isl: implement linear tiling row pitch requirement for display
[mesa.git] / src / intel / isl / isl.c
1 /*
2 * Copyright 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdarg.h>
26 #include <stdio.h>
27
28 #include "genxml/genX_bits.h"
29
30 #include "isl.h"
31 #include "isl_gen4.h"
32 #include "isl_gen6.h"
33 #include "isl_gen7.h"
34 #include "isl_gen8.h"
35 #include "isl_gen9.h"
36 #include "isl_gen12.h"
37 #include "isl_priv.h"
38
39 void
40 isl_memcpy_linear_to_tiled(uint32_t xt1, uint32_t xt2,
41 uint32_t yt1, uint32_t yt2,
42 char *dst, const char *src,
43 uint32_t dst_pitch, int32_t src_pitch,
44 bool has_swizzling,
45 enum isl_tiling tiling,
46 isl_memcpy_type copy_type)
47 {
48 #ifdef USE_SSE41
49 if (copy_type == ISL_MEMCPY_STREAMING_LOAD) {
50 _isl_memcpy_linear_to_tiled_sse41(
51 xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling,
52 tiling, copy_type);
53 return;
54 }
55 #endif
56
57 _isl_memcpy_linear_to_tiled(
58 xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling,
59 tiling, copy_type);
60 }
61
62 void
63 isl_memcpy_tiled_to_linear(uint32_t xt1, uint32_t xt2,
64 uint32_t yt1, uint32_t yt2,
65 char *dst, const char *src,
66 int32_t dst_pitch, uint32_t src_pitch,
67 bool has_swizzling,
68 enum isl_tiling tiling,
69 isl_memcpy_type copy_type)
70 {
71 #ifdef USE_SSE41
72 if (copy_type == ISL_MEMCPY_STREAMING_LOAD) {
73 _isl_memcpy_tiled_to_linear_sse41(
74 xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling,
75 tiling, copy_type);
76 return;
77 }
78 #endif
79
80 _isl_memcpy_tiled_to_linear(
81 xt1, xt2, yt1, yt2, dst, src, dst_pitch, src_pitch, has_swizzling,
82 tiling, copy_type);
83 }
84
85 void PRINTFLIKE(3, 4) UNUSED
86 __isl_finishme(const char *file, int line, const char *fmt, ...)
87 {
88 va_list ap;
89 char buf[512];
90
91 va_start(ap, fmt);
92 vsnprintf(buf, sizeof(buf), fmt, ap);
93 va_end(ap);
94
95 fprintf(stderr, "%s:%d: FINISHME: %s\n", file, line, buf);
96 }
97
98 static void
99 isl_device_setup_mocs(struct isl_device *dev)
100 {
101 if (dev->info->gen >= 12) {
102 /* TODO: Set PTE to MOCS 61 when the kernel is ready */
103 /* TC=1/LLC Only, LeCC=1/Uncacheable, LRUM=0, L3CC=1/Uncacheable */
104 dev->mocs.external = 3 << 1;
105 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
106 dev->mocs.internal = 2 << 1;
107 } else if (dev->info->gen >= 9) {
108 /* TC=LLC/eLLC, LeCC=PTE, LRUM=3, L3CC=WB */
109 dev->mocs.external = 1 << 1;
110 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
111 dev->mocs.internal = 2 << 1;
112 } else if (dev->info->gen >= 8) {
113 /* MEMORY_OBJECT_CONTROL_STATE:
114 * .MemoryTypeLLCeLLCCacheabilityControl = UCwithFenceifcoherentcycle,
115 * .TargetCache = L3DefertoPATforLLCeLLCselection,
116 * .AgeforQUADLRU = 0
117 */
118 dev->mocs.external = 0x18;
119 /* MEMORY_OBJECT_CONTROL_STATE:
120 * .MemoryTypeLLCeLLCCacheabilityControl = WB,
121 * .TargetCache = L3DefertoPATforLLCeLLCselection,
122 * .AgeforQUADLRU = 0
123 */
124 dev->mocs.internal = 0x78;
125 } else if (dev->info->gen >= 7) {
126 if (dev->info->is_haswell) {
127 /* MEMORY_OBJECT_CONTROL_STATE:
128 * .LLCeLLCCacheabilityControlLLCCC = 0,
129 * .L3CacheabilityControlL3CC = 1,
130 */
131 dev->mocs.internal = 1;
132 dev->mocs.external = 1;
133 } else {
134 /* MEMORY_OBJECT_CONTROL_STATE:
135 * .GraphicsDataTypeGFDT = 0,
136 * .LLCCacheabilityControlLLCCC = 0,
137 * .L3CacheabilityControlL3CC = 1,
138 */
139 dev->mocs.internal = 1;
140 dev->mocs.external = 1;
141 }
142 } else {
143 dev->mocs.internal = 0;
144 dev->mocs.external = 0;
145 }
146 }
147
148 void
149 isl_device_init(struct isl_device *dev,
150 const struct gen_device_info *info,
151 bool has_bit6_swizzling)
152 {
153 /* Gen8+ don't have bit6 swizzling, ensure callsite is not confused. */
154 assert(!(has_bit6_swizzling && info->gen >= 8));
155
156 dev->info = info;
157 dev->use_separate_stencil = ISL_DEV_GEN(dev) >= 6;
158 dev->has_bit6_swizzling = has_bit6_swizzling;
159
160 /* The ISL_DEV macros may be defined in the CFLAGS, thus hardcoding some
161 * device properties at buildtime. Verify that the macros with the device
162 * properties chosen during runtime.
163 */
164 ISL_DEV_GEN_SANITIZE(dev);
165 ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(dev);
166
167 /* Did we break hiz or stencil? */
168 if (ISL_DEV_USE_SEPARATE_STENCIL(dev))
169 assert(info->has_hiz_and_separate_stencil);
170 if (info->must_use_separate_stencil)
171 assert(ISL_DEV_USE_SEPARATE_STENCIL(dev));
172
173 dev->ss.size = RENDER_SURFACE_STATE_length(info) * 4;
174 dev->ss.align = isl_align(dev->ss.size, 32);
175
176 dev->ss.clear_color_state_size =
177 isl_align(CLEAR_COLOR_length(info) * 4, 64);
178 dev->ss.clear_color_state_offset =
179 RENDER_SURFACE_STATE_ClearValueAddress_start(info) / 32 * 4;
180
181 dev->ss.clear_value_size =
182 isl_align(RENDER_SURFACE_STATE_RedClearColor_bits(info) +
183 RENDER_SURFACE_STATE_GreenClearColor_bits(info) +
184 RENDER_SURFACE_STATE_BlueClearColor_bits(info) +
185 RENDER_SURFACE_STATE_AlphaClearColor_bits(info), 32) / 8;
186
187 dev->ss.clear_value_offset =
188 RENDER_SURFACE_STATE_RedClearColor_start(info) / 32 * 4;
189
190 assert(RENDER_SURFACE_STATE_SurfaceBaseAddress_start(info) % 8 == 0);
191 dev->ss.addr_offset =
192 RENDER_SURFACE_STATE_SurfaceBaseAddress_start(info) / 8;
193
194 /* The "Auxiliary Surface Base Address" field starts a bit higher up
195 * because the bottom 12 bits are used for other things. Round down to
196 * the nearest dword before.
197 */
198 dev->ss.aux_addr_offset =
199 (RENDER_SURFACE_STATE_AuxiliarySurfaceBaseAddress_start(info) & ~31) / 8;
200
201 dev->ds.size = _3DSTATE_DEPTH_BUFFER_length(info) * 4;
202 assert(_3DSTATE_DEPTH_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0);
203 dev->ds.depth_offset =
204 _3DSTATE_DEPTH_BUFFER_SurfaceBaseAddress_start(info) / 8;
205
206 if (dev->use_separate_stencil) {
207 dev->ds.size += _3DSTATE_STENCIL_BUFFER_length(info) * 4 +
208 _3DSTATE_HIER_DEPTH_BUFFER_length(info) * 4 +
209 _3DSTATE_CLEAR_PARAMS_length(info) * 4;
210
211 assert(_3DSTATE_STENCIL_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0);
212 dev->ds.stencil_offset =
213 _3DSTATE_DEPTH_BUFFER_length(info) * 4 +
214 _3DSTATE_STENCIL_BUFFER_SurfaceBaseAddress_start(info) / 8;
215
216 assert(_3DSTATE_HIER_DEPTH_BUFFER_SurfaceBaseAddress_start(info) % 8 == 0);
217 dev->ds.hiz_offset =
218 _3DSTATE_DEPTH_BUFFER_length(info) * 4 +
219 _3DSTATE_STENCIL_BUFFER_length(info) * 4 +
220 _3DSTATE_HIER_DEPTH_BUFFER_SurfaceBaseAddress_start(info) / 8;
221 } else {
222 dev->ds.stencil_offset = 0;
223 dev->ds.hiz_offset = 0;
224 }
225
226 if (ISL_DEV_GEN(dev) >= 12) {
227 dev->ds.size += GEN12_MI_LOAD_REGISTER_IMM_length * 4 * 2;
228 }
229
230 isl_device_setup_mocs(dev);
231 }
232
233 /**
234 * @brief Query the set of multisamples supported by the device.
235 *
236 * This function always returns non-zero, as ISL_SAMPLE_COUNT_1_BIT is always
237 * supported.
238 */
239 isl_sample_count_mask_t ATTRIBUTE_CONST
240 isl_device_get_sample_counts(struct isl_device *dev)
241 {
242 if (ISL_DEV_GEN(dev) >= 9) {
243 return ISL_SAMPLE_COUNT_1_BIT |
244 ISL_SAMPLE_COUNT_2_BIT |
245 ISL_SAMPLE_COUNT_4_BIT |
246 ISL_SAMPLE_COUNT_8_BIT |
247 ISL_SAMPLE_COUNT_16_BIT;
248 } else if (ISL_DEV_GEN(dev) >= 8) {
249 return ISL_SAMPLE_COUNT_1_BIT |
250 ISL_SAMPLE_COUNT_2_BIT |
251 ISL_SAMPLE_COUNT_4_BIT |
252 ISL_SAMPLE_COUNT_8_BIT;
253 } else if (ISL_DEV_GEN(dev) >= 7) {
254 return ISL_SAMPLE_COUNT_1_BIT |
255 ISL_SAMPLE_COUNT_4_BIT |
256 ISL_SAMPLE_COUNT_8_BIT;
257 } else if (ISL_DEV_GEN(dev) >= 6) {
258 return ISL_SAMPLE_COUNT_1_BIT |
259 ISL_SAMPLE_COUNT_4_BIT;
260 } else {
261 return ISL_SAMPLE_COUNT_1_BIT;
262 }
263 }
264
265 /**
266 * @param[out] info is written only on success
267 */
268 static void
269 isl_tiling_get_info(enum isl_tiling tiling,
270 uint32_t format_bpb,
271 struct isl_tile_info *tile_info)
272 {
273 const uint32_t bs = format_bpb / 8;
274 struct isl_extent2d logical_el, phys_B;
275
276 if (tiling != ISL_TILING_LINEAR && !isl_is_pow2(format_bpb)) {
277 /* It is possible to have non-power-of-two formats in a tiled buffer.
278 * The easiest way to handle this is to treat the tile as if it is three
279 * times as wide. This way no pixel will ever cross a tile boundary.
280 * This really only works on legacy X and Y tiling formats.
281 */
282 assert(tiling == ISL_TILING_X || tiling == ISL_TILING_Y0);
283 assert(bs % 3 == 0 && isl_is_pow2(format_bpb / 3));
284 isl_tiling_get_info(tiling, format_bpb / 3, tile_info);
285 return;
286 }
287
288 switch (tiling) {
289 case ISL_TILING_LINEAR:
290 assert(bs > 0);
291 logical_el = isl_extent2d(1, 1);
292 phys_B = isl_extent2d(bs, 1);
293 break;
294
295 case ISL_TILING_X:
296 assert(bs > 0);
297 logical_el = isl_extent2d(512 / bs, 8);
298 phys_B = isl_extent2d(512, 8);
299 break;
300
301 case ISL_TILING_Y0:
302 assert(bs > 0);
303 logical_el = isl_extent2d(128 / bs, 32);
304 phys_B = isl_extent2d(128, 32);
305 break;
306
307 case ISL_TILING_W:
308 assert(bs == 1);
309 logical_el = isl_extent2d(64, 64);
310 /* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfacePitch:
311 *
312 * "If the surface is a stencil buffer (and thus has Tile Mode set
313 * to TILEMODE_WMAJOR), the pitch must be set to 2x the value
314 * computed based on width, as the stencil buffer is stored with two
315 * rows interleaved."
316 *
317 * This, together with the fact that stencil buffers are referred to as
318 * being Y-tiled in the PRMs for older hardware implies that the
319 * physical size of a W-tile is actually the same as for a Y-tile.
320 */
321 phys_B = isl_extent2d(128, 32);
322 break;
323
324 case ISL_TILING_Yf:
325 case ISL_TILING_Ys: {
326 bool is_Ys = tiling == ISL_TILING_Ys;
327
328 assert(bs > 0);
329 unsigned width = 1 << (6 + (ffs(bs) / 2) + (2 * is_Ys));
330 unsigned height = 1 << (6 - (ffs(bs) / 2) + (2 * is_Ys));
331
332 logical_el = isl_extent2d(width / bs, height);
333 phys_B = isl_extent2d(width, height);
334 break;
335 }
336
337 case ISL_TILING_HIZ:
338 /* HiZ buffers are required to have ISL_FORMAT_HIZ which is an 8x4
339 * 128bpb format. The tiling has the same physical dimensions as
340 * Y-tiling but actually has two HiZ columns per Y-tiled column.
341 */
342 assert(bs == 16);
343 logical_el = isl_extent2d(16, 16);
344 phys_B = isl_extent2d(128, 32);
345 break;
346
347 case ISL_TILING_CCS:
348 /* CCS surfaces are required to have one of the GENX_CCS_* formats which
349 * have a block size of 1 or 2 bits per block and each CCS element
350 * corresponds to one cache-line pair in the main surface. From the Sky
351 * Lake PRM Vol. 12 in the section on planes:
352 *
353 * "The Color Control Surface (CCS) contains the compression status
354 * of the cache-line pairs. The compression state of the cache-line
355 * pair is specified by 2 bits in the CCS. Each CCS cache-line
356 * represents an area on the main surface of 16x16 sets of 128 byte
357 * Y-tiled cache-line-pairs. CCS is always Y tiled."
358 *
359 * The CCS being Y-tiled implies that it's an 8x8 grid of cache-lines.
360 * Since each cache line corresponds to a 16x16 set of cache-line pairs,
361 * that yields total tile area of 128x128 cache-line pairs or CCS
362 * elements. On older hardware, each CCS element is 1 bit and the tile
363 * is 128x256 elements.
364 */
365 assert(format_bpb == 1 || format_bpb == 2);
366 logical_el = isl_extent2d(128, 256 / format_bpb);
367 phys_B = isl_extent2d(128, 32);
368 break;
369
370 case ISL_TILING_GEN12_CCS:
371 /* From the Bspec, Gen Graphics > Gen12 > Memory Data Formats > Memory
372 * Compression > Memory Compression - Gen12:
373 *
374 * 4 bits of auxiliary plane data are required for 2 cachelines of
375 * main surface data. This results in a single cacheline of auxiliary
376 * plane data mapping to 4 4K pages of main surface data for the 4K
377 * pages (tile Y ) and 1 64K Tile Ys page.
378 *
379 * The Y-tiled pairing bit of 9 shown in the table below that Bspec
380 * section expresses that the 2 cachelines of main surface data are
381 * horizontally adjacent.
382 *
383 * TODO: Handle Ys, Yf and their pairing bits.
384 *
385 * Therefore, each CCS cacheline represents a 512Bx32 row area and each
386 * element represents a 32Bx4 row area.
387 */
388 assert(format_bpb == 4);
389 logical_el = isl_extent2d(16, 8);
390 phys_B = isl_extent2d(64, 1);
391 break;
392
393 default:
394 unreachable("not reached");
395 } /* end switch */
396
397 *tile_info = (struct isl_tile_info) {
398 .tiling = tiling,
399 .format_bpb = format_bpb,
400 .logical_extent_el = logical_el,
401 .phys_extent_B = phys_B,
402 };
403 }
404
405 bool
406 isl_color_value_is_zero(union isl_color_value value,
407 enum isl_format format)
408 {
409 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
410
411 #define RETURN_FALSE_IF_NOT_0(c, i) \
412 if (fmtl->channels.c.bits && value.u32[i] != 0) \
413 return false
414
415 RETURN_FALSE_IF_NOT_0(r, 0);
416 RETURN_FALSE_IF_NOT_0(g, 1);
417 RETURN_FALSE_IF_NOT_0(b, 2);
418 RETURN_FALSE_IF_NOT_0(a, 3);
419
420 #undef RETURN_FALSE_IF_NOT_0
421
422 return true;
423 }
424
425 bool
426 isl_color_value_is_zero_one(union isl_color_value value,
427 enum isl_format format)
428 {
429 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
430
431 #define RETURN_FALSE_IF_NOT_0_1(c, i, field) \
432 if (fmtl->channels.c.bits && value.field[i] != 0 && value.field[i] != 1) \
433 return false
434
435 if (isl_format_has_int_channel(format)) {
436 RETURN_FALSE_IF_NOT_0_1(r, 0, u32);
437 RETURN_FALSE_IF_NOT_0_1(g, 1, u32);
438 RETURN_FALSE_IF_NOT_0_1(b, 2, u32);
439 RETURN_FALSE_IF_NOT_0_1(a, 3, u32);
440 } else {
441 RETURN_FALSE_IF_NOT_0_1(r, 0, f32);
442 RETURN_FALSE_IF_NOT_0_1(g, 1, f32);
443 RETURN_FALSE_IF_NOT_0_1(b, 2, f32);
444 RETURN_FALSE_IF_NOT_0_1(a, 3, f32);
445 }
446
447 #undef RETURN_FALSE_IF_NOT_0_1
448
449 return true;
450 }
451
452 /**
453 * @param[out] tiling is set only on success
454 */
455 static bool
456 isl_surf_choose_tiling(const struct isl_device *dev,
457 const struct isl_surf_init_info *restrict info,
458 enum isl_tiling *tiling)
459 {
460 isl_tiling_flags_t tiling_flags = info->tiling_flags;
461
462 /* HiZ surfaces always use the HiZ tiling */
463 if (info->usage & ISL_SURF_USAGE_HIZ_BIT) {
464 assert(info->format == ISL_FORMAT_HIZ);
465 assert(tiling_flags == ISL_TILING_HIZ_BIT);
466 *tiling = isl_tiling_flag_to_enum(tiling_flags);
467 return true;
468 }
469
470 /* CCS surfaces always use the CCS tiling */
471 if (info->usage & ISL_SURF_USAGE_CCS_BIT) {
472 assert(isl_format_get_layout(info->format)->txc == ISL_TXC_CCS);
473 UNUSED bool ivb_ccs = ISL_DEV_GEN(dev) < 12 &&
474 tiling_flags == ISL_TILING_CCS_BIT;
475 UNUSED bool tgl_ccs = ISL_DEV_GEN(dev) >= 12 &&
476 tiling_flags == ISL_TILING_GEN12_CCS_BIT;
477 assert(ivb_ccs != tgl_ccs);
478 *tiling = isl_tiling_flag_to_enum(tiling_flags);
479 return true;
480 }
481
482 if (ISL_DEV_GEN(dev) >= 6) {
483 isl_gen6_filter_tiling(dev, info, &tiling_flags);
484 } else {
485 isl_gen4_filter_tiling(dev, info, &tiling_flags);
486 }
487
488 #define CHOOSE(__tiling) \
489 do { \
490 if (tiling_flags & (1u << (__tiling))) { \
491 *tiling = (__tiling); \
492 return true; \
493 } \
494 } while (0)
495
496 /* Of the tiling modes remaining, choose the one that offers the best
497 * performance.
498 */
499
500 if (info->dim == ISL_SURF_DIM_1D) {
501 /* Prefer linear for 1D surfaces because they do not benefit from
502 * tiling. To the contrary, tiling leads to wasted memory and poor
503 * memory locality due to the swizzling and alignment restrictions
504 * required in tiled surfaces.
505 */
506 CHOOSE(ISL_TILING_LINEAR);
507 }
508
509 CHOOSE(ISL_TILING_Ys);
510 CHOOSE(ISL_TILING_Yf);
511 CHOOSE(ISL_TILING_Y0);
512 CHOOSE(ISL_TILING_X);
513 CHOOSE(ISL_TILING_W);
514 CHOOSE(ISL_TILING_LINEAR);
515
516 #undef CHOOSE
517
518 /* No tiling mode accomodates the inputs. */
519 return false;
520 }
521
522 static bool
523 isl_choose_msaa_layout(const struct isl_device *dev,
524 const struct isl_surf_init_info *info,
525 enum isl_tiling tiling,
526 enum isl_msaa_layout *msaa_layout)
527 {
528 if (ISL_DEV_GEN(dev) >= 8) {
529 return isl_gen8_choose_msaa_layout(dev, info, tiling, msaa_layout);
530 } else if (ISL_DEV_GEN(dev) >= 7) {
531 return isl_gen7_choose_msaa_layout(dev, info, tiling, msaa_layout);
532 } else if (ISL_DEV_GEN(dev) >= 6) {
533 return isl_gen6_choose_msaa_layout(dev, info, tiling, msaa_layout);
534 } else {
535 return isl_gen4_choose_msaa_layout(dev, info, tiling, msaa_layout);
536 }
537 }
538
539 struct isl_extent2d
540 isl_get_interleaved_msaa_px_size_sa(uint32_t samples)
541 {
542 assert(isl_is_pow2(samples));
543
544 /* From the Broadwell PRM >> Volume 5: Memory Views >> Computing Mip Level
545 * Sizes (p133):
546 *
547 * If the surface is multisampled and it is a depth or stencil surface
548 * or Multisampled Surface StorageFormat in SURFACE_STATE is
549 * MSFMT_DEPTH_STENCIL, W_L and H_L must be adjusted as follows before
550 * proceeding: [...]
551 */
552 return (struct isl_extent2d) {
553 .width = 1 << ((ffs(samples) - 0) / 2),
554 .height = 1 << ((ffs(samples) - 1) / 2),
555 };
556 }
557
558 static void
559 isl_msaa_interleaved_scale_px_to_sa(uint32_t samples,
560 uint32_t *width, uint32_t *height)
561 {
562 const struct isl_extent2d px_size_sa =
563 isl_get_interleaved_msaa_px_size_sa(samples);
564
565 if (width)
566 *width = isl_align(*width, 2) * px_size_sa.width;
567 if (height)
568 *height = isl_align(*height, 2) * px_size_sa.height;
569 }
570
571 static enum isl_array_pitch_span
572 isl_choose_array_pitch_span(const struct isl_device *dev,
573 const struct isl_surf_init_info *restrict info,
574 enum isl_dim_layout dim_layout,
575 const struct isl_extent4d *phys_level0_sa)
576 {
577 switch (dim_layout) {
578 case ISL_DIM_LAYOUT_GEN9_1D:
579 case ISL_DIM_LAYOUT_GEN4_2D:
580 if (ISL_DEV_GEN(dev) >= 8) {
581 /* QPitch becomes programmable in Broadwell. So choose the
582 * most compact QPitch possible in order to conserve memory.
583 *
584 * From the Broadwell PRM >> Volume 2d: Command Reference: Structures
585 * >> RENDER_SURFACE_STATE Surface QPitch (p325):
586 *
587 * - Software must ensure that this field is set to a value
588 * sufficiently large such that the array slices in the surface
589 * do not overlap. Refer to the Memory Data Formats section for
590 * information on how surfaces are stored in memory.
591 *
592 * - This field specifies the distance in rows between array
593 * slices. It is used only in the following cases:
594 *
595 * - Surface Array is enabled OR
596 * - Number of Mulitsamples is not NUMSAMPLES_1 and
597 * Multisampled Surface Storage Format set to MSFMT_MSS OR
598 * - Surface Type is SURFTYPE_CUBE
599 */
600 return ISL_ARRAY_PITCH_SPAN_COMPACT;
601 } else if (ISL_DEV_GEN(dev) >= 7) {
602 /* Note that Ivybridge introduces
603 * RENDER_SURFACE_STATE.SurfaceArraySpacing, which provides the
604 * driver more control over the QPitch.
605 */
606
607 if (phys_level0_sa->array_len == 1) {
608 /* The hardware will never use the QPitch. So choose the most
609 * compact QPitch possible in order to conserve memory.
610 */
611 return ISL_ARRAY_PITCH_SPAN_COMPACT;
612 }
613
614 if (isl_surf_usage_is_depth_or_stencil(info->usage) ||
615 (info->usage & ISL_SURF_USAGE_HIZ_BIT)) {
616 /* From the Ivybridge PRM >> Volume 1 Part 1: Graphics Core >>
617 * Section 6.18.4.7: Surface Arrays (p112):
618 *
619 * If Surface Array Spacing is set to ARYSPC_FULL (note that
620 * the depth buffer and stencil buffer have an implied value of
621 * ARYSPC_FULL):
622 */
623 return ISL_ARRAY_PITCH_SPAN_FULL;
624 }
625
626 if (info->levels == 1) {
627 /* We are able to set RENDER_SURFACE_STATE.SurfaceArraySpacing
628 * to ARYSPC_LOD0.
629 */
630 return ISL_ARRAY_PITCH_SPAN_COMPACT;
631 }
632
633 return ISL_ARRAY_PITCH_SPAN_FULL;
634 } else if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) &&
635 ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
636 isl_surf_usage_is_stencil(info->usage)) {
637 /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
638 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
639 *
640 * The separate stencil buffer does not support mip mapping, thus
641 * the storage for LODs other than LOD 0 is not needed.
642 */
643 assert(info->levels == 1);
644 return ISL_ARRAY_PITCH_SPAN_COMPACT;
645 } else {
646 if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) &&
647 ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
648 isl_surf_usage_is_stencil(info->usage)) {
649 /* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
650 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
651 *
652 * The separate stencil buffer does not support mip mapping,
653 * thus the storage for LODs other than LOD 0 is not needed.
654 */
655 assert(info->levels == 1);
656 assert(phys_level0_sa->array_len == 1);
657 return ISL_ARRAY_PITCH_SPAN_COMPACT;
658 }
659
660 if (phys_level0_sa->array_len == 1) {
661 /* The hardware will never use the QPitch. So choose the most
662 * compact QPitch possible in order to conserve memory.
663 */
664 return ISL_ARRAY_PITCH_SPAN_COMPACT;
665 }
666
667 return ISL_ARRAY_PITCH_SPAN_FULL;
668 }
669
670 case ISL_DIM_LAYOUT_GEN4_3D:
671 /* The hardware will never use the QPitch. So choose the most
672 * compact QPitch possible in order to conserve memory.
673 */
674 return ISL_ARRAY_PITCH_SPAN_COMPACT;
675
676 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
677 /* Each array image in the gen6 stencil of HiZ surface is compact in the
678 * sense that every LOD is a compact array of the same size as LOD0.
679 */
680 return ISL_ARRAY_PITCH_SPAN_COMPACT;
681 }
682
683 unreachable("bad isl_dim_layout");
684 return ISL_ARRAY_PITCH_SPAN_FULL;
685 }
686
687 static void
688 isl_choose_image_alignment_el(const struct isl_device *dev,
689 const struct isl_surf_init_info *restrict info,
690 enum isl_tiling tiling,
691 enum isl_dim_layout dim_layout,
692 enum isl_msaa_layout msaa_layout,
693 struct isl_extent3d *image_align_el)
694 {
695 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
696 if (fmtl->txc == ISL_TXC_MCS) {
697 assert(tiling == ISL_TILING_Y0);
698
699 /*
700 * IvyBrigde PRM Vol 2, Part 1, "11.7 MCS Buffer for Render Target(s)":
701 *
702 * Height, width, and layout of MCS buffer in this case must match with
703 * Render Target height, width, and layout. MCS buffer is tiledY.
704 *
705 * To avoid wasting memory, choose the smallest alignment possible:
706 * HALIGN_4 and VALIGN_4.
707 */
708 *image_align_el = isl_extent3d(4, 4, 1);
709 return;
710 } else if (info->format == ISL_FORMAT_HIZ) {
711 assert(ISL_DEV_GEN(dev) >= 6);
712 if (ISL_DEV_GEN(dev) == 6) {
713 /* HiZ surfaces on Sandy Bridge are packed tightly. */
714 *image_align_el = isl_extent3d(1, 1, 1);
715 } else if (ISL_DEV_GEN(dev) < 12) {
716 /* On gen7+, HiZ surfaces are always aligned to 16x8 pixels in the
717 * primary surface which works out to 2x2 HiZ elments.
718 */
719 *image_align_el = isl_extent3d(2, 2, 1);
720 } else {
721 /* On gen12+, HiZ surfaces are always aligned to 16x16 pixels in the
722 * primary surface which works out to 2x4 HiZ elments.
723 * TODO: Verify
724 */
725 *image_align_el = isl_extent3d(2, 4, 1);
726 }
727 return;
728 }
729
730 if (ISL_DEV_GEN(dev) >= 12) {
731 isl_gen12_choose_image_alignment_el(dev, info, tiling, dim_layout,
732 msaa_layout, image_align_el);
733 } else if (ISL_DEV_GEN(dev) >= 9) {
734 isl_gen9_choose_image_alignment_el(dev, info, tiling, dim_layout,
735 msaa_layout, image_align_el);
736 } else if (ISL_DEV_GEN(dev) >= 8) {
737 isl_gen8_choose_image_alignment_el(dev, info, tiling, dim_layout,
738 msaa_layout, image_align_el);
739 } else if (ISL_DEV_GEN(dev) >= 7) {
740 isl_gen7_choose_image_alignment_el(dev, info, tiling, dim_layout,
741 msaa_layout, image_align_el);
742 } else if (ISL_DEV_GEN(dev) >= 6) {
743 isl_gen6_choose_image_alignment_el(dev, info, tiling, dim_layout,
744 msaa_layout, image_align_el);
745 } else {
746 isl_gen4_choose_image_alignment_el(dev, info, tiling, dim_layout,
747 msaa_layout, image_align_el);
748 }
749 }
750
751 static enum isl_dim_layout
752 isl_surf_choose_dim_layout(const struct isl_device *dev,
753 enum isl_surf_dim logical_dim,
754 enum isl_tiling tiling,
755 isl_surf_usage_flags_t usage)
756 {
757 /* Sandy bridge needs a special layout for HiZ and stencil. */
758 if (ISL_DEV_GEN(dev) == 6 &&
759 (tiling == ISL_TILING_W || tiling == ISL_TILING_HIZ))
760 return ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ;
761
762 if (ISL_DEV_GEN(dev) >= 9) {
763 switch (logical_dim) {
764 case ISL_SURF_DIM_1D:
765 /* From the Sky Lake PRM Vol. 5, "1D Surfaces":
766 *
767 * One-dimensional surfaces use a tiling mode of linear.
768 * Technically, they are not tiled resources, but the Tiled
769 * Resource Mode field in RENDER_SURFACE_STATE is still used to
770 * indicate the alignment requirements for this linear surface
771 * (See 1D Alignment requirements for how 4K and 64KB Tiled
772 * Resource Modes impact alignment). Alternatively, a 1D surface
773 * can be defined as a 2D tiled surface (e.g. TileY or TileX) with
774 * a height of 0.
775 *
776 * In other words, ISL_DIM_LAYOUT_GEN9_1D is only used for linear
777 * surfaces and, for tiled surfaces, ISL_DIM_LAYOUT_GEN4_2D is used.
778 */
779 if (tiling == ISL_TILING_LINEAR)
780 return ISL_DIM_LAYOUT_GEN9_1D;
781 else
782 return ISL_DIM_LAYOUT_GEN4_2D;
783 case ISL_SURF_DIM_2D:
784 case ISL_SURF_DIM_3D:
785 return ISL_DIM_LAYOUT_GEN4_2D;
786 }
787 } else {
788 switch (logical_dim) {
789 case ISL_SURF_DIM_1D:
790 case ISL_SURF_DIM_2D:
791 /* From the G45 PRM Vol. 1a, "6.17.4.1 Hardware Cube Map Layout":
792 *
793 * The cube face textures are stored in the same way as 3D surfaces
794 * are stored (see section 6.17.5 for details). For cube surfaces,
795 * however, the depth is equal to the number of faces (always 6) and
796 * is not reduced for each MIP.
797 */
798 if (ISL_DEV_GEN(dev) == 4 && (usage & ISL_SURF_USAGE_CUBE_BIT))
799 return ISL_DIM_LAYOUT_GEN4_3D;
800
801 return ISL_DIM_LAYOUT_GEN4_2D;
802 case ISL_SURF_DIM_3D:
803 return ISL_DIM_LAYOUT_GEN4_3D;
804 }
805 }
806
807 unreachable("bad isl_surf_dim");
808 return ISL_DIM_LAYOUT_GEN4_2D;
809 }
810
811 /**
812 * Calculate the physical extent of the surface's first level, in units of
813 * surface samples.
814 */
815 static void
816 isl_calc_phys_level0_extent_sa(const struct isl_device *dev,
817 const struct isl_surf_init_info *restrict info,
818 enum isl_dim_layout dim_layout,
819 enum isl_tiling tiling,
820 enum isl_msaa_layout msaa_layout,
821 struct isl_extent4d *phys_level0_sa)
822 {
823 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
824
825 if (isl_format_is_yuv(info->format))
826 isl_finishme("%s:%s: YUV format", __FILE__, __func__);
827
828 switch (info->dim) {
829 case ISL_SURF_DIM_1D:
830 assert(info->height == 1);
831 assert(info->depth == 1);
832 assert(info->samples == 1);
833
834 switch (dim_layout) {
835 case ISL_DIM_LAYOUT_GEN4_3D:
836 unreachable("bad isl_dim_layout");
837
838 case ISL_DIM_LAYOUT_GEN9_1D:
839 case ISL_DIM_LAYOUT_GEN4_2D:
840 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
841 *phys_level0_sa = (struct isl_extent4d) {
842 .w = info->width,
843 .h = 1,
844 .d = 1,
845 .a = info->array_len,
846 };
847 break;
848 }
849 break;
850
851 case ISL_SURF_DIM_2D:
852 if (ISL_DEV_GEN(dev) == 4 && (info->usage & ISL_SURF_USAGE_CUBE_BIT))
853 assert(dim_layout == ISL_DIM_LAYOUT_GEN4_3D);
854 else
855 assert(dim_layout == ISL_DIM_LAYOUT_GEN4_2D ||
856 dim_layout == ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ);
857
858 if (tiling == ISL_TILING_Ys && info->samples > 1)
859 isl_finishme("%s:%s: multisample TileYs layout", __FILE__, __func__);
860
861 switch (msaa_layout) {
862 case ISL_MSAA_LAYOUT_NONE:
863 assert(info->depth == 1);
864 assert(info->samples == 1);
865
866 *phys_level0_sa = (struct isl_extent4d) {
867 .w = info->width,
868 .h = info->height,
869 .d = 1,
870 .a = info->array_len,
871 };
872 break;
873
874 case ISL_MSAA_LAYOUT_ARRAY:
875 assert(info->depth == 1);
876 assert(info->levels == 1);
877 assert(isl_format_supports_multisampling(dev->info, info->format));
878 assert(fmtl->bw == 1 && fmtl->bh == 1);
879
880 *phys_level0_sa = (struct isl_extent4d) {
881 .w = info->width,
882 .h = info->height,
883 .d = 1,
884 .a = info->array_len * info->samples,
885 };
886 break;
887
888 case ISL_MSAA_LAYOUT_INTERLEAVED:
889 assert(info->depth == 1);
890 assert(info->levels == 1);
891 assert(isl_format_supports_multisampling(dev->info, info->format));
892
893 *phys_level0_sa = (struct isl_extent4d) {
894 .w = info->width,
895 .h = info->height,
896 .d = 1,
897 .a = info->array_len,
898 };
899
900 isl_msaa_interleaved_scale_px_to_sa(info->samples,
901 &phys_level0_sa->w,
902 &phys_level0_sa->h);
903 break;
904 }
905 break;
906
907 case ISL_SURF_DIM_3D:
908 assert(info->array_len == 1);
909 assert(info->samples == 1);
910
911 if (fmtl->bd > 1) {
912 isl_finishme("%s:%s: compression block with depth > 1",
913 __FILE__, __func__);
914 }
915
916 switch (dim_layout) {
917 case ISL_DIM_LAYOUT_GEN9_1D:
918 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
919 unreachable("bad isl_dim_layout");
920
921 case ISL_DIM_LAYOUT_GEN4_2D:
922 assert(ISL_DEV_GEN(dev) >= 9);
923
924 *phys_level0_sa = (struct isl_extent4d) {
925 .w = info->width,
926 .h = info->height,
927 .d = 1,
928 .a = info->depth,
929 };
930 break;
931
932 case ISL_DIM_LAYOUT_GEN4_3D:
933 assert(ISL_DEV_GEN(dev) < 9);
934 *phys_level0_sa = (struct isl_extent4d) {
935 .w = info->width,
936 .h = info->height,
937 .d = info->depth,
938 .a = 1,
939 };
940 break;
941 }
942 break;
943 }
944 }
945
946 /**
947 * Calculate the pitch between physical array slices, in units of rows of
948 * surface elements.
949 */
950 static uint32_t
951 isl_calc_array_pitch_el_rows_gen4_2d(
952 const struct isl_device *dev,
953 const struct isl_surf_init_info *restrict info,
954 const struct isl_tile_info *tile_info,
955 const struct isl_extent3d *image_align_sa,
956 const struct isl_extent4d *phys_level0_sa,
957 enum isl_array_pitch_span array_pitch_span,
958 const struct isl_extent2d *phys_slice0_sa)
959 {
960 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
961 uint32_t pitch_sa_rows = 0;
962
963 switch (array_pitch_span) {
964 case ISL_ARRAY_PITCH_SPAN_COMPACT:
965 pitch_sa_rows = isl_align_npot(phys_slice0_sa->h, image_align_sa->h);
966 break;
967 case ISL_ARRAY_PITCH_SPAN_FULL: {
968 /* The QPitch equation is found in the Broadwell PRM >> Volume 5:
969 * Memory Views >> Common Surface Formats >> Surface Layout >> 2D
970 * Surfaces >> Surface Arrays.
971 */
972 uint32_t H0_sa = phys_level0_sa->h;
973 uint32_t H1_sa = isl_minify(H0_sa, 1);
974
975 uint32_t h0_sa = isl_align_npot(H0_sa, image_align_sa->h);
976 uint32_t h1_sa = isl_align_npot(H1_sa, image_align_sa->h);
977
978 uint32_t m;
979 if (ISL_DEV_GEN(dev) >= 7) {
980 /* The QPitch equation changed slightly in Ivybridge. */
981 m = 12;
982 } else {
983 m = 11;
984 }
985
986 pitch_sa_rows = h0_sa + h1_sa + (m * image_align_sa->h);
987
988 if (ISL_DEV_GEN(dev) == 6 && info->samples > 1 &&
989 (info->height % 4 == 1)) {
990 /* [SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
991 * Graphics Core >> Section 7.18.3.7: Surface Arrays:
992 *
993 * [SNB] Errata: Sampler MSAA Qpitch will be 4 greater than
994 * the value calculated in the equation above , for every
995 * other odd Surface Height starting from 1 i.e. 1,5,9,13.
996 *
997 * XXX(chadv): Is the errata natural corollary of the physical
998 * layout of interleaved samples?
999 */
1000 pitch_sa_rows += 4;
1001 }
1002
1003 pitch_sa_rows = isl_align_npot(pitch_sa_rows, fmtl->bh);
1004 } /* end case */
1005 break;
1006 }
1007
1008 assert(pitch_sa_rows % fmtl->bh == 0);
1009 uint32_t pitch_el_rows = pitch_sa_rows / fmtl->bh;
1010
1011 if (ISL_DEV_GEN(dev) >= 9 && ISL_DEV_GEN(dev) <= 11 &&
1012 fmtl->txc == ISL_TXC_CCS) {
1013 /*
1014 * From the Sky Lake PRM Vol 7, "MCS Buffer for Render Target(s)" (p. 632):
1015 *
1016 * "Mip-mapped and arrayed surfaces are supported with MCS buffer
1017 * layout with these alignments in the RT space: Horizontal
1018 * Alignment = 128 and Vertical Alignment = 64."
1019 *
1020 * From the Sky Lake PRM Vol. 2d, "RENDER_SURFACE_STATE" (p. 435):
1021 *
1022 * "For non-multisampled render target's CCS auxiliary surface,
1023 * QPitch must be computed with Horizontal Alignment = 128 and
1024 * Surface Vertical Alignment = 256. These alignments are only for
1025 * CCS buffer and not for associated render target."
1026 *
1027 * The first restriction is already handled by isl_choose_image_alignment_el
1028 * but the second restriction, which is an extension of the first, only
1029 * applies to qpitch and must be applied here.
1030 *
1031 * The second restriction disappears on Gen12.
1032 */
1033 assert(fmtl->bh == 4);
1034 pitch_el_rows = isl_align(pitch_el_rows, 256 / 4);
1035 }
1036
1037 if (ISL_DEV_GEN(dev) >= 9 &&
1038 info->dim == ISL_SURF_DIM_3D &&
1039 tile_info->tiling != ISL_TILING_LINEAR) {
1040 /* From the Skylake BSpec >> RENDER_SURFACE_STATE >> Surface QPitch:
1041 *
1042 * Tile Mode != Linear: This field must be set to an integer multiple
1043 * of the tile height
1044 */
1045 pitch_el_rows = isl_align(pitch_el_rows, tile_info->logical_extent_el.height);
1046 }
1047
1048 return pitch_el_rows;
1049 }
1050
1051 /**
1052 * A variant of isl_calc_phys_slice0_extent_sa() specific to
1053 * ISL_DIM_LAYOUT_GEN4_2D.
1054 */
1055 static void
1056 isl_calc_phys_slice0_extent_sa_gen4_2d(
1057 const struct isl_device *dev,
1058 const struct isl_surf_init_info *restrict info,
1059 enum isl_msaa_layout msaa_layout,
1060 const struct isl_extent3d *image_align_sa,
1061 const struct isl_extent4d *phys_level0_sa,
1062 struct isl_extent2d *phys_slice0_sa)
1063 {
1064 assert(phys_level0_sa->depth == 1);
1065
1066 if (info->levels == 1) {
1067 /* Do not pad the surface to the image alignment.
1068 *
1069 * For tiled surfaces, using a reduced alignment here avoids wasting CPU
1070 * cycles on the below mipmap layout caluclations. Reducing the
1071 * alignment here is safe because we later align the row pitch and array
1072 * pitch to the tile boundary. It is safe even for
1073 * ISL_MSAA_LAYOUT_INTERLEAVED, because phys_level0_sa is already scaled
1074 * to accomodate the interleaved samples.
1075 *
1076 * For linear surfaces, reducing the alignment here permits us to later
1077 * choose an arbitrary, non-aligned row pitch. If the surface backs
1078 * a VkBuffer, then an arbitrary pitch may be needed to accomodate
1079 * VkBufferImageCopy::bufferRowLength.
1080 */
1081 *phys_slice0_sa = (struct isl_extent2d) {
1082 .w = phys_level0_sa->w,
1083 .h = phys_level0_sa->h,
1084 };
1085 return;
1086 }
1087
1088 uint32_t slice_top_w = 0;
1089 uint32_t slice_bottom_w = 0;
1090 uint32_t slice_left_h = 0;
1091 uint32_t slice_right_h = 0;
1092
1093 uint32_t W0 = phys_level0_sa->w;
1094 uint32_t H0 = phys_level0_sa->h;
1095
1096 for (uint32_t l = 0; l < info->levels; ++l) {
1097 uint32_t W = isl_minify(W0, l);
1098 uint32_t H = isl_minify(H0, l);
1099
1100 uint32_t w = isl_align_npot(W, image_align_sa->w);
1101 uint32_t h = isl_align_npot(H, image_align_sa->h);
1102
1103 if (l == 0) {
1104 slice_top_w = w;
1105 slice_left_h = h;
1106 slice_right_h = h;
1107 } else if (l == 1) {
1108 slice_bottom_w = w;
1109 slice_left_h += h;
1110 } else if (l == 2) {
1111 slice_bottom_w += w;
1112 slice_right_h += h;
1113 } else {
1114 slice_right_h += h;
1115 }
1116 }
1117
1118 *phys_slice0_sa = (struct isl_extent2d) {
1119 .w = MAX(slice_top_w, slice_bottom_w),
1120 .h = MAX(slice_left_h, slice_right_h),
1121 };
1122 }
1123
1124 static void
1125 isl_calc_phys_total_extent_el_gen4_2d(
1126 const struct isl_device *dev,
1127 const struct isl_surf_init_info *restrict info,
1128 const struct isl_tile_info *tile_info,
1129 enum isl_msaa_layout msaa_layout,
1130 const struct isl_extent3d *image_align_sa,
1131 const struct isl_extent4d *phys_level0_sa,
1132 enum isl_array_pitch_span array_pitch_span,
1133 uint32_t *array_pitch_el_rows,
1134 struct isl_extent2d *total_extent_el)
1135 {
1136 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1137
1138 struct isl_extent2d phys_slice0_sa;
1139 isl_calc_phys_slice0_extent_sa_gen4_2d(dev, info, msaa_layout,
1140 image_align_sa, phys_level0_sa,
1141 &phys_slice0_sa);
1142 *array_pitch_el_rows =
1143 isl_calc_array_pitch_el_rows_gen4_2d(dev, info, tile_info,
1144 image_align_sa, phys_level0_sa,
1145 array_pitch_span,
1146 &phys_slice0_sa);
1147 *total_extent_el = (struct isl_extent2d) {
1148 .w = isl_align_div_npot(phys_slice0_sa.w, fmtl->bw),
1149 .h = *array_pitch_el_rows * (phys_level0_sa->array_len - 1) +
1150 isl_align_div_npot(phys_slice0_sa.h, fmtl->bh),
1151 };
1152 }
1153
1154 /**
1155 * A variant of isl_calc_phys_slice0_extent_sa() specific to
1156 * ISL_DIM_LAYOUT_GEN4_3D.
1157 */
1158 static void
1159 isl_calc_phys_total_extent_el_gen4_3d(
1160 const struct isl_device *dev,
1161 const struct isl_surf_init_info *restrict info,
1162 const struct isl_extent3d *image_align_sa,
1163 const struct isl_extent4d *phys_level0_sa,
1164 uint32_t *array_pitch_el_rows,
1165 struct isl_extent2d *phys_total_el)
1166 {
1167 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1168
1169 assert(info->samples == 1);
1170
1171 if (info->dim != ISL_SURF_DIM_3D) {
1172 /* From the G45 PRM Vol. 1a, "6.17.4.1 Hardware Cube Map Layout":
1173 *
1174 * The cube face textures are stored in the same way as 3D surfaces
1175 * are stored (see section 6.17.5 for details). For cube surfaces,
1176 * however, the depth is equal to the number of faces (always 6) and
1177 * is not reduced for each MIP.
1178 */
1179 assert(ISL_DEV_GEN(dev) == 4);
1180 assert(info->usage & ISL_SURF_USAGE_CUBE_BIT);
1181 assert(phys_level0_sa->array_len == 6);
1182 } else {
1183 assert(phys_level0_sa->array_len == 1);
1184 }
1185
1186 uint32_t total_w = 0;
1187 uint32_t total_h = 0;
1188
1189 uint32_t W0 = phys_level0_sa->w;
1190 uint32_t H0 = phys_level0_sa->h;
1191 uint32_t D0 = phys_level0_sa->d;
1192 uint32_t A0 = phys_level0_sa->a;
1193
1194 for (uint32_t l = 0; l < info->levels; ++l) {
1195 uint32_t level_w = isl_align_npot(isl_minify(W0, l), image_align_sa->w);
1196 uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa->h);
1197 uint32_t level_d = info->dim == ISL_SURF_DIM_3D ? isl_minify(D0, l) : A0;
1198
1199 uint32_t max_layers_horiz = MIN(level_d, 1u << l);
1200 uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
1201
1202 total_w = MAX(total_w, level_w * max_layers_horiz);
1203 total_h += level_h * max_layers_vert;
1204 }
1205
1206 /* GEN4_3D layouts don't really have an array pitch since each LOD has a
1207 * different number of horizontal and vertical layers. We have to set it
1208 * to something, so at least make it true for LOD0.
1209 */
1210 *array_pitch_el_rows =
1211 isl_align_npot(phys_level0_sa->h, image_align_sa->h) / fmtl->bw;
1212 *phys_total_el = (struct isl_extent2d) {
1213 .w = isl_assert_div(total_w, fmtl->bw),
1214 .h = isl_assert_div(total_h, fmtl->bh),
1215 };
1216 }
1217
1218 /**
1219 * A variant of isl_calc_phys_slice0_extent_sa() specific to
1220 * ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ.
1221 */
1222 static void
1223 isl_calc_phys_total_extent_el_gen6_stencil_hiz(
1224 const struct isl_device *dev,
1225 const struct isl_surf_init_info *restrict info,
1226 const struct isl_tile_info *tile_info,
1227 const struct isl_extent3d *image_align_sa,
1228 const struct isl_extent4d *phys_level0_sa,
1229 uint32_t *array_pitch_el_rows,
1230 struct isl_extent2d *phys_total_el)
1231 {
1232 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1233
1234 const struct isl_extent2d tile_extent_sa = {
1235 .w = tile_info->logical_extent_el.w * fmtl->bw,
1236 .h = tile_info->logical_extent_el.h * fmtl->bh,
1237 };
1238 /* Tile size is a multiple of image alignment */
1239 assert(tile_extent_sa.w % image_align_sa->w == 0);
1240 assert(tile_extent_sa.h % image_align_sa->h == 0);
1241
1242 const uint32_t W0 = phys_level0_sa->w;
1243 const uint32_t H0 = phys_level0_sa->h;
1244
1245 /* Each image has the same height as LOD0 because the hardware thinks
1246 * everything is LOD0
1247 */
1248 const uint32_t H = isl_align(H0, image_align_sa->h) * phys_level0_sa->a;
1249
1250 uint32_t total_top_w = 0;
1251 uint32_t total_bottom_w = 0;
1252 uint32_t total_h = 0;
1253
1254 for (uint32_t l = 0; l < info->levels; ++l) {
1255 const uint32_t W = isl_minify(W0, l);
1256
1257 const uint32_t w = isl_align(W, tile_extent_sa.w);
1258 const uint32_t h = isl_align(H, tile_extent_sa.h);
1259
1260 if (l == 0) {
1261 total_top_w = w;
1262 total_h = h;
1263 } else if (l == 1) {
1264 total_bottom_w = w;
1265 total_h += h;
1266 } else {
1267 total_bottom_w += w;
1268 }
1269 }
1270
1271 *array_pitch_el_rows =
1272 isl_assert_div(isl_align(H0, image_align_sa->h), fmtl->bh);
1273 *phys_total_el = (struct isl_extent2d) {
1274 .w = isl_assert_div(MAX(total_top_w, total_bottom_w), fmtl->bw),
1275 .h = isl_assert_div(total_h, fmtl->bh),
1276 };
1277 }
1278
1279 /**
1280 * A variant of isl_calc_phys_slice0_extent_sa() specific to
1281 * ISL_DIM_LAYOUT_GEN9_1D.
1282 */
1283 static void
1284 isl_calc_phys_total_extent_el_gen9_1d(
1285 const struct isl_device *dev,
1286 const struct isl_surf_init_info *restrict info,
1287 const struct isl_extent3d *image_align_sa,
1288 const struct isl_extent4d *phys_level0_sa,
1289 uint32_t *array_pitch_el_rows,
1290 struct isl_extent2d *phys_total_el)
1291 {
1292 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1293
1294 assert(phys_level0_sa->height == 1);
1295 assert(phys_level0_sa->depth == 1);
1296 assert(info->samples == 1);
1297 assert(image_align_sa->w >= fmtl->bw);
1298
1299 uint32_t slice_w = 0;
1300 const uint32_t W0 = phys_level0_sa->w;
1301
1302 for (uint32_t l = 0; l < info->levels; ++l) {
1303 uint32_t W = isl_minify(W0, l);
1304 uint32_t w = isl_align_npot(W, image_align_sa->w);
1305
1306 slice_w += w;
1307 }
1308
1309 *array_pitch_el_rows = 1;
1310 *phys_total_el = (struct isl_extent2d) {
1311 .w = isl_assert_div(slice_w, fmtl->bw),
1312 .h = phys_level0_sa->array_len,
1313 };
1314 }
1315
1316 /**
1317 * Calculate the two-dimensional total physical extent of the surface, in
1318 * units of surface elements.
1319 */
1320 static void
1321 isl_calc_phys_total_extent_el(const struct isl_device *dev,
1322 const struct isl_surf_init_info *restrict info,
1323 const struct isl_tile_info *tile_info,
1324 enum isl_dim_layout dim_layout,
1325 enum isl_msaa_layout msaa_layout,
1326 const struct isl_extent3d *image_align_sa,
1327 const struct isl_extent4d *phys_level0_sa,
1328 enum isl_array_pitch_span array_pitch_span,
1329 uint32_t *array_pitch_el_rows,
1330 struct isl_extent2d *total_extent_el)
1331 {
1332 switch (dim_layout) {
1333 case ISL_DIM_LAYOUT_GEN9_1D:
1334 assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
1335 isl_calc_phys_total_extent_el_gen9_1d(dev, info,
1336 image_align_sa, phys_level0_sa,
1337 array_pitch_el_rows,
1338 total_extent_el);
1339 return;
1340 case ISL_DIM_LAYOUT_GEN4_2D:
1341 isl_calc_phys_total_extent_el_gen4_2d(dev, info, tile_info, msaa_layout,
1342 image_align_sa, phys_level0_sa,
1343 array_pitch_span,
1344 array_pitch_el_rows,
1345 total_extent_el);
1346 return;
1347 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
1348 assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
1349 isl_calc_phys_total_extent_el_gen6_stencil_hiz(dev, info, tile_info,
1350 image_align_sa,
1351 phys_level0_sa,
1352 array_pitch_el_rows,
1353 total_extent_el);
1354 return;
1355 case ISL_DIM_LAYOUT_GEN4_3D:
1356 assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
1357 isl_calc_phys_total_extent_el_gen4_3d(dev, info,
1358 image_align_sa, phys_level0_sa,
1359 array_pitch_el_rows,
1360 total_extent_el);
1361 return;
1362 }
1363
1364 unreachable("invalid value for dim_layout");
1365 }
1366
1367 static uint32_t
1368 isl_calc_row_pitch_alignment(const struct isl_device *dev,
1369 const struct isl_surf_init_info *surf_info,
1370 const struct isl_tile_info *tile_info)
1371 {
1372 if (tile_info->tiling != ISL_TILING_LINEAR) {
1373 /* According to BSpec: 44930, Gen12's CCS-compressed surface pitches must
1374 * be 512B-aligned. CCS is only support on Y tilings.
1375 */
1376 if (ISL_DEV_GEN(dev) >= 12 &&
1377 isl_format_supports_ccs_e(dev->info, surf_info->format) &&
1378 tile_info->tiling != ISL_TILING_X) {
1379 return isl_align(tile_info->phys_extent_B.width, 512);
1380 }
1381
1382 return tile_info->phys_extent_B.width;
1383 }
1384
1385 /* From the Broadwel PRM >> Volume 2d: Command Reference: Structures >>
1386 * RENDER_SURFACE_STATE Surface Pitch (p349):
1387 *
1388 * - For linear render target surfaces and surfaces accessed with the
1389 * typed data port messages, the pitch must be a multiple of the
1390 * element size for non-YUV surface formats. Pitch must be
1391 * a multiple of 2 * element size for YUV surface formats.
1392 *
1393 * - [Requirements for SURFTYPE_BUFFER and SURFTYPE_STRBUF, which we
1394 * ignore because isl doesn't do buffers.]
1395 *
1396 * - For other linear surfaces, the pitch can be any multiple of
1397 * bytes.
1398 */
1399 const struct isl_format_layout *fmtl = isl_format_get_layout(surf_info->format);
1400 const uint32_t bs = fmtl->bpb / 8;
1401 uint32_t alignment;
1402
1403 if (surf_info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
1404 if (isl_format_is_yuv(surf_info->format)) {
1405 alignment = 2 * bs;
1406 } else {
1407 alignment = bs;
1408 }
1409 } else {
1410 alignment = 1;
1411 }
1412
1413 /* From the Broadwell PRM >> Volume 2c: Command Reference: Registers >>
1414 * PRI_STRIDE Stride (p1254):
1415 *
1416 * "When using linear memory, this must be at least 64 byte aligned."
1417 */
1418 if (surf_info->usage & ISL_SURF_USAGE_DISPLAY_BIT)
1419 alignment = isl_align(alignment, 64);
1420
1421 return alignment;
1422 }
1423
1424 static uint32_t
1425 isl_calc_linear_min_row_pitch(const struct isl_device *dev,
1426 const struct isl_surf_init_info *info,
1427 const struct isl_extent2d *phys_total_el,
1428 uint32_t alignment_B)
1429 {
1430 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1431 const uint32_t bs = fmtl->bpb / 8;
1432
1433 return isl_align_npot(bs * phys_total_el->w, alignment_B);
1434 }
1435
1436 static uint32_t
1437 isl_calc_tiled_min_row_pitch(const struct isl_device *dev,
1438 const struct isl_surf_init_info *surf_info,
1439 const struct isl_tile_info *tile_info,
1440 const struct isl_extent2d *phys_total_el,
1441 uint32_t alignment_B)
1442 {
1443 const struct isl_format_layout *fmtl = isl_format_get_layout(surf_info->format);
1444
1445 assert(fmtl->bpb % tile_info->format_bpb == 0);
1446
1447 const uint32_t tile_el_scale = fmtl->bpb / tile_info->format_bpb;
1448 const uint32_t total_w_tl =
1449 isl_align_div(phys_total_el->w * tile_el_scale,
1450 tile_info->logical_extent_el.width);
1451
1452 /* In some cases the alignment of the pitch might be > to the tile size
1453 * (for example Gen12 CCS requires 512B alignment while the tile's width
1454 * can be 128B), so align the row pitch to the alignment.
1455 */
1456 assert(alignment_B >= tile_info->phys_extent_B.width);
1457 return isl_align(total_w_tl * tile_info->phys_extent_B.width, alignment_B);
1458 }
1459
1460 static uint32_t
1461 isl_calc_min_row_pitch(const struct isl_device *dev,
1462 const struct isl_surf_init_info *surf_info,
1463 const struct isl_tile_info *tile_info,
1464 const struct isl_extent2d *phys_total_el,
1465 uint32_t alignment_B)
1466 {
1467 if (tile_info->tiling == ISL_TILING_LINEAR) {
1468 return isl_calc_linear_min_row_pitch(dev, surf_info, phys_total_el,
1469 alignment_B);
1470 } else {
1471 return isl_calc_tiled_min_row_pitch(dev, surf_info, tile_info,
1472 phys_total_el, alignment_B);
1473 }
1474 }
1475
1476 /**
1477 * Is `pitch` in the valid range for a hardware bitfield, if the bitfield's
1478 * size is `bits` bits?
1479 *
1480 * Hardware pitch fields are offset by 1. For example, if the size of
1481 * RENDER_SURFACE_STATE::SurfacePitch is B bits, then the range of valid
1482 * pitches is [1, 2^b] inclusive. If the surface pitch is N, then
1483 * RENDER_SURFACE_STATE::SurfacePitch must be set to N-1.
1484 */
1485 static bool
1486 pitch_in_range(uint32_t n, uint32_t bits)
1487 {
1488 assert(n != 0);
1489 return likely(bits != 0 && 1 <= n && n <= (1 << bits));
1490 }
1491
1492 static bool
1493 isl_calc_row_pitch(const struct isl_device *dev,
1494 const struct isl_surf_init_info *surf_info,
1495 const struct isl_tile_info *tile_info,
1496 enum isl_dim_layout dim_layout,
1497 const struct isl_extent2d *phys_total_el,
1498 uint32_t *out_row_pitch_B)
1499 {
1500 uint32_t alignment_B =
1501 isl_calc_row_pitch_alignment(dev, surf_info, tile_info);
1502
1503 const uint32_t min_row_pitch_B =
1504 isl_calc_min_row_pitch(dev, surf_info, tile_info, phys_total_el,
1505 alignment_B);
1506
1507 if (surf_info->row_pitch_B != 0) {
1508 if (surf_info->row_pitch_B < min_row_pitch_B)
1509 return false;
1510
1511 if (surf_info->row_pitch_B % alignment_B != 0)
1512 return false;
1513 }
1514
1515 const uint32_t row_pitch_B =
1516 surf_info->row_pitch_B != 0 ? surf_info->row_pitch_B : min_row_pitch_B;
1517
1518 const uint32_t row_pitch_tl = row_pitch_B / tile_info->phys_extent_B.width;
1519
1520 if (row_pitch_B == 0)
1521 return false;
1522
1523 if (dim_layout == ISL_DIM_LAYOUT_GEN9_1D) {
1524 /* SurfacePitch is ignored for this layout. */
1525 goto done;
1526 }
1527
1528 if ((surf_info->usage & (ISL_SURF_USAGE_RENDER_TARGET_BIT |
1529 ISL_SURF_USAGE_TEXTURE_BIT |
1530 ISL_SURF_USAGE_STORAGE_BIT)) &&
1531 !pitch_in_range(row_pitch_B, RENDER_SURFACE_STATE_SurfacePitch_bits(dev->info)))
1532 return false;
1533
1534 if ((surf_info->usage & (ISL_SURF_USAGE_CCS_BIT |
1535 ISL_SURF_USAGE_MCS_BIT)) &&
1536 !pitch_in_range(row_pitch_tl, RENDER_SURFACE_STATE_AuxiliarySurfacePitch_bits(dev->info)))
1537 return false;
1538
1539 if ((surf_info->usage & ISL_SURF_USAGE_DEPTH_BIT) &&
1540 !pitch_in_range(row_pitch_B, _3DSTATE_DEPTH_BUFFER_SurfacePitch_bits(dev->info)))
1541 return false;
1542
1543 if ((surf_info->usage & ISL_SURF_USAGE_HIZ_BIT) &&
1544 !pitch_in_range(row_pitch_B, _3DSTATE_HIER_DEPTH_BUFFER_SurfacePitch_bits(dev->info)))
1545 return false;
1546
1547 const uint32_t stencil_pitch_bits = dev->use_separate_stencil ?
1548 _3DSTATE_STENCIL_BUFFER_SurfacePitch_bits(dev->info) :
1549 _3DSTATE_DEPTH_BUFFER_SurfacePitch_bits(dev->info);
1550
1551 if ((surf_info->usage & ISL_SURF_USAGE_STENCIL_BIT) &&
1552 !pitch_in_range(row_pitch_B, stencil_pitch_bits))
1553 return false;
1554
1555 done:
1556 *out_row_pitch_B = row_pitch_B;
1557 return true;
1558 }
1559
1560 bool
1561 isl_surf_init_s(const struct isl_device *dev,
1562 struct isl_surf *surf,
1563 const struct isl_surf_init_info *restrict info)
1564 {
1565 const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
1566
1567 const struct isl_extent4d logical_level0_px = {
1568 .w = info->width,
1569 .h = info->height,
1570 .d = info->depth,
1571 .a = info->array_len,
1572 };
1573
1574 enum isl_tiling tiling;
1575 if (!isl_surf_choose_tiling(dev, info, &tiling))
1576 return false;
1577
1578 struct isl_tile_info tile_info;
1579 isl_tiling_get_info(tiling, fmtl->bpb, &tile_info);
1580
1581 const enum isl_dim_layout dim_layout =
1582 isl_surf_choose_dim_layout(dev, info->dim, tiling, info->usage);
1583
1584 enum isl_msaa_layout msaa_layout;
1585 if (!isl_choose_msaa_layout(dev, info, tiling, &msaa_layout))
1586 return false;
1587
1588 struct isl_extent3d image_align_el;
1589 isl_choose_image_alignment_el(dev, info, tiling, dim_layout, msaa_layout,
1590 &image_align_el);
1591
1592 struct isl_extent3d image_align_sa =
1593 isl_extent3d_el_to_sa(info->format, image_align_el);
1594
1595 struct isl_extent4d phys_level0_sa;
1596 isl_calc_phys_level0_extent_sa(dev, info, dim_layout, tiling, msaa_layout,
1597 &phys_level0_sa);
1598
1599 enum isl_array_pitch_span array_pitch_span =
1600 isl_choose_array_pitch_span(dev, info, dim_layout, &phys_level0_sa);
1601
1602 uint32_t array_pitch_el_rows;
1603 struct isl_extent2d phys_total_el;
1604 isl_calc_phys_total_extent_el(dev, info, &tile_info,
1605 dim_layout, msaa_layout,
1606 &image_align_sa, &phys_level0_sa,
1607 array_pitch_span, &array_pitch_el_rows,
1608 &phys_total_el);
1609
1610 uint32_t row_pitch_B;
1611 if (!isl_calc_row_pitch(dev, info, &tile_info, dim_layout,
1612 &phys_total_el, &row_pitch_B))
1613 return false;
1614
1615 uint32_t base_alignment_B;
1616 uint64_t size_B;
1617 if (tiling == ISL_TILING_LINEAR) {
1618 size_B = (uint64_t) row_pitch_B * phys_total_el.h;
1619
1620 /* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfaceBaseAddress:
1621 *
1622 * "The Base Address for linear render target surfaces and surfaces
1623 * accessed with the typed surface read/write data port messages must
1624 * be element-size aligned, for non-YUV surface formats, or a
1625 * multiple of 2 element-sizes for YUV surface formats. Other linear
1626 * surfaces have no alignment requirements (byte alignment is
1627 * sufficient.)"
1628 */
1629 base_alignment_B = MAX(1, info->min_alignment_B);
1630 if (info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
1631 if (isl_format_is_yuv(info->format)) {
1632 base_alignment_B = MAX(base_alignment_B, fmtl->bpb / 4);
1633 } else {
1634 base_alignment_B = MAX(base_alignment_B, fmtl->bpb / 8);
1635 }
1636 }
1637 base_alignment_B = isl_round_up_to_power_of_two(base_alignment_B);
1638
1639 /* From the Skylake PRM Vol 2c, PLANE_STRIDE::Stride:
1640 *
1641 * "For Linear memory, this field specifies the stride in chunks of
1642 * 64 bytes (1 cache line)."
1643 */
1644 if (isl_surf_usage_is_display(info->usage))
1645 base_alignment_B = MAX(base_alignment_B, 64);
1646 } else {
1647 const uint32_t total_h_tl =
1648 isl_align_div(phys_total_el.h, tile_info.logical_extent_el.height);
1649
1650 size_B = (uint64_t) total_h_tl * tile_info.phys_extent_B.height * row_pitch_B;
1651
1652 const uint32_t tile_size_B = tile_info.phys_extent_B.width *
1653 tile_info.phys_extent_B.height;
1654 assert(isl_is_pow2(info->min_alignment_B) && isl_is_pow2(tile_size_B));
1655 base_alignment_B = MAX(info->min_alignment_B, tile_size_B);
1656
1657 /* The diagram in the Bspec section Memory Compression - Gen12, shows
1658 * that the CCS is indexed in 256B chunks. However, the
1659 * PLANE_AUX_DIST::Auxiliary Surface Distance field is in units of 4K
1660 * pages. We currently don't assign the usage field like we do for main
1661 * surfaces, so just use 4K for now.
1662 */
1663 if (tiling == ISL_TILING_GEN12_CCS)
1664 base_alignment_B = MAX(base_alignment_B, 4096);
1665
1666 /* Gen12+ requires that images be 64K-aligned if they're going to used
1667 * with CCS. This is because the Aux translation table maps main
1668 * surface addresses to aux addresses at a 64K (in the main surface)
1669 * granularity. Because we don't know for sure in ISL if a surface will
1670 * use CCS, we have to guess based on the DISABLE_AUX usage bit. The
1671 * one thing we do know is that we haven't enable CCS on linear images
1672 * yet so we can avoid the extra alignment there.
1673 */
1674 if (ISL_DEV_GEN(dev) >= 12 &&
1675 !(info->usage & ISL_SURF_USAGE_DISABLE_AUX_BIT)) {
1676 base_alignment_B = MAX(base_alignment_B, 64 * 1024);
1677 }
1678 }
1679
1680 if (ISL_DEV_GEN(dev) < 9) {
1681 /* From the Broadwell PRM Vol 5, Surface Layout:
1682 *
1683 * "In addition to restrictions on maximum height, width, and depth,
1684 * surfaces are also restricted to a maximum size in bytes. This
1685 * maximum is 2 GB for all products and all surface types."
1686 *
1687 * This comment is applicable to all Pre-gen9 platforms.
1688 */
1689 if (size_B > (uint64_t) 1 << 31)
1690 return false;
1691 } else if (ISL_DEV_GEN(dev) < 11) {
1692 /* From the Skylake PRM Vol 5, Maximum Surface Size in Bytes:
1693 * "In addition to restrictions on maximum height, width, and depth,
1694 * surfaces are also restricted to a maximum size of 2^38 bytes.
1695 * All pixels within the surface must be contained within 2^38 bytes
1696 * of the base address."
1697 */
1698 if (size_B > (uint64_t) 1 << 38)
1699 return false;
1700 } else {
1701 /* gen11+ platforms raised this limit to 2^44 bytes. */
1702 if (size_B > (uint64_t) 1 << 44)
1703 return false;
1704 }
1705
1706 *surf = (struct isl_surf) {
1707 .dim = info->dim,
1708 .dim_layout = dim_layout,
1709 .msaa_layout = msaa_layout,
1710 .tiling = tiling,
1711 .format = info->format,
1712
1713 .levels = info->levels,
1714 .samples = info->samples,
1715
1716 .image_alignment_el = image_align_el,
1717 .logical_level0_px = logical_level0_px,
1718 .phys_level0_sa = phys_level0_sa,
1719
1720 .size_B = size_B,
1721 .alignment_B = base_alignment_B,
1722 .row_pitch_B = row_pitch_B,
1723 .array_pitch_el_rows = array_pitch_el_rows,
1724 .array_pitch_span = array_pitch_span,
1725
1726 .usage = info->usage,
1727 };
1728
1729 return true;
1730 }
1731
1732 void
1733 isl_surf_get_tile_info(const struct isl_surf *surf,
1734 struct isl_tile_info *tile_info)
1735 {
1736 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
1737 isl_tiling_get_info(surf->tiling, fmtl->bpb, tile_info);
1738 }
1739
1740 bool
1741 isl_surf_get_hiz_surf(const struct isl_device *dev,
1742 const struct isl_surf *surf,
1743 struct isl_surf *hiz_surf)
1744 {
1745 assert(ISL_DEV_GEN(dev) >= 5 && ISL_DEV_USE_SEPARATE_STENCIL(dev));
1746
1747 if (!isl_surf_usage_is_depth(surf->usage))
1748 return false;
1749
1750 /* HiZ only works with Y-tiled depth buffers */
1751 if (!isl_tiling_is_any_y(surf->tiling))
1752 return false;
1753
1754 /* On SNB+, compressed depth buffers cannot be interleaved with stencil. */
1755 switch (surf->format) {
1756 case ISL_FORMAT_R24_UNORM_X8_TYPELESS:
1757 if (isl_surf_usage_is_depth_and_stencil(surf->usage)) {
1758 assert(ISL_DEV_GEN(dev) == 5);
1759 unreachable("This should work, but is untested");
1760 }
1761 /* Fall through */
1762 case ISL_FORMAT_R16_UNORM:
1763 case ISL_FORMAT_R32_FLOAT:
1764 break;
1765 case ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS:
1766 if (ISL_DEV_GEN(dev) == 5) {
1767 assert(isl_surf_usage_is_depth_and_stencil(surf->usage));
1768 unreachable("This should work, but is untested");
1769 }
1770 /* Fall through */
1771 default:
1772 return false;
1773 }
1774
1775 /* Multisampled depth is always interleaved */
1776 assert(surf->msaa_layout == ISL_MSAA_LAYOUT_NONE ||
1777 surf->msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
1778
1779 /* From the Broadwell PRM Vol. 7, "Hierarchical Depth Buffer":
1780 *
1781 * "The Surface Type, Height, Width, Depth, Minimum Array Element, Render
1782 * Target View Extent, and Depth Coordinate Offset X/Y of the
1783 * hierarchical depth buffer are inherited from the depth buffer. The
1784 * height and width of the hierarchical depth buffer that must be
1785 * allocated are computed by the following formulas, where HZ is the
1786 * hierarchical depth buffer and Z is the depth buffer. The Z_Height,
1787 * Z_Width, and Z_Depth values given in these formulas are those present
1788 * in 3DSTATE_DEPTH_BUFFER incremented by one.
1789 *
1790 * "The value of Z_Height and Z_Width must each be multiplied by 2 before
1791 * being applied to the table below if Number of Multisamples is set to
1792 * NUMSAMPLES_4. The value of Z_Height must be multiplied by 2 and
1793 * Z_Width must be multiplied by 4 before being applied to the table
1794 * below if Number of Multisamples is set to NUMSAMPLES_8."
1795 *
1796 * In the Sky Lake PRM, the second paragraph is replaced with this:
1797 *
1798 * "The Z_Height and Z_Width values must equal those present in
1799 * 3DSTATE_DEPTH_BUFFER incremented by one."
1800 *
1801 * In other words, on Sandy Bridge through Broadwell, each 128-bit HiZ
1802 * block corresponds to a region of 8x4 samples in the primary depth
1803 * surface. On Sky Lake, on the other hand, each HiZ block corresponds to
1804 * a region of 8x4 pixels in the primary depth surface regardless of the
1805 * number of samples. The dimensions of a HiZ block in both pixels and
1806 * samples are given in the table below:
1807 *
1808 * | SNB - BDW | SKL+
1809 * ------+-----------+-------------
1810 * 1x | 8 x 4 sa | 8 x 4 sa
1811 * MSAA | 8 x 4 px | 8 x 4 px
1812 * ------+-----------+-------------
1813 * 2x | 8 x 4 sa | 16 x 4 sa
1814 * MSAA | 4 x 4 px | 8 x 4 px
1815 * ------+-----------+-------------
1816 * 4x | 8 x 4 sa | 16 x 8 sa
1817 * MSAA | 4 x 2 px | 8 x 4 px
1818 * ------+-----------+-------------
1819 * 8x | 8 x 4 sa | 32 x 8 sa
1820 * MSAA | 2 x 2 px | 8 x 4 px
1821 * ------+-----------+-------------
1822 * 16x | N/A | 32 x 16 sa
1823 * MSAA | N/A | 8 x 4 px
1824 * ------+-----------+-------------
1825 *
1826 * There are a number of different ways that this discrepency could be
1827 * handled. The way we have chosen is to simply make MSAA HiZ have the
1828 * same number of samples as the parent surface pre-Sky Lake and always be
1829 * single-sampled on Sky Lake and above. Since the block sizes of
1830 * compressed formats are given in samples, this neatly handles everything
1831 * without the need for additional HiZ formats with different block sizes
1832 * on SKL+.
1833 */
1834 const unsigned samples = ISL_DEV_GEN(dev) >= 9 ? 1 : surf->samples;
1835
1836 return isl_surf_init(dev, hiz_surf,
1837 .dim = surf->dim,
1838 .format = ISL_FORMAT_HIZ,
1839 .width = surf->logical_level0_px.width,
1840 .height = surf->logical_level0_px.height,
1841 .depth = surf->logical_level0_px.depth,
1842 .levels = surf->levels,
1843 .array_len = surf->logical_level0_px.array_len,
1844 .samples = samples,
1845 .usage = ISL_SURF_USAGE_HIZ_BIT,
1846 .tiling_flags = ISL_TILING_HIZ_BIT);
1847 }
1848
1849 bool
1850 isl_surf_get_mcs_surf(const struct isl_device *dev,
1851 const struct isl_surf *surf,
1852 struct isl_surf *mcs_surf)
1853 {
1854 /* It must be multisampled with an array layout */
1855 if (surf->msaa_layout != ISL_MSAA_LAYOUT_ARRAY)
1856 return false;
1857
1858 if (mcs_surf->size_B > 0)
1859 return false;
1860
1861 /* The following are true of all multisampled surfaces */
1862 assert(surf->samples > 1);
1863 assert(surf->dim == ISL_SURF_DIM_2D);
1864 assert(surf->levels == 1);
1865 assert(surf->logical_level0_px.depth == 1);
1866
1867 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
1868 *
1869 * This field must be set to 0 for all SINT MSRTs when all RT channels
1870 * are not written
1871 *
1872 * In practice this means that we have to disable MCS for all signed
1873 * integer MSAA buffers. The alternative, to disable MCS only when one
1874 * of the render target channels is disabled, is impractical because it
1875 * would require converting between CMS and UMS MSAA layouts on the fly,
1876 * which is expensive.
1877 */
1878 if (ISL_DEV_GEN(dev) == 7 && isl_format_has_sint_channel(surf->format))
1879 return false;
1880
1881 /* The "Auxiliary Surface Pitch" field in RENDER_SURFACE_STATE is only 9
1882 * bits which means the maximum pitch of a compression surface is 512
1883 * tiles or 64KB (since MCS is always Y-tiled). Since a 16x MCS buffer is
1884 * 64bpp, this gives us a maximum width of 8192 pixels. We can create
1885 * larger multisampled surfaces, we just can't compress them. For 2x, 4x,
1886 * and 8x, we have enough room for the full 16k supported by the hardware.
1887 */
1888 if (surf->samples == 16 && surf->logical_level0_px.width > 8192)
1889 return false;
1890
1891 enum isl_format mcs_format;
1892 switch (surf->samples) {
1893 case 2: mcs_format = ISL_FORMAT_MCS_2X; break;
1894 case 4: mcs_format = ISL_FORMAT_MCS_4X; break;
1895 case 8: mcs_format = ISL_FORMAT_MCS_8X; break;
1896 case 16: mcs_format = ISL_FORMAT_MCS_16X; break;
1897 default:
1898 unreachable("Invalid sample count");
1899 }
1900
1901 return isl_surf_init(dev, mcs_surf,
1902 .dim = ISL_SURF_DIM_2D,
1903 .format = mcs_format,
1904 .width = surf->logical_level0_px.width,
1905 .height = surf->logical_level0_px.height,
1906 .depth = 1,
1907 .levels = 1,
1908 .array_len = surf->logical_level0_px.array_len,
1909 .samples = 1, /* MCS surfaces are really single-sampled */
1910 .usage = ISL_SURF_USAGE_MCS_BIT,
1911 .tiling_flags = ISL_TILING_Y0_BIT);
1912 }
1913
1914 bool
1915 isl_surf_get_ccs_surf(const struct isl_device *dev,
1916 const struct isl_surf *surf,
1917 struct isl_surf *aux_surf,
1918 struct isl_surf *extra_aux_surf,
1919 uint32_t row_pitch_B)
1920 {
1921 assert(aux_surf);
1922
1923 /* An uninitialized surface is needed to get a CCS surface. */
1924 if (aux_surf->size_B > 0 &&
1925 (extra_aux_surf == NULL || extra_aux_surf->size_B > 0)) {
1926 return false;
1927 }
1928
1929 /* A surface can't have two CCS surfaces. */
1930 if (aux_surf->usage & ISL_SURF_USAGE_CCS_BIT)
1931 return false;
1932
1933 if (ISL_DEV_GEN(dev) < 12 && surf->samples > 1)
1934 return false;
1935
1936 /* CCS support does not exist prior to Gen7 */
1937 if (ISL_DEV_GEN(dev) <= 6)
1938 return false;
1939
1940 if (surf->usage & ISL_SURF_USAGE_DISABLE_AUX_BIT)
1941 return false;
1942
1943 /* Allow CCS for single-sampled stencil buffers Gen12+. */
1944 if (isl_surf_usage_is_stencil(surf->usage) &&
1945 (ISL_DEV_GEN(dev) < 12 || surf->samples > 1))
1946 return false;
1947
1948 /* [TGL+] CCS can only be added to a non-D16-formatted depth buffer if it
1949 * has HiZ. If not for GEN:BUG:1406512483 "deprecate compression enable
1950 * states", D16 would be supported. Supporting D16 requires being able to
1951 * specify that the control surface is present and simultaneously disabling
1952 * compression. The above bug makes it so that it's not possible to specify
1953 * this configuration.
1954 */
1955 if (isl_surf_usage_is_depth(surf->usage) && (aux_surf->size_B == 0 ||
1956 ISL_DEV_GEN(dev) < 12 || surf->format == ISL_FORMAT_R16_UNORM)) {
1957 return false;
1958 }
1959
1960 /* The PRM doesn't say this explicitly, but fast-clears don't appear to
1961 * work for 3D textures until gen9 where the layout of 3D textures changes
1962 * to match 2D array textures.
1963 */
1964 if (ISL_DEV_GEN(dev) <= 8 && surf->dim != ISL_SURF_DIM_2D)
1965 return false;
1966
1967 /* From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652 (Color Clear of
1968 * Non-MultiSampler Render Target Restrictions):
1969 *
1970 * "Support is for non-mip-mapped and non-array surface types only."
1971 *
1972 * This restriction is lifted on gen8+. Technically, it may be possible to
1973 * create a CCS for an arrayed or mipmapped image and only enable CCS_D
1974 * when rendering to the base slice. However, there is no documentation
1975 * tell us what the hardware would do in that case or what it does if you
1976 * walk off the bases slice. (Does it ignore CCS or does it start
1977 * scribbling over random memory?) We play it safe and just follow the
1978 * docs and don't allow CCS_D for arrayed or mip-mapped surfaces.
1979 */
1980 if (ISL_DEV_GEN(dev) <= 7 &&
1981 (surf->levels > 1 || surf->logical_level0_px.array_len > 1))
1982 return false;
1983
1984 /* On Gen12, 8BPP surfaces cannot be compressed if any level is not
1985 * 32Bx4row-aligned. For now, just reject the cases where alignment
1986 * matters.
1987 */
1988 if (ISL_DEV_GEN(dev) >= 12 &&
1989 isl_format_get_layout(surf->format)->bpb == 8 && surf->levels >= 3) {
1990 isl_finishme("%s:%s: CCS for 8BPP textures with 3+ miplevels is "
1991 "disabled, but support for more levels is possible.",
1992 __FILE__, __func__);
1993 return false;
1994 }
1995
1996 /* On Gen12, all CCS-compressed surface pitches must be multiples of 512B.
1997 */
1998 if (ISL_DEV_GEN(dev) >= 12 && surf->row_pitch_B % 512 != 0)
1999 return false;
2000
2001 if (isl_format_is_compressed(surf->format))
2002 return false;
2003
2004 /* According to GEN:BUG:1406738321, 3D textures need a blit to a new
2005 * surface in order to perform a resolve. For now, just disable CCS.
2006 */
2007 if (ISL_DEV_GEN(dev) >= 12 && surf->dim == ISL_SURF_DIM_3D) {
2008 isl_finishme("%s:%s: CCS for 3D textures is disabled, but a workaround"
2009 " is available.", __FILE__, __func__);
2010 return false;
2011 }
2012
2013 /* GEN:BUG:1207137018
2014 *
2015 * TODO: implement following workaround currently covered by the restriction
2016 * above. If following conditions are met:
2017 *
2018 * - RENDER_SURFACE_STATE.Surface Type == 3D
2019 * - RENDER_SURFACE_STATE.Auxiliary Surface Mode != AUX_NONE
2020 * - RENDER_SURFACE_STATE.Tiled ResourceMode is TYF or TYS
2021 *
2022 * Set the value of RENDER_SURFACE_STATE.Mip Tail Start LOD to a mip that
2023 * larger than those present in the surface (i.e. 15)
2024 */
2025
2026 /* TODO: More conditions where it can fail. */
2027
2028 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
2029 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
2030 *
2031 * - Support is limited to tiled render targets.
2032 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
2033 * 64bpp, and 128bpp.
2034 *
2035 * From the Skylake documentation, it is made clear that X-tiling is no
2036 * longer supported:
2037 *
2038 * - MCS and Lossless compression is supported for
2039 * TiledY/TileYs/TileYf non-MSRTs only.
2040 */
2041 enum isl_format ccs_format;
2042 if (ISL_DEV_GEN(dev) >= 12) {
2043 /* TODO: Handle the other tiling formats */
2044 if (surf->tiling != ISL_TILING_Y0)
2045 return false;
2046
2047 /* BSpec 44930:
2048 *
2049 * Linear CCS is only allowed for Untyped Buffers but only via HDC
2050 * Data-Port messages.
2051 *
2052 * We probably want to limit linear CCS to storage usage and check that
2053 * the shaders actually use only untyped messages.
2054 */
2055 assert(surf->tiling != ISL_TILING_LINEAR);
2056
2057 switch (isl_format_get_layout(surf->format)->bpb) {
2058 case 8: ccs_format = ISL_FORMAT_GEN12_CCS_8BPP_Y0; break;
2059 case 16: ccs_format = ISL_FORMAT_GEN12_CCS_16BPP_Y0; break;
2060 case 32: ccs_format = ISL_FORMAT_GEN12_CCS_32BPP_Y0; break;
2061 case 64: ccs_format = ISL_FORMAT_GEN12_CCS_64BPP_Y0; break;
2062 case 128: ccs_format = ISL_FORMAT_GEN12_CCS_128BPP_Y0; break;
2063 default:
2064 return false;
2065 }
2066 } else if (ISL_DEV_GEN(dev) >= 9) {
2067 if (!isl_tiling_is_any_y(surf->tiling))
2068 return false;
2069
2070 switch (isl_format_get_layout(surf->format)->bpb) {
2071 case 32: ccs_format = ISL_FORMAT_GEN9_CCS_32BPP; break;
2072 case 64: ccs_format = ISL_FORMAT_GEN9_CCS_64BPP; break;
2073 case 128: ccs_format = ISL_FORMAT_GEN9_CCS_128BPP; break;
2074 default:
2075 return false;
2076 }
2077 } else if (surf->tiling == ISL_TILING_Y0) {
2078 switch (isl_format_get_layout(surf->format)->bpb) {
2079 case 32: ccs_format = ISL_FORMAT_GEN7_CCS_32BPP_Y; break;
2080 case 64: ccs_format = ISL_FORMAT_GEN7_CCS_64BPP_Y; break;
2081 case 128: ccs_format = ISL_FORMAT_GEN7_CCS_128BPP_Y; break;
2082 default:
2083 return false;
2084 }
2085 } else if (surf->tiling == ISL_TILING_X) {
2086 switch (isl_format_get_layout(surf->format)->bpb) {
2087 case 32: ccs_format = ISL_FORMAT_GEN7_CCS_32BPP_X; break;
2088 case 64: ccs_format = ISL_FORMAT_GEN7_CCS_64BPP_X; break;
2089 case 128: ccs_format = ISL_FORMAT_GEN7_CCS_128BPP_X; break;
2090 default:
2091 return false;
2092 }
2093 } else {
2094 return false;
2095 }
2096
2097 if (ISL_DEV_GEN(dev) >= 12) {
2098 /* On Gen12, the CCS is a scaled-down version of the main surface. We
2099 * model this as the CCS compressing a 2D-view of the entire surface.
2100 */
2101 struct isl_surf *ccs_surf =
2102 aux_surf->size_B > 0 ? extra_aux_surf : aux_surf;
2103 const bool ok =
2104 isl_surf_init(dev, ccs_surf,
2105 .dim = ISL_SURF_DIM_2D,
2106 .format = ccs_format,
2107 .width = isl_surf_get_row_pitch_el(surf),
2108 .height = surf->size_B / surf->row_pitch_B,
2109 .depth = 1,
2110 .levels = 1,
2111 .array_len = 1,
2112 .samples = 1,
2113 .row_pitch_B = row_pitch_B,
2114 .usage = ISL_SURF_USAGE_CCS_BIT,
2115 .tiling_flags = ISL_TILING_GEN12_CCS_BIT);
2116 assert(!ok || ccs_surf->size_B == surf->size_B / 256);
2117 return ok;
2118 } else {
2119 return isl_surf_init(dev, aux_surf,
2120 .dim = surf->dim,
2121 .format = ccs_format,
2122 .width = surf->logical_level0_px.width,
2123 .height = surf->logical_level0_px.height,
2124 .depth = surf->logical_level0_px.depth,
2125 .levels = surf->levels,
2126 .array_len = surf->logical_level0_px.array_len,
2127 .samples = 1,
2128 .row_pitch_B = row_pitch_B,
2129 .usage = ISL_SURF_USAGE_CCS_BIT,
2130 .tiling_flags = ISL_TILING_CCS_BIT);
2131 }
2132 }
2133
2134 #define isl_genX_call(dev, func, ...) \
2135 switch (ISL_DEV_GEN(dev)) { \
2136 case 4: \
2137 /* G45 surface state is the same as gen5 */ \
2138 if (ISL_DEV_IS_G4X(dev)) { \
2139 isl_gen5_##func(__VA_ARGS__); \
2140 } else { \
2141 isl_gen4_##func(__VA_ARGS__); \
2142 } \
2143 break; \
2144 case 5: \
2145 isl_gen5_##func(__VA_ARGS__); \
2146 break; \
2147 case 6: \
2148 isl_gen6_##func(__VA_ARGS__); \
2149 break; \
2150 case 7: \
2151 if (ISL_DEV_IS_HASWELL(dev)) { \
2152 isl_gen75_##func(__VA_ARGS__); \
2153 } else { \
2154 isl_gen7_##func(__VA_ARGS__); \
2155 } \
2156 break; \
2157 case 8: \
2158 isl_gen8_##func(__VA_ARGS__); \
2159 break; \
2160 case 9: \
2161 isl_gen9_##func(__VA_ARGS__); \
2162 break; \
2163 case 10: \
2164 isl_gen10_##func(__VA_ARGS__); \
2165 break; \
2166 case 11: \
2167 isl_gen11_##func(__VA_ARGS__); \
2168 break; \
2169 case 12: \
2170 isl_gen12_##func(__VA_ARGS__); \
2171 break; \
2172 default: \
2173 assert(!"Unknown hardware generation"); \
2174 }
2175
2176 void
2177 isl_surf_fill_state_s(const struct isl_device *dev, void *state,
2178 const struct isl_surf_fill_state_info *restrict info)
2179 {
2180 #ifndef NDEBUG
2181 isl_surf_usage_flags_t _base_usage =
2182 info->view->usage & (ISL_SURF_USAGE_RENDER_TARGET_BIT |
2183 ISL_SURF_USAGE_TEXTURE_BIT |
2184 ISL_SURF_USAGE_STORAGE_BIT);
2185 /* They may only specify one of the above bits at a time */
2186 assert(__builtin_popcount(_base_usage) == 1);
2187 /* The only other allowed bit is ISL_SURF_USAGE_CUBE_BIT */
2188 assert((info->view->usage & ~ISL_SURF_USAGE_CUBE_BIT) == _base_usage);
2189 #endif
2190
2191 if (info->surf->dim == ISL_SURF_DIM_3D) {
2192 assert(info->view->base_array_layer + info->view->array_len <=
2193 info->surf->logical_level0_px.depth);
2194 } else {
2195 assert(info->view->base_array_layer + info->view->array_len <=
2196 info->surf->logical_level0_px.array_len);
2197 }
2198
2199 isl_genX_call(dev, surf_fill_state_s, dev, state, info);
2200 }
2201
2202 void
2203 isl_buffer_fill_state_s(const struct isl_device *dev, void *state,
2204 const struct isl_buffer_fill_state_info *restrict info)
2205 {
2206 isl_genX_call(dev, buffer_fill_state_s, dev, state, info);
2207 }
2208
2209 void
2210 isl_null_fill_state(const struct isl_device *dev, void *state,
2211 struct isl_extent3d size)
2212 {
2213 isl_genX_call(dev, null_fill_state, state, size);
2214 }
2215
2216 void
2217 isl_emit_depth_stencil_hiz_s(const struct isl_device *dev, void *batch,
2218 const struct isl_depth_stencil_hiz_emit_info *restrict info)
2219 {
2220 if (info->depth_surf && info->stencil_surf) {
2221 if (!dev->info->has_hiz_and_separate_stencil) {
2222 assert(info->depth_surf == info->stencil_surf);
2223 assert(info->depth_address == info->stencil_address);
2224 }
2225 assert(info->depth_surf->dim == info->stencil_surf->dim);
2226 }
2227
2228 if (info->depth_surf) {
2229 assert((info->depth_surf->usage & ISL_SURF_USAGE_DEPTH_BIT));
2230 if (info->depth_surf->dim == ISL_SURF_DIM_3D) {
2231 assert(info->view->base_array_layer + info->view->array_len <=
2232 info->depth_surf->logical_level0_px.depth);
2233 } else {
2234 assert(info->view->base_array_layer + info->view->array_len <=
2235 info->depth_surf->logical_level0_px.array_len);
2236 }
2237 }
2238
2239 if (info->stencil_surf) {
2240 assert((info->stencil_surf->usage & ISL_SURF_USAGE_STENCIL_BIT));
2241 if (info->stencil_surf->dim == ISL_SURF_DIM_3D) {
2242 assert(info->view->base_array_layer + info->view->array_len <=
2243 info->stencil_surf->logical_level0_px.depth);
2244 } else {
2245 assert(info->view->base_array_layer + info->view->array_len <=
2246 info->stencil_surf->logical_level0_px.array_len);
2247 }
2248 }
2249
2250 isl_genX_call(dev, emit_depth_stencil_hiz_s, dev, batch, info);
2251 }
2252
2253 /**
2254 * A variant of isl_surf_get_image_offset_sa() specific to
2255 * ISL_DIM_LAYOUT_GEN4_2D.
2256 */
2257 static void
2258 get_image_offset_sa_gen4_2d(const struct isl_surf *surf,
2259 uint32_t level, uint32_t logical_array_layer,
2260 uint32_t *x_offset_sa,
2261 uint32_t *y_offset_sa)
2262 {
2263 assert(level < surf->levels);
2264 if (surf->dim == ISL_SURF_DIM_3D)
2265 assert(logical_array_layer < surf->logical_level0_px.depth);
2266 else
2267 assert(logical_array_layer < surf->logical_level0_px.array_len);
2268
2269 const struct isl_extent3d image_align_sa =
2270 isl_surf_get_image_alignment_sa(surf);
2271
2272 const uint32_t W0 = surf->phys_level0_sa.width;
2273 const uint32_t H0 = surf->phys_level0_sa.height;
2274
2275 const uint32_t phys_layer = logical_array_layer *
2276 (surf->msaa_layout == ISL_MSAA_LAYOUT_ARRAY ? surf->samples : 1);
2277
2278 uint32_t x = 0;
2279 uint32_t y = phys_layer * isl_surf_get_array_pitch_sa_rows(surf);
2280
2281 for (uint32_t l = 0; l < level; ++l) {
2282 if (l == 1) {
2283 uint32_t W = isl_minify(W0, l);
2284 x += isl_align_npot(W, image_align_sa.w);
2285 } else {
2286 uint32_t H = isl_minify(H0, l);
2287 y += isl_align_npot(H, image_align_sa.h);
2288 }
2289 }
2290
2291 *x_offset_sa = x;
2292 *y_offset_sa = y;
2293 }
2294
2295 /**
2296 * A variant of isl_surf_get_image_offset_sa() specific to
2297 * ISL_DIM_LAYOUT_GEN4_3D.
2298 */
2299 static void
2300 get_image_offset_sa_gen4_3d(const struct isl_surf *surf,
2301 uint32_t level, uint32_t logical_z_offset_px,
2302 uint32_t *x_offset_sa,
2303 uint32_t *y_offset_sa)
2304 {
2305 assert(level < surf->levels);
2306 if (surf->dim == ISL_SURF_DIM_3D) {
2307 assert(surf->phys_level0_sa.array_len == 1);
2308 assert(logical_z_offset_px < isl_minify(surf->phys_level0_sa.depth, level));
2309 } else {
2310 assert(surf->dim == ISL_SURF_DIM_2D);
2311 assert(surf->usage & ISL_SURF_USAGE_CUBE_BIT);
2312 assert(surf->phys_level0_sa.array_len == 6);
2313 assert(logical_z_offset_px < surf->phys_level0_sa.array_len);
2314 }
2315
2316 const struct isl_extent3d image_align_sa =
2317 isl_surf_get_image_alignment_sa(surf);
2318
2319 const uint32_t W0 = surf->phys_level0_sa.width;
2320 const uint32_t H0 = surf->phys_level0_sa.height;
2321 const uint32_t D0 = surf->phys_level0_sa.depth;
2322 const uint32_t AL = surf->phys_level0_sa.array_len;
2323
2324 uint32_t x = 0;
2325 uint32_t y = 0;
2326
2327 for (uint32_t l = 0; l < level; ++l) {
2328 const uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa.h);
2329 const uint32_t level_d =
2330 isl_align_npot(surf->dim == ISL_SURF_DIM_3D ? isl_minify(D0, l) : AL,
2331 image_align_sa.d);
2332 const uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
2333
2334 y += level_h * max_layers_vert;
2335 }
2336
2337 const uint32_t level_w = isl_align_npot(isl_minify(W0, level), image_align_sa.w);
2338 const uint32_t level_h = isl_align_npot(isl_minify(H0, level), image_align_sa.h);
2339 const uint32_t level_d =
2340 isl_align_npot(surf->dim == ISL_SURF_DIM_3D ? isl_minify(D0, level) : AL,
2341 image_align_sa.d);
2342
2343 const uint32_t max_layers_horiz = MIN(level_d, 1u << level);
2344
2345 x += level_w * (logical_z_offset_px % max_layers_horiz);
2346 y += level_h * (logical_z_offset_px / max_layers_horiz);
2347
2348 *x_offset_sa = x;
2349 *y_offset_sa = y;
2350 }
2351
2352 static void
2353 get_image_offset_sa_gen6_stencil_hiz(const struct isl_surf *surf,
2354 uint32_t level,
2355 uint32_t logical_array_layer,
2356 uint32_t *x_offset_sa,
2357 uint32_t *y_offset_sa)
2358 {
2359 assert(level < surf->levels);
2360 assert(surf->logical_level0_px.depth == 1);
2361 assert(logical_array_layer < surf->logical_level0_px.array_len);
2362
2363 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2364
2365 const struct isl_extent3d image_align_sa =
2366 isl_surf_get_image_alignment_sa(surf);
2367
2368 struct isl_tile_info tile_info;
2369 isl_tiling_get_info(surf->tiling, fmtl->bpb, &tile_info);
2370 const struct isl_extent2d tile_extent_sa = {
2371 .w = tile_info.logical_extent_el.w * fmtl->bw,
2372 .h = tile_info.logical_extent_el.h * fmtl->bh,
2373 };
2374 /* Tile size is a multiple of image alignment */
2375 assert(tile_extent_sa.w % image_align_sa.w == 0);
2376 assert(tile_extent_sa.h % image_align_sa.h == 0);
2377
2378 const uint32_t W0 = surf->phys_level0_sa.w;
2379 const uint32_t H0 = surf->phys_level0_sa.h;
2380
2381 /* Each image has the same height as LOD0 because the hardware thinks
2382 * everything is LOD0
2383 */
2384 const uint32_t H = isl_align(H0, image_align_sa.h);
2385
2386 /* Quick sanity check for consistency */
2387 if (surf->phys_level0_sa.array_len > 1)
2388 assert(surf->array_pitch_el_rows == isl_assert_div(H, fmtl->bh));
2389
2390 uint32_t x = 0, y = 0;
2391 for (uint32_t l = 0; l < level; ++l) {
2392 const uint32_t W = isl_minify(W0, l);
2393
2394 const uint32_t w = isl_align(W, tile_extent_sa.w);
2395 const uint32_t h = isl_align(H * surf->phys_level0_sa.a,
2396 tile_extent_sa.h);
2397
2398 if (l == 0) {
2399 y += h;
2400 } else {
2401 x += w;
2402 }
2403 }
2404
2405 y += H * logical_array_layer;
2406
2407 *x_offset_sa = x;
2408 *y_offset_sa = y;
2409 }
2410
2411 /**
2412 * A variant of isl_surf_get_image_offset_sa() specific to
2413 * ISL_DIM_LAYOUT_GEN9_1D.
2414 */
2415 static void
2416 get_image_offset_sa_gen9_1d(const struct isl_surf *surf,
2417 uint32_t level, uint32_t layer,
2418 uint32_t *x_offset_sa,
2419 uint32_t *y_offset_sa)
2420 {
2421 assert(level < surf->levels);
2422 assert(layer < surf->phys_level0_sa.array_len);
2423 assert(surf->phys_level0_sa.height == 1);
2424 assert(surf->phys_level0_sa.depth == 1);
2425 assert(surf->samples == 1);
2426
2427 const uint32_t W0 = surf->phys_level0_sa.width;
2428 const struct isl_extent3d image_align_sa =
2429 isl_surf_get_image_alignment_sa(surf);
2430
2431 uint32_t x = 0;
2432
2433 for (uint32_t l = 0; l < level; ++l) {
2434 uint32_t W = isl_minify(W0, l);
2435 uint32_t w = isl_align_npot(W, image_align_sa.w);
2436
2437 x += w;
2438 }
2439
2440 *x_offset_sa = x;
2441 *y_offset_sa = layer * isl_surf_get_array_pitch_sa_rows(surf);
2442 }
2443
2444 /**
2445 * Calculate the offset, in units of surface samples, to a subimage in the
2446 * surface.
2447 *
2448 * @invariant level < surface levels
2449 * @invariant logical_array_layer < logical array length of surface
2450 * @invariant logical_z_offset_px < logical depth of surface at level
2451 */
2452 void
2453 isl_surf_get_image_offset_sa(const struct isl_surf *surf,
2454 uint32_t level,
2455 uint32_t logical_array_layer,
2456 uint32_t logical_z_offset_px,
2457 uint32_t *x_offset_sa,
2458 uint32_t *y_offset_sa)
2459 {
2460 assert(level < surf->levels);
2461 assert(logical_array_layer < surf->logical_level0_px.array_len);
2462 assert(logical_z_offset_px
2463 < isl_minify(surf->logical_level0_px.depth, level));
2464
2465 switch (surf->dim_layout) {
2466 case ISL_DIM_LAYOUT_GEN9_1D:
2467 get_image_offset_sa_gen9_1d(surf, level, logical_array_layer,
2468 x_offset_sa, y_offset_sa);
2469 break;
2470 case ISL_DIM_LAYOUT_GEN4_2D:
2471 get_image_offset_sa_gen4_2d(surf, level, logical_array_layer
2472 + logical_z_offset_px,
2473 x_offset_sa, y_offset_sa);
2474 break;
2475 case ISL_DIM_LAYOUT_GEN4_3D:
2476 get_image_offset_sa_gen4_3d(surf, level, logical_array_layer +
2477 logical_z_offset_px,
2478 x_offset_sa, y_offset_sa);
2479 break;
2480 case ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ:
2481 get_image_offset_sa_gen6_stencil_hiz(surf, level, logical_array_layer +
2482 logical_z_offset_px,
2483 x_offset_sa, y_offset_sa);
2484 break;
2485
2486 default:
2487 unreachable("not reached");
2488 }
2489 }
2490
2491 void
2492 isl_surf_get_image_offset_el(const struct isl_surf *surf,
2493 uint32_t level,
2494 uint32_t logical_array_layer,
2495 uint32_t logical_z_offset_px,
2496 uint32_t *x_offset_el,
2497 uint32_t *y_offset_el)
2498 {
2499 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2500
2501 assert(level < surf->levels);
2502 assert(logical_array_layer < surf->logical_level0_px.array_len);
2503 assert(logical_z_offset_px
2504 < isl_minify(surf->logical_level0_px.depth, level));
2505
2506 uint32_t x_offset_sa, y_offset_sa;
2507 isl_surf_get_image_offset_sa(surf, level,
2508 logical_array_layer,
2509 logical_z_offset_px,
2510 &x_offset_sa,
2511 &y_offset_sa);
2512
2513 *x_offset_el = x_offset_sa / fmtl->bw;
2514 *y_offset_el = y_offset_sa / fmtl->bh;
2515 }
2516
2517 void
2518 isl_surf_get_image_offset_B_tile_sa(const struct isl_surf *surf,
2519 uint32_t level,
2520 uint32_t logical_array_layer,
2521 uint32_t logical_z_offset_px,
2522 uint32_t *offset_B,
2523 uint32_t *x_offset_sa,
2524 uint32_t *y_offset_sa)
2525 {
2526 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2527
2528 uint32_t total_x_offset_el, total_y_offset_el;
2529 isl_surf_get_image_offset_el(surf, level, logical_array_layer,
2530 logical_z_offset_px,
2531 &total_x_offset_el,
2532 &total_y_offset_el);
2533
2534 uint32_t x_offset_el, y_offset_el;
2535 isl_tiling_get_intratile_offset_el(surf->tiling, fmtl->bpb,
2536 surf->row_pitch_B,
2537 total_x_offset_el,
2538 total_y_offset_el,
2539 offset_B,
2540 &x_offset_el,
2541 &y_offset_el);
2542
2543 if (x_offset_sa) {
2544 *x_offset_sa = x_offset_el * fmtl->bw;
2545 } else {
2546 assert(x_offset_el == 0);
2547 }
2548
2549 if (y_offset_sa) {
2550 *y_offset_sa = y_offset_el * fmtl->bh;
2551 } else {
2552 assert(y_offset_el == 0);
2553 }
2554 }
2555
2556 void
2557 isl_surf_get_image_range_B_tile(const struct isl_surf *surf,
2558 uint32_t level,
2559 uint32_t logical_array_layer,
2560 uint32_t logical_z_offset_px,
2561 uint32_t *start_tile_B,
2562 uint32_t *end_tile_B)
2563 {
2564 uint32_t start_x_offset_el, start_y_offset_el;
2565 isl_surf_get_image_offset_el(surf, level, logical_array_layer,
2566 logical_z_offset_px,
2567 &start_x_offset_el,
2568 &start_y_offset_el);
2569
2570 /* Compute the size of the subimage in surface elements */
2571 const uint32_t subimage_w_sa = isl_minify(surf->phys_level0_sa.w, level);
2572 const uint32_t subimage_h_sa = isl_minify(surf->phys_level0_sa.h, level);
2573 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2574 const uint32_t subimage_w_el = isl_align_div_npot(subimage_w_sa, fmtl->bw);
2575 const uint32_t subimage_h_el = isl_align_div_npot(subimage_h_sa, fmtl->bh);
2576
2577 /* Find the last pixel */
2578 uint32_t end_x_offset_el = start_x_offset_el + subimage_w_el - 1;
2579 uint32_t end_y_offset_el = start_y_offset_el + subimage_h_el - 1;
2580
2581 UNUSED uint32_t x_offset_el, y_offset_el;
2582 isl_tiling_get_intratile_offset_el(surf->tiling, fmtl->bpb,
2583 surf->row_pitch_B,
2584 start_x_offset_el,
2585 start_y_offset_el,
2586 start_tile_B,
2587 &x_offset_el,
2588 &y_offset_el);
2589
2590 isl_tiling_get_intratile_offset_el(surf->tiling, fmtl->bpb,
2591 surf->row_pitch_B,
2592 end_x_offset_el,
2593 end_y_offset_el,
2594 end_tile_B,
2595 &x_offset_el,
2596 &y_offset_el);
2597
2598 /* We want the range we return to be exclusive but the tile containing the
2599 * last pixel (what we just calculated) is inclusive. Add one.
2600 */
2601 (*end_tile_B)++;
2602
2603 assert(*end_tile_B <= surf->size_B);
2604 }
2605
2606 void
2607 isl_surf_get_image_surf(const struct isl_device *dev,
2608 const struct isl_surf *surf,
2609 uint32_t level,
2610 uint32_t logical_array_layer,
2611 uint32_t logical_z_offset_px,
2612 struct isl_surf *image_surf,
2613 uint32_t *offset_B,
2614 uint32_t *x_offset_sa,
2615 uint32_t *y_offset_sa)
2616 {
2617 isl_surf_get_image_offset_B_tile_sa(surf,
2618 level,
2619 logical_array_layer,
2620 logical_z_offset_px,
2621 offset_B,
2622 x_offset_sa,
2623 y_offset_sa);
2624
2625 /* Even for cube maps there will be only single face, therefore drop the
2626 * corresponding flag if present.
2627 */
2628 const isl_surf_usage_flags_t usage =
2629 surf->usage & (~ISL_SURF_USAGE_CUBE_BIT);
2630
2631 bool ok UNUSED;
2632 ok = isl_surf_init(dev, image_surf,
2633 .dim = ISL_SURF_DIM_2D,
2634 .format = surf->format,
2635 .width = isl_minify(surf->logical_level0_px.w, level),
2636 .height = isl_minify(surf->logical_level0_px.h, level),
2637 .depth = 1,
2638 .levels = 1,
2639 .array_len = 1,
2640 .samples = surf->samples,
2641 .row_pitch_B = surf->row_pitch_B,
2642 .usage = usage,
2643 .tiling_flags = (1 << surf->tiling));
2644 assert(ok);
2645 }
2646
2647 void
2648 isl_tiling_get_intratile_offset_el(enum isl_tiling tiling,
2649 uint32_t bpb,
2650 uint32_t row_pitch_B,
2651 uint32_t total_x_offset_el,
2652 uint32_t total_y_offset_el,
2653 uint32_t *base_address_offset,
2654 uint32_t *x_offset_el,
2655 uint32_t *y_offset_el)
2656 {
2657 if (tiling == ISL_TILING_LINEAR) {
2658 assert(bpb % 8 == 0);
2659 *base_address_offset = total_y_offset_el * row_pitch_B +
2660 total_x_offset_el * (bpb / 8);
2661 *x_offset_el = 0;
2662 *y_offset_el = 0;
2663 return;
2664 }
2665
2666 struct isl_tile_info tile_info;
2667 isl_tiling_get_info(tiling, bpb, &tile_info);
2668
2669 assert(row_pitch_B % tile_info.phys_extent_B.width == 0);
2670
2671 /* For non-power-of-two formats, we need the address to be both tile and
2672 * element-aligned. The easiest way to achieve this is to work with a tile
2673 * that is three times as wide as the regular tile.
2674 *
2675 * The tile info returned by get_tile_info has a logical size that is an
2676 * integer number of tile_info.format_bpb size elements. To scale the
2677 * tile, we scale up the physical width and then treat the logical tile
2678 * size as if it has bpb size elements.
2679 */
2680 const uint32_t tile_el_scale = bpb / tile_info.format_bpb;
2681 tile_info.phys_extent_B.width *= tile_el_scale;
2682
2683 /* Compute the offset into the tile */
2684 *x_offset_el = total_x_offset_el % tile_info.logical_extent_el.w;
2685 *y_offset_el = total_y_offset_el % tile_info.logical_extent_el.h;
2686
2687 /* Compute the offset of the tile in units of whole tiles */
2688 uint32_t x_offset_tl = total_x_offset_el / tile_info.logical_extent_el.w;
2689 uint32_t y_offset_tl = total_y_offset_el / tile_info.logical_extent_el.h;
2690
2691 *base_address_offset =
2692 y_offset_tl * tile_info.phys_extent_B.h * row_pitch_B +
2693 x_offset_tl * tile_info.phys_extent_B.h * tile_info.phys_extent_B.w;
2694 }
2695
2696 uint32_t
2697 isl_surf_get_depth_format(const struct isl_device *dev,
2698 const struct isl_surf *surf)
2699 {
2700 /* Support for separate stencil buffers began in gen5. Support for
2701 * interleaved depthstencil buffers ceased in gen7. The intermediate gens,
2702 * those that supported separate and interleaved stencil, were gen5 and
2703 * gen6.
2704 *
2705 * For a list of all available formats, see the Sandybridge PRM >> Volume
2706 * 2 Part 1: 3D/Media - 3D Pipeline >> 3DSTATE_DEPTH_BUFFER >> Surface
2707 * Format (p321).
2708 */
2709
2710 bool has_stencil = surf->usage & ISL_SURF_USAGE_STENCIL_BIT;
2711
2712 assert(surf->usage & ISL_SURF_USAGE_DEPTH_BIT);
2713
2714 if (has_stencil)
2715 assert(ISL_DEV_GEN(dev) < 7);
2716
2717 switch (surf->format) {
2718 default:
2719 unreachable("bad isl depth format");
2720 case ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS:
2721 assert(ISL_DEV_GEN(dev) < 7);
2722 return 0; /* D32_FLOAT_S8X24_UINT */
2723 case ISL_FORMAT_R32_FLOAT:
2724 assert(!has_stencil);
2725 return 1; /* D32_FLOAT */
2726 case ISL_FORMAT_R24_UNORM_X8_TYPELESS:
2727 if (has_stencil) {
2728 assert(ISL_DEV_GEN(dev) < 7);
2729 return 2; /* D24_UNORM_S8_UINT */
2730 } else {
2731 assert(ISL_DEV_GEN(dev) >= 5);
2732 return 3; /* D24_UNORM_X8_UINT */
2733 }
2734 case ISL_FORMAT_R16_UNORM:
2735 assert(!has_stencil);
2736 return 5; /* D16_UNORM */
2737 }
2738 }
2739
2740 bool
2741 isl_swizzle_supports_rendering(const struct gen_device_info *devinfo,
2742 struct isl_swizzle swizzle)
2743 {
2744 if (devinfo->is_haswell) {
2745 /* From the Haswell PRM,
2746 * RENDER_SURFACE_STATE::Shader Channel Select Red
2747 *
2748 * "The Shader channel selects also define which shader channels are
2749 * written to which surface channel. If the Shader channel select is
2750 * SCS_ZERO or SCS_ONE then it is not written to the surface. If the
2751 * shader channel select is SCS_RED it is written to the surface red
2752 * channel and so on. If more than one shader channel select is set
2753 * to the same surface channel only the first shader channel in RGBA
2754 * order will be written."
2755 */
2756 return true;
2757 } else if (devinfo->gen <= 7) {
2758 /* Ivy Bridge and early doesn't have any swizzling */
2759 return isl_swizzle_is_identity(swizzle);
2760 } else {
2761 /* From the Sky Lake PRM Vol. 2d,
2762 * RENDER_SURFACE_STATE::Shader Channel Select Red
2763 *
2764 * "For Render Target, Red, Green and Blue Shader Channel Selects
2765 * MUST be such that only valid components can be swapped i.e. only
2766 * change the order of components in the pixel. Any other values for
2767 * these Shader Channel Select fields are not valid for Render
2768 * Targets. This also means that there MUST not be multiple shader
2769 * channels mapped to the same RT channel."
2770 *
2771 * From the Sky Lake PRM Vol. 2d,
2772 * RENDER_SURFACE_STATE::Shader Channel Select Alpha
2773 *
2774 * "For Render Target, this field MUST be programmed to
2775 * value = SCS_ALPHA."
2776 */
2777 return (swizzle.r == ISL_CHANNEL_SELECT_RED ||
2778 swizzle.r == ISL_CHANNEL_SELECT_GREEN ||
2779 swizzle.r == ISL_CHANNEL_SELECT_BLUE) &&
2780 (swizzle.g == ISL_CHANNEL_SELECT_RED ||
2781 swizzle.g == ISL_CHANNEL_SELECT_GREEN ||
2782 swizzle.g == ISL_CHANNEL_SELECT_BLUE) &&
2783 (swizzle.b == ISL_CHANNEL_SELECT_RED ||
2784 swizzle.b == ISL_CHANNEL_SELECT_GREEN ||
2785 swizzle.b == ISL_CHANNEL_SELECT_BLUE) &&
2786 swizzle.r != swizzle.g &&
2787 swizzle.r != swizzle.b &&
2788 swizzle.g != swizzle.b &&
2789 swizzle.a == ISL_CHANNEL_SELECT_ALPHA;
2790 }
2791 }
2792
2793 static enum isl_channel_select
2794 swizzle_select(enum isl_channel_select chan, struct isl_swizzle swizzle)
2795 {
2796 switch (chan) {
2797 case ISL_CHANNEL_SELECT_ZERO:
2798 case ISL_CHANNEL_SELECT_ONE:
2799 return chan;
2800 case ISL_CHANNEL_SELECT_RED:
2801 return swizzle.r;
2802 case ISL_CHANNEL_SELECT_GREEN:
2803 return swizzle.g;
2804 case ISL_CHANNEL_SELECT_BLUE:
2805 return swizzle.b;
2806 case ISL_CHANNEL_SELECT_ALPHA:
2807 return swizzle.a;
2808 default:
2809 unreachable("Invalid swizzle component");
2810 }
2811 }
2812
2813 /**
2814 * Returns the single swizzle that is equivalent to applying the two given
2815 * swizzles in sequence.
2816 */
2817 struct isl_swizzle
2818 isl_swizzle_compose(struct isl_swizzle first, struct isl_swizzle second)
2819 {
2820 return (struct isl_swizzle) {
2821 .r = swizzle_select(first.r, second),
2822 .g = swizzle_select(first.g, second),
2823 .b = swizzle_select(first.b, second),
2824 .a = swizzle_select(first.a, second),
2825 };
2826 }
2827
2828 /**
2829 * Returns a swizzle that is the pseudo-inverse of this swizzle.
2830 */
2831 struct isl_swizzle
2832 isl_swizzle_invert(struct isl_swizzle swizzle)
2833 {
2834 /* Default to zero for channels which do not show up in the swizzle */
2835 enum isl_channel_select chans[4] = {
2836 ISL_CHANNEL_SELECT_ZERO,
2837 ISL_CHANNEL_SELECT_ZERO,
2838 ISL_CHANNEL_SELECT_ZERO,
2839 ISL_CHANNEL_SELECT_ZERO,
2840 };
2841
2842 /* We go in ABGR order so that, if there are any duplicates, the first one
2843 * is taken if you look at it in RGBA order. This is what Haswell hardware
2844 * does for render target swizzles.
2845 */
2846 if ((unsigned)(swizzle.a - ISL_CHANNEL_SELECT_RED) < 4)
2847 chans[swizzle.a - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_ALPHA;
2848 if ((unsigned)(swizzle.b - ISL_CHANNEL_SELECT_RED) < 4)
2849 chans[swizzle.b - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_BLUE;
2850 if ((unsigned)(swizzle.g - ISL_CHANNEL_SELECT_RED) < 4)
2851 chans[swizzle.g - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_GREEN;
2852 if ((unsigned)(swizzle.r - ISL_CHANNEL_SELECT_RED) < 4)
2853 chans[swizzle.r - ISL_CHANNEL_SELECT_RED] = ISL_CHANNEL_SELECT_RED;
2854
2855 return (struct isl_swizzle) { chans[0], chans[1], chans[2], chans[3] };
2856 }
2857
2858 uint8_t
2859 isl_format_get_aux_map_encoding(enum isl_format format)
2860 {
2861 switch(format) {
2862 case ISL_FORMAT_R32G32B32A32_FLOAT: return 0x11;
2863 case ISL_FORMAT_R32G32B32X32_FLOAT: return 0x11;
2864 case ISL_FORMAT_R32G32B32A32_SINT: return 0x12;
2865 case ISL_FORMAT_R32G32B32A32_UINT: return 0x13;
2866 case ISL_FORMAT_R16G16B16A16_UNORM: return 0x14;
2867 case ISL_FORMAT_R16G16B16A16_SNORM: return 0x15;
2868 case ISL_FORMAT_R16G16B16A16_SINT: return 0x16;
2869 case ISL_FORMAT_R16G16B16A16_UINT: return 0x17;
2870 case ISL_FORMAT_R16G16B16A16_FLOAT: return 0x10;
2871 case ISL_FORMAT_R16G16B16X16_FLOAT: return 0x10;
2872 case ISL_FORMAT_R32G32_FLOAT: return 0x11;
2873 case ISL_FORMAT_R32G32_SINT: return 0x12;
2874 case ISL_FORMAT_R32G32_UINT: return 0x13;
2875 case ISL_FORMAT_B8G8R8A8_UNORM: return 0xA;
2876 case ISL_FORMAT_B8G8R8X8_UNORM: return 0xA;
2877 case ISL_FORMAT_B8G8R8A8_UNORM_SRGB: return 0xA;
2878 case ISL_FORMAT_B8G8R8X8_UNORM_SRGB: return 0xA;
2879 case ISL_FORMAT_R10G10B10A2_UNORM: return 0x18;
2880 case ISL_FORMAT_R10G10B10A2_UNORM_SRGB: return 0x18;
2881 case ISL_FORMAT_R10G10B10_FLOAT_A2_UNORM: return 0x19;
2882 case ISL_FORMAT_R10G10B10A2_UINT: return 0x1A;
2883 case ISL_FORMAT_R8G8B8A8_UNORM: return 0xA;
2884 case ISL_FORMAT_R8G8B8A8_UNORM_SRGB: return 0xA;
2885 case ISL_FORMAT_R8G8B8A8_SNORM: return 0x1B;
2886 case ISL_FORMAT_R8G8B8A8_SINT: return 0x1C;
2887 case ISL_FORMAT_R8G8B8A8_UINT: return 0x1D;
2888 case ISL_FORMAT_R16G16_UNORM: return 0x14;
2889 case ISL_FORMAT_R16G16_SNORM: return 0x15;
2890 case ISL_FORMAT_R16G16_SINT: return 0x16;
2891 case ISL_FORMAT_R16G16_UINT: return 0x17;
2892 case ISL_FORMAT_R16G16_FLOAT: return 0x10;
2893 case ISL_FORMAT_B10G10R10A2_UNORM: return 0x18;
2894 case ISL_FORMAT_B10G10R10A2_UNORM_SRGB: return 0x18;
2895 case ISL_FORMAT_R11G11B10_FLOAT: return 0x1E;
2896 case ISL_FORMAT_R32_SINT: return 0x12;
2897 case ISL_FORMAT_R32_UINT: return 0x13;
2898 case ISL_FORMAT_R32_FLOAT: return 0x11;
2899 case ISL_FORMAT_R24_UNORM_X8_TYPELESS: return 0x11;
2900 case ISL_FORMAT_B5G6R5_UNORM: return 0xA;
2901 case ISL_FORMAT_B5G6R5_UNORM_SRGB: return 0xA;
2902 case ISL_FORMAT_B5G5R5A1_UNORM: return 0xA;
2903 case ISL_FORMAT_B5G5R5A1_UNORM_SRGB: return 0xA;
2904 case ISL_FORMAT_B4G4R4A4_UNORM: return 0xA;
2905 case ISL_FORMAT_B4G4R4A4_UNORM_SRGB: return 0xA;
2906 case ISL_FORMAT_R8G8_UNORM: return 0xA;
2907 case ISL_FORMAT_R8G8_SNORM: return 0x1B;
2908 case ISL_FORMAT_R8G8_SINT: return 0x1C;
2909 case ISL_FORMAT_R8G8_UINT: return 0x1D;
2910 case ISL_FORMAT_R16_UNORM: return 0x14;
2911 case ISL_FORMAT_R16_SNORM: return 0x15;
2912 case ISL_FORMAT_R16_SINT: return 0x16;
2913 case ISL_FORMAT_R16_UINT: return 0x17;
2914 case ISL_FORMAT_R16_FLOAT: return 0x10;
2915 case ISL_FORMAT_B5G5R5X1_UNORM: return 0xA;
2916 case ISL_FORMAT_B5G5R5X1_UNORM_SRGB: return 0xA;
2917 case ISL_FORMAT_A1B5G5R5_UNORM: return 0xA;
2918 case ISL_FORMAT_A4B4G4R4_UNORM: return 0xA;
2919 case ISL_FORMAT_R8_UNORM: return 0xA;
2920 case ISL_FORMAT_R8_SNORM: return 0x1B;
2921 case ISL_FORMAT_R8_SINT: return 0x1C;
2922 case ISL_FORMAT_R8_UINT: return 0x1D;
2923 case ISL_FORMAT_A8_UNORM: return 0xA;
2924 default:
2925 unreachable("Unsupported aux-map format!");
2926 return 0;
2927 }
2928 }