 * The cube face textures are stored in the same way as 3D surfaces
701 * are stored (see section 6.17.5 for details). For cube surfaces,
702 * however, the depth is equal to the number of faces (always 6) and
703 * is not reduced for each MIP.
704 */
705 if (ISL_DEV_GEN(dev) == 4 && (usage & ISL_SURF_USAGE_CUBE_BIT))
706 return ISL_DIM_LAYOUT_GEN4_3D;
707
708 return ISL_DIM_LAYOUT_GEN4_2D;
709 case ISL_SURF_DIM_3D:
710 return ISL_DIM_LAYOUT_GEN4_3D;
711 }
712 }
713
714 unreachable("bad isl_surf_dim");
715 return ISL_DIM_LAYOUT_GEN4_2D;
716 }
717
718 /**
719 * Calculate the physical extent of the surface's first level, in units of
720 * surface samples.
721 */
722 static void
723 isl_calc_phys_level0_extent_sa(const struct isl_device *dev,
724 const struct isl_surf_init_info *restrict info,
725 enum isl_dim_layout dim_layout,
726 enum isl_tiling tiling,
727 enum isl_msaa_layout msaa_layout,
728 struct isl_extent4d *phys_level0_sa)
729 {
730 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
731
732 if (isl_format_is_yuv(info->format))
733 isl_finishme("%s:%s: YUV format", __FILE__, __func__);
734
735 switch (info->dim) {
736 case ISL_SURF_DIM_1D:
737 assert(info->height == 1);
738 assert(info->depth == 1);
739 assert(info->samples == 1);
740
741 switch (dim_layout) {
742 case ISL_DIM_LAYOUT_GEN4_3D:
743 unreachable("bad isl_dim_layout");
744
745 case ISL_DIM_LAYOUT_GEN9_1D:
746 case ISL_DIM_LAYOUT_GEN4_2D:
747 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
748 *phys_level0_sa = (struct isl_extent4d) {
749 .w = info->width,
750 .h = 1,
751 .d = 1,
752 .a = info->array_len,
753 };
754 break;
755 }
756 break;
757
758 case ISL_SURF_DIM_2D:
759 if (ISL_DEV_GEN(dev) == 4 && (info->usage & ISL_SURF_USAGE_CUBE_BIT))
760 assert(dim_layout == ISL_DIM_LAYOUT_GEN4_3D);
761 else
762 assert(dim_layout == ISL_DIM_LAYOUT_GEN4_2D ||
763 dim_layout == ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ);
764
765 if (tiling == ISL_TILING_Ys && info->samples > 1)
766 isl_finishme("%s:%s: multisample TileYs layout", __FILE__, __func__);
767
768 switch (msaa_layout) {
769 case ISL_MSAA_LAYOUT_NONE:
770 assert(info->depth == 1);
771 assert(info->samples == 1);
772
773 *phys_level0_sa = (struct isl_extent4d) {
774 .w = info->width,
775 .h = info->height,
776 .d = 1,
777 .a = info->array_len,
778 };
779 break;
780
781 case ISL_MSAA_LAYOUT_ARRAY:
782 assert(info->depth == 1);
783 assert(info->levels == 1);
784 assert(isl_format_supports_multisampling(dev->info, info->format));
785 assert(fmtl->bw == 1 && fmtl->bh == 1);
786
787 *phys_level0_sa = (struct isl_extent4d) {
788 .w = info->width,
789 .h = info->height,
790 .d = 1,
791 .a = info->array_len * info->samples,
792 };
793 break;
794
795 case ISL_MSAA_LAYOUT_INTERLEAVED:
796 assert(info->depth == 1);
797 assert(info->levels == 1);
798 assert(isl_format_supports_multisampling(dev->info, info->format));
799
800 *phys_level0_sa = (struct isl_extent4d) {
801 .w = info->width,
802 .h = info->height,
803 .d = 1,
804 .a = info->array_len,
805 };
806
807 isl_msaa_interleaved_scale_px_to_sa(info->samples,
808 &phys_level0_sa->w,
809 &phys_level0_sa->h);
810 break;
811 }
812 break;
813
814 case ISL_SURF_DIM_3D:
815 assert(info->array_len == 1);
816 assert(info->samples == 1);
817
818 if (fmtl->bd > 1) {
819 isl_finishme("%s:%s: compression block with depth > 1",
820 __FILE__, __func__);
821 }
822
823 switch (dim_layout) {
824 case ISL_DIM_LAYOUT_GEN9_1D:
825 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
826 unreachable("bad isl_dim_layout");
827
828 case ISL_DIM_LAYOUT_GEN4_2D:
829 assert(ISL_DEV_GEN(dev) >= 9);
830
831 *phys_level0_sa = (struct isl_extent4d) {
832 .w = info->width,
833 .h = info->height,
834 .d = 1,
835 .a = info->depth,
836 };
837 break;
838
839 case ISL_DIM_LAYOUT_GEN4_3D:
840 assert(ISL_DEV_GEN(dev) < 9);
841 *phys_level0_sa = (struct isl_extent4d) {
842 .w = info->width,
843 .h = info->height,
844 .d = info->depth,
845 .a = 1,
846 };
847 break;
848 }
849 break;
850 }
851 }
852
853 /**
854 * Calculate the pitch between physical array slices, in units of rows of
855 * surface elements.
856 */
857 static uint32_t
858 isl_calc_array_pitch_el_rows_gen4_2d(
859 const struct isl_device *dev,
860 const struct isl_surf_init_info *restrict info,
861 const struct isl_tile_info *tile_info,
862 const struct isl_extent3d *image_align_sa,
863 const struct isl_extent4d *phys_level0_sa,
864 enum isl_array_pitch_span array_pitch_span,
865 const struct isl_extent2d *phys_slice0_sa)
866 {
867 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
868 uint32_t pitch_sa_rows = 0;
869
870 switch (array_pitch_span) {
871 case ISL_ARRAY_PITCH_SPAN_COMPACT:
872 pitch_sa_rows = isl_align_npot(phys_slice0_sa->h, image_align_sa->h);
873 break;
874 case ISL_ARRAY_PITCH_SPAN_FULL: {
875 /* The QPitch equation is found in the Broadwell PRM >> Volume 5:
876 * Memory Views >> Common Surface Formats >> Surface Layout >> 2D
877 * Surfaces >> Surface Arrays.
878 */
879 uint32_t H0_sa = phys_level0_sa->h;
880 uint32_t H1_sa = isl_minify(H0_sa, 1);
881
882 uint32_t h0_sa = isl_align_npot(H0_sa, image_align_sa->h);
883 uint32_t h1_sa = isl_align_npot(H1_sa, image_align_sa->h);
884
885 uint32_t m;
886 if (ISL_DEV_GEN(dev) >= 7) {
887 /* The QPitch equation changed slightly in Ivybridge. */
888 m = 12;
889 } else {
890 m = 11;
891 }
892
893 pitch_sa_rows = h0_sa + h1_sa + (m * image_align_sa->h);
894
895 if (ISL_DEV_GEN(dev) == 6 && info->samples > 1 &&
896 (info->height % 4 == 1)) {
897 /* [SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
898 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
899 *
900 * [SNB] Errata: Sampler MSAA Qpitch will be 4 greater than
901 * the value calculated in the equation above , for every
902 * other odd Surface Height starting from 1 i.e. 1,5,9,13.
903 *
904 * XXX(chadv): Is the errata natural corollary of the physical
905 * layout of interleaved samples?
906 */
907 pitch_sa_rows += 4;
908 }
909
910 pitch_sa_rows = isl_align_npot(pitch_sa_rows, fmtl->bh);
911 } /* end case */
912 break;
913 }
914
915 assert(pitch_sa_rows % fmtl->bh == 0);
916 uint32_t pitch_el_rows = pitch_sa_rows / fmtl->bh;
917
918 if (ISL_DEV_GEN(dev) >= 9 && fmtl->txc == ISL_TXC_CCS) {
919 /*
920 * From the Sky Lake PRM Vol 7, "MCS Buffer for Render Target(s)" (p. 632):
921 *
922 * "Mip-mapped and arrayed surfaces are supported with MCS buffer
923 * layout with these alignments in the RT space: Horizontal
924 * Alignment = 128 and Vertical Alignment = 64."
925 *
926 * From the Sky Lake PRM Vol. 2d, "RENDER_SURFACE_STATE" (p. 435):
927 *
928 * "For non-multisampled render target's CCS auxiliary surface,
929 * QPitch must be computed with Horizontal Alignment = 128 and
930 * Surface Vertical Alignment = 256. These alignments are only for
931 * CCS buffer and not for associated render target."
932 *
933 * The first restriction is already handled by isl_choose_image_alignment_el
934 * but the second restriction, which is an extension of the first, only
935 * applies to qpitch and must be applied here.
936 */
937 assert(fmtl->bh == 4);
938 pitch_el_rows = isl_align(pitch_el_rows, 256 / 4);
939 }
940
941 if (ISL_DEV_GEN(dev) >= 9 &&
942 info->dim == ISL_SURF_DIM_3D &&
943 tile_info->tiling != ISL_TILING_LINEAR) {
944 /* From the Skylake BSpec >> RENDER_SURFACE_STATE >> Surface QPitch:
945 *
946 * Tile Mode != Linear: This field must be set to an integer multiple
947 * of the tile height
948 */
949 pitch_el_rows = isl_align(pitch_el_rows, tile_info->logical_extent_el.height);
950 }
951
952 return pitch_el_rows;
953 }
954
955 /**
956 * A variant of isl_calc_phys_slice0_extent_sa() specific to
957 * ISL_DIM_LAYOUT_GEN4_2D.
958 */
959 static void
960 isl_calc_phys_slice0_extent_sa_gen4_2d(
961 const struct isl_device *dev,
962 const struct isl_surf_init_info *restrict info,
963 enum isl_msaa_layout msaa_layout,
964 const struct isl_extent3d *image_align_sa,
965 const struct isl_extent4d *phys_level0_sa,
966 struct isl_extent2d *phys_slice0_sa)
967 {
968 assert(phys_level0_sa->depth == 1);
969
970 if (info->levels == 1) {
971 /* Do not pad the surface to the image alignment.
972 *
973 * For tiled surfaces, using a reduced alignment here avoids wasting CPU
974 * cycles on the below mipmap layout caluclations. Reducing the
975 * alignment here is safe because we later align the row pitch and array
976 * pitch to the tile boundary. It is safe even for
977 * ISL_MSAA_LAYOUT_INTERLEAVED, because phys_level0_sa is already scaled
978 * to accomodate the interleaved samples.
979 *
980 * For linear surfaces, reducing the alignment here permits us to later
981 * choose an arbitrary, non-aligned row pitch. If the surface backs
982 * a VkBuffer, then an arbitrary pitch may be needed to accomodate
983 * VkBufferImageCopy::bufferRowLength.
984 */
985 *phys_slice0_sa = (struct isl_extent2d) {
986 .w = phys_level0_sa->w,
987 .h = phys_level0_sa->h,
988 };
989 return;
990 }
991
992 uint32_t slice_top_w = 0;
993 uint32_t slice_bottom_w = 0;
994 uint32_t slice_left_h = 0;
995 uint32_t slice_right_h = 0;
996
997 uint32_t W0 = phys_level0_sa->w;
998 uint32_t H0 = phys_level0_sa->h;
999
1000 for (uint32_t l = 0; l < info->levels; ++l) {
1001 uint32_t W = isl_minify(W0, l);
1002 uint32_t H = isl_minify(H0, l);
1003
1004 uint32_t w = isl_align_npot(W, image_align_sa->w);
1005 uint32_t h = isl_align_npot(H, image_align_sa->h);
1006
1007 if (l == 0) {
1008 slice_top_w = w;
1009 slice_left_h = h;
1010 slice_right_h = h;
1011 } else if (l == 1) {
1012 slice_bottom_w = w;
1013 slice_left_h += h;
1014 } else if (l == 2) {
1015 slice_bottom_w += w;
1016 slice_right_h += h;
1017 } else {
1018 slice_right_h += h;
1019 }
1020 }
1021
1022 *phys_slice0_sa = (struct isl_extent2d) {
1023 .w = MAX(slice_top_w, slice_bottom_w),
1024 .h = MAX(slice_left_h, slice_right_h),
1025 };
1026 }
1027
1028 static void
1029 isl_calc_phys_total_extent_el_gen4_2d(
1030 const struct isl_device *dev,
1031 const struct isl_surf_init_info *restrict info,
1032 const struct isl_tile_info *tile_info,
1033 enum isl_msaa_layout msaa_layout,
1034 const struct isl_extent3d *image_align_sa,
1035 const struct isl_extent4d *phys_level0_sa,
1036 enum isl_array_pitch_span array_pitch_span,
1037 uint32_t *array_pitch_el_rows,
1038 struct isl_extent2d *total_extent_el)
1039 {
1040 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1041
1042 struct isl_extent2d phys_slice0_sa;
1043 isl_calc_phys_slice0_extent_sa_gen4_2d(dev, info, msaa_layout,
1044 image_align_sa, phys_level0_sa,
1045 &phys_slice0_sa);
1046 *array_pitch_el_rows =
1047 isl_calc_array_pitch_el_rows_gen4_2d(dev, info, tile_info,
1048 image_align_sa, phys_level0_sa,
1049 array_pitch_span,
1050 &phys_slice0_sa);
1051 *total_extent_el = (struct isl_extent2d) {
1052 .w = isl_align_div_npot(phys_slice0_sa.w, fmtl->bw),
1053 .h = *array_pitch_el_rows * (phys_level0_sa->array_len - 1) +
1054 isl_align_div_npot(phys_slice0_sa.h, fmtl->bh),
1055 };
1056 }
1057
1058 /**
1059 * A variant of isl_calc_phys_slice0_extent_sa() specific to
1060 * ISL_DIM_LAYOUT_GEN4_3D.
1061 */
1062 static void
1063 isl_calc_phys_total_extent_el_gen4_3d(
1064 const struct isl_device *dev,
1065 const struct isl_surf_init_info *restrict info,
1066 const struct isl_extent3d *image_align_sa,
1067 const struct isl_extent4d *phys_level0_sa,
1068 uint32_t *array_pitch_el_rows,
1069 struct isl_extent2d *phys_total_el)
1070 {
1071 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1072
1073 assert(info->samples == 1);
1074
1075 if (info->dim != ISL_SURF_DIM_3D) {
1076 /* From the G45 PRM Vol. 1a, "6.17.4.1 Hardware Cube Map Layout":
1077 *
1078 * The cube face textures are stored in the same way as 3D surfaces
1079 * are stored (see section 6.17.5 for details). For cube surfaces,
1080 * however, the depth is equal to the number of faces (always 6) and
1081 * is not reduced for each MIP.
1082 */
1083 assert(ISL_DEV_GEN(dev) == 4);
1084 assert(info->usage & ISL_SURF_USAGE_CUBE_BIT);
1085 assert(phys_level0_sa->array_len == 6);
1086 } else {
1087 assert(phys_level0_sa->array_len == 1);
1088 }
1089
1090 uint32_t total_w = 0;
1091 uint32_t total_h = 0;
1092
1093 uint32_t W0 = phys_level0_sa->w;
1094 uint32_t H0 = phys_level0_sa->h;
1095 uint32_t D0 = phys_level0_sa->d;
1096 uint32_t A0 = phys_level0_sa->a;
1097
1098 for (uint32_t l = 0; l < info->levels; ++l) {
1099 uint32_t level_w = isl_align_npot(isl_minify(W0, l), image_align_sa->w);
1100 uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa->h);
1101 uint32_t level_d = info->dim == ISL_SURF_DIM_3D ? isl_minify(D0, l) : A0;
1102
1103 uint32_t max_layers_horiz = MIN(level_d, 1u << l);
1104 uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
1105
1106 total_w = MAX(total_w, level_w * max_layers_horiz);
1107 total_h += level_h * max_layers_vert;
1108 }
1109
1110 /* GEN4_3D layouts don't really have an array pitch since each LOD has a
1111 * different number of horizontal and vertical layers. We have to set it
1112 * to something, so at least make it true for LOD0.
1113 */
1114 *array_pitch_el_rows =
1115 isl_align_npot(phys_level0_sa->h, image_align_sa->h) / fmtl->bw;
1116 *phys_total_el = (struct isl_extent2d) {
1117 .w = isl_assert_div(total_w, fmtl->bw),
1118 .h = isl_assert_div(total_h, fmtl->bh),
1119 };
1120 }
1121
1122 /**
1123 * A variant of isl_calc_phys_slice0_extent_sa() specific to
1124 * ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ.
1125 */
1126 static void
1127 isl_calc_phys_total_extent_el_gen6_stencil_hiz(
1128 const struct isl_device *dev,
1129 const struct isl_surf_init_info *restrict info,
1130 const struct isl_tile_info *tile_info,
1131 const struct isl_extent3d *image_align_sa,
1132 const struct isl_extent4d *phys_level0_sa,
1133 uint32_t *array_pitch_el_rows,
1134 struct isl_extent2d *phys_total_el)
1135 {
1136 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1137
1138 const struct isl_extent2d tile_extent_sa = {
1139 .w = tile_info->logical_extent_el.w * fmtl->bw,
1140 .h = tile_info->logical_extent_el.h * fmtl->bh,
1141 };
1142 /* Tile size is a multiple of image alignment */
1143 assert(tile_extent_sa.w % image_align_sa->w == 0);
1144 assert(tile_extent_sa.h % image_align_sa->h == 0);
1145
1146 const uint32_t W0 = phys_level0_sa->w;
1147 const uint32_t H0 = phys_level0_sa->h;
1148
1149 /* Each image has the same height as LOD0 because the hardware thinks
1150 * everything is LOD0
1151 */
1152 const uint32_t H = isl_align(H0, image_align_sa->h) * phys_level0_sa->a;
1153
1154 uint32_t total_top_w = 0;
1155 uint32_t total_bottom_w = 0;
1156 uint32_t total_h = 0;
1157
1158 for (uint32_t l = 0; l < info->levels; ++l) {
1159 const uint32_t W = isl_minify(W0, l);
1160
1161 const uint32_t w = isl_align(W, tile_extent_sa.w);
1162 const uint32_t h = isl_align(H, tile_extent_sa.h);
1163
1164 if (l == 0) {
1165 total_top_w = w;
1166 total_h = h;
1167 } else if (l == 1) {
1168 total_bottom_w = w;
1169 total_h += h;
1170 } else {
1171 total_bottom_w += w;
1172 }
1173 }
1174
1175 *array_pitch_el_rows =
1176 isl_assert_div(isl_align(H0, image_align_sa->h), fmtl->bh);
1177 *phys_total_el = (struct isl_extent2d) {
1178 .w = isl_assert_div(MAX(total_top_w, total_bottom_w), fmtl->bw),
1179 .h = isl_assert_div(total_h, fmtl->bh),
1180 };
1181 }
1182
1183 /**
1184 * A variant of isl_calc_phys_slice0_extent_sa() specific to
1185 * ISL_DIM_LAYOUT_GEN9_1D.
1186 */
1187 static void
1188 isl_calc_phys_total_extent_el_gen9_1d(
1189 const struct isl_device *dev,
1190 const struct isl_surf_init_info *restrict info,
1191 const struct isl_extent3d *image_align_sa,
1192 const struct isl_extent4d *phys_level0_sa,
1193 uint32_t *array_pitch_el_rows,
1194 struct isl_extent2d *phys_total_el)
1195 {
1196 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1197
1198 assert(phys_level0_sa->height == 1);
1199 assert(phys_level0_sa->depth == 1);
1200 assert(info->samples == 1);
1201 assert(image_align_sa->w >= fmtl->bw);
1202
1203 uint32_t slice_w = 0;
1204 const uint32_t W0 = phys_level0_sa->w;
1205
1206 for (uint32_t l = 0; l < info->levels; ++l) {
1207 uint32_t W = isl_minify(W0, l);
1208 uint32_t w = isl_align_npot(W, image_align_sa->w);
1209
1210 slice_w += w;
1211 }
1212
1213 *array_pitch_el_rows = 1;
1214 *phys_total_el = (struct isl_extent2d) {
1215 .w = isl_assert_div(slice_w, fmtl->bw),
1216 .h = phys_level0_sa->array_len,
1217 };
1218 }
1219
1220 /**
1221 * Calculate the two-dimensional total physical extent of the surface, in
1222 * units of surface elements.
1223 */
1224 static void
1225 isl_calc_phys_total_extent_el(const struct isl_device *dev,
1226 const struct isl_surf_init_info *restrict info,
1227 const struct isl_tile_info *tile_info,
1228 enum isl_dim_layout dim_layout,
1229 enum isl_msaa_layout msaa_layout,
1230 const struct isl_extent3d *image_align_sa,
1231 const struct isl_extent4d *phys_level0_sa,
1232 enum isl_array_pitch_span array_pitch_span,
1233 uint32_t *array_pitch_el_rows,
1234 struct isl_extent2d *total_extent_el)
1235 {
1236 switch (dim_layout) {
1237 case ISL_DIM_LAYOUT_GEN9_1D:
1238 assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
1239 isl_calc_phys_total_extent_el_gen9_1d(dev, info,
1240 image_align_sa, phys_level0_sa,
1241 array_pitch_el_rows,
1242 total_extent_el);
1243 return;
1244 case ISL_DIM_LAYOUT_GEN4_2D:
1245 isl_calc_phys_total_extent_el_gen4_2d(dev, info, tile_info, msaa_layout,
1246 image_align_sa, phys_level0_sa,
1247 array_pitch_span,
1248 array_pitch_el_rows,
1249 total_extent_el);
1250 return;
1251 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
1252 assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
1253 isl_calc_phys_total_extent_el_gen6_stencil_hiz(dev, info, tile_info,
1254 image_align_sa,
1255 phys_level0_sa,
1256 array_pitch_el_rows,
1257 total_extent_el);
1258 return;
1259 case ISL_DIM_LAYOUT_GEN4_3D:
1260 assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
1261 isl_calc_phys_total_extent_el_gen4_3d(dev, info,
1262 image_align_sa, phys_level0_sa,
1263 array_pitch_el_rows,
1264 total_extent_el);
1265 return;
1266 }
1267
1268 unreachable("invalid value for dim_layout");
1269 }
1270
1271 static uint32_t
1272 isl_calc_row_pitch_alignment(const struct isl_surf_init_info *surf_info,
1273 const struct isl_tile_info *tile_info)
1274 {
1275 if (tile_info->tiling != ISL_TILING_LINEAR)
1276 return tile_info->phys_extent_B.width;
1277
1278 /* From the Broadwel PRM >> Volume 2d: Command Reference: Structures >>
1279 * RENDER_SURFACE_STATE Surface Pitch (p349):
1280 *
1281 * - For linear render target surfaces and surfaces accessed with the
1282 * typed data port messages, the pitch must be a multiple of the
1283 * element size for non-YUV surface formats. Pitch must be
1284 * a multiple of 2 * element size for YUV surface formats.
1285 *
1286 * - [Requirements for SURFTYPE_BUFFER and SURFTYPE_STRBUF, which we
1287 * ignore because isl doesn't do buffers.]
1288 *
1289 * - For other linear surfaces, the pitch can be any multiple of
1290 * bytes.
1291 */
1292 const struct isl_format_layout *fmtl = isl_format_get_layout(surf_info->format);
1293 const uint32_t bs = fmtl->bpb / 8;
1294
1295 if (surf_info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
1296 if (isl_format_is_yuv(surf_info->format)) {
1297 return 2 * bs;
1298 } else {
1299 return bs;
1300 }
1301 }
1302
1303 return 1;
1304 }
1305
1306 static uint32_t
1307 isl_calc_linear_min_row_pitch(const struct isl_device *dev,
1308 const struct isl_surf_init_info *info,
1309 const struct isl_extent2d *phys_total_el,
1310 uint32_t alignment_B)
1311 {
1312 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1313 const uint32_t bs = fmtl->bpb / 8;
1314
1315 return isl_align_npot(bs * phys_total_el->w, alignment_B);
1316 }
1317
1318 static uint32_t
1319 isl_calc_tiled_min_row_pitch(const struct isl_device *dev,
1320 const struct isl_surf_init_info *surf_info,
1321 const struct isl_tile_info *tile_info,
1322 const struct isl_extent2d *phys_total_el,
1323 uint32_t alignment_B)
1324 {
1325 const struct isl_format_layout *fmtl = isl_format_get_layout(surf_info->format);
1326
1327 assert(fmtl->bpb % tile_info->format_bpb == 0);
1328
1329 const uint32_t tile_el_scale = fmtl->bpb / tile_info->format_bpb;
1330 const uint32_t total_w_tl =
1331 isl_align_div(phys_total_el->w * tile_el_scale,
1332 tile_info->logical_extent_el.width);
1333
1334 assert(alignment_B == tile_info->phys_extent_B.width);
1335 return total_w_tl * tile_info->phys_extent_B.width;
1336 }
1337
1338 static uint32_t
1339 isl_calc_min_row_pitch(const struct isl_device *dev,
1340 const struct isl_surf_init_info *surf_info,
1341 const struct isl_tile_info *tile_info,
1342 const struct isl_extent2d *phys_total_el,
1343 uint32_t alignment_B)
1344 {
1345 if (tile_info->tiling == ISL_TILING_LINEAR) {
1346 return isl_calc_linear_min_row_pitch(dev, surf_info, phys_total_el,
1347 alignment_B);
1348 } else {
1349 return isl_calc_tiled_min_row_pitch(dev, surf_info, tile_info,
1350 phys_total_el, alignment_B);
1351 }
1352 }
1353
1354 /**
1355 * Is `pitch` in the valid range for a hardware bitfield, if the bitfield's
1356 * size is `bits` bits?
1357 *
1358 * Hardware pitch fields are offset by 1. For example, if the size of
1359 * RENDER_SURFACE_STATE::SurfacePitch is B bits, then the range of valid
1360 * pitches is [1, 2^b] inclusive. If the surface pitch is N, then
1361 * RENDER_SURFACE_STATE::SurfacePitch must be set to N-1.
1362 */
1363 static bool
1364 pitch_in_range(uint32_t n, uint32_t bits)
1365 {
1366 assert(n != 0);
1367 return likely(bits != 0 && 1 <= n && n <= (1 << bits));
1368 }
1369
1370 static bool
1371 isl_calc_row_pitch(const struct isl_device *dev,
1372 const struct isl_surf_init_info *surf_info,
1373 const struct isl_tile_info *tile_info,
1374 enum isl_dim_layout dim_layout,
1375 const struct isl_extent2d *phys_total_el,
1376 uint32_t *out_row_pitch_B)
1377 {
1378 uint32_t alignment_B =
1379 isl_calc_row_pitch_alignment(surf_info, tile_info);
1380
1381 const uint32_t min_row_pitch_B =
1382 isl_calc_min_row_pitch(dev, surf_info, tile_info, phys_total_el,
1383 alignment_B);
1384
1385 uint32_t row_pitch_B = min_row_pitch_B;
1386
1387 if (surf_info->row_pitch_B != 0) {
1388 row_pitch_B = surf_info->row_pitch_B;
1389
1390 if (row_pitch_B < min_row_pitch_B)
1391 return false;
1392
1393 if (row_pitch_B % alignment_B != 0)
1394 return false;
1395 }
1396
1397 const uint32_t row_pitch_tl = row_pitch_B / tile_info->phys_extent_B.width;
1398
1399 if (row_pitch_B == 0)
1400 return false;
1401
1402 if (dim_layout == ISL_DIM_LAYOUT_GEN9_1D) {
1403 /* SurfacePitch is ignored for this layout. */
1404 goto done;
1405 }
1406
1407 if ((surf_info->usage & (ISL_SURF_USAGE_RENDER_TARGET_BIT |
1408 ISL_SURF_USAGE_TEXTURE_BIT |
1409 ISL_SURF_USAGE_STORAGE_BIT)) &&
1410 !pitch_in_range(row_pitch_B, RENDER_SURFACE_STATE_SurfacePitch_bits(dev->info)))
1411 return false;
1412
1413 if ((surf_info->usage & (ISL_SURF_USAGE_CCS_BIT |
1414 ISL_SURF_USAGE_MCS_BIT)) &&
1415 !pitch_in_range(row_pitch_tl, RENDER_SURFACE_STATE_AuxiliarySurfacePitch_bits(dev->info)))
1416 return false;
1417
1418 if ((surf_info->usage & ISL_SURF_USAGE_DEPTH_BIT) &&
1419 !pitch_in_range(row_pitch_B, _3DSTATE_DEPTH_BUFFER_SurfacePitch_bits(dev->info)))
1420 return false;
1421
1422 if ((surf_info->usage & ISL_SURF_USAGE_HIZ_BIT) &&
1423 !pitch_in_range(row_pitch_B, _3DSTATE_HIER_DEPTH_BUFFER_SurfacePitch_bits(dev->info)))
1424 return false;
1425
1426 const uint32_t stencil_pitch_bits = dev->use_separate_stencil ?
1427 _3DSTATE_STENCIL_BUFFER_SurfacePitch_bits(dev->info) :
1428 _3DSTATE_DEPTH_BUFFER_SurfacePitch_bits(dev->info);
1429
1430 if ((surf_info->usage & ISL_SURF_USAGE_STENCIL_BIT) &&
1431 !pitch_in_range(row_pitch_B, stencil_pitch_bits))
1432 return false;
1433
1434 done:
1435 *out_row_pitch_B = row_pitch_B;
1436 return true;
1437 }
1438
1439 bool
1440 isl_surf_init_s(const struct isl_device *dev,
1441 struct isl_surf *surf,
1442 const struct isl_surf_init_info *restrict info)
1443 {
1444 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1445
1446 const struct isl_extent4d logical_level0_px = {
1447 .w = info->width,
1448 .h = info->height,
1449 .d = info->depth,
1450 .a = info->array_len,
1451 };
1452
1453 enum isl_tiling tiling;
1454 if (!isl_surf_choose_tiling(dev, info, &tiling))
1455 return false;
1456
1457 struct isl_tile_info tile_info;
1458 isl_tiling_get_info(tiling, fmtl->bpb, &tile_info);
1459
1460 const enum isl_dim_layout dim_layout =
1461 isl_surf_choose_dim_layout(dev, info->dim, tiling, info->usage);
1462
1463 enum isl_msaa_layout msaa_layout;
1464 if (!isl_choose_msaa_layout(dev, info, tiling, &msaa_layout))
1465 return false;
1466
1467 struct isl_extent3d image_align_el;
1468 isl_choose_image_alignment_el(dev, info, tiling, dim_layout, msaa_layout,
1469 &image_align_el);
1470
1471 struct isl_extent3d image_align_sa =
1472 isl_extent3d_el_to_sa(info->format, image_align_el);
1473
1474 struct isl_extent4d phys_level0_sa;
1475 isl_calc_phys_level0_extent_sa(dev, info, dim_layout, tiling, msaa_layout,
1476 &phys_level0_sa);
1477
1478 enum isl_array_pitch_span array_pitch_span =
1479 isl_choose_array_pitch_span(dev, info, dim_layout, &phys_level0_sa);
1480
1481 uint32_t array_pitch_el_rows;
1482 struct isl_extent2d phys_total_el;
1483 isl_calc_phys_total_extent_el(dev, info, &tile_info,
1484 dim_layout, msaa_layout,
1485 &image_align_sa, &phys_level0_sa,
1486 array_pitch_span, &array_pitch_el_rows,
1487 &phys_total_el);
1488
1489 uint32_t row_pitch_B;
1490 if (!isl_calc_row_pitch(dev, info, &tile_info, dim_layout,
1491 &phys_total_el, &row_pitch_B))
1492 return false;
1493
1494 uint32_t base_alignment_B;
1495 uint64_t size_B;
1496 if (tiling == ISL_TILING_LINEAR) {
1497 size_B = (uint64_t) row_pitch_B * phys_total_el.h;
1498
1499 /* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfaceBaseAddress:
1500 *
1501 * "The Base Address for linear render target surfaces and surfaces
1502 * accessed with the typed surface read/write data port messages must
1503 * be element-size aligned, for non-YUV surface formats, or a
1504 * multiple of 2 element-sizes for YUV surface formats. Other linear
1505 * surfaces have no alignment requirements (byte alignment is
1506 * sufficient.)"
1507 */
1508 base_alignment_B = MAX(1, info->min_alignment_B);
1509 if (info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
1510 if (isl_format_is_yuv(info->format)) {
1511 base_alignment_B = MAX(base_alignment_B, fmtl->bpb / 4);
1512 } else {
1513 base_alignment_B = MAX(base_alignment_B, fmtl->bpb / 8);
1514 }
1515 }
1516 base_alignment_B = isl_round_up_to_power_of_two(base_alignment_B);
1517
1518 /* From the Skylake PRM Vol 2c, PLANE_STRIDE::Stride:
1519 *
1520 * "For Linear memory, this field specifies the stride in chunks of
1521 * 64 bytes (1 cache line)."
1522 */
1523 if (isl_surf_usage_is_display(info->usage))
1524 base_alignment_B = MAX(base_alignment_B, 64);
1525 } else {
1526 const uint32_t total_h_tl =
1527 isl_align_div(phys_total_el.h, tile_info.logical_extent_el.height);
1528
1529 size_B = (uint64_t) total_h_tl * tile_info.phys_extent_B.height * row_pitch_B;
1530
1531 const uint32_t tile_size_B = tile_info.phys_extent_B.width *
1532 tile_info.phys_extent_B.height;
1533 assert(isl_is_pow2(info->min_alignment_B) && isl_is_pow2(tile_size_B));
1534 base_alignment_B = MAX(info->min_alignment_B, tile_size_B);
1535 }
1536
1537 if (ISL_DEV_GEN(dev) < 9) {
1538 /* From the Broadwell PRM Vol 5, Surface Layout:
1539 *
1540 * "In addition to restrictions on maximum height, width, and depth,
1541 * surfaces are also restricted to a maximum size in bytes. This
1542 * maximum is 2 GB for all products and all surface types."
1543 *
1544 * This comment is applicable to all Pre-gen9 platforms.
1545 */
1546 if (size_B > (uint64_t) 1 << 31)
1547 return false;
1548 } else if (ISL_DEV_GEN(dev) < 11) {
1549 /* From the Skylake PRM Vol 5, Maximum Surface Size in Bytes:
1550 * "In addition to restrictions on maximum height, width, and depth,
1551 * surfaces are also restricted to a maximum size of 2^38 bytes.
1552 * All pixels within the surface must be contained within 2^38 bytes
1553 * of the base address."
1554 */
1555 if (size_B > (uint64_t) 1 << 38)
1556 return false;
1557 } else {
1558 /* gen11+ platforms raised this limit to 2^44 bytes. */
1559 if (size_B > (uint64_t) 1 << 44)
1560 return false;
1561 }
1562
1563 *surf = (struct isl_surf) {
1564 .dim = info->dim,
1565 .dim_layout = dim_layout,
1566 .msaa_layout = msaa_layout,
1567 .tiling = tiling,
1568 .format = info->format,
1569
1570 .levels = info->levels,
1571 .samples = info->samples,
1572
1573 .image_alignment_el = image_align_el,
1574 .logical_level0_px = logical_level0_px,
1575 .phys_level0_sa = phys_level0_sa,
1576
1577 .size_B = size_B,
1578 .alignment_B = base_alignment_B,
1579 .row_pitch_B = row_pitch_B,
1580 .array_pitch_el_rows = array_pitch_el_rows,
1581 .array_pitch_span = array_pitch_span,
1582
1583 .usage = info->usage,
1584 };
1585
1586 return true;
1587 }
1588
1589 void
1590 isl_surf_get_tile_info(const struct isl_surf *surf,
1591 struct isl_tile_info *tile_info)
1592 {
1593 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
1594 isl_tiling_get_info(surf->tiling, fmtl->bpb, tile_info);
1595 }
1596
1597 bool
1598 isl_surf_get_hiz_surf(const struct isl_device *dev,
1599 const struct isl_surf *surf,
1600 struct isl_surf *hiz_surf)
1601 {
1602 assert(ISL_DEV_GEN(dev) >= 5 && ISL_DEV_USE_SEPARATE_STENCIL(dev));
1603
1604 /* HiZ only works with Y-tiled depth buffers */
1605 if (!isl_tiling_is_any_y(surf->tiling))
1606 return false;
1607
1608 /* On SNB+, compressed depth buffers cannot be interleaved with stencil. */
1609 switch (surf->format) {
1610 case ISL_FORMAT_R24_UNORM_X8_TYPELESS:
1611 if (isl_surf_usage_is_depth_and_stencil(surf->usage)) {
1612 assert(ISL_DEV_GEN(dev) == 5);
1613 unreachable("This should work, but is untested");
1614 }
1615 /* Fall through */
1616 case ISL_FORMAT_R16_UNORM:
1617 case ISL_FORMAT_R32_FLOAT:
1618 break;
1619 case ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS:
1620 if (ISL_DEV_GEN(dev) == 5) {
1621 assert(isl_surf_usage_is_depth_and_stencil(surf->usage));
1622 unreachable("This should work, but is untested");
1623 }
1624 /* Fall through */
1625 default:
1626 return false;
1627 }
1628
1629 /* Multisampled depth is always interleaved */
1630 assert(surf->msaa_layout == ISL_MSAA_LAYOUT_NONE ||
1631 surf->msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
1632
1633 /* From the Broadwell PRM Vol. 7, "Hierarchical Depth Buffer":
1634 *
1635 * "The Surface Type, Height, Width, Depth, Minimum Array Element, Render
1636 * Target View Extent, and Depth Coordinate Offset X/Y of the
1637 * hierarchical depth buffer are inherited from the depth buffer. The
1638 * height and width of the hierarchical depth buffer that must be
1639 * allocated are computed by the following formulas, where HZ is the
1640 * hierarchical depth buffer and Z is the depth buffer. The Z_Height,
1641 * Z_Width, and Z_Depth values given in these formulas are those present
1642 * in 3DSTATE_DEPTH_BUFFER incremented by one.
1643 *
1644 * "The value of Z_Height and Z_Width must each be multiplied by 2 before
1645 * being applied to the table below if Number of Multisamples is set to
1646 * NUMSAMPLES_4. The value of Z_Height must be multiplied by 2 and
1647 * Z_Width must be multiplied by 4 before being applied to the table
1648 * below if Number of Multisamples is set to NUMSAMPLES_8."
1649 *
1650 * In the Sky Lake PRM, the second paragraph is replaced with this:
1651 *
1652 * "The Z_Height and Z_Width values must equal those present in
1653 * 3DSTATE_DEPTH_BUFFER incremented by one."
1654 *
1655 * In other words, on Sandy Bridge through Broadwell, each 128-bit HiZ
1656 * block corresponds to a region of 8x4 samples in the primary depth
1657 * surface. On Sky Lake, on the other hand, each HiZ block corresponds to
1658 * a region of 8x4 pixels in the primary depth surface regardless of the
1659 * number of samples. The dimensions of a HiZ block in both pixels and
1660 * samples are given in the table below:
1661 *
1662 * | SNB - BDW | SKL+
1663 * ------+-----------+-------------
1664 * 1x | 8 x 4 sa | 8 x 4 sa
1665 * MSAA | 8 x 4 px | 8 x 4 px
1666 * ------+-----------+-------------
1667 * 2x | 8 x 4 sa | 16 x 4 sa
1668 * MSAA | 4 x 4 px | 8 x 4 px
1669 * ------+-----------+-------------
1670 * 4x | 8 x 4 sa | 16 x 8 sa
1671 * MSAA | 4 x 2 px | 8 x 4 px
1672 * ------+-----------+-------------
1673 * 8x | 8 x 4 sa | 32 x 8 sa
1674 * MSAA | 2 x 2 px | 8 x 4 px
1675 * ------+-----------+-------------
1676 * 16x | N/A | 32 x 16 sa
1677 * MSAA | N/A | 8 x 4 px
1678 * ------+-----------+-------------
1679 *
1680 * There are a number of different ways that this discrepency could be
1681 * handled. The way we have chosen is to simply make MSAA HiZ have the
1682 * same number of samples as the parent surface pre-Sky Lake and always be
1683 * single-sampled on Sky Lake and above. Since the block sizes of
1684 * compressed formats are given in samples, this neatly handles everything
1685 * without the need for additional HiZ formats with different block sizes
1686 * on SKL+.
1687 */
1688 const unsigned samples = ISL_DEV_GEN(dev) >= 9 ? 1 : surf->samples;
1689
1690 return isl_surf_init(dev, hiz_surf,
1691 .dim = surf->dim,
1692 .format = ISL_FORMAT_HIZ,
1693 .width = surf->logical_level0_px.width,
1694 .height = surf->logical_level0_px.height,
1695 .depth = surf->logical_level0_px.depth,
1696 .levels = surf->levels,
1697 .array_len = surf->logical_level0_px.array_len,
1698 .samples = samples,
1699 .usage = ISL_SURF_USAGE_HIZ_BIT,
1700 .tiling_flags = ISL_TILING_HIZ_BIT);
1701 }
1702
1703 bool
1704 isl_surf_get_mcs_surf(const struct isl_device *dev,
1705 const struct isl_surf *surf,
1706 struct isl_surf *mcs_surf)
1707 {
1708 /* The following are true of all multisampled surfaces */
1709 assert(surf->samples > 1);
1710 assert(surf->dim == ISL_SURF_DIM_2D);
1711 assert(surf->levels == 1);
1712 assert(surf->logical_level0_px.depth == 1);
1713
1714 /* It must be multisampled with an array layout */
1715 if (surf->msaa_layout != ISL_MSAA_LAYOUT_ARRAY)
1716 return false;
1717
1718 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
1719 *
1720 * This field must be set to 0 for all SINT MSRTs when all RT channels
1721 * are not written
1722 *
1723 * In practice this means that we have to disable MCS for all signed
1724 * integer MSAA buffers. The alternative, to disable MCS only when one
1725 * of the render target channels is disabled, is impractical because it
1726 * would require converting between CMS and UMS MSAA layouts on the fly,
1727 * which is expensive.
1728 */
1729 if (ISL_DEV_GEN(dev) == 7 && isl_format_has_sint_channel(surf->format))
1730 return false;
1731
1732 /* The "Auxiliary Surface Pitch" field in RENDER_SURFACE_STATE is only 9
1733 * bits which means the maximum pitch of a compression surface is 512
1734 * tiles or 64KB (since MCS is always Y-tiled). Since a 16x MCS buffer is
1735 * 64bpp, this gives us a maximum width of 8192 pixels. We can create
1736 * larger multisampled surfaces, we just can't compress them. For 2x, 4x,
1737 * and 8x, we have enough room for the full 16k supported by the hardware.
1738 */
1739 if (surf->samples == 16 && surf->logical_level0_px.width > 8192)
1740 return false;
1741
1742 enum isl_format mcs_format;
1743 switch (surf->samples) {
1744 case 2: mcs_format = ISL_FORMAT_MCS_2X; break;
1745 case 4: mcs_format = ISL_FORMAT_MCS_4X; break;
1746 case 8: mcs_format = ISL_FORMAT_MCS_8X; break;
1747 case 16: mcs_format = ISL_FORMAT_MCS_16X; break;
1748 default:
1749 unreachable("Invalid sample count");
1750 }
1751
1752 return isl_surf_init(dev, mcs_surf,
1753 .dim = ISL_SURF_DIM_2D,
1754 .format = mcs_format,
1755 .width = surf->logical_level0_px.width,
1756 .height = surf->logical_level0_px.height,
1757 .depth = 1,
1758 .levels = 1,
1759 .array_len = surf->logical_level0_px.array_len,
1760 .samples = 1, /* MCS surfaces are really single-sampled */
1761 .usage = ISL_SURF_USAGE_MCS_BIT,
1762 .tiling_flags = ISL_TILING_Y0_BIT);
1763 }
1764
1765 bool
1766 isl_surf_get_ccs_surf(const struct isl_device *dev,
1767 const struct isl_surf *surf,
1768 struct isl_surf *ccs_surf,
1769 uint32_t row_pitch_B)
1770 {
1771 assert(surf->samples == 1 && surf->msaa_layout == ISL_MSAA_LAYOUT_NONE);
1772
1773 /* CCS support does not exist prior to Gen7 */
1774 if (ISL_DEV_GEN(dev) <= 6)
1775 return false;
1776
1777 if (surf->usage & ISL_SURF_USAGE_DISABLE_AUX_BIT)
1778 return false;
1779
1780 /* The PRM doesn't say this explicitly, but fast-clears don't appear to
1781 * work for 3D textures until gen9 where the layout of 3D textures changes
1782 * to match 2D array textures.
1783 */
1784 if (ISL_DEV_GEN(dev) <= 8 && surf->dim != ISL_SURF_DIM_2D)
1785 return false;
1786
1787 /* From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652 (Color Clear of
1788 * Non-MultiSampler Render Target Restrictions):
1789 *
1790 * "Support is for non-mip-mapped and non-array surface types only."
1791 *
1792 * This restriction is lifted on gen8+. Technically, it may be possible to
1793 * create a CCS for an arrayed or mipmapped image and only enable CCS_D
1794 * when rendering to the base slice. However, there is no documentation
1795 * tell us what the hardware would do in that case or what it does if you
1796 * walk off the bases slice. (Does it ignore CCS or does it start
1797 * scribbling over random memory?) We play it safe and just follow the
1798 * docs and don't allow CCS_D for arrayed or mip-mapped surfaces.
1799 */
1800 if (ISL_DEV_GEN(dev) <= 7 &&
1801 (surf->levels > 1 || surf->logical_level0_px.array_len > 1))
1802 return false;
1803
1804 if (isl_format_is_compressed(surf->format))
1805 return false;
1806
1807 /* TODO: More conditions where it can fail. */
1808
1809 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
1810 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
1811 *
1812 * - Support is limited to tiled render targets.
1813 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
1814 * 64bpp, and 128bpp.
1815 *
1816 * From the Skylake documentation, it is made clear that X-tiling is no
1817 * longer supported:
1818 *
1819 * - MCS and Lossless compression is supported for
1820 * TiledY/TileYs/TileYf non-MSRTs only.
1821 */
1822 enum isl_format ccs_format;
1823 if (ISL_DEV_GEN(dev) >= 9) {
1824 if (!isl_tiling_is_any_y(surf->tiling))
1825 return false;
1826
1827 switch (isl_format_get_layout(surf->format)->bpb) {
1828 case 32: ccs_format = ISL_FORMAT_GEN9_CCS_32BPP; break;
1829 case 64: ccs_format = ISL_FORMAT_GEN9_CCS_64BPP; break;
1830 case 128: ccs_format = ISL_FORMAT_GEN9_CCS_128BPP; break;
1831 default:
1832 return false;
1833 }
1834 } else if (surf->tiling == ISL_TILING_Y0) {
1835 switch (isl_format_get_layout(surf->format)->bpb) {
1836 case 32: ccs_format = ISL_FORMAT_GEN7_CCS_32BPP_Y; break;
1837 case 64: ccs_format = ISL_FORMAT_GEN7_CCS_64BPP_Y; break;
1838 case 128: ccs_format = ISL_FORMAT_GEN7_CCS_128BPP_Y; break;
1839 default:
1840 return false;
1841 }
1842 } else if (surf->tiling == ISL_TILING_X) {
1843 switch (isl_format_get_layout(surf->format)->bpb) {
1844 case 32: ccs_format = ISL_FORMAT_GEN7_CCS_32BPP_X; break;
1845 case 64: ccs_format = ISL_FORMAT_GEN7_CCS_64BPP_X; break;
1846 case 128: ccs_format = ISL_FORMAT_GEN7_CCS_128BPP_X; break;
1847 default:
1848 return false;
1849 }
1850 } else {
1851 return false;
1852 }
1853
1854 return isl_surf_init(dev, ccs_surf,
1855 .dim = surf->dim,
1856 .format = ccs_format,
1857 .width = surf->logical_level0_px.width,
1858 .height = surf->logical_level0_px.height,
1859 .depth = surf->logical_level0_px.depth,
1860 .levels = surf->levels,
1861 .array_len = surf->logical_level0_px.array_len,
1862 .samples = 1,
1863 .row_pitch_B = row_pitch_B,
1864 .usage = ISL_SURF_USAGE_CCS_BIT,
1865 .tiling_flags = ISL_TILING_CCS_BIT);
1866 }
1867
1868 #define isl_genX_call(dev, func, ...) \
1869 switch (ISL_DEV_GEN(dev)) { \
1870 case 4: \
1871 /* G45 surface state is the same as gen5 */ \
1872 if (ISL_DEV_IS_G4X(dev)) { \
1873 isl_gen5_##func(__VA_ARGS__); \
1874 } else { \
1875 isl_gen4_##func(__VA_ARGS__); \
1876 } \
1877 break; \
1878 case 5: \
1879 isl_gen5_##func(__VA_ARGS__); \
1880 break; \
1881 case 6: \
1882 isl_gen6_##func(__VA_ARGS__); \
1883 break; \
1884 case 7: \
1885 if (ISL_DEV_IS_HASWELL(dev)) { \
1886 isl_gen75_##func(__VA_ARGS__); \
1887 } else { \
1888 isl_gen7_##func(__VA_ARGS__); \
1889 } \
1890 break; \
1891 case 8: \
1892 isl_gen8_##func(__VA_ARGS__); \
1893 break; \
1894 case 9: \
1895 isl_gen9_##func(__VA_ARGS__); \
1896 break; \
1897 case 10: \
1898 isl_gen10_##func(__VA_ARGS__); \
1899 break; \
1900 case 11: \
1901 isl_gen11_##func(__VA_ARGS__); \
1902 break; \
1903 default: \
1904 assert(!"Unknown hardware generation"); \
1905 }
1906
1907 void
1908 isl_surf_fill_state_s(const struct isl_device *dev, void *state,
1909 const struct isl_surf_fill_state_info *restrict info)
1910 {
1911 #ifndef NDEBUG
1912 isl_surf_usage_flags_t _base_usage =
1913 info->view->usage & (ISL_SURF_USAGE_RENDER_TARGET_BIT |
1914 ISL_SURF_USAGE_TEXTURE_BIT |
1915 ISL_SURF_USAGE_STORAGE_BIT);
1916 /* They may only specify one of the above bits at a time */
1917 assert(__builtin_popcount(_base_usage) == 1);
1918 /* The only other allowed bit is ISL_SURF_USAGE_CUBE_BIT */
1919 assert((info->view->usage & ~ISL_SURF_USAGE_CUBE_BIT) == _base_usage);
1920 #endif
1921
1922 if (info->surf->dim == ISL_SURF_DIM_3D) {
1923 assert(info->view->base_array_layer + info->view->array_len <=
1924 info->surf->logical_level0_px.depth);
1925 } else {
1926 assert(info->view->base_array_layer + info->view->array_len <=
1927 info->surf->logical_level0_px.array_len);
1928 }
1929
1930 isl_genX_call(dev, surf_fill_state_s, dev, state, info);
1931 }
1932
1933 void
1934 isl_buffer_fill_state_s(const struct isl_device *dev, void *state,
1935 const struct isl_buffer_fill_state_info *restrict info)
1936 {
1937 isl_genX_call(dev, buffer_fill_state_s, state, info);
1938 }
1939
1940 void
1941 isl_null_fill_state(const struct isl_device *dev, void *state,
1942 struct isl_extent3d size)
1943 {
1944 isl_genX_call(dev, null_fill_state, state, size);
1945 }
1946
1947 void
1948 isl_emit_depth_stencil_hiz_s(const struct isl_device *dev, void *batch,
1949 const struct isl_depth_stencil_hiz_emit_info *restrict info)
1950 {
1951 if (info->depth_surf && info->stencil_surf) {
1952 if (!dev->info->has_hiz_and_separate_stencil) {
1953 assert(info->depth_surf == info->stencil_surf);
1954 assert(info->depth_address == info->stencil_address);
1955 }
1956 assert(info->depth_surf->dim == info->stencil_surf->dim);
1957 }
1958
1959 if (info->depth_surf) {
1960 assert((info->depth_surf->usage & ISL_SURF_USAGE_DEPTH_BIT));
1961 if (info->depth_surf->dim == ISL_SURF_DIM_3D) {
1962 assert(info->view->base_array_layer + info->view->array_len <=
1963 info->depth_surf->logical_level0_px.depth);
1964 } else {
1965 assert(info->view->base_array_layer + info->view->array_len <=
1966 info->depth_surf->logical_level0_px.array_len);
1967 }
1968 }
1969
1970 if (info->stencil_surf) {
1971 assert((info->stencil_surf->usage & ISL_SURF_USAGE_STENCIL_BIT));
1972 if (info->stencil_surf->dim == ISL_SURF_DIM_3D) {
1973 assert(info->view->base_array_layer + info->view->array_len <=
1974 info->stencil_surf->logical_level0_px.depth);
1975 } else {
1976 assert(info->view->base_array_layer + info->view->array_len <=
1977 info->stencil_surf->logical_level0_px.array_len);
1978 }
1979 }
1980
1981 isl_genX_call(dev, emit_depth_stencil_hiz_s, dev, batch, info);
1982 }
1983
1984 /**
1985 * A variant of isl_surf_get_image_offset_sa() specific to
1986 * ISL_DIM_LAYOUT_GEN4_2D.
1987 */
1988 static void
1989 get_image_offset_sa_gen4_2d(const struct isl_surf *surf,
1990 uint32_t level, uint32_t logical_array_layer,
1991 uint32_t *x_offset_sa,
1992 uint32_t *y_offset_sa)
1993 {
1994 assert(level < surf->levels);
1995 if (surf->dim == ISL_SURF_DIM_3D)
1996 assert(logical_array_layer < surf->logical_level0_px.depth);
1997 else
1998 assert(logical_array_layer < surf->logical_level0_px.array_len);
1999
2000 const struct isl_extent3d image_align_sa =
2001 isl_surf_get_image_alignment_sa(surf);
2002
2003 const uint32_t W0 = surf->phys_level0_sa.width;
2004 const uint32_t H0 = surf->phys_level0_sa.height;
2005
2006 const uint32_t phys_layer = logical_array_layer *
2007 (surf->msaa_layout == ISL_MSAA_LAYOUT_ARRAY ? surf->samples : 1);
2008
2009 uint32_t x = 0;
2010 uint32_t y = phys_layer * isl_surf_get_array_pitch_sa_rows(surf);
2011
2012 for (uint32_t l = 0; l < level; ++l) {
2013 if (l == 1) {
2014 uint32_t W = isl_minify(W0, l);
2015 x += isl_align_npot(W, image_align_sa.w);
2016 } else {
2017 uint32_t H = isl_minify(H0, l);
2018 y += isl_align_npot(H, image_align_sa.h);
2019 }
2020 }
2021
2022 *x_offset_sa = x;
2023 *y_offset_sa = y;
2024 }
2025
2026 /**
2027 * A variant of isl_surf_get_image_offset_sa() specific to
2028 * ISL_DIM_LAYOUT_GEN4_3D.
2029 */
2030 static void
2031 get_image_offset_sa_gen4_3d(const struct isl_surf *surf,
2032 uint32_t level, uint32_t logical_z_offset_px,
2033 uint32_t *x_offset_sa,
2034 uint32_t *y_offset_sa)
2035 {
2036 assert(level < surf->levels);
2037 if (surf->dim == ISL_SURF_DIM_3D) {
2038 assert(surf->phys_level0_sa.array_len == 1);
2039 assert(logical_z_offset_px < isl_minify(surf->phys_level0_sa.depth, level));
2040 } else {
2041 assert(surf->dim == ISL_SURF_DIM_2D);
2042 assert(surf->usage & ISL_SURF_USAGE_CUBE_BIT);
2043 assert(surf->phys_level0_sa.array_len == 6);
2044 assert(logical_z_offset_px < surf->phys_level0_sa.array_len);
2045 }
2046
2047 const struct isl_extent3d image_align_sa =
2048 isl_surf_get_image_alignment_sa(surf);
2049
2050 const uint32_t W0 = surf->phys_level0_sa.width;
2051 const uint32_t H0 = surf->phys_level0_sa.height;
2052 const uint32_t D0 = surf->phys_level0_sa.depth;
2053 const uint32_t AL = surf->phys_level0_sa.array_len;
2054
2055 uint32_t x = 0;
2056 uint32_t y = 0;
2057
2058 for (uint32_t l = 0; l < level; ++l) {
2059 const uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa.h);
2060 const uint32_t level_d =
2061 isl_align_npot(surf->dim == ISL_SURF_DIM_3D ? isl_minify(D0, l) : AL,
2062 image_align_sa.d);
2063 const uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
2064
2065 y += level_h * max_layers_vert;
2066 }
2067
2068 const uint32_t level_w = isl_align_npot(isl_minify(W0, level), image_align_sa.w);
2069 const uint32_t level_h = isl_align_npot(isl_minify(H0, level), image_align_sa.h);
2070 const uint32_t level_d =
2071 isl_align_npot(surf->dim == ISL_SURF_DIM_3D ? isl_minify(D0, level) : AL,
2072 image_align_sa.d);
2073
2074 const uint32_t max_layers_horiz = MIN(level_d, 1u << level);
2075
2076 x += level_w * (logical_z_offset_px % max_layers_horiz);
2077 y += level_h * (logical_z_offset_px / max_layers_horiz);
2078
2079 *x_offset_sa = x;
2080 *y_offset_sa = y;
2081 }
2082
2083 static void
2084 get_image_offset_sa_gen6_stencil_hiz(const struct isl_surf *surf,
2085 uint32_t level,
2086 uint32_t logical_array_layer,
2087 uint32_t *x_offset_sa,
2088 uint32_t *y_offset_sa)
2089 {
2090 assert(level < surf->levels);
2091 assert(surf->logical_level0_px.depth == 1);
2092 assert(logical_array_layer < surf->logical_level0_px.array_len);
2093
2094 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2095
2096 const struct isl_extent3d image_align_sa =
2097 isl_surf_get_image_alignment_sa(surf);
2098
2099 struct isl_tile_info tile_info;
2100 isl_tiling_get_info(surf->tiling, fmtl->bpb, &tile_info);
2101 const struct isl_extent2d tile_extent_sa = {
2102 .w = tile_info.logical_extent_el.w * fmtl->bw,
2103 .h = tile_info.logical_extent_el.h * fmtl->bh,
2104 };
2105 /* Tile size is a multiple of image alignment */
2106 assert(tile_extent_sa.w % image_align_sa.w == 0);
2107 assert(tile_extent_sa.h % image_align_sa.h == 0);
2108
2109 const uint32_t W0 = surf->phys_level0_sa.w;
2110 const uint32_t H0 = surf->phys_level0_sa.h;
2111
2112 /* Each image has the same height as LOD0 because the hardware thinks
2113 * everything is LOD0
2114 */
2115 const uint32_t H = isl_align(H0, image_align_sa.h);
2116
2117 /* Quick sanity check for consistency */
2118 if (surf->phys_level0_sa.array_len > 1)
2119 assert(surf->array_pitch_el_rows == isl_assert_div(H, fmtl->bh));
2120
2121 uint32_t x = 0, y = 0;
2122 for (uint32_t l = 0; l < level; ++l) {
2123 const uint32_t W = isl_minify(W0, l);
2124
2125 const uint32_t w = isl_align(W, tile_extent_sa.w);
2126 const uint32_t h = isl_align(H * surf->phys_level0_sa.a,
2127 tile_extent_sa.h);
2128
2129 if (l == 0) {
2130 y += h;
2131 } else {
2132 x += w;
2133 }
2134 }
2135
2136 y += H * logical_array_layer;
2137
2138 *x_offset_sa = x;
2139 *y_offset_sa = y;
2140 }
2141
2142 /**
2143 * A variant of isl_surf_get_image_offset_sa() specific to
2144 * ISL_DIM_LAYOUT_GEN9_1D.
2145 */
2146 static void
2147 get_image_offset_sa_gen9_1d(const struct isl_surf *surf,
2148 uint32_t level, uint32_t layer,
2149 uint32_t *x_offset_sa,
2150 uint32_t *y_offset_sa)
2151 {
2152 assert(level < surf->levels);
2153 assert(layer < surf->phys_level0_sa.array_len);
2154 assert(surf->phys_level0_sa.height == 1);
2155 assert(surf->phys_level0_sa.depth == 1);
2156 assert(surf->samples == 1);
2157
2158 const uint32_t W0 = surf->phys_level0_sa.width;
2159 const struct isl_extent3d image_align_sa =
2160 isl_surf_get_image_alignment_sa(surf);
2161
2162 uint32_t x = 0;
2163
2164 for (uint32_t l = 0; l < level; ++l) {
2165 uint32_t W = isl_minify(W0, l);
2166 uint32_t w = isl_align_npot(W, image_align_sa.w);
2167
2168 x += w;
2169 }
2170
2171 *x_offset_sa = x;
2172 *y_offset_sa = layer * isl_surf_get_array_pitch_sa_rows(surf);
2173 }
2174
2175 /**
2176 * Calculate the offset, in units of surface samples, to a subimage in the
2177 * surface.
2178 *
2179 * @invariant level < surface levels
2180 * @invariant logical_array_layer < logical array length of surface
2181 * @invariant logical_z_offset_px < logical depth of surface at level
2182 */
2183 void
2184 isl_surf_get_image_offset_sa(const struct isl_surf *surf,
2185 uint32_t level,
2186 uint32_t logical_array_layer,
2187 uint32_t logical_z_offset_px,
2188 uint32_t *x_offset_sa,
2189 uint32_t *y_offset_sa)
2190 {
2191 assert(level < surf->levels);
2192 assert(logical_array_layer < surf->logical_level0_px.array_len);
2193 assert(logical_z_offset_px
2194 < isl_minify(surf->logical_level0_px.depth, level));
2195
2196 switch (surf->dim_layout) {
2197 case ISL_DIM_LAYOUT_GEN9_1D:
2198 get_image_offset_sa_gen9_1d(surf, level, logical_array_layer,
2199 x_offset_sa, y_offset_sa);
2200 break;
2201 case ISL_DIM_LAYOUT_GEN4_2D:
2202 get_image_offset_sa_gen4_2d(surf, level, logical_array_layer
2203 + logical_z_offset_px,
2204 x_offset_sa, y_offset_sa);
2205 break;
2206 case ISL_DIM_LAYOUT_GEN4_3D:
2207 get_image_offset_sa_gen4_3d(surf, level, logical_array_layer +
2208 logical_z_offset_px,
2209 x_offset_sa, y_offset_sa);
2210 break;
2211 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
2212 get_image_offset_sa_gen6_stencil_hiz(surf, level, logical_array_layer +
2213 logical_z_offset_px,
2214 x_offset_sa, y_offset_sa);
2215 break;
2216
2217 default:
2218 unreachable("not reached");
2219 }
2220 }
2221
2222 void
2223 isl_surf_get_image_offset_el(const struct isl_surf *surf,
2224 uint32_t level,
2225 uint32_t logical_array_layer,
2226 uint32_t logical_z_offset_px,
2227 uint32_t *x_offset_el,
2228 uint32_t *y_offset_el)
2229 {
2230 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2231
2232 assert(level < surf->levels);
2233 assert(logical_array_layer < surf->logical_level0_px.array_len);
2234 assert(logical_z_offset_px
2235 < isl_minify(surf->logical_level0_px.depth, level));
2236
2237 uint32_t x_offset_sa, y_offset_sa;
2238 isl_surf_get_image_offset_sa(surf, level,
2239 logical_array_layer,
2240 logical_z_offset_px,
2241 &x_offset_sa,
2242 &y_offset_sa);
2243
2244 *x_offset_el = x_offset_sa / fmtl->bw;
2245 *y_offset_el = y_offset_sa / fmtl->bh;
2246 }
2247
2248 void
2249 isl_surf_get_image_offset_B_tile_sa(const struct isl_surf *surf,
2250 uint32_t level,
2251 uint32_t logical_array_layer,
2252 uint32_t logical_z_offset_px,
2253 uint32_t *offset_B,
2254 uint32_t *x_offset_sa,
2255 uint32_t *y_offset_sa)
2256 {
2257 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2258
2259 uint32_t total_x_offset_el, total_y_offset_el;
2260 isl_surf_get_image_offset_el(surf, level, logical_array_layer,
2261 logical_z_offset_px,
2262 &total_x_offset_el,
2263 &total_y_offset_el);
2264
2265 uint32_t x_offset_el, y_offset_el;
2266 isl_tiling_get_intratile_offset_el(surf->tiling, fmtl->bpb,
2267 surf->row_pitch_B,
2268 total_x_offset_el,
2269 total_y_offset_el,
2270 offset_B,
2271 &x_offset_el,
2272 &y_offset_el);
2273
2274 if (x_offset_sa) {
2275 *x_offset_sa = x_offset_el * fmtl->bw;
2276 } else {
2277 assert(x_offset_el == 0);
2278 }
2279
2280 if (y_offset_sa) {
2281 *y_offset_sa = y_offset_el * fmtl->bh;
2282 } else {
2283 assert(y_offset_el == 0);
2284 }
2285 }
2286
2287 void
2288 isl_surf_get_image_surf(const struct isl_device *dev,
2289 const struct isl_surf *surf,
2290 uint32_t level,
2291 uint32_t logical_array_layer,
2292 uint32_t logical_z_offset_px,
2293 struct isl_surf *image_surf,
2294 uint32_t *offset_B,
2295 uint32_t *x_offset_sa,
2296 uint32_t *y_offset_sa)
2297 {
2298 isl_surf_get_image_offset_B_tile_sa(surf,
2299 level,
2300 logical_array_layer,
2301 logical_z_offset_px,
2302 offset_B,
2303 x_offset_sa,
2304 y_offset_sa);
2305
2306 /* Even for cube maps there will be only single face, therefore drop the
2307 * corresponding flag if present.
2308 */
2309 const isl_surf_usage_flags_t usage =
2310 surf->usage & (~ISL_SURF_USAGE_CUBE_BIT);
2311
2312 bool ok UNUSED;
2313 ok = isl_surf_init(dev, image_surf,
2314 .dim = ISL_SURF_DIM_2D,
2315 .format = surf->format,
2316 .width = isl_minify(surf->logical_level0_px.w, level),
2317 .height = isl_minify(surf->logical_level0_px.h, level),
2318 .depth = 1,
2319 .levels = 1,
2320 .array_len = 1,
2321 .samples = surf->samples,
2322 .row_pitch_B = surf->row_pitch_B,
2323 .usage = usage,
2324 .tiling_flags = (1 << surf->tiling));
2325 assert(ok);
2326 }
2327
2328 void
2329 isl_tiling_get_intratile_offset_el(enum isl_tiling tiling,
2330 uint32_t bpb,
2331 uint32_t row_pitch_B,
2332 uint32_t total_x_offset_el,
2333 uint32_t total_y_offset_el,
2334 uint32_t *base_address_offset,
2335 uint32_t *x_offset_el,
2336 uint32_t *y_offset_el)
2337 {
2338 if (tiling == ISL_TILING_LINEAR) {
2339 assert(bpb % 8 == 0);
2340 *base_address_offset = total_y_offset_el * row_pitch_B +
2341 total_x_offset_el * (bpb / 8);
2342 *x_offset_el = 0;
2343 *y_offset_el = 0;
2344 return;
2345 }
2346
2347 struct isl_tile_info tile_info;
2348 isl_tiling_get_info(tiling, bpb, &tile_info);
2349
2350 assert(row_pitch_B % tile_info.phys_extent_B.width == 0);
2351
2352 /* For non-power-of-two formats, we need the address to be both tile and
2353 * element-aligned. The easiest way to achieve this is to work with a tile
2354 * that is three times as wide as the regular tile.
2355 *
2356 * The tile info returned by get_tile_info has a logical size that is an
2357 * integer number of tile_info.format_bpb size elements. To scale the
2358 * tile, we scale up the physical width and then treat the logical tile
2359 * size as if it has bpb size elements.
2360 */
2361 const uint32_t tile_el_scale = bpb / tile_info.format_bpb;
2362 tile_info.phys_extent_B.width *= tile_el_scale;
2363
2364 /* Compute the offset into the tile */
2365 *x_offset_el = total_x_offset_el % tile_info.logical_extent_el.w;
2366 *y_offset_el = total_y_offset_el % tile_info.logical_extent_el.h;
2367
2368 /* Compute the offset of the tile in units of whole tiles */
2369 uint32_t x_offset_tl = total_x_offset_el / tile_info.logical_extent_el.w;
2370 uint32_t y_offset_tl = total_y_offset_el / tile_info.logical_extent_el.h;
2371
2372 *base_address_offset =
2373 y_offset_tl * tile_info.phys_extent_B.h * row_pitch_B +
2374 x_offset_tl * tile_info.phys_extent_B.h * tile_info.phys_extent_B.w;
2375 }
2376
2377 uint32_t
2378 isl_surf_get_depth_format(const struct isl_device *dev,
2379 const struct isl_surf *surf)
2380 {
2381 /* Support for separate stencil buffers began in gen5. Support for
2382 * interleaved depthstencil buffers ceased in gen7. The intermediate gens,
2383 * those that supported separate and interleaved stencil, were gen5 and
2384 * gen6.
2385 *
2386 * For a list of all available formats, see the Sandybridge PRM >> Volume
2387 * 2 Part 1: 3D/Media - 3D Pipeline >> 3DSTATE_DEPTH_BUFFER >> Surface
2388 * Format (p321).
2389 */
2390
2391 bool has_stencil = surf->usage & ISL_SURF_USAGE_STENCIL_BIT;
2392
2393 assert(surf->usage & ISL_SURF_USAGE_DEPTH_BIT);
2394
2395 if (has_stencil)
2396 assert(ISL_DEV_GEN(dev) < 7);
2397
2398 switch (surf->format) {
2399 default:
2400 unreachable("bad isl depth format");
2401 case ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS:
2402 assert(ISL_DEV_GEN(dev) < 7);
2403 return 0; /* D32_FLOAT_S8X24_UINT */
2404 case ISL_FORMAT_R32_FLOAT:
2405 assert(!has_stencil);
2406 return 1; /* D32_FLOAT */
2407 case ISL_FORMAT_R24_UNORM_X8_TYPELESS:
2408 if (has_stencil) {
2409 assert(ISL_DEV_GEN(dev) < 7);
2410 return 2; /* D24_UNORM_S8_UINT */
2411 } else {
2412 assert(ISL_DEV_GEN(dev) >= 5);
2413 return 3; /* D24_UNORM_X8_UINT */
2414 }
2415 case ISL_FORMAT_R16_UNORM:
2416 assert(!has_stencil);
2417 return 5; /* D16_UNORM */
2418 }
2419 }
2420
2421 bool
2422 isl_swizzle_supports_rendering(const struct gen_device_info *devinfo,
2423 struct isl_swizzle swizzle)
2424 {
2425 if (devinfo->is_haswell) {
2426 /* From the Haswell PRM,
2427 * RENDER_SURFACE_STATE::Shader Channel Select Red
2428 *
2429 * "The Shader channel selects also define which shader channels are
2430 * written to which surface channel. If the Shader channel select is
2431 * SCS_ZERO or SCS_ONE then it is not written to the surface. If the
2432 * shader channel select is SCS_RED it is written to the surface red
2433 * channel and so on. If more than one shader channel select is set
2434 * to the same surface channel only the first shader channel in RGBA
2435 * order will be written."
2436 */
2437 return true;
2438 } else if (devinfo->gen <= 7) {
2439 /* Ivy Bridge and early doesn't have any swizzling */
2440 return isl_swizzle_is_identity(swizzle);
2441 } else {
2442 /* From the Sky Lake PRM Vol. 2d,
2443 * RENDER_SURFACE_STATE::Shader Channel Select Red
2444 *
2445 * "For Render Target, Red, Green and Blue Shader Channel Selects
2446 * MUST be such that only valid components can be swapped i.e. only
2447 * change the order of components in the pixel. Any other values for
2448 * these Shader Channel Select fields are not valid for Render
2449 * Targets. This also means that there MUST not be multiple shader
2450 * channels mapped to the same RT channel."
2451 *
2452 * From the Sky Lake PRM Vol. 2d,
2453 * RENDER_SURFACE_STATE::Shader Channel Select Alpha
2454 *
2455 * "For Render Target, this field MUST be programmed to
2456 * value = SCS_ALPHA."
2457 */
2458 return (swizzle.r == ISL_CHANNEL_SELECT_RED ||
2459 swizzle.r == ISL_CHANNEL_SELECT_GREEN ||
2460 swizzle.r == ISL_CHANNEL_SELECT_BLUE) &&
2461 (swizzle.g == ISL_CHANNEL_SELECT_RED ||
2462 swizzle.g == ISL_CHANNEL_SELECT_GREEN ||
2463 swizzle.g == ISL_CHANNEL_SELECT_BLUE) &&
2464 (swizzle.b == ISL_CHANNEL_SELECT_RED ||
2465 swizzle.b == ISL_CHANNEL_SELECT_GREEN ||
2466 swizzle.b == ISL_CHANNEL_SELECT_BLUE) &&
2467 swizzle.r != swizzle.g &&
2468 swizzle.r != swizzle.b &&
2469 swizzle.g != swizzle.b &&
2470 swizzle.a == ISL_CHANNEL_SELECT_ALPHA;
2471 }
2472 }
2473
2474 static enum isl_channel_select
2475 swizzle_select(enum isl_channel_select chan, struct isl_swizzle swizzle)
2476 {
2477 switch (chan) {
2478 case ISL_CHANNEL_SELECT_ZERO:
2479 case ISL_CHANNEL_SELECT_ONE:
2480 return chan;
2481 case ISL_CHANNEL_SELECT_RED:
2482 return swizzle.r;
2483 case ISL_CHANNEL_SELECT_GREEN:
2484 return swizzle.g;
2485 case ISL_CHANNEL_SELECT_BLUE:
2486 return swizzle.b;
2487 case ISL_CHANNEL_SELECT_ALPHA:
2488 return swizzle.a;
2489 default:
2490 unreachable("Invalid swizzle component");
2491 }
2492 }
2493
2494 /**
2495 * Returns the single swizzle that is equivalent to applying the two given
2496 * swizzles in sequence.
2497 */
2498 struct isl_swizzle
2499 isl_swizzle_compose(struct isl_swizzle first, struct isl_swizzle second)
2500 {
2501 return (struct isl_swizzle) {
2502 .r = swizzle_select(first.r, second),
2503 .g = swizzle_select(first.g, second),
2504 .b = swizzle_select(first.b, second),
2505 .a = swizzle_select(first.a, second),
2506 };
2507 }
2508
2509 /**
2510 * Returns a swizzle that is the pseudo-inverse of this swizzle.
2511 */
2512 struct isl_swizzle
2513 isl_swizzle_invert(struct isl_swizzle swizzle)
2514 {
2515 /* Default to zero for channels which do not show up in the swizzle */
2516 enum isl_channel_select chans[4] = {
2517 ISL_CHANNEL_SELECT_ZERO,
2518 ISL_CHANNEL_SELECT_ZERO,
2519 ISL_CHANNEL_SELECT_ZERO,
2520 ISL_CHANNEL_SELECT_ZERO,
2521 };
2522
2523 /* We go in ABGR order so that, if there are any duplicates, the first one
2524 * is taken if you look at it in RGBA order. This is what Haswell hardware
2525 * does for render target swizzles.
2526 */
2527 if ((unsigned)(swizzle.a - ISL_CHANNEL_SELECT_RED) < 4)
2528 chans[swizzle.a - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_ALPHA;
2529 if ((unsigned)(swizzle.b - ISL_CHANNEL_SELECT_RED) < 4)
2530 chans[swizzle.b - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_BLUE;
2531 if ((unsigned)(swizzle.g - ISL_CHANNEL_SELECT_RED) < 4)
2532 chans[swizzle.g - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_GREEN;
2533 if ((unsigned)(swizzle.r - ISL_CHANNEL_SELECT_RED) < 4)
2534 chans[swizzle.r - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_RED;
2535
2536 return (struct isl_swizzle) { chans[0], chans[1], chans[2], chans[3] };
2537 }