isl/gen8+: Allow 1D and 3D auxiliary surfaces
[mesa.git] / src / intel / isl / isl.c
1 /*
2 * Copyright 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdarg.h>
26 #include <stdio.h>
27
28 #include "isl.h"
29 #include "isl_gen4.h"
30 #include "isl_gen6.h"
31 #include "isl_gen7.h"
32 #include "isl_gen8.h"
33 #include "isl_gen9.h"
34 #include "isl_priv.h"
35
36 void PRINTFLIKE(3, 4) UNUSED
37 __isl_finishme(const char *file, int line, const char *fmt, ...)
38 {
39 va_list ap;
40 char buf[512];
41
42 va_start(ap, fmt);
43 vsnprintf(buf, sizeof(buf), fmt, ap);
44 va_end(ap);
45
46 fprintf(stderr, "%s:%d: FINISHME: %s\n", file, line, buf);
47 }
48
49 void
50 isl_device_init(struct isl_device *dev,
51 const struct gen_device_info *info,
52 bool has_bit6_swizzling)
53 {
54 dev->info = info;
55 dev->use_separate_stencil = ISL_DEV_GEN(dev) >= 6;
56 dev->has_bit6_swizzling = has_bit6_swizzling;
57
58 /* The ISL_DEV macros may be defined in the CFLAGS, thus hardcoding some
59 * device properties at buildtime. Verify that the macros with the device
60 * properties chosen during runtime.
61 */
62 ISL_DEV_GEN_SANITIZE(dev);
63 ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(dev);
64
65 /* Did we break hiz or stencil? */
66 if (ISL_DEV_USE_SEPARATE_STENCIL(dev))
67 assert(info->has_hiz_and_separate_stencil);
68 if (info->must_use_separate_stencil)
69 assert(ISL_DEV_USE_SEPARATE_STENCIL(dev));
70 }
71
72 /**
73 * @brief Query the set of multisamples supported by the device.
74 *
75 * This function always returns non-zero, as ISL_SAMPLE_COUNT_1_BIT is always
76 * supported.
77 */
78 isl_sample_count_mask_t ATTRIBUTE_CONST
79 isl_device_get_sample_counts(struct isl_device *dev)
80 {
81 if (ISL_DEV_GEN(dev) >= 9) {
82 return ISL_SAMPLE_COUNT_1_BIT |
83 ISL_SAMPLE_COUNT_2_BIT |
84 ISL_SAMPLE_COUNT_4_BIT |
85 ISL_SAMPLE_COUNT_8_BIT |
86 ISL_SAMPLE_COUNT_16_BIT;
87 } else if (ISL_DEV_GEN(dev) >= 8) {
88 return ISL_SAMPLE_COUNT_1_BIT |
89 ISL_SAMPLE_COUNT_2_BIT |
90 ISL_SAMPLE_COUNT_4_BIT |
91 ISL_SAMPLE_COUNT_8_BIT;
92 } else if (ISL_DEV_GEN(dev) >= 7) {
93 return ISL_SAMPLE_COUNT_1_BIT |
94 ISL_SAMPLE_COUNT_4_BIT |
95 ISL_SAMPLE_COUNT_8_BIT;
96 } else if (ISL_DEV_GEN(dev) >= 6) {
97 return ISL_SAMPLE_COUNT_1_BIT |
98 ISL_SAMPLE_COUNT_4_BIT;
99 } else {
100 return ISL_SAMPLE_COUNT_1_BIT;
101 }
102 }
103
104 /**
105 * @param[out] info is written only on success
106 */
107 bool
108 isl_tiling_get_info(const struct isl_device *dev,
109 enum isl_tiling tiling,
110 uint32_t format_bpb,
111 struct isl_tile_info *tile_info)
112 {
113 const uint32_t bs = format_bpb / 8;
114 struct isl_extent2d logical_el, phys_B;
115
116 assert(tiling == ISL_TILING_LINEAR || isl_is_pow2(format_bpb));
117
118 switch (tiling) {
119 case ISL_TILING_LINEAR:
120 assert(bs > 0);
121 logical_el = isl_extent2d(1, 1);
122 phys_B = isl_extent2d(bs, 1);
123 break;
124
125 case ISL_TILING_X:
126 assert(bs > 0);
127 logical_el = isl_extent2d(512 / bs, 8);
128 phys_B = isl_extent2d(512, 8);
129 break;
130
131 case ISL_TILING_Y0:
132 assert(bs > 0);
133 logical_el = isl_extent2d(128 / bs, 32);
134 phys_B = isl_extent2d(128, 32);
135 break;
136
137 case ISL_TILING_W:
138 assert(bs == 1);
139 logical_el = isl_extent2d(64, 64);
140 /* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfacePitch:
141 *
142 * "If the surface is a stencil buffer (and thus has Tile Mode set
143 * to TILEMODE_WMAJOR), the pitch must be set to 2x the value
144 * computed based on width, as the stencil buffer is stored with two
145 * rows interleaved."
146 *
147 * This, together with the fact that stencil buffers are referred to as
148 * being Y-tiled in the PRMs for older hardware implies that the
149 * physical size of a W-tile is actually the same as for a Y-tile.
150 */
151 phys_B = isl_extent2d(128, 32);
152 break;
153
154 case ISL_TILING_Yf:
155 case ISL_TILING_Ys: {
156 if (ISL_DEV_GEN(dev) < 9)
157 return false;
158
159 if (!isl_is_pow2(bs))
160 return false;
161
162 bool is_Ys = tiling == ISL_TILING_Ys;
163
164 assert(bs > 0);
165 unsigned width = 1 << (6 + (ffs(bs) / 2) + (2 * is_Ys));
166 unsigned height = 1 << (6 - (ffs(bs) / 2) + (2 * is_Ys));
167
168 logical_el = isl_extent2d(width / bs, height);
169 phys_B = isl_extent2d(width, height);
170 break;
171 }
172
173 case ISL_TILING_HIZ:
174 /* HiZ buffers are required to have ISL_FORMAT_HIZ which is an 8x4
175 * 128bpb format. The tiling has the same physical dimensions as
176 * Y-tiling but actually has two HiZ columns per Y-tiled column.
177 */
178 assert(bs == 16);
179 logical_el = isl_extent2d(16, 16);
180 phys_B = isl_extent2d(128, 32);
181 break;
182
183 case ISL_TILING_CCS:
184 /* CCS surfaces are required to have one of the GENX_CCS_* formats which
185 * have a block size of 1 or 2 bits per block and each CCS element
186 * corresponds to one cache-line pair in the main surface. From the Sky
187 * Lake PRM Vol. 12 in the section on planes:
188 *
189 * "The Color Control Surface (CCS) contains the compression status
190 * of the cache-line pairs. The compression state of the cache-line
191 * pair is specified by 2 bits in the CCS. Each CCS cache-line
192 * represents an area on the main surface of 16x16 sets of 128 byte
193 * Y-tiled cache-line-pairs. CCS is always Y tiled."
194 *
195 * The CCS being Y-tiled implies that it's an 8x8 grid of cache-lines.
196 * Since each cache line corresponds to a 16x16 set of cache-line pairs,
197 * that yields total tile area of 128x128 cache-line pairs or CCS
198 * elements. On older hardware, each CCS element is 1 bit and the tile
199 * is 128x256 elements.
200 */
201 assert(format_bpb == 1 || format_bpb == 2);
202 logical_el = isl_extent2d(128, 256 / format_bpb);
203 phys_B = isl_extent2d(128, 32);
204 break;
205
206 default:
207 unreachable("not reached");
208 } /* end switch */
209
210 *tile_info = (struct isl_tile_info) {
211 .tiling = tiling,
212 .logical_extent_el = logical_el,
213 .phys_extent_B = phys_B,
214 };
215
216 return true;
217 }
218
219 /**
220 * @param[out] tiling is set only on success
221 */
222 bool
223 isl_surf_choose_tiling(const struct isl_device *dev,
224 const struct isl_surf_init_info *restrict info,
225 enum isl_tiling *tiling)
226 {
227 isl_tiling_flags_t tiling_flags = info->tiling_flags;
228
229 if (ISL_DEV_GEN(dev) >= 7) {
230 gen7_filter_tiling(dev, info, &tiling_flags);
231 } else {
232 isl_finishme("%s: gen%u", __func__, ISL_DEV_GEN(dev));
233 gen7_filter_tiling(dev, info, &tiling_flags);
234 }
235
236 #define CHOOSE(__tiling) \
237 do { \
238 if (tiling_flags & (1u << (__tiling))) { \
239 *tiling = (__tiling); \
240 return true; \
241 } \
242 } while (0)
243
244 /* Of the tiling modes remaining, choose the one that offers the best
245 * performance.
246 */
247
248 if (info->dim == ISL_SURF_DIM_1D) {
249 /* Prefer linear for 1D surfaces because they do not benefit from
250 * tiling. To the contrary, tiling leads to wasted memory and poor
251 * memory locality due to the swizzling and alignment restrictions
252 * required in tiled surfaces.
253 */
254 CHOOSE(ISL_TILING_LINEAR);
255 }
256
257 CHOOSE(ISL_TILING_CCS);
258 CHOOSE(ISL_TILING_HIZ);
259 CHOOSE(ISL_TILING_Ys);
260 CHOOSE(ISL_TILING_Yf);
261 CHOOSE(ISL_TILING_Y0);
262 CHOOSE(ISL_TILING_X);
263 CHOOSE(ISL_TILING_W);
264 CHOOSE(ISL_TILING_LINEAR);
265
266 #undef CHOOSE
267
268 /* No tiling mode accomodates the inputs. */
269 return false;
270 }
271
272 static bool
273 isl_choose_msaa_layout(const struct isl_device *dev,
274 const struct isl_surf_init_info *info,
275 enum isl_tiling tiling,
276 enum isl_msaa_layout *msaa_layout)
277 {
278 if (ISL_DEV_GEN(dev) >= 8) {
279 return gen8_choose_msaa_layout(dev, info, tiling, msaa_layout);
280 } else if (ISL_DEV_GEN(dev) >= 7) {
281 return gen7_choose_msaa_layout(dev, info, tiling, msaa_layout);
282 } else if (ISL_DEV_GEN(dev) >= 6) {
283 return gen6_choose_msaa_layout(dev, info, tiling, msaa_layout);
284 } else {
285 return gen4_choose_msaa_layout(dev, info, tiling, msaa_layout);
286 }
287 }
288
289 static void
290 isl_msaa_interleaved_scale_px_to_sa(uint32_t samples,
291 uint32_t *width, uint32_t *height)
292 {
293 assert(isl_is_pow2(samples));
294
295 /* From the Broadwell PRM >> Volume 5: Memory Views >> Computing Mip Level
296 * Sizes (p133):
297 *
298 * If the surface is multisampled and it is a depth or stencil surface
299 * or Multisampled Surface StorageFormat in SURFACE_STATE is
300 * MSFMT_DEPTH_STENCIL, W_L and H_L must be adjusted as follows before
301 * proceeding: [...]
302 */
303 if (width)
304 *width = isl_align(*width, 2) << ((ffs(samples) - 0) / 2);
305 if (height)
306 *height = isl_align(*height, 2) << ((ffs(samples) - 1) / 2);
307 }
308
309 static enum isl_array_pitch_span
310 isl_choose_array_pitch_span(const struct isl_device *dev,
311 const struct isl_surf_init_info *restrict info,
312 enum isl_dim_layout dim_layout,
313 const struct isl_extent4d *phys_level0_sa)
314 {
315 switch (dim_layout) {
316 case ISL_DIM_LAYOUT_GEN9_1D:
317 case ISL_DIM_LAYOUT_GEN4_2D:
318 if (ISL_DEV_GEN(dev) >= 8) {
319 /* QPitch becomes programmable in Broadwell. So choose the
320 * most compact QPitch possible in order to conserve memory.
321 *
322 * From the Broadwell PRM >> Volume 2d: Command Reference: Structures
323 * >> RENDER_SURFACE_STATE Surface QPitch (p325):
324 *
325 * - Software must ensure that this field is set to a value
326 * sufficiently large such that the array slices in the surface
327 * do not overlap. Refer to the Memory Data Formats section for
328 * information on how surfaces are stored in memory.
329 *
330 * - This field specifies the distance in rows between array
331 * slices. It is used only in the following cases:
332 *
333 * - Surface Array is enabled OR
334 * - Number of Mulitsamples is not NUMSAMPLES_1 and
335 * Multisampled Surface Storage Format set to MSFMT_MSS OR
336 * - Surface Type is SURFTYPE_CUBE
337 */
338 return ISL_ARRAY_PITCH_SPAN_COMPACT;
339 } else if (ISL_DEV_GEN(dev) >= 7) {
340 /* Note that Ivybridge introduces
341 * RENDER_SURFACE_STATE.SurfaceArraySpacing, which provides the
342 * driver more control over the QPitch.
343 */
344
345 if (phys_level0_sa->array_len == 1) {
346 /* The hardware will never use the QPitch. So choose the most
347 * compact QPitch possible in order to conserve memory.
348 */
349 return ISL_ARRAY_PITCH_SPAN_COMPACT;
350 }
351
352 if (isl_surf_usage_is_depth_or_stencil(info->usage) ||
353 (info->usage & ISL_SURF_USAGE_HIZ_BIT)) {
354 /* From the Ivybridge PRM >> Volume 1 Part 1: Graphics Core >>
355 * Section 6.18.4.7: Surface Arrays (p112):
356 *
357 * If Surface Array Spacing is set to ARYSPC_FULL (note that
358 * the depth buffer and stencil buffer have an implied value of
359 * ARYSPC_FULL):
360 */
361 return ISL_ARRAY_PITCH_SPAN_FULL;
362 }
363
364 if (info->levels == 1) {
365 /* We are able to set RENDER_SURFACE_STATE.SurfaceArraySpacing
366 * to ARYSPC_LOD0.
367 */
368 return ISL_ARRAY_PITCH_SPAN_COMPACT;
369 }
370
371 return ISL_ARRAY_PITCH_SPAN_FULL;
372 } else if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) &&
373 ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
374 isl_surf_usage_is_stencil(info->usage)) {
375 /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
376 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
377 *
378 * The separate stencil buffer does not support mip mapping, thus
379 * the storage for LODs other than LOD 0 is not needed.
380 */
381 assert(info->levels == 1);
382 assert(phys_level0_sa->array_len == 1);
383 return ISL_ARRAY_PITCH_SPAN_COMPACT;
384 } else {
385 if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) &&
386 ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
387 isl_surf_usage_is_stencil(info->usage)) {
388 /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
389 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
390 *
391 * The separate stencil buffer does not support mip mapping,
392 * thus the storage for LODs other than LOD 0 is not needed.
393 */
394 assert(info->levels == 1);
395 assert(phys_level0_sa->array_len == 1);
396 return ISL_ARRAY_PITCH_SPAN_COMPACT;
397 }
398
399 if (phys_level0_sa->array_len == 1) {
400 /* The hardware will never use the QPitch. So choose the most
401 * compact QPitch possible in order to conserve memory.
402 */
403 return ISL_ARRAY_PITCH_SPAN_COMPACT;
404 }
405
406 return ISL_ARRAY_PITCH_SPAN_FULL;
407 }
408
409 case ISL_DIM_LAYOUT_GEN4_3D:
410 /* The hardware will never use the QPitch. So choose the most
411 * compact QPitch possible in order to conserve memory.
412 */
413 return ISL_ARRAY_PITCH_SPAN_COMPACT;
414 }
415
416 unreachable("bad isl_dim_layout");
417 return ISL_ARRAY_PITCH_SPAN_FULL;
418 }
419
420 static void
421 isl_choose_image_alignment_el(const struct isl_device *dev,
422 const struct isl_surf_init_info *restrict info,
423 enum isl_tiling tiling,
424 enum isl_dim_layout dim_layout,
425 enum isl_msaa_layout msaa_layout,
426 struct isl_extent3d *image_align_el)
427 {
428 if (info->format == ISL_FORMAT_HIZ) {
429 assert(ISL_DEV_GEN(dev) >= 6);
430 /* HiZ surfaces are always aligned to 16x8 pixels in the primary surface
431 * which works out to 2x2 HiZ elments.
432 */
433 *image_align_el = isl_extent3d(2, 2, 1);
434 return;
435 }
436
437 if (ISL_DEV_GEN(dev) >= 9) {
438 gen9_choose_image_alignment_el(dev, info, tiling, dim_layout,
439 msaa_layout, image_align_el);
440 } else if (ISL_DEV_GEN(dev) >= 8) {
441 gen8_choose_image_alignment_el(dev, info, tiling, dim_layout,
442 msaa_layout, image_align_el);
443 } else if (ISL_DEV_GEN(dev) >= 7) {
444 gen7_choose_image_alignment_el(dev, info, tiling, dim_layout,
445 msaa_layout, image_align_el);
446 } else if (ISL_DEV_GEN(dev) >= 6) {
447 gen6_choose_image_alignment_el(dev, info, tiling, dim_layout,
448 msaa_layout, image_align_el);
449 } else {
450 gen4_choose_image_alignment_el(dev, info, tiling, dim_layout,
451 msaa_layout, image_align_el);
452 }
453 }
454
455 static enum isl_dim_layout
456 isl_surf_choose_dim_layout(const struct isl_device *dev,
457 enum isl_surf_dim logical_dim,
458 enum isl_tiling tiling)
459 {
460 if (ISL_DEV_GEN(dev) >= 9) {
461 switch (logical_dim) {
462 case ISL_SURF_DIM_1D:
463 /* From the Sky Lake PRM Vol. 5, "1D Surfaces":
464 *
465 * One-dimensional surfaces use a tiling mode of linear.
466 * Technically, they are not tiled resources, but the Tiled
467 * Resource Mode field in RENDER_SURFACE_STATE is still used to
468 * indicate the alignment requirements for this linear surface
469 * (See 1D Alignment requirements for how 4K and 64KB Tiled
470 * Resource Modes impact alignment). Alternatively, a 1D surface
471 * can be defined as a 2D tiled surface (e.g. TileY or TileX) with
472 * a height of 0.
473 *
474 * In other words, ISL_DIM_LAYOUT_GEN9_1D is only used for linear
475 * surfaces and, for tiled surfaces, ISL_DIM_LAYOUT_GEN4_2D is used.
476 */
477 if (tiling == ISL_TILING_LINEAR)
478 return ISL_DIM_LAYOUT_GEN9_1D;
479 else
480 return ISL_DIM_LAYOUT_GEN4_2D;
481 case ISL_SURF_DIM_2D:
482 case ISL_SURF_DIM_3D:
483 return ISL_DIM_LAYOUT_GEN4_2D;
484 }
485 } else {
486 switch (logical_dim) {
487 case ISL_SURF_DIM_1D:
488 case ISL_SURF_DIM_2D:
489 return ISL_DIM_LAYOUT_GEN4_2D;
490 case ISL_SURF_DIM_3D:
491 return ISL_DIM_LAYOUT_GEN4_3D;
492 }
493 }
494
495 unreachable("bad isl_surf_dim");
496 return ISL_DIM_LAYOUT_GEN4_2D;
497 }
498
499 /**
500 * Calculate the physical extent of the surface's first level, in units of
501 * surface samples. The result is aligned to the format's compression block.
502 */
503 static void
504 isl_calc_phys_level0_extent_sa(const struct isl_device *dev,
505 const struct isl_surf_init_info *restrict info,
506 enum isl_dim_layout dim_layout,
507 enum isl_tiling tiling,
508 enum isl_msaa_layout msaa_layout,
509 struct isl_extent4d *phys_level0_sa)
510 {
511 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
512
513 if (isl_format_is_yuv(info->format))
514 isl_finishme("%s:%s: YUV format", __FILE__, __func__);
515
516 switch (info->dim) {
517 case ISL_SURF_DIM_1D:
518 assert(info->height == 1);
519 assert(info->depth == 1);
520 assert(info->samples == 1);
521 assert(!isl_format_is_compressed(info->format));
522
523 switch (dim_layout) {
524 case ISL_DIM_LAYOUT_GEN4_3D:
525 unreachable("bad isl_dim_layout");
526
527 case ISL_DIM_LAYOUT_GEN9_1D:
528 case ISL_DIM_LAYOUT_GEN4_2D:
529 *phys_level0_sa = (struct isl_extent4d) {
530 .w = info->width,
531 .h = 1,
532 .d = 1,
533 .a = info->array_len,
534 };
535 break;
536 }
537 break;
538
539 case ISL_SURF_DIM_2D:
540 assert(dim_layout == ISL_DIM_LAYOUT_GEN4_2D);
541
542 if (tiling == ISL_TILING_Ys && info->samples > 1)
543 isl_finishme("%s:%s: multisample TileYs layout", __FILE__, __func__);
544
545 switch (msaa_layout) {
546 case ISL_MSAA_LAYOUT_NONE:
547 assert(info->depth == 1);
548 assert(info->samples == 1);
549
550 *phys_level0_sa = (struct isl_extent4d) {
551 .w = isl_align_npot(info->width, fmtl->bw),
552 .h = isl_align_npot(info->height, fmtl->bh),
553 .d = 1,
554 .a = info->array_len,
555 };
556 break;
557
558 case ISL_MSAA_LAYOUT_ARRAY:
559 assert(info->depth == 1);
560 assert(info->levels == 1);
561 assert(!isl_format_is_compressed(info->format));
562
563 *phys_level0_sa = (struct isl_extent4d) {
564 .w = info->width,
565 .h = info->height,
566 .d = 1,
567 .a = info->array_len * info->samples,
568 };
569 break;
570
571 case ISL_MSAA_LAYOUT_INTERLEAVED:
572 assert(info->depth == 1);
573 assert(info->levels == 1);
574 assert(!isl_format_is_compressed(info->format));
575
576 *phys_level0_sa = (struct isl_extent4d) {
577 .w = info->width,
578 .h = info->height,
579 .d = 1,
580 .a = info->array_len,
581 };
582
583 isl_msaa_interleaved_scale_px_to_sa(info->samples,
584 &phys_level0_sa->w,
585 &phys_level0_sa->h);
586 break;
587 }
588 break;
589
590 case ISL_SURF_DIM_3D:
591 assert(info->array_len == 1);
592 assert(info->samples == 1);
593
594 if (fmtl->bd > 1) {
595 isl_finishme("%s:%s: compression block with depth > 1",
596 __FILE__, __func__);
597 }
598
599 switch (dim_layout) {
600 case ISL_DIM_LAYOUT_GEN9_1D:
601 unreachable("bad isl_dim_layout");
602
603 case ISL_DIM_LAYOUT_GEN4_2D:
604 assert(ISL_DEV_GEN(dev) >= 9);
605
606 *phys_level0_sa = (struct isl_extent4d) {
607 .w = isl_align_npot(info->width, fmtl->bw),
608 .h = isl_align_npot(info->height, fmtl->bh),
609 .d = 1,
610 .a = info->depth,
611 };
612 break;
613
614 case ISL_DIM_LAYOUT_GEN4_3D:
615 assert(ISL_DEV_GEN(dev) < 9);
616 *phys_level0_sa = (struct isl_extent4d) {
617 .w = isl_align(info->width, fmtl->bw),
618 .h = isl_align(info->height, fmtl->bh),
619 .d = info->depth,
620 .a = 1,
621 };
622 break;
623 }
624 break;
625 }
626 }
627
628 /**
629 * A variant of isl_calc_phys_slice0_extent_sa() specific to
630 * ISL_DIM_LAYOUT_GEN4_2D.
631 */
632 static void
633 isl_calc_phys_slice0_extent_sa_gen4_2d(
634 const struct isl_device *dev,
635 const struct isl_surf_init_info *restrict info,
636 enum isl_msaa_layout msaa_layout,
637 const struct isl_extent3d *image_align_sa,
638 const struct isl_extent4d *phys_level0_sa,
639 struct isl_extent2d *phys_slice0_sa)
640 {
641 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
642
643 assert(phys_level0_sa->depth == 1);
644
645 if (info->levels == 1) {
646 /* Do not pad the surface to the image alignment. Instead, pad it only
647 * to the pixel format's block alignment.
648 *
649 * For tiled surfaces, using a reduced alignment here avoids wasting CPU
650 * cycles on the below mipmap layout caluclations. Reducing the
651 * alignment here is safe because we later align the row pitch and array
652 * pitch to the tile boundary. It is safe even for
653 * ISL_MSAA_LAYOUT_INTERLEAVED, because phys_level0_sa is already scaled
654 * to accomodate the interleaved samples.
655 *
656 * For linear surfaces, reducing the alignment here permits us to later
657 * choose an arbitrary, non-aligned row pitch. If the surface backs
658 * a VkBuffer, then an arbitrary pitch may be needed to accomodate
659 * VkBufferImageCopy::bufferRowLength.
660 */
661 *phys_slice0_sa = (struct isl_extent2d) {
662 .w = isl_align_npot(phys_level0_sa->w, fmtl->bw),
663 .h = isl_align_npot(phys_level0_sa->h, fmtl->bh),
664 };
665 return;
666 }
667
668 uint32_t slice_top_w = 0;
669 uint32_t slice_bottom_w = 0;
670 uint32_t slice_left_h = 0;
671 uint32_t slice_right_h = 0;
672
673 uint32_t W0 = phys_level0_sa->w;
674 uint32_t H0 = phys_level0_sa->h;
675
676 for (uint32_t l = 0; l < info->levels; ++l) {
677 uint32_t W = isl_minify(W0, l);
678 uint32_t H = isl_minify(H0, l);
679
680 uint32_t w = isl_align_npot(W, image_align_sa->w);
681 uint32_t h = isl_align_npot(H, image_align_sa->h);
682
683 if (l == 0) {
684 slice_top_w = w;
685 slice_left_h = h;
686 slice_right_h = h;
687 } else if (l == 1) {
688 slice_bottom_w = w;
689 slice_left_h += h;
690 } else if (l == 2) {
691 slice_bottom_w += w;
692 slice_right_h += h;
693 } else {
694 slice_right_h += h;
695 }
696 }
697
698 *phys_slice0_sa = (struct isl_extent2d) {
699 .w = MAX(slice_top_w, slice_bottom_w),
700 .h = MAX(slice_left_h, slice_right_h),
701 };
702 }
703
704 /**
705 * A variant of isl_calc_phys_slice0_extent_sa() specific to
706 * ISL_DIM_LAYOUT_GEN4_3D.
707 */
708 static void
709 isl_calc_phys_slice0_extent_sa_gen4_3d(
710 const struct isl_device *dev,
711 const struct isl_surf_init_info *restrict info,
712 const struct isl_extent3d *image_align_sa,
713 const struct isl_extent4d *phys_level0_sa,
714 struct isl_extent2d *phys_slice0_sa)
715 {
716 assert(info->samples == 1);
717 assert(phys_level0_sa->array_len == 1);
718
719 uint32_t slice_w = 0;
720 uint32_t slice_h = 0;
721
722 uint32_t W0 = phys_level0_sa->w;
723 uint32_t H0 = phys_level0_sa->h;
724 uint32_t D0 = phys_level0_sa->d;
725
726 for (uint32_t l = 0; l < info->levels; ++l) {
727 uint32_t level_w = isl_align_npot(isl_minify(W0, l), image_align_sa->w);
728 uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa->h);
729 uint32_t level_d = isl_align_npot(isl_minify(D0, l), image_align_sa->d);
730
731 uint32_t max_layers_horiz = MIN(level_d, 1u << l);
732 uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
733
734 slice_w = MAX(slice_w, level_w * max_layers_horiz);
735 slice_h += level_h * max_layers_vert;
736 }
737
738 *phys_slice0_sa = (struct isl_extent2d) {
739 .w = slice_w,
740 .h = slice_h,
741 };
742 }
743
744 /**
745 * A variant of isl_calc_phys_slice0_extent_sa() specific to
746 * ISL_DIM_LAYOUT_GEN9_1D.
747 */
748 static void
749 isl_calc_phys_slice0_extent_sa_gen9_1d(
750 const struct isl_device *dev,
751 const struct isl_surf_init_info *restrict info,
752 const struct isl_extent3d *image_align_sa,
753 const struct isl_extent4d *phys_level0_sa,
754 struct isl_extent2d *phys_slice0_sa)
755 {
756 MAYBE_UNUSED const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
757
758 assert(phys_level0_sa->height == 1);
759 assert(phys_level0_sa->depth == 1);
760 assert(info->samples == 1);
761 assert(image_align_sa->w >= fmtl->bw);
762
763 uint32_t slice_w = 0;
764 const uint32_t W0 = phys_level0_sa->w;
765
766 for (uint32_t l = 0; l < info->levels; ++l) {
767 uint32_t W = isl_minify(W0, l);
768 uint32_t w = isl_align_npot(W, image_align_sa->w);
769
770 slice_w += w;
771 }
772
773 *phys_slice0_sa = isl_extent2d(slice_w, 1);
774 }
775
776 /**
777 * Calculate the physical extent of the surface's first array slice, in units
778 * of surface samples. If the surface is multi-leveled, then the result will
779 * be aligned to \a image_align_sa.
780 */
781 static void
782 isl_calc_phys_slice0_extent_sa(const struct isl_device *dev,
783 const struct isl_surf_init_info *restrict info,
784 enum isl_dim_layout dim_layout,
785 enum isl_msaa_layout msaa_layout,
786 const struct isl_extent3d *image_align_sa,
787 const struct isl_extent4d *phys_level0_sa,
788 struct isl_extent2d *phys_slice0_sa)
789 {
790 switch (dim_layout) {
791 case ISL_DIM_LAYOUT_GEN9_1D:
792 isl_calc_phys_slice0_extent_sa_gen9_1d(dev, info,
793 image_align_sa, phys_level0_sa,
794 phys_slice0_sa);
795 return;
796 case ISL_DIM_LAYOUT_GEN4_2D:
797 isl_calc_phys_slice0_extent_sa_gen4_2d(dev, info, msaa_layout,
798 image_align_sa, phys_level0_sa,
799 phys_slice0_sa);
800 return;
801 case ISL_DIM_LAYOUT_GEN4_3D:
802 isl_calc_phys_slice0_extent_sa_gen4_3d(dev, info, image_align_sa,
803 phys_level0_sa, phys_slice0_sa);
804 return;
805 }
806 }
807
808 /**
809 * Calculate the pitch between physical array slices, in units of rows of
810 * surface elements.
811 */
812 static uint32_t
813 isl_calc_array_pitch_el_rows(const struct isl_device *dev,
814 const struct isl_surf_init_info *restrict info,
815 const struct isl_tile_info *tile_info,
816 enum isl_dim_layout dim_layout,
817 enum isl_array_pitch_span array_pitch_span,
818 const struct isl_extent3d *image_align_sa,
819 const struct isl_extent4d *phys_level0_sa,
820 const struct isl_extent2d *phys_slice0_sa)
821 {
822 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
823 uint32_t pitch_sa_rows = 0;
824
825 switch (dim_layout) {
826 case ISL_DIM_LAYOUT_GEN9_1D:
827 /* Each row is an array slice */
828 pitch_sa_rows = 1;
829 break;
830 case ISL_DIM_LAYOUT_GEN4_2D:
831 switch (array_pitch_span) {
832 case ISL_ARRAY_PITCH_SPAN_COMPACT:
833 pitch_sa_rows = isl_align_npot(phys_slice0_sa->h, image_align_sa->h);
834 break;
835 case ISL_ARRAY_PITCH_SPAN_FULL: {
836 /* The QPitch equation is found in the Broadwell PRM >> Volume 5:
837 * Memory Views >> Common Surface Formats >> Surface Layout >> 2D
838 * Surfaces >> Surface Arrays.
839 */
840 uint32_t H0_sa = phys_level0_sa->h;
841 uint32_t H1_sa = isl_minify(H0_sa, 1);
842
843 uint32_t h0_sa = isl_align_npot(H0_sa, image_align_sa->h);
844 uint32_t h1_sa = isl_align_npot(H1_sa, image_align_sa->h);
845
846 uint32_t m;
847 if (ISL_DEV_GEN(dev) >= 7) {
848 /* The QPitch equation changed slightly in Ivybridge. */
849 m = 12;
850 } else {
851 m = 11;
852 }
853
854 pitch_sa_rows = h0_sa + h1_sa + (m * image_align_sa->h);
855
856 if (ISL_DEV_GEN(dev) == 6 && info->samples > 1 &&
857 (info->height % 4 == 1)) {
858 /* [SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
859 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
860 *
861 * [SNB] Errata: Sampler MSAA Qpitch will be 4 greater than
862 * the value calculated in the equation above , for every
863 * other odd Surface Height starting from 1 i.e. 1,5,9,13.
864 *
865 * XXX(chadv): Is the errata natural corollary of the physical
866 * layout of interleaved samples?
867 */
868 pitch_sa_rows += 4;
869 }
870
871 pitch_sa_rows = isl_align_npot(pitch_sa_rows, fmtl->bh);
872 } /* end case */
873 break;
874 }
875 break;
876 case ISL_DIM_LAYOUT_GEN4_3D:
877 assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
878 pitch_sa_rows = isl_align_npot(phys_slice0_sa->h, image_align_sa->h);
879 break;
880 default:
881 unreachable("bad isl_dim_layout");
882 break;
883 }
884
885 assert(pitch_sa_rows % fmtl->bh == 0);
886 uint32_t pitch_el_rows = pitch_sa_rows / fmtl->bh;
887
888 if (ISL_DEV_GEN(dev) >= 9 && fmtl->txc == ISL_TXC_CCS) {
889 /*
890 * From the Sky Lake PRM Vol 7, "MCS Buffer for Render Target(s)" (p. 632):
891 *
892 * "Mip-mapped and arrayed surfaces are supported with MCS buffer
893 * layout with these alignments in the RT space: Horizontal
894 * Alignment = 128 and Vertical Alignment = 64."
895 *
896 * From the Sky Lake PRM Vol. 2d, "RENDER_SURFACE_STATE" (p. 435):
897 *
898 * "For non-multisampled render target's CCS auxiliary surface,
899 * QPitch must be computed with Horizontal Alignment = 128 and
900 * Surface Vertical Alignment = 256. These alignments are only for
901 * CCS buffer and not for associated render target."
902 *
903 * The first restriction is already handled by isl_choose_image_alignment_el
904 * but the second restriction, which is an extension of the first, only
905 * applies to qpitch and must be applied here.
906 */
907 assert(fmtl->bh == 4);
908 pitch_el_rows = isl_align(pitch_el_rows, 256 / 4);
909 }
910
911 if (ISL_DEV_GEN(dev) >= 9 &&
912 info->dim == ISL_SURF_DIM_3D &&
913 tile_info->tiling != ISL_TILING_LINEAR) {
914 /* From the Skylake BSpec >> RENDER_SURFACE_STATE >> Surface QPitch:
915 *
916 * Tile Mode != Linear: This field must be set to an integer multiple
917 * of the tile height
918 */
919 pitch_el_rows = isl_align(pitch_el_rows, tile_info->logical_extent_el.height);
920 }
921
922 return pitch_el_rows;
923 }
924
925 /**
926 * Calculate the pitch of each surface row, in bytes.
927 */
928 static uint32_t
929 isl_calc_linear_row_pitch(const struct isl_device *dev,
930 const struct isl_surf_init_info *restrict info,
931 const struct isl_extent2d *phys_slice0_sa)
932 {
933 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
934
935 uint32_t row_pitch = info->min_pitch;
936
937 /* First, align the surface to a cache line boundary, as the PRM explains
938 * below.
939 *
940 * From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface
941 * Formats >> Surface Padding Requirements >> Render Target and Media
942 * Surfaces:
943 *
944 * The data port accesses data (pixels) outside of the surface if they
945 * are contained in the same cache request as pixels that are within the
946 * surface. These pixels will not be returned by the requesting message,
947 * however if these pixels lie outside of defined pages in the GTT,
948 * a GTT error will result when the cache request is processed. In order
949 * to avoid these GTT errors, “padding” at the bottom of the surface is
950 * sometimes necessary.
951 *
952 * From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface
953 * Formats >> Surface Padding Requirements >> Sampling Engine Surfaces:
954 *
955 * The sampling engine accesses texels outside of the surface if they
956 * are contained in the same cache line as texels that are within the
957 * surface. These texels will not participate in any calculation
958 * performed by the sampling engine and will not affect the result of
959 * any sampling engine operation, however if these texels lie outside of
960 * defined pages in the GTT, a GTT error will result when the cache line
961 * is accessed. In order to avoid these GTT errors, “padding” at the
962 * bottom and right side of a sampling engine surface is sometimes
963 * necessary.
964 *
965 * It is possible that a cache line will straddle a page boundary if the
966 * base address or pitch is not aligned. All pages included in the cache
967 * lines that are part of the surface must map to valid GTT entries to
968 * avoid errors. To determine the necessary padding on the bottom and
969 * right side of the surface, refer to the table in Alignment Unit Size
970 * section for the i and j parameters for the surface format in use. The
971 * surface must then be extended to the next multiple of the alignment
972 * unit size in each dimension, and all texels contained in this
973 * extended surface must have valid GTT entries.
974 *
975 * For example, suppose the surface size is 15 texels by 10 texels and
976 * the alignment parameters are i=4 and j=2. In this case, the extended
977 * surface would be 16 by 10. Note that these calculations are done in
978 * texels, and must be converted to bytes based on the surface format
979 * being used to determine whether additional pages need to be defined.
980 */
981 assert(phys_slice0_sa->w % fmtl->bw == 0);
982 const uint32_t bs = fmtl->bpb / 8;
983 row_pitch = MAX(row_pitch, bs * (phys_slice0_sa->w / fmtl->bw));
984
985 /* From the Broadwel PRM >> Volume 2d: Command Reference: Structures >>
986 * RENDER_SURFACE_STATE Surface Pitch (p349):
987 *
988 * - For linear render target surfaces and surfaces accessed with the
989 * typed data port messages, the pitch must be a multiple of the
990 * element size for non-YUV surface formats. Pitch must be
991 * a multiple of 2 * element size for YUV surface formats.
992 *
993 * - [Requirements for SURFTYPE_BUFFER and SURFTYPE_STRBUF, which we
994 * ignore because isl doesn't do buffers.]
995 *
996 * - For other linear surfaces, the pitch can be any multiple of
997 * bytes.
998 */
999 if (info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
1000 if (isl_format_is_yuv(info->format)) {
1001 row_pitch = isl_align_npot(row_pitch, 2 * bs);
1002 } else {
1003 row_pitch = isl_align_npot(row_pitch, bs);
1004 }
1005 }
1006
1007 return row_pitch;
1008 }
1009
1010 /**
1011 * Calculate and apply any padding required for the surface.
1012 *
1013 * @param[inout] total_h_el is updated with the new height
1014 * @param[out] pad_bytes is overwritten with additional padding requirements.
1015 */
1016 static void
1017 isl_apply_surface_padding(const struct isl_device *dev,
1018 const struct isl_surf_init_info *restrict info,
1019 const struct isl_tile_info *tile_info,
1020 uint32_t *total_h_el,
1021 uint32_t *pad_bytes)
1022 {
1023 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1024
1025 *pad_bytes = 0;
1026
1027 /* From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface
1028 * Formats >> Surface Padding Requirements >> Render Target and Media
1029 * Surfaces:
1030 *
1031 * The data port accesses data (pixels) outside of the surface if they
1032 * are contained in the same cache request as pixels that are within the
1033 * surface. These pixels will not be returned by the requesting message,
1034 * however if these pixels lie outside of defined pages in the GTT,
1035 * a GTT error will result when the cache request is processed. In
1036 * order to avoid these GTT errors, “padding” at the bottom of the
1037 * surface is sometimes necessary.
1038 *
1039 * From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface
1040 * Formats >> Surface Padding Requirements >> Sampling Engine Surfaces:
1041 *
1042 * ... Lots of padding requirements, all listed separately below.
1043 */
1044
1045 /* We can safely ignore the first padding requirement, quoted below,
1046 * because isl doesn't do buffers.
1047 *
1048 * - [pre-BDW] For buffers, which have no inherent “height,” padding
1049 * requirements are different. A buffer must be padded to the next
1050 * multiple of 256 array elements, with an additional 16 bytes added
1051 * beyond that to account for the L1 cache line.
1052 */
1053
1054 /*
1055 * - For compressed textures [...], padding at the bottom of the surface
1056 * is to an even compressed row.
1057 */
1058 if (isl_format_is_compressed(info->format))
1059 *total_h_el = isl_align(*total_h_el, 2);
1060
1061 /*
1062 * - For cube surfaces, an additional two rows of padding are required
1063 * at the bottom of the surface.
1064 */
1065 if (info->usage & ISL_SURF_USAGE_CUBE_BIT)
1066 *total_h_el += 2;
1067
1068 /*
1069 * - For packed YUV, 96 bpt, 48 bpt, and 24 bpt surface formats,
1070 * additional padding is required. These surfaces require an extra row
1071 * plus 16 bytes of padding at the bottom in addition to the general
1072 * padding requirements.
1073 */
1074 if (isl_format_is_yuv(info->format) &&
1075 (fmtl->bpb == 96 || fmtl->bpb == 48|| fmtl->bpb == 24)) {
1076 *total_h_el += 1;
1077 *pad_bytes += 16;
1078 }
1079
1080 /*
1081 * - For linear surfaces, additional padding of 64 bytes is required at
1082 * the bottom of the surface. This is in addition to the padding
1083 * required above.
1084 */
1085 if (tile_info->tiling == ISL_TILING_LINEAR)
1086 *pad_bytes += 64;
1087
1088 /* The below text weakens, not strengthens, the padding requirements for
1089 * linear surfaces. Therefore we can safely ignore it.
1090 *
1091 * - [BDW+] For SURFTYPE_BUFFER, SURFTYPE_1D, and SURFTYPE_2D non-array,
1092 * non-MSAA, non-mip-mapped surfaces in linear memory, the only
1093 * padding requirement is to the next aligned 64-byte boundary beyond
1094 * the end of the surface. The rest of the padding requirements
1095 * documented above do not apply to these surfaces.
1096 */
1097
1098 /*
1099 * - [SKL+] For SURFTYPE_2D and SURFTYPE_3D with linear mode and
1100 * height % 4 != 0, the surface must be padded with
1101 * 4-(height % 4)*Surface Pitch # of bytes.
1102 */
1103 if (ISL_DEV_GEN(dev) >= 9 &&
1104 tile_info->tiling == ISL_TILING_LINEAR &&
1105 (info->dim == ISL_SURF_DIM_2D || info->dim == ISL_SURF_DIM_3D)) {
1106 *total_h_el = isl_align(*total_h_el, 4);
1107 }
1108
1109 /*
1110 * - [SKL+] For SURFTYPE_1D with linear mode, the surface must be padded
1111 * to 4 times the Surface Pitch # of bytes
1112 */
1113 if (ISL_DEV_GEN(dev) >= 9 &&
1114 tile_info->tiling == ISL_TILING_LINEAR &&
1115 info->dim == ISL_SURF_DIM_1D) {
1116 *total_h_el += 4;
1117 }
1118 }
1119
1120 bool
1121 isl_surf_init_s(const struct isl_device *dev,
1122 struct isl_surf *surf,
1123 const struct isl_surf_init_info *restrict info)
1124 {
1125 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1126
1127 const struct isl_extent4d logical_level0_px = {
1128 .w = info->width,
1129 .h = info->height,
1130 .d = info->depth,
1131 .a = info->array_len,
1132 };
1133
1134 enum isl_tiling tiling;
1135 if (!isl_surf_choose_tiling(dev, info, &tiling))
1136 return false;
1137
1138 struct isl_tile_info tile_info;
1139 if (!isl_tiling_get_info(dev, tiling, fmtl->bpb, &tile_info))
1140 return false;
1141
1142 const enum isl_dim_layout dim_layout =
1143 isl_surf_choose_dim_layout(dev, info->dim, tiling);
1144
1145 enum isl_msaa_layout msaa_layout;
1146 if (!isl_choose_msaa_layout(dev, info, tiling, &msaa_layout))
1147 return false;
1148
1149 struct isl_extent3d image_align_el;
1150 isl_choose_image_alignment_el(dev, info, tiling, dim_layout, msaa_layout,
1151 &image_align_el);
1152
1153 struct isl_extent3d image_align_sa =
1154 isl_extent3d_el_to_sa(info->format, image_align_el);
1155
1156 struct isl_extent4d phys_level0_sa;
1157 isl_calc_phys_level0_extent_sa(dev, info, dim_layout, tiling, msaa_layout,
1158 &phys_level0_sa);
1159 assert(phys_level0_sa.w % fmtl->bw == 0);
1160 assert(phys_level0_sa.h % fmtl->bh == 0);
1161
1162 enum isl_array_pitch_span array_pitch_span =
1163 isl_choose_array_pitch_span(dev, info, dim_layout, &phys_level0_sa);
1164
1165 struct isl_extent2d phys_slice0_sa;
1166 isl_calc_phys_slice0_extent_sa(dev, info, dim_layout, msaa_layout,
1167 &image_align_sa, &phys_level0_sa,
1168 &phys_slice0_sa);
1169 assert(phys_slice0_sa.w % fmtl->bw == 0);
1170 assert(phys_slice0_sa.h % fmtl->bh == 0);
1171
1172 const uint32_t array_pitch_el_rows =
1173 isl_calc_array_pitch_el_rows(dev, info, &tile_info, dim_layout,
1174 array_pitch_span, &image_align_sa,
1175 &phys_level0_sa, &phys_slice0_sa);
1176
1177 uint32_t total_h_el = phys_level0_sa.array_len * array_pitch_el_rows;
1178
1179 uint32_t pad_bytes;
1180 isl_apply_surface_padding(dev, info, &tile_info, &total_h_el, &pad_bytes);
1181
1182 uint32_t row_pitch, size, base_alignment;
1183 if (tiling == ISL_TILING_LINEAR) {
1184 row_pitch = isl_calc_linear_row_pitch(dev, info, &phys_slice0_sa);
1185 size = row_pitch * total_h_el + pad_bytes;
1186
1187 /* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfaceBaseAddress:
1188 *
1189 * "The Base Address for linear render target surfaces and surfaces
1190 * accessed with the typed surface read/write data port messages must
1191 * be element-size aligned, for non-YUV surface formats, or a
1192 * multiple of 2 element-sizes for YUV surface formats. Other linear
1193 * surfaces have no alignment requirements (byte alignment is
1194 * sufficient.)"
1195 */
1196 base_alignment = MAX(1, info->min_alignment);
1197 if (info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
1198 if (isl_format_is_yuv(info->format)) {
1199 base_alignment = MAX(base_alignment, fmtl->bpb / 4);
1200 } else {
1201 base_alignment = MAX(base_alignment, fmtl->bpb / 8);
1202 }
1203 }
1204 base_alignment = isl_round_up_to_power_of_two(base_alignment);
1205 } else {
1206 assert(phys_slice0_sa.w % fmtl->bw == 0);
1207 const uint32_t total_w_el = phys_slice0_sa.width / fmtl->bw;
1208 const uint32_t total_w_tl =
1209 isl_align_div(total_w_el, tile_info.logical_extent_el.width);
1210
1211 row_pitch = total_w_tl * tile_info.phys_extent_B.width;
1212 if (row_pitch < info->min_pitch) {
1213 row_pitch = isl_align(info->min_pitch, tile_info.phys_extent_B.width);
1214 }
1215
1216 total_h_el += isl_align_div_npot(pad_bytes, row_pitch);
1217 const uint32_t total_h_tl =
1218 isl_align_div(total_h_el, tile_info.logical_extent_el.height);
1219
1220 size = total_h_tl * tile_info.phys_extent_B.height * row_pitch;
1221
1222 const uint32_t tile_size = tile_info.phys_extent_B.width *
1223 tile_info.phys_extent_B.height;
1224 assert(isl_is_pow2(info->min_alignment) && isl_is_pow2(tile_size));
1225 base_alignment = MAX(info->min_alignment, tile_size);
1226 }
1227
1228 *surf = (struct isl_surf) {
1229 .dim = info->dim,
1230 .dim_layout = dim_layout,
1231 .msaa_layout = msaa_layout,
1232 .tiling = tiling,
1233 .format = info->format,
1234
1235 .levels = info->levels,
1236 .samples = info->samples,
1237
1238 .image_alignment_el = image_align_el,
1239 .logical_level0_px = logical_level0_px,
1240 .phys_level0_sa = phys_level0_sa,
1241
1242 .size = size,
1243 .alignment = base_alignment,
1244 .row_pitch = row_pitch,
1245 .array_pitch_el_rows = array_pitch_el_rows,
1246 .array_pitch_span = array_pitch_span,
1247
1248 .usage = info->usage,
1249 };
1250
1251 return true;
1252 }
1253
1254 void
1255 isl_surf_get_tile_info(const struct isl_device *dev,
1256 const struct isl_surf *surf,
1257 struct isl_tile_info *tile_info)
1258 {
1259 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
1260 isl_tiling_get_info(dev, surf->tiling, fmtl->bpb, tile_info);
1261 }
1262
1263 void
1264 isl_surf_get_hiz_surf(const struct isl_device *dev,
1265 const struct isl_surf *surf,
1266 struct isl_surf *hiz_surf)
1267 {
1268 assert(ISL_DEV_GEN(dev) >= 5 && ISL_DEV_USE_SEPARATE_STENCIL(dev));
1269
1270 /* Multisampled depth is always interleaved */
1271 assert(surf->msaa_layout == ISL_MSAA_LAYOUT_NONE ||
1272 surf->msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
1273
1274 isl_surf_init(dev, hiz_surf,
1275 .dim = ISL_SURF_DIM_2D,
1276 .format = ISL_FORMAT_HIZ,
1277 .width = surf->logical_level0_px.width,
1278 .height = surf->logical_level0_px.height,
1279 .depth = 1,
1280 .levels = surf->levels,
1281 .array_len = surf->logical_level0_px.array_len,
1282 /* On SKL+, HiZ is always single-sampled */
1283 .samples = ISL_DEV_GEN(dev) >= 9 ? 1 : surf->samples,
1284 .usage = ISL_SURF_USAGE_HIZ_BIT,
1285 .tiling_flags = ISL_TILING_HIZ_BIT);
1286 }
1287
1288 void
1289 isl_surf_get_mcs_surf(const struct isl_device *dev,
1290 const struct isl_surf *surf,
1291 struct isl_surf *mcs_surf)
1292 {
1293 /* It must be multisampled with an array layout */
1294 assert(surf->samples > 1 && surf->msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
1295
1296 /* The following are true of all multisampled surfaces */
1297 assert(surf->dim == ISL_SURF_DIM_2D);
1298 assert(surf->levels == 1);
1299 assert(surf->logical_level0_px.depth == 1);
1300
1301 enum isl_format mcs_format;
1302 switch (surf->samples) {
1303 case 2: mcs_format = ISL_FORMAT_MCS_2X; break;
1304 case 4: mcs_format = ISL_FORMAT_MCS_4X; break;
1305 case 8: mcs_format = ISL_FORMAT_MCS_8X; break;
1306 case 16: mcs_format = ISL_FORMAT_MCS_16X; break;
1307 default:
1308 unreachable("Invalid sample count");
1309 }
1310
1311 isl_surf_init(dev, mcs_surf,
1312 .dim = ISL_SURF_DIM_2D,
1313 .format = mcs_format,
1314 .width = surf->logical_level0_px.width,
1315 .height = surf->logical_level0_px.height,
1316 .depth = 1,
1317 .levels = 1,
1318 .array_len = surf->logical_level0_px.array_len,
1319 .samples = 1, /* MCS surfaces are really single-sampled */
1320 .usage = ISL_SURF_USAGE_MCS_BIT,
1321 .tiling_flags = ISL_TILING_Y0_BIT);
1322 }
1323
1324 bool
1325 isl_surf_get_ccs_surf(const struct isl_device *dev,
1326 const struct isl_surf *surf,
1327 struct isl_surf *ccs_surf)
1328 {
1329 assert(surf->samples == 1 && surf->msaa_layout == ISL_MSAA_LAYOUT_NONE);
1330 assert(ISL_DEV_GEN(dev) >= 7);
1331
1332 assert(ISL_DEV_GEN(dev) >= 8 || surf->dim == ISL_SURF_DIM_2D);
1333
1334 assert(surf->logical_level0_px.depth == 1);
1335
1336 /* TODO: More conditions where it can fail. */
1337
1338 enum isl_format ccs_format;
1339 if (ISL_DEV_GEN(dev) >= 9) {
1340 if (!isl_tiling_is_any_y(surf->tiling))
1341 return false;
1342
1343 switch (isl_format_get_layout(surf->format)->bpb) {
1344 case 32: ccs_format = ISL_FORMAT_GEN9_CCS_32BPP; break;
1345 case 64: ccs_format = ISL_FORMAT_GEN9_CCS_64BPP; break;
1346 case 128: ccs_format = ISL_FORMAT_GEN9_CCS_128BPP; break;
1347 default:
1348 return false;
1349 }
1350 } else if (surf->tiling == ISL_TILING_Y0) {
1351 switch (isl_format_get_layout(surf->format)->bpb) {
1352 case 32: ccs_format = ISL_FORMAT_GEN7_CCS_32BPP_Y; break;
1353 case 64: ccs_format = ISL_FORMAT_GEN7_CCS_64BPP_Y; break;
1354 case 128: ccs_format = ISL_FORMAT_GEN7_CCS_128BPP_Y; break;
1355 default:
1356 return false;
1357 }
1358 } else if (surf->tiling == ISL_TILING_X) {
1359 switch (isl_format_get_layout(surf->format)->bpb) {
1360 case 32: ccs_format = ISL_FORMAT_GEN7_CCS_32BPP_X; break;
1361 case 64: ccs_format = ISL_FORMAT_GEN7_CCS_64BPP_X; break;
1362 case 128: ccs_format = ISL_FORMAT_GEN7_CCS_128BPP_X; break;
1363 default:
1364 return false;
1365 }
1366 } else {
1367 return false;
1368 }
1369
1370 isl_surf_init(dev, ccs_surf,
1371 .dim = ISL_SURF_DIM_2D,
1372 .format = ccs_format,
1373 .width = surf->logical_level0_px.width,
1374 .height = surf->logical_level0_px.height,
1375 .depth = 1,
1376 .levels = surf->levels,
1377 .array_len = surf->logical_level0_px.array_len,
1378 .samples = 1,
1379 .usage = ISL_SURF_USAGE_CCS_BIT,
1380 .tiling_flags = ISL_TILING_CCS_BIT);
1381
1382 return true;
1383 }
1384
1385 void
1386 isl_surf_fill_state_s(const struct isl_device *dev, void *state,
1387 const struct isl_surf_fill_state_info *restrict info)
1388 {
1389 #ifndef NDEBUG
1390 isl_surf_usage_flags_t _base_usage =
1391 info->view->usage & (ISL_SURF_USAGE_RENDER_TARGET_BIT |
1392 ISL_SURF_USAGE_TEXTURE_BIT |
1393 ISL_SURF_USAGE_STORAGE_BIT);
1394 /* They may only specify one of the above bits at a time */
1395 assert(__builtin_popcount(_base_usage) == 1);
1396 /* The only other allowed bit is ISL_SURF_USAGE_CUBE_BIT */
1397 assert((info->view->usage & ~ISL_SURF_USAGE_CUBE_BIT) == _base_usage);
1398 #endif
1399
1400 if (info->surf->dim == ISL_SURF_DIM_3D) {
1401 assert(info->view->base_array_layer + info->view->array_len <=
1402 info->surf->logical_level0_px.depth);
1403 } else {
1404 assert(info->view->base_array_layer + info->view->array_len <=
1405 info->surf->logical_level0_px.array_len);
1406 }
1407
1408 switch (ISL_DEV_GEN(dev)) {
1409 case 4:
1410 if (ISL_DEV_IS_G4X(dev)) {
1411 /* G45 surface state is the same as gen5 */
1412 isl_gen5_surf_fill_state_s(dev, state, info);
1413 } else {
1414 isl_gen4_surf_fill_state_s(dev, state, info);
1415 }
1416 break;
1417 case 5:
1418 isl_gen5_surf_fill_state_s(dev, state, info);
1419 break;
1420 case 6:
1421 isl_gen6_surf_fill_state_s(dev, state, info);
1422 break;
1423 case 7:
1424 if (ISL_DEV_IS_HASWELL(dev)) {
1425 isl_gen75_surf_fill_state_s(dev, state, info);
1426 } else {
1427 isl_gen7_surf_fill_state_s(dev, state, info);
1428 }
1429 break;
1430 case 8:
1431 isl_gen8_surf_fill_state_s(dev, state, info);
1432 break;
1433 case 9:
1434 isl_gen9_surf_fill_state_s(dev, state, info);
1435 break;
1436 default:
1437 assert(!"Cannot fill surface state for this gen");
1438 }
1439 }
1440
1441 void
1442 isl_buffer_fill_state_s(const struct isl_device *dev, void *state,
1443 const struct isl_buffer_fill_state_info *restrict info)
1444 {
1445 switch (ISL_DEV_GEN(dev)) {
1446 case 4:
1447 case 5:
1448 /* Gen 4-5 are all the same when it comes to buffer surfaces */
1449 isl_gen5_buffer_fill_state_s(state, info);
1450 break;
1451 case 6:
1452 isl_gen6_buffer_fill_state_s(state, info);
1453 break;
1454 case 7:
1455 if (ISL_DEV_IS_HASWELL(dev)) {
1456 isl_gen75_buffer_fill_state_s(state, info);
1457 } else {
1458 isl_gen7_buffer_fill_state_s(state, info);
1459 }
1460 break;
1461 case 8:
1462 isl_gen8_buffer_fill_state_s(state, info);
1463 break;
1464 case 9:
1465 isl_gen9_buffer_fill_state_s(state, info);
1466 break;
1467 default:
1468 assert(!"Cannot fill surface state for this gen");
1469 }
1470 }
1471
1472 /**
1473 * A variant of isl_surf_get_image_offset_sa() specific to
1474 * ISL_DIM_LAYOUT_GEN4_2D.
1475 */
1476 static void
1477 get_image_offset_sa_gen4_2d(const struct isl_surf *surf,
1478 uint32_t level, uint32_t logical_array_layer,
1479 uint32_t *x_offset_sa,
1480 uint32_t *y_offset_sa)
1481 {
1482 assert(level < surf->levels);
1483 if (surf->dim == ISL_SURF_DIM_3D)
1484 assert(logical_array_layer < surf->logical_level0_px.depth);
1485 else
1486 assert(logical_array_layer < surf->logical_level0_px.array_len);
1487
1488 const struct isl_extent3d image_align_sa =
1489 isl_surf_get_image_alignment_sa(surf);
1490
1491 const uint32_t W0 = surf->phys_level0_sa.width;
1492 const uint32_t H0 = surf->phys_level0_sa.height;
1493
1494 const uint32_t phys_layer = logical_array_layer *
1495 (surf->msaa_layout == ISL_MSAA_LAYOUT_ARRAY ? surf->samples : 1);
1496
1497 uint32_t x = 0;
1498 uint32_t y = phys_layer * isl_surf_get_array_pitch_sa_rows(surf);
1499
1500 for (uint32_t l = 0; l < level; ++l) {
1501 if (l == 1) {
1502 uint32_t W = isl_minify(W0, l);
1503 x += isl_align_npot(W, image_align_sa.w);
1504 } else {
1505 uint32_t H = isl_minify(H0, l);
1506 y += isl_align_npot(H, image_align_sa.h);
1507 }
1508 }
1509
1510 *x_offset_sa = x;
1511 *y_offset_sa = y;
1512 }
1513
1514 /**
1515 * A variant of isl_surf_get_image_offset_sa() specific to
1516 * ISL_DIM_LAYOUT_GEN4_3D.
1517 */
1518 static void
1519 get_image_offset_sa_gen4_3d(const struct isl_surf *surf,
1520 uint32_t level, uint32_t logical_z_offset_px,
1521 uint32_t *x_offset_sa,
1522 uint32_t *y_offset_sa)
1523 {
1524 assert(level < surf->levels);
1525 assert(logical_z_offset_px < isl_minify(surf->phys_level0_sa.depth, level));
1526 assert(surf->phys_level0_sa.array_len == 1);
1527
1528 const struct isl_extent3d image_align_sa =
1529 isl_surf_get_image_alignment_sa(surf);
1530
1531 const uint32_t W0 = surf->phys_level0_sa.width;
1532 const uint32_t H0 = surf->phys_level0_sa.height;
1533 const uint32_t D0 = surf->phys_level0_sa.depth;
1534
1535 uint32_t x = 0;
1536 uint32_t y = 0;
1537
1538 for (uint32_t l = 0; l < level; ++l) {
1539 const uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa.h);
1540 const uint32_t level_d = isl_align_npot(isl_minify(D0, l), image_align_sa.d);
1541 const uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
1542
1543 y += level_h * max_layers_vert;
1544 }
1545
1546 const uint32_t level_w = isl_align_npot(isl_minify(W0, level), image_align_sa.w);
1547 const uint32_t level_h = isl_align_npot(isl_minify(H0, level), image_align_sa.h);
1548 const uint32_t level_d = isl_align_npot(isl_minify(D0, level), image_align_sa.d);
1549
1550 const uint32_t max_layers_horiz = MIN(level_d, 1u << level);
1551
1552 x += level_w * (logical_z_offset_px % max_layers_horiz);
1553 y += level_h * (logical_z_offset_px / max_layers_horiz);
1554
1555 *x_offset_sa = x;
1556 *y_offset_sa = y;
1557 }
1558
1559 /**
1560 * A variant of isl_surf_get_image_offset_sa() specific to
1561 * ISL_DIM_LAYOUT_GEN9_1D.
1562 */
1563 static void
1564 get_image_offset_sa_gen9_1d(const struct isl_surf *surf,
1565 uint32_t level, uint32_t layer,
1566 uint32_t *x_offset_sa,
1567 uint32_t *y_offset_sa)
1568 {
1569 assert(level < surf->levels);
1570 assert(layer < surf->phys_level0_sa.array_len);
1571 assert(surf->phys_level0_sa.height == 1);
1572 assert(surf->phys_level0_sa.depth == 1);
1573 assert(surf->samples == 1);
1574
1575 const uint32_t W0 = surf->phys_level0_sa.width;
1576 const struct isl_extent3d image_align_sa =
1577 isl_surf_get_image_alignment_sa(surf);
1578
1579 uint32_t x = 0;
1580
1581 for (uint32_t l = 0; l < level; ++l) {
1582 uint32_t W = isl_minify(W0, l);
1583 uint32_t w = isl_align_npot(W, image_align_sa.w);
1584
1585 x += w;
1586 }
1587
1588 *x_offset_sa = x;
1589 *y_offset_sa = layer * isl_surf_get_array_pitch_sa_rows(surf);
1590 }
1591
1592 /**
1593 * Calculate the offset, in units of surface samples, to a subimage in the
1594 * surface.
1595 *
1596 * @invariant level < surface levels
1597 * @invariant logical_array_layer < logical array length of surface
1598 * @invariant logical_z_offset_px < logical depth of surface at level
1599 */
1600 void
1601 isl_surf_get_image_offset_sa(const struct isl_surf *surf,
1602 uint32_t level,
1603 uint32_t logical_array_layer,
1604 uint32_t logical_z_offset_px,
1605 uint32_t *x_offset_sa,
1606 uint32_t *y_offset_sa)
1607 {
1608 assert(level < surf->levels);
1609 assert(logical_array_layer < surf->logical_level0_px.array_len);
1610 assert(logical_z_offset_px
1611 < isl_minify(surf->logical_level0_px.depth, level));
1612
1613 switch (surf->dim_layout) {
1614 case ISL_DIM_LAYOUT_GEN9_1D:
1615 get_image_offset_sa_gen9_1d(surf, level, logical_array_layer,
1616 x_offset_sa, y_offset_sa);
1617 break;
1618 case ISL_DIM_LAYOUT_GEN4_2D:
1619 get_image_offset_sa_gen4_2d(surf, level, logical_array_layer
1620 + logical_z_offset_px,
1621 x_offset_sa, y_offset_sa);
1622 break;
1623 case ISL_DIM_LAYOUT_GEN4_3D:
1624 get_image_offset_sa_gen4_3d(surf, level, logical_z_offset_px,
1625 x_offset_sa, y_offset_sa);
1626 break;
1627
1628 default:
1629 unreachable("not reached");
1630 }
1631 }
1632
1633 void
1634 isl_surf_get_image_offset_el(const struct isl_surf *surf,
1635 uint32_t level,
1636 uint32_t logical_array_layer,
1637 uint32_t logical_z_offset_px,
1638 uint32_t *x_offset_el,
1639 uint32_t *y_offset_el)
1640 {
1641 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
1642
1643 assert(level < surf->levels);
1644 assert(logical_array_layer < surf->logical_level0_px.array_len);
1645 assert(logical_z_offset_px
1646 < isl_minify(surf->logical_level0_px.depth, level));
1647
1648 uint32_t x_offset_sa, y_offset_sa;
1649 isl_surf_get_image_offset_sa(surf, level,
1650 logical_array_layer,
1651 logical_z_offset_px,
1652 &x_offset_sa,
1653 &y_offset_sa);
1654
1655 *x_offset_el = x_offset_sa / fmtl->bw;
1656 *y_offset_el = y_offset_sa / fmtl->bh;
1657 }
1658
1659 void
1660 isl_tiling_get_intratile_offset_el(const struct isl_device *dev,
1661 enum isl_tiling tiling,
1662 uint8_t bs,
1663 uint32_t row_pitch,
1664 uint32_t total_x_offset_el,
1665 uint32_t total_y_offset_el,
1666 uint32_t *base_address_offset,
1667 uint32_t *x_offset_el,
1668 uint32_t *y_offset_el)
1669 {
1670 /* This function only really works for power-of-two surfaces. In
1671 * theory, we could make it work for non-power-of-two surfaces by going
1672 * to the left until we find a block that is bs-aligned. The Vulkan
1673 * driver doesn't use non-power-of-two tiled surfaces so we'll leave
1674 * this unimplemented for now.
1675 */
1676 assert(tiling == ISL_TILING_LINEAR || isl_is_pow2(bs));
1677
1678 if (tiling == ISL_TILING_LINEAR) {
1679 *base_address_offset = total_y_offset_el * row_pitch +
1680 total_x_offset_el * bs;
1681 *x_offset_el = 0;
1682 *y_offset_el = 0;
1683 return;
1684 }
1685
1686 struct isl_tile_info tile_info;
1687 isl_tiling_get_info(dev, tiling, bs * 8, &tile_info);
1688
1689 /* Compute the offset into the tile */
1690 *x_offset_el = total_x_offset_el % tile_info.logical_extent_el.w;
1691 *y_offset_el = total_y_offset_el % tile_info.logical_extent_el.h;
1692
1693 /* Compute the offset of the tile in units of whole tiles */
1694 uint32_t x_offset_tl = total_x_offset_el / tile_info.logical_extent_el.w;
1695 uint32_t y_offset_tl = total_y_offset_el / tile_info.logical_extent_el.h;
1696
1697 assert(row_pitch % tile_info.phys_extent_B.width == 0);
1698 *base_address_offset =
1699 y_offset_tl * tile_info.phys_extent_B.h * row_pitch +
1700 x_offset_tl * tile_info.phys_extent_B.h * tile_info.phys_extent_B.w;
1701 }
1702
1703 uint32_t
1704 isl_surf_get_depth_format(const struct isl_device *dev,
1705 const struct isl_surf *surf)
1706 {
1707 /* Support for separate stencil buffers began in gen5. Support for
1708 * interleaved depthstencil buffers ceased in gen7. The intermediate gens,
1709 * those that supported separate and interleaved stencil, were gen5 and
1710 * gen6.
1711 *
1712 * For a list of all available formats, see the Sandybridge PRM >> Volume
1713 * 2 Part 1: 3D/Media - 3D Pipeline >> 3DSTATE_DEPTH_BUFFER >> Surface
1714 * Format (p321).
1715 */
1716
1717 bool has_stencil = surf->usage & ISL_SURF_USAGE_STENCIL_BIT;
1718
1719 assert(surf->usage & ISL_SURF_USAGE_DEPTH_BIT);
1720
1721 if (has_stencil)
1722 assert(ISL_DEV_GEN(dev) < 7);
1723
1724 switch (surf->format) {
1725 default:
1726 unreachable("bad isl depth format");
1727 case ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS:
1728 assert(ISL_DEV_GEN(dev) < 7);
1729 return 0; /* D32_FLOAT_S8X24_UINT */
1730 case ISL_FORMAT_R32_FLOAT:
1731 assert(!has_stencil);
1732 return 1; /* D32_FLOAT */
1733 case ISL_FORMAT_R24_UNORM_X8_TYPELESS:
1734 if (has_stencil) {
1735 assert(ISL_DEV_GEN(dev) < 7);
1736 return 2; /* D24_UNORM_S8_UINT */
1737 } else {
1738 assert(ISL_DEV_GEN(dev) >= 5);
1739 return 3; /* D24_UNORM_X8_UINT */
1740 }
1741 case ISL_FORMAT_R16_UNORM:
1742 assert(!has_stencil);
1743 return 5; /* D16_UNORM */
1744 }
1745 }