intel/iris: Always initialize CCS to 0
[mesa.git] / src / intel / isl / isl.h
1 /*
2 * Copyright 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /**
25 * @file
26 * @brief Intel Surface Layout
27 *
28 * Header Layout
29 * -------------
30 * The header is ordered as:
31 * - forward declarations
32 * - macros that may be overridden at compile-time for specific gens
33 * - enums and constants
34 * - structs and unions
35 * - functions
36 */
37
38 #ifndef ISL_H
39 #define ISL_H
40
41 #include <assert.h>
42 #include <stdbool.h>
43 #include <stdint.h>
44
45 #include "c99_compat.h"
46 #include "util/macros.h"
47 #include "util/format/u_format.h"
48
49 #ifdef __cplusplus
50 extern "C" {
51 #endif
52
53 struct gen_device_info;
54 struct brw_image_param;
55
56 #ifndef ISL_DEV_GEN
57 /**
58 * @brief Get the hardware generation of isl_device.
59 *
60 * You can define this as a compile-time constant in the CFLAGS. For example,
61 * `gcc -DISL_DEV_GEN(dev)=9 ...`.
62 */
63 #define ISL_DEV_GEN(__dev) ((__dev)->info->gen)
64 #define ISL_DEV_GEN_SANITIZE(__dev)
65 #else
66 #define ISL_DEV_GEN_SANITIZE(__dev) \
67 (assert(ISL_DEV_GEN(__dev) == (__dev)->info->gen))
68 #endif
69
70 #ifndef ISL_DEV_IS_G4X
71 #define ISL_DEV_IS_G4X(__dev) ((__dev)->info->is_g4x)
72 #endif
73
74 #ifndef ISL_DEV_IS_HASWELL
75 /**
76 * @brief Get the hardware generation of isl_device.
77 *
78 * You can define this as a compile-time constant in the CFLAGS. For example,
79 * `gcc -DISL_DEV_GEN(dev)=9 ...`.
80 */
81 #define ISL_DEV_IS_HASWELL(__dev) ((__dev)->info->is_haswell)
82 #endif
83
84 #ifndef ISL_DEV_IS_BAYTRAIL
85 #define ISL_DEV_IS_BAYTRAIL(__dev) ((__dev)->info->is_baytrail)
86 #endif
87
88 #ifndef ISL_DEV_USE_SEPARATE_STENCIL
89 /**
90 * You can define this as a compile-time constant in the CFLAGS. For example,
91 * `gcc -DISL_DEV_USE_SEPARATE_STENCIL(dev)=1 ...`.
92 */
93 #define ISL_DEV_USE_SEPARATE_STENCIL(__dev) ((__dev)->use_separate_stencil)
94 #define ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(__dev)
95 #else
96 #define ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(__dev) \
97 (assert(ISL_DEV_USE_SEPARATE_STENCIL(__dev) == (__dev)->use_separate_stencil))
98 #endif
99
100 /**
101 * Hardware enumeration SURFACE_FORMAT.
102 *
103 * For the official list, see Broadwell PRM: Volume 2b: Command Reference:
104 * Enumerations: SURFACE_FORMAT.
105 */
106 enum isl_format {
107 ISL_FORMAT_R32G32B32A32_FLOAT = 0,
108 ISL_FORMAT_R32G32B32A32_SINT = 1,
109 ISL_FORMAT_R32G32B32A32_UINT = 2,
110 ISL_FORMAT_R32G32B32A32_UNORM = 3,
111 ISL_FORMAT_R32G32B32A32_SNORM = 4,
112 ISL_FORMAT_R64G64_FLOAT = 5,
113 ISL_FORMAT_R32G32B32X32_FLOAT = 6,
114 ISL_FORMAT_R32G32B32A32_SSCALED = 7,
115 ISL_FORMAT_R32G32B32A32_USCALED = 8,
116 ISL_FORMAT_R32G32B32A32_SFIXED = 32,
117 ISL_FORMAT_R64G64_PASSTHRU = 33,
118 ISL_FORMAT_R32G32B32_FLOAT = 64,
119 ISL_FORMAT_R32G32B32_SINT = 65,
120 ISL_FORMAT_R32G32B32_UINT = 66,
121 ISL_FORMAT_R32G32B32_UNORM = 67,
122 ISL_FORMAT_R32G32B32_SNORM = 68,
123 ISL_FORMAT_R32G32B32_SSCALED = 69,
124 ISL_FORMAT_R32G32B32_USCALED = 70,
125 ISL_FORMAT_R32G32B32_SFIXED = 80,
126 ISL_FORMAT_R16G16B16A16_UNORM = 128,
127 ISL_FORMAT_R16G16B16A16_SNORM = 129,
128 ISL_FORMAT_R16G16B16A16_SINT = 130,
129 ISL_FORMAT_R16G16B16A16_UINT = 131,
130 ISL_FORMAT_R16G16B16A16_FLOAT = 132,
131 ISL_FORMAT_R32G32_FLOAT = 133,
132 ISL_FORMAT_R32G32_SINT = 134,
133 ISL_FORMAT_R32G32_UINT = 135,
134 ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS = 136,
135 ISL_FORMAT_X32_TYPELESS_G8X24_UINT = 137,
136 ISL_FORMAT_L32A32_FLOAT = 138,
137 ISL_FORMAT_R32G32_UNORM = 139,
138 ISL_FORMAT_R32G32_SNORM = 140,
139 ISL_FORMAT_R64_FLOAT = 141,
140 ISL_FORMAT_R16G16B16X16_UNORM = 142,
141 ISL_FORMAT_R16G16B16X16_FLOAT = 143,
142 ISL_FORMAT_A32X32_FLOAT = 144,
143 ISL_FORMAT_L32X32_FLOAT = 145,
144 ISL_FORMAT_I32X32_FLOAT = 146,
145 ISL_FORMAT_R16G16B16A16_SSCALED = 147,
146 ISL_FORMAT_R16G16B16A16_USCALED = 148,
147 ISL_FORMAT_R32G32_SSCALED = 149,
148 ISL_FORMAT_R32G32_USCALED = 150,
149 ISL_FORMAT_R32G32_FLOAT_LD = 151,
150 ISL_FORMAT_R32G32_SFIXED = 160,
151 ISL_FORMAT_R64_PASSTHRU = 161,
152 ISL_FORMAT_B8G8R8A8_UNORM = 192,
153 ISL_FORMAT_B8G8R8A8_UNORM_SRGB = 193,
154 ISL_FORMAT_R10G10B10A2_UNORM = 194,
155 ISL_FORMAT_R10G10B10A2_UNORM_SRGB = 195,
156 ISL_FORMAT_R10G10B10A2_UINT = 196,
157 ISL_FORMAT_R10G10B10_SNORM_A2_UNORM = 197,
158 ISL_FORMAT_R8G8B8A8_UNORM = 199,
159 ISL_FORMAT_R8G8B8A8_UNORM_SRGB = 200,
160 ISL_FORMAT_R8G8B8A8_SNORM = 201,
161 ISL_FORMAT_R8G8B8A8_SINT = 202,
162 ISL_FORMAT_R8G8B8A8_UINT = 203,
163 ISL_FORMAT_R16G16_UNORM = 204,
164 ISL_FORMAT_R16G16_SNORM = 205,
165 ISL_FORMAT_R16G16_SINT = 206,
166 ISL_FORMAT_R16G16_UINT = 207,
167 ISL_FORMAT_R16G16_FLOAT = 208,
168 ISL_FORMAT_B10G10R10A2_UNORM = 209,
169 ISL_FORMAT_B10G10R10A2_UNORM_SRGB = 210,
170 ISL_FORMAT_R11G11B10_FLOAT = 211,
171 ISL_FORMAT_R10G10B10_FLOAT_A2_UNORM = 213,
172 ISL_FORMAT_R32_SINT = 214,
173 ISL_FORMAT_R32_UINT = 215,
174 ISL_FORMAT_R32_FLOAT = 216,
175 ISL_FORMAT_R24_UNORM_X8_TYPELESS = 217,
176 ISL_FORMAT_X24_TYPELESS_G8_UINT = 218,
177 ISL_FORMAT_L32_UNORM = 221,
178 ISL_FORMAT_A32_UNORM = 222,
179 ISL_FORMAT_L16A16_UNORM = 223,
180 ISL_FORMAT_I24X8_UNORM = 224,
181 ISL_FORMAT_L24X8_UNORM = 225,
182 ISL_FORMAT_A24X8_UNORM = 226,
183 ISL_FORMAT_I32_FLOAT = 227,
184 ISL_FORMAT_L32_FLOAT = 228,
185 ISL_FORMAT_A32_FLOAT = 229,
186 ISL_FORMAT_X8B8_UNORM_G8R8_SNORM = 230,
187 ISL_FORMAT_A8X8_UNORM_G8R8_SNORM = 231,
188 ISL_FORMAT_B8X8_UNORM_G8R8_SNORM = 232,
189 ISL_FORMAT_B8G8R8X8_UNORM = 233,
190 ISL_FORMAT_B8G8R8X8_UNORM_SRGB = 234,
191 ISL_FORMAT_R8G8B8X8_UNORM = 235,
192 ISL_FORMAT_R8G8B8X8_UNORM_SRGB = 236,
193 ISL_FORMAT_R9G9B9E5_SHAREDEXP = 237,
194 ISL_FORMAT_B10G10R10X2_UNORM = 238,
195 ISL_FORMAT_L16A16_FLOAT = 240,
196 ISL_FORMAT_R32_UNORM = 241,
197 ISL_FORMAT_R32_SNORM = 242,
198 ISL_FORMAT_R10G10B10X2_USCALED = 243,
199 ISL_FORMAT_R8G8B8A8_SSCALED = 244,
200 ISL_FORMAT_R8G8B8A8_USCALED = 245,
201 ISL_FORMAT_R16G16_SSCALED = 246,
202 ISL_FORMAT_R16G16_USCALED = 247,
203 ISL_FORMAT_R32_SSCALED = 248,
204 ISL_FORMAT_R32_USCALED = 249,
205 ISL_FORMAT_B5G6R5_UNORM = 256,
206 ISL_FORMAT_B5G6R5_UNORM_SRGB = 257,
207 ISL_FORMAT_B5G5R5A1_UNORM = 258,
208 ISL_FORMAT_B5G5R5A1_UNORM_SRGB = 259,
209 ISL_FORMAT_B4G4R4A4_UNORM = 260,
210 ISL_FORMAT_B4G4R4A4_UNORM_SRGB = 261,
211 ISL_FORMAT_R8G8_UNORM = 262,
212 ISL_FORMAT_R8G8_SNORM = 263,
213 ISL_FORMAT_R8G8_SINT = 264,
214 ISL_FORMAT_R8G8_UINT = 265,
215 ISL_FORMAT_R16_UNORM = 266,
216 ISL_FORMAT_R16_SNORM = 267,
217 ISL_FORMAT_R16_SINT = 268,
218 ISL_FORMAT_R16_UINT = 269,
219 ISL_FORMAT_R16_FLOAT = 270,
220 ISL_FORMAT_A8P8_UNORM_PALETTE0 = 271,
221 ISL_FORMAT_A8P8_UNORM_PALETTE1 = 272,
222 ISL_FORMAT_I16_UNORM = 273,
223 ISL_FORMAT_L16_UNORM = 274,
224 ISL_FORMAT_A16_UNORM = 275,
225 ISL_FORMAT_L8A8_UNORM = 276,
226 ISL_FORMAT_I16_FLOAT = 277,
227 ISL_FORMAT_L16_FLOAT = 278,
228 ISL_FORMAT_A16_FLOAT = 279,
229 ISL_FORMAT_L8A8_UNORM_SRGB = 280,
230 ISL_FORMAT_R5G5_SNORM_B6_UNORM = 281,
231 ISL_FORMAT_B5G5R5X1_UNORM = 282,
232 ISL_FORMAT_B5G5R5X1_UNORM_SRGB = 283,
233 ISL_FORMAT_R8G8_SSCALED = 284,
234 ISL_FORMAT_R8G8_USCALED = 285,
235 ISL_FORMAT_R16_SSCALED = 286,
236 ISL_FORMAT_R16_USCALED = 287,
237 ISL_FORMAT_P8A8_UNORM_PALETTE0 = 290,
238 ISL_FORMAT_P8A8_UNORM_PALETTE1 = 291,
239 ISL_FORMAT_A1B5G5R5_UNORM = 292,
240 ISL_FORMAT_A4B4G4R4_UNORM = 293,
241 ISL_FORMAT_L8A8_UINT = 294,
242 ISL_FORMAT_L8A8_SINT = 295,
243 ISL_FORMAT_R8_UNORM = 320,
244 ISL_FORMAT_R8_SNORM = 321,
245 ISL_FORMAT_R8_SINT = 322,
246 ISL_FORMAT_R8_UINT = 323,
247 ISL_FORMAT_A8_UNORM = 324,
248 ISL_FORMAT_I8_UNORM = 325,
249 ISL_FORMAT_L8_UNORM = 326,
250 ISL_FORMAT_P4A4_UNORM_PALETTE0 = 327,
251 ISL_FORMAT_A4P4_UNORM_PALETTE0 = 328,
252 ISL_FORMAT_R8_SSCALED = 329,
253 ISL_FORMAT_R8_USCALED = 330,
254 ISL_FORMAT_P8_UNORM_PALETTE0 = 331,
255 ISL_FORMAT_L8_UNORM_SRGB = 332,
256 ISL_FORMAT_P8_UNORM_PALETTE1 = 333,
257 ISL_FORMAT_P4A4_UNORM_PALETTE1 = 334,
258 ISL_FORMAT_A4P4_UNORM_PALETTE1 = 335,
259 ISL_FORMAT_Y8_UNORM = 336,
260 ISL_FORMAT_L8_UINT = 338,
261 ISL_FORMAT_L8_SINT = 339,
262 ISL_FORMAT_I8_UINT = 340,
263 ISL_FORMAT_I8_SINT = 341,
264 ISL_FORMAT_DXT1_RGB_SRGB = 384,
265 ISL_FORMAT_R1_UNORM = 385,
266 ISL_FORMAT_YCRCB_NORMAL = 386,
267 ISL_FORMAT_YCRCB_SWAPUVY = 387,
268 ISL_FORMAT_P2_UNORM_PALETTE0 = 388,
269 ISL_FORMAT_P2_UNORM_PALETTE1 = 389,
270 ISL_FORMAT_BC1_UNORM = 390,
271 ISL_FORMAT_BC2_UNORM = 391,
272 ISL_FORMAT_BC3_UNORM = 392,
273 ISL_FORMAT_BC4_UNORM = 393,
274 ISL_FORMAT_BC5_UNORM = 394,
275 ISL_FORMAT_BC1_UNORM_SRGB = 395,
276 ISL_FORMAT_BC2_UNORM_SRGB = 396,
277 ISL_FORMAT_BC3_UNORM_SRGB = 397,
278 ISL_FORMAT_MONO8 = 398,
279 ISL_FORMAT_YCRCB_SWAPUV = 399,
280 ISL_FORMAT_YCRCB_SWAPY = 400,
281 ISL_FORMAT_DXT1_RGB = 401,
282 ISL_FORMAT_FXT1 = 402,
283 ISL_FORMAT_R8G8B8_UNORM = 403,
284 ISL_FORMAT_R8G8B8_SNORM = 404,
285 ISL_FORMAT_R8G8B8_SSCALED = 405,
286 ISL_FORMAT_R8G8B8_USCALED = 406,
287 ISL_FORMAT_R64G64B64A64_FLOAT = 407,
288 ISL_FORMAT_R64G64B64_FLOAT = 408,
289 ISL_FORMAT_BC4_SNORM = 409,
290 ISL_FORMAT_BC5_SNORM = 410,
291 ISL_FORMAT_R16G16B16_FLOAT = 411,
292 ISL_FORMAT_R16G16B16_UNORM = 412,
293 ISL_FORMAT_R16G16B16_SNORM = 413,
294 ISL_FORMAT_R16G16B16_SSCALED = 414,
295 ISL_FORMAT_R16G16B16_USCALED = 415,
296 ISL_FORMAT_BC6H_SF16 = 417,
297 ISL_FORMAT_BC7_UNORM = 418,
298 ISL_FORMAT_BC7_UNORM_SRGB = 419,
299 ISL_FORMAT_BC6H_UF16 = 420,
300 ISL_FORMAT_PLANAR_420_8 = 421,
301 ISL_FORMAT_R8G8B8_UNORM_SRGB = 424,
302 ISL_FORMAT_ETC1_RGB8 = 425,
303 ISL_FORMAT_ETC2_RGB8 = 426,
304 ISL_FORMAT_EAC_R11 = 427,
305 ISL_FORMAT_EAC_RG11 = 428,
306 ISL_FORMAT_EAC_SIGNED_R11 = 429,
307 ISL_FORMAT_EAC_SIGNED_RG11 = 430,
308 ISL_FORMAT_ETC2_SRGB8 = 431,
309 ISL_FORMAT_R16G16B16_UINT = 432,
310 ISL_FORMAT_R16G16B16_SINT = 433,
311 ISL_FORMAT_R32_SFIXED = 434,
312 ISL_FORMAT_R10G10B10A2_SNORM = 435,
313 ISL_FORMAT_R10G10B10A2_USCALED = 436,
314 ISL_FORMAT_R10G10B10A2_SSCALED = 437,
315 ISL_FORMAT_R10G10B10A2_SINT = 438,
316 ISL_FORMAT_B10G10R10A2_SNORM = 439,
317 ISL_FORMAT_B10G10R10A2_USCALED = 440,
318 ISL_FORMAT_B10G10R10A2_SSCALED = 441,
319 ISL_FORMAT_B10G10R10A2_UINT = 442,
320 ISL_FORMAT_B10G10R10A2_SINT = 443,
321 ISL_FORMAT_R64G64B64A64_PASSTHRU = 444,
322 ISL_FORMAT_R64G64B64_PASSTHRU = 445,
323 ISL_FORMAT_ETC2_RGB8_PTA = 448,
324 ISL_FORMAT_ETC2_SRGB8_PTA = 449,
325 ISL_FORMAT_ETC2_EAC_RGBA8 = 450,
326 ISL_FORMAT_ETC2_EAC_SRGB8_A8 = 451,
327 ISL_FORMAT_R8G8B8_UINT = 456,
328 ISL_FORMAT_R8G8B8_SINT = 457,
329 ISL_FORMAT_RAW = 511,
330 ISL_FORMAT_ASTC_LDR_2D_4X4_U8SRGB = 512,
331 ISL_FORMAT_ASTC_LDR_2D_5X4_U8SRGB = 520,
332 ISL_FORMAT_ASTC_LDR_2D_5X5_U8SRGB = 521,
333 ISL_FORMAT_ASTC_LDR_2D_6X5_U8SRGB = 529,
334 ISL_FORMAT_ASTC_LDR_2D_6X6_U8SRGB = 530,
335 ISL_FORMAT_ASTC_LDR_2D_8X5_U8SRGB = 545,
336 ISL_FORMAT_ASTC_LDR_2D_8X6_U8SRGB = 546,
337 ISL_FORMAT_ASTC_LDR_2D_8X8_U8SRGB = 548,
338 ISL_FORMAT_ASTC_LDR_2D_10X5_U8SRGB = 561,
339 ISL_FORMAT_ASTC_LDR_2D_10X6_U8SRGB = 562,
340 ISL_FORMAT_ASTC_LDR_2D_10X8_U8SRGB = 564,
341 ISL_FORMAT_ASTC_LDR_2D_10X10_U8SRGB = 566,
342 ISL_FORMAT_ASTC_LDR_2D_12X10_U8SRGB = 574,
343 ISL_FORMAT_ASTC_LDR_2D_12X12_U8SRGB = 575,
344 ISL_FORMAT_ASTC_LDR_2D_4X4_FLT16 = 576,
345 ISL_FORMAT_ASTC_LDR_2D_5X4_FLT16 = 584,
346 ISL_FORMAT_ASTC_LDR_2D_5X5_FLT16 = 585,
347 ISL_FORMAT_ASTC_LDR_2D_6X5_FLT16 = 593,
348 ISL_FORMAT_ASTC_LDR_2D_6X6_FLT16 = 594,
349 ISL_FORMAT_ASTC_LDR_2D_8X5_FLT16 = 609,
350 ISL_FORMAT_ASTC_LDR_2D_8X6_FLT16 = 610,
351 ISL_FORMAT_ASTC_LDR_2D_8X8_FLT16 = 612,
352 ISL_FORMAT_ASTC_LDR_2D_10X5_FLT16 = 625,
353 ISL_FORMAT_ASTC_LDR_2D_10X6_FLT16 = 626,
354 ISL_FORMAT_ASTC_LDR_2D_10X8_FLT16 = 628,
355 ISL_FORMAT_ASTC_LDR_2D_10X10_FLT16 = 630,
356 ISL_FORMAT_ASTC_LDR_2D_12X10_FLT16 = 638,
357 ISL_FORMAT_ASTC_LDR_2D_12X12_FLT16 = 639,
358 ISL_FORMAT_ASTC_HDR_2D_4X4_FLT16 = 832,
359 ISL_FORMAT_ASTC_HDR_2D_5X4_FLT16 = 840,
360 ISL_FORMAT_ASTC_HDR_2D_5X5_FLT16 = 841,
361 ISL_FORMAT_ASTC_HDR_2D_6X5_FLT16 = 849,
362 ISL_FORMAT_ASTC_HDR_2D_6X6_FLT16 = 850,
363 ISL_FORMAT_ASTC_HDR_2D_8X5_FLT16 = 865,
364 ISL_FORMAT_ASTC_HDR_2D_8X6_FLT16 = 866,
365 ISL_FORMAT_ASTC_HDR_2D_8X8_FLT16 = 868,
366 ISL_FORMAT_ASTC_HDR_2D_10X5_FLT16 = 881,
367 ISL_FORMAT_ASTC_HDR_2D_10X6_FLT16 = 882,
368 ISL_FORMAT_ASTC_HDR_2D_10X8_FLT16 = 884,
369 ISL_FORMAT_ASTC_HDR_2D_10X10_FLT16 = 886,
370 ISL_FORMAT_ASTC_HDR_2D_12X10_FLT16 = 894,
371 ISL_FORMAT_ASTC_HDR_2D_12X12_FLT16 = 895,
372
373 /* The formats that follow are internal to ISL and as such don't have an
374 * explicit number. We'll just let the C compiler assign it for us. Any
375 * actual hardware formats *must* come before these in the list.
376 */
377
378 /* Formats for auxiliary surfaces */
379 ISL_FORMAT_HIZ,
380 ISL_FORMAT_MCS_2X,
381 ISL_FORMAT_MCS_4X,
382 ISL_FORMAT_MCS_8X,
383 ISL_FORMAT_MCS_16X,
384 ISL_FORMAT_GEN7_CCS_32BPP_X,
385 ISL_FORMAT_GEN7_CCS_64BPP_X,
386 ISL_FORMAT_GEN7_CCS_128BPP_X,
387 ISL_FORMAT_GEN7_CCS_32BPP_Y,
388 ISL_FORMAT_GEN7_CCS_64BPP_Y,
389 ISL_FORMAT_GEN7_CCS_128BPP_Y,
390 ISL_FORMAT_GEN9_CCS_32BPP,
391 ISL_FORMAT_GEN9_CCS_64BPP,
392 ISL_FORMAT_GEN9_CCS_128BPP,
393 ISL_FORMAT_GEN12_CCS_8BPP_Y0,
394 ISL_FORMAT_GEN12_CCS_16BPP_Y0,
395 ISL_FORMAT_GEN12_CCS_32BPP_Y0,
396 ISL_FORMAT_GEN12_CCS_64BPP_Y0,
397 ISL_FORMAT_GEN12_CCS_128BPP_Y0,
398
399 /* An upper bound on the supported format enumerations */
400 ISL_NUM_FORMATS,
401
402 /* Hardware doesn't understand this out-of-band value */
403 ISL_FORMAT_UNSUPPORTED = UINT16_MAX,
404 };
405
406 /**
407 * Numerical base type for channels of isl_format.
408 */
409 enum isl_base_type {
410 ISL_VOID,
411 ISL_RAW,
412 ISL_UNORM,
413 ISL_SNORM,
414 ISL_UFLOAT,
415 ISL_SFLOAT,
416 ISL_UFIXED,
417 ISL_SFIXED,
418 ISL_UINT,
419 ISL_SINT,
420 ISL_USCALED,
421 ISL_SSCALED,
422 };
423
424 /**
425 * Colorspace of isl_format.
426 */
427 enum isl_colorspace {
428 ISL_COLORSPACE_NONE = 0,
429 ISL_COLORSPACE_LINEAR,
430 ISL_COLORSPACE_SRGB,
431 ISL_COLORSPACE_YUV,
432 };
433
434 /**
435 * Texture compression mode of isl_format.
436 */
437 enum isl_txc {
438 ISL_TXC_NONE = 0,
439 ISL_TXC_DXT1,
440 ISL_TXC_DXT3,
441 ISL_TXC_DXT5,
442 ISL_TXC_FXT1,
443 ISL_TXC_RGTC1,
444 ISL_TXC_RGTC2,
445 ISL_TXC_BPTC,
446 ISL_TXC_ETC1,
447 ISL_TXC_ETC2,
448 ISL_TXC_ASTC,
449
450 /* Used for auxiliary surface formats */
451 ISL_TXC_HIZ,
452 ISL_TXC_MCS,
453 ISL_TXC_CCS,
454 };
455
456 /**
457 * @brief Hardware tile mode
458 *
459 * WARNING: These values differ from the hardware enum values, which are
460 * unstable across hardware generations.
461 *
462 * Note that legacy Y tiling is ISL_TILING_Y0 instead of ISL_TILING_Y, to
463 * clearly distinguish it from Yf and Ys.
464 */
465 enum isl_tiling {
466 ISL_TILING_LINEAR = 0,
467 ISL_TILING_W,
468 ISL_TILING_X,
469 ISL_TILING_Y0, /**< Legacy Y tiling */
470 ISL_TILING_Yf, /**< Standard 4K tiling. The 'f' means "four". */
471 ISL_TILING_Ys, /**< Standard 64K tiling. The 's' means "sixty-four". */
472 ISL_TILING_HIZ, /**< Tiling format for HiZ surfaces */
473 ISL_TILING_CCS, /**< Tiling format for CCS surfaces */
474 ISL_TILING_GEN12_CCS, /**< Tiling format for Gen12 CCS surfaces */
475 };
476
477 /**
478 * @defgroup Tiling Flags
479 * @{
480 */
481 typedef uint32_t isl_tiling_flags_t;
482 #define ISL_TILING_LINEAR_BIT (1u << ISL_TILING_LINEAR)
483 #define ISL_TILING_W_BIT (1u << ISL_TILING_W)
484 #define ISL_TILING_X_BIT (1u << ISL_TILING_X)
485 #define ISL_TILING_Y0_BIT (1u << ISL_TILING_Y0)
486 #define ISL_TILING_Yf_BIT (1u << ISL_TILING_Yf)
487 #define ISL_TILING_Ys_BIT (1u << ISL_TILING_Ys)
488 #define ISL_TILING_HIZ_BIT (1u << ISL_TILING_HIZ)
489 #define ISL_TILING_CCS_BIT (1u << ISL_TILING_CCS)
490 #define ISL_TILING_GEN12_CCS_BIT (1u << ISL_TILING_GEN12_CCS)
491 #define ISL_TILING_ANY_MASK (~0u)
492 #define ISL_TILING_NON_LINEAR_MASK (~ISL_TILING_LINEAR_BIT)
493
494 /** Any Y tiling, including legacy Y tiling. */
495 #define ISL_TILING_ANY_Y_MASK (ISL_TILING_Y0_BIT | \
496 ISL_TILING_Yf_BIT | \
497 ISL_TILING_Ys_BIT)
498
499 /** The Skylake BSpec refers to Yf and Ys as "standard tiling formats". */
500 #define ISL_TILING_STD_Y_MASK (ISL_TILING_Yf_BIT | \
501 ISL_TILING_Ys_BIT)
502 /** @} */
503
504 /**
505 * @brief Logical dimension of surface.
506 *
507 * Note: There is no dimension for cube map surfaces. ISL interprets cube maps
508 * as 2D array surfaces.
509 */
510 enum isl_surf_dim {
511 ISL_SURF_DIM_1D,
512 ISL_SURF_DIM_2D,
513 ISL_SURF_DIM_3D,
514 };
515
516 /**
517 * @brief Physical layout of the surface's dimensions.
518 */
519 enum isl_dim_layout {
520 /**
521 * For details, see the G35 PRM >> Volume 1: Graphics Core >> Section
522 * 6.17.3: 2D Surfaces.
523 *
524 * On many gens, 1D surfaces share the same layout as 2D surfaces. From
525 * the G35 PRM >> Volume 1: Graphics Core >> Section 6.17.2: 1D Surfaces:
526 *
527 * One-dimensional surfaces are identical to 2D surfaces with height of
528 * one.
529 *
530 * @invariant isl_surf::phys_level0_sa::depth == 1
531 */
532 ISL_DIM_LAYOUT_GEN4_2D,
533
534 /**
535 * For details, see the G35 PRM >> Volume 1: Graphics Core >> Section
536 * 6.17.5: 3D Surfaces.
537 *
538 * @invariant isl_surf::phys_level0_sa::array_len == 1
539 */
540 ISL_DIM_LAYOUT_GEN4_3D,
541
542 /**
543 * Special layout used for HiZ and stencil on Sandy Bridge to work around
544 * the hardware's lack of mipmap support. On gen6, HiZ and stencil buffers
545 * work the same as on gen7+ except that they don't technically support
546 * mipmapping. That does not, however, stop us from doing it. As far as
547 * Sandy Bridge hardware is concerned, HiZ and stencil always operates on a
548 * single miplevel 2D (possibly array) image. The dimensions of that image
549 * are NOT minified.
550 *
551 * In order to implement HiZ and stencil on Sandy Bridge, we create one
552 * full-sized 2D (possibly array) image for every LOD with every image
553 * aligned to a page boundary. When the surface is used with the stencil
554 * or HiZ hardware, we manually offset to the image for the given LOD.
555 *
556 * As a memory saving measure, we pretend that the width of each miplevel
557 * is minified and we place LOD1 and above below LOD0 but horizontally
558 * adjacent to each other. When considered as full-sized images, LOD1 and
559 * above technically overlap. However, since we only write to part of that
560 * image, the hardware will never notice the overlap.
561 *
562 * This layout looks something like this:
563 *
564 * +---------+
565 * | |
566 * | |
567 * +---------+
568 * | |
569 * | |
570 * +---------+
571 *
572 * +----+ +-+ .
573 * | | +-+
574 * +----+
575 *
576 * +----+ +-+ .
577 * | | +-+
578 * +----+
579 */
580 ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ,
581
582 /**
583 * For details, see the Skylake BSpec >> Memory Views >> Common Surface
584 * Formats >> Surface Layout and Tiling >> » 1D Surfaces.
585 */
586 ISL_DIM_LAYOUT_GEN9_1D,
587 };
588
589 enum isl_aux_usage {
590 /** No Auxiliary surface is used */
591 ISL_AUX_USAGE_NONE,
592
593 /** The primary surface is a depth surface and the auxiliary surface is HiZ */
594 ISL_AUX_USAGE_HIZ,
595
596 /** The auxiliary surface is an MCS
597 *
598 * @invariant isl_surf::samples > 1
599 */
600 ISL_AUX_USAGE_MCS,
601
602 /** The auxiliary surface is a fast-clear-only compression surface
603 *
604 * @invariant isl_surf::samples == 1
605 */
606 ISL_AUX_USAGE_CCS_D,
607
608 /** The auxiliary surface provides full lossless color compression
609 *
610 * @invariant isl_surf::samples == 1
611 */
612 ISL_AUX_USAGE_CCS_E,
613
614 /** The auxiliary surface provides full lossless media color compression
615 *
616 * @invariant isl_surf::samples == 1
617 */
618 ISL_AUX_USAGE_MC,
619
620 /** The auxiliary surface is a HiZ surface operating in write-through mode
621 * and CCS is also enabled
622 *
623 * In this mode, the HiZ and CCS surfaces act as a single fused compression
624 * surface where resolves and ambiguates operate on both surfaces at the
625 * same time. In this mode, the HiZ surface operates in write-through
626 * mode where it is only used for accelerating depth testing and not for
627 * actual compression. The CCS-compressed surface contains valid data at
628 * all times.
629 *
630 * @invariant isl_surf::samples == 1
631 */
632 ISL_AUX_USAGE_HIZ_CCS_WT,
633
634 /** The auxiliary surface is a HiZ surface with and CCS is also enabled
635 *
636 * In this mode, the HiZ and CCS surfaces act as a single fused compression
637 * surface where resolves and ambiguates operate on both surfaces at the
638 * same time. In this mode, full HiZ compression is enabled and the
639 * CCS-compressed main surface may not contain valid data. The only way to
640 * read the surface outside of the depth hardware is to do a full resolve
641 * which resolves both HiZ and CCS so the surface is in the pass-through
642 * state.
643 */
644 ISL_AUX_USAGE_HIZ_CCS,
645
646 /** The auxiliary surface is an MCS and CCS is also enabled
647 *
648 * In this mode, we have fused MCS+CCS compression where the MCS is used
649 * for fast-clears and "identical samples" compression just like on Gen7-11
650 * but each plane is then CCS compressed.
651 *
652 * @invariant isl_surf::samples > 1
653 */
654 ISL_AUX_USAGE_MCS_CCS,
655
656 /** CCS auxiliary data is used to compress a stencil buffer
657 *
658 * @invariant isl_surf::samples == 1
659 */
660 ISL_AUX_USAGE_STC_CCS,
661 };
662
663 /**
664 * Enum for keeping track of the state an auxiliary compressed surface.
665 *
666 * For any given auxiliary surface compression format (HiZ, CCS, or MCS), any
667 * given slice (lod + array layer) can be in one of the six states described
668 * by this enum. Draw and resolve operations may cause the slice to change
669 * from one state to another. The six valid states are:
670 *
671 * 1) Clear: In this state, each block in the auxiliary surface contains a
672 * magic value that indicates that the block is in the clear state. If
673 * a block is in the clear state, it's values in the primary surface are
674 * ignored and the color of the samples in the block is taken either the
675 * RENDER_SURFACE_STATE packet for color or 3DSTATE_CLEAR_PARAMS for
676 * depth. Since neither the primary surface nor the auxiliary surface
677 * contains the clear value, the surface can be cleared to a different
678 * color by simply changing the clear color without modifying either
679 * surface.
680 *
681 * 2) Partial Clear: In this state, each block in the auxiliary surface
682 * contains either the magic clear or pass-through value. See Clear and
683 * Pass-through for more details.
684 *
685 * 3) Compressed w/ Clear: In this state, neither the auxiliary surface
686 * nor the primary surface has a complete representation of the data.
687 * Instead, both surfaces must be used together or else rendering
688 * corruption may occur. Depending on the auxiliary compression format
689 * and the data, any given block in the primary surface may contain all,
690 * some, or none of the data required to reconstruct the actual sample
691 * values. Blocks may also be in the clear state (see Clear) and have
692 * their value taken from outside the surface.
693 *
694 * 4) Compressed w/o Clear: This state is identical to the state above
695 * except that no blocks are in the clear state. In this state, all of
696 * the data required to reconstruct the final sample values is contained
697 * in the auxiliary and primary surface and the clear value is not
698 * considered.
699 *
700 * 5) Resolved: In this state, the primary surface contains 100% of the
701 * data. The auxiliary surface is also valid so the surface can be
702 * validly used with or without aux enabled. The auxiliary surface may,
703 * however, contain non-trivial data and any update to the primary
704 * surface with aux disabled will cause the two to get out of sync.
705 *
706 * 6) Pass-through: In this state, the primary surface contains 100% of the
707 * data and every block in the auxiliary surface contains a magic value
708 * which indicates that the auxiliary surface should be ignored and the
709 * only the primary surface should be considered. Updating the primary
710 * surface without aux works fine and can be done repeatedly in this
711 * mode. Writing to a surface in pass-through mode with aux enabled may
712 * cause the auxiliary buffer to contain non-trivial data and no longer
713 * be in the pass-through state.
714 *
715 * 7) Aux Invalid: In this state, the primary surface contains 100% of the
716 * data and the auxiliary surface is completely bogus. Any attempt to
717 * use the auxiliary surface is liable to result in rendering
718 * corruption. The only thing that one can do to re-enable aux once
719 * this state is reached is to use an ambiguate pass to transition into
720 * the pass-through state.
721 *
722 * Drawing with or without aux enabled may implicitly cause the surface to
723 * transition between these states. There are also four types of auxiliary
724 * compression operations which cause an explicit transition which are
725 * described by the isl_aux_op enum below.
726 *
727 * Not all operations are valid or useful in all states. The diagram below
728 * contains a complete description of the states and all valid and useful
729 * transitions except clear.
730 *
731 * Draw w/ Aux
732 * +----------+
733 * | |
734 * | +-------------+ Draw w/ Aux +-------------+
735 * +------>| Compressed |<-------------------| Clear |
736 * | w/ Clear |----->----+ | |
737 * +-------------+ | +-------------+
738 * | /|\ | | |
739 * | | | | |
740 * | | +------<-----+ | Draw w/
741 * | | | | Clear Only
742 * | | Full | | +----------+
743 * Partial | | Resolve | \|/ | |
744 * Resolve | | | +-------------+ |
745 * | | | | Partial |<------+
746 * | | | | Clear |<----------+
747 * | | | +-------------+ |
748 * | | | | |
749 * | | +------>---------+ Full |
750 * | | | Resolve |
751 * Draw w/ aux | | Partial Fast Clear | |
752 * +----------+ | +--------------------------+ | |
753 * | | \|/ | \|/ |
754 * | +-------------+ Full Resolve +-------------+ |
755 * +------>| Compressed |------------------->| Resolved | |
756 * | w/o Clear |<-------------------| | |
757 * +-------------+ Draw w/ Aux +-------------+ |
758 * /|\ | | |
759 * | Draw | | Draw |
760 * | w/ Aux | | w/o Aux |
761 * | Ambiguate | | |
762 * | +--------------------------+ | |
763 * Draw w/o Aux | | | Draw w/o Aux |
764 * +----------+ | | | +----------+ |
765 * | | | \|/ \|/ | | |
766 * | +-------------+ Ambiguate +-------------+ | |
767 * +------>| Pass- |<-------------------| Aux |<------+ |
768 * +------>| through | | Invalid | |
769 * | +-------------+ +-------------+ |
770 * | | | |
771 * +----------+ +-----------------------------------------------------+
772 * Draw w/ Partial Fast Clear
773 * Clear Only
774 *
775 *
776 * While the above general theory applies to all forms of auxiliary
777 * compression on Intel hardware, not all states and operations are available
778 * on all compression types. However, each of the auxiliary states and
779 * operations can be fairly easily mapped onto the above diagram:
780 *
781 * HiZ: Hierarchical depth compression is capable of being in any of the
782 * states above. Hardware provides three HiZ operations: "Depth
783 * Clear", "Depth Resolve", and "HiZ Resolve" which map to "Fast
784 * Clear", "Full Resolve", and "Ambiguate" respectively. The
785 * hardware provides no HiZ partial resolve operation so the only way
786 * to get into the "Compressed w/o Clear" state is to render with HiZ
787 * when the surface is in the resolved or pass-through states.
788 *
789 * MCS: Multisample compression is technically capable of being in any of
790 * the states above except that most of them aren't useful. Both the
791 * render engine and the sampler support MCS compression and, apart
792 * from clear color, MCS is format-unaware so we leave the surface
793 * compressed 100% of the time. The hardware provides no MCS
794 * operations.
795 *
796 * CCS_D: Single-sample fast-clears (also called CCS_D in ISL) are one of
797 * the simplest forms of compression since they don't do anything
798 * beyond clear color tracking. They really only support three of
799 * the six states: Clear, Partial Clear, and Pass-through. The
800 * only CCS_D operation is "Resolve" which maps to a full resolve
801 * followed by an ambiguate.
802 *
803 * CCS_E: Single-sample render target compression (also called CCS_E in ISL)
804 * is capable of being in almost all of the above states. THe only
805 * exception is that it does not have separate resolved and pass-
806 * through states. Instead, the CCS_E full resolve operation does
807 * both a resolve and an ambiguate so it goes directly into the
808 * pass-through state. CCS_E also provides fast clear and partial
809 * resolve operations which work as described above.
810 *
811 * While it is technically possible to perform a CCS_E ambiguate, it
812 * is not provided by Sky Lake hardware so we choose to avoid the aux
813 * invalid state. If the aux invalid state were determined to be
814 * useful, a CCS ambiguate could be done by carefully rendering to
815 * the CCS and filling it with zeros.
816 */
817 enum isl_aux_state {
818 #ifdef IN_UNIT_TEST
819 ISL_AUX_STATE_ASSERT,
820 #endif
821 ISL_AUX_STATE_CLEAR,
822 ISL_AUX_STATE_PARTIAL_CLEAR,
823 ISL_AUX_STATE_COMPRESSED_CLEAR,
824 ISL_AUX_STATE_COMPRESSED_NO_CLEAR,
825 ISL_AUX_STATE_RESOLVED,
826 ISL_AUX_STATE_PASS_THROUGH,
827 ISL_AUX_STATE_AUX_INVALID,
828 };
829
830 /**
831 * Enum which describes explicit aux transition operations.
832 */
833 enum isl_aux_op {
834 #ifdef IN_UNIT_TEST
835 ISL_AUX_OP_ASSERT,
836 #endif
837
838 ISL_AUX_OP_NONE,
839
840 /** Fast Clear
841 *
842 * This operation writes the magic "clear" value to the auxiliary surface.
843 * This operation will safely transition any slice of a surface from any
844 * state to the clear state so long as the entire slice is fast cleared at
845 * once. A fast clear that only covers part of a slice of a surface is
846 * called a partial fast clear.
847 */
848 ISL_AUX_OP_FAST_CLEAR,
849
850 /** Full Resolve
851 *
852 * This operation combines the auxiliary surface data with the primary
853 * surface data and writes the result to the primary. For HiZ, the docs
854 * call this a depth resolve. For CCS, the hardware full resolve operation
855 * does both a full resolve and an ambiguate so it actually takes you all
856 * the way to the pass-through state.
857 */
858 ISL_AUX_OP_FULL_RESOLVE,
859
860 /** Partial Resolve
861 *
862 * This operation considers blocks which are in the "clear" state and
863 * writes the clear value directly into the primary or auxiliary surface.
864 * Once this operation completes, the surface is still compressed but no
865 * longer references the clear color. This operation is only available
866 * for CCS_E.
867 */
868 ISL_AUX_OP_PARTIAL_RESOLVE,
869
870 /** Ambiguate
871 *
872 * This operation throws away the current auxiliary data and replaces it
873 * with the magic pass-through value. If an ambiguate operation is
874 * performed when the primary surface does not contain 100% of the data,
875 * data will be lost. This operation is only implemented in hardware for
876 * depth where it is called a HiZ resolve.
877 */
878 ISL_AUX_OP_AMBIGUATE,
879 };
880
881 /* TODO(chadv): Explain */
882 enum isl_array_pitch_span {
883 ISL_ARRAY_PITCH_SPAN_FULL,
884 ISL_ARRAY_PITCH_SPAN_COMPACT,
885 };
886
887 /**
888 * @defgroup Surface Usage
889 * @{
890 */
891 typedef uint64_t isl_surf_usage_flags_t;
892 #define ISL_SURF_USAGE_RENDER_TARGET_BIT (1u << 0)
893 #define ISL_SURF_USAGE_DEPTH_BIT (1u << 1)
894 #define ISL_SURF_USAGE_STENCIL_BIT (1u << 2)
895 #define ISL_SURF_USAGE_TEXTURE_BIT (1u << 3)
896 #define ISL_SURF_USAGE_CUBE_BIT (1u << 4)
897 #define ISL_SURF_USAGE_DISABLE_AUX_BIT (1u << 5)
898 #define ISL_SURF_USAGE_DISPLAY_BIT (1u << 6)
899 #define ISL_SURF_USAGE_DISPLAY_ROTATE_90_BIT (1u << 7)
900 #define ISL_SURF_USAGE_DISPLAY_ROTATE_180_BIT (1u << 8)
901 #define ISL_SURF_USAGE_DISPLAY_ROTATE_270_BIT (1u << 9)
902 #define ISL_SURF_USAGE_DISPLAY_FLIP_X_BIT (1u << 10)
903 #define ISL_SURF_USAGE_DISPLAY_FLIP_Y_BIT (1u << 11)
904 #define ISL_SURF_USAGE_STORAGE_BIT (1u << 12)
905 #define ISL_SURF_USAGE_HIZ_BIT (1u << 13)
906 #define ISL_SURF_USAGE_MCS_BIT (1u << 14)
907 #define ISL_SURF_USAGE_CCS_BIT (1u << 15)
908 /** @} */
909
910 /**
911 * @defgroup Channel Mask
912 *
913 * These #define values are chosen to match the values of
914 * RENDER_SURFACE_STATE::Color Buffer Component Write Disables
915 *
916 * @{
917 */
918 typedef uint8_t isl_channel_mask_t;
919 #define ISL_CHANNEL_BLUE_BIT (1 << 0)
920 #define ISL_CHANNEL_GREEN_BIT (1 << 1)
921 #define ISL_CHANNEL_RED_BIT (1 << 2)
922 #define ISL_CHANNEL_ALPHA_BIT (1 << 3)
923 /** @} */
924
925 /**
926 * @brief A channel select (also known as texture swizzle) value
927 */
928 enum PACKED isl_channel_select {
929 ISL_CHANNEL_SELECT_ZERO = 0,
930 ISL_CHANNEL_SELECT_ONE = 1,
931 ISL_CHANNEL_SELECT_RED = 4,
932 ISL_CHANNEL_SELECT_GREEN = 5,
933 ISL_CHANNEL_SELECT_BLUE = 6,
934 ISL_CHANNEL_SELECT_ALPHA = 7,
935 };
936
937 /**
938 * Identical to VkSampleCountFlagBits.
939 */
940 enum isl_sample_count {
941 ISL_SAMPLE_COUNT_1_BIT = 1u,
942 ISL_SAMPLE_COUNT_2_BIT = 2u,
943 ISL_SAMPLE_COUNT_4_BIT = 4u,
944 ISL_SAMPLE_COUNT_8_BIT = 8u,
945 ISL_SAMPLE_COUNT_16_BIT = 16u,
946 };
947 typedef uint32_t isl_sample_count_mask_t;
948
949 /**
950 * @brief Multisample Format
951 */
952 enum isl_msaa_layout {
953 /**
954 * @brief Suface is single-sampled.
955 */
956 ISL_MSAA_LAYOUT_NONE,
957
958 /**
959 * @brief [SNB+] Interleaved Multisample Format
960 *
961 * In this format, multiple samples are interleaved into each cacheline.
962 * In other words, the sample index is swizzled into the low 6 bits of the
963 * surface's virtual address space.
964 *
965 * For example, suppose the surface is legacy Y tiled, is 4x multisampled,
966 * and its pixel format is 32bpp. Then the first cacheline is arranged
967 * thus:
968 *
969 * (0,0,0) (0,1,0) (0,0,1) (1,0,1)
970 * (1,0,0) (1,1,0) (0,1,1) (1,1,1)
971 *
972 * (0,0,2) (1,0,2) (0,0,3) (1,0,3)
973 * (0,1,2) (1,1,2) (0,1,3) (1,1,3)
974 *
975 * The hardware docs refer to this format with multiple terms. In
976 * Sandybridge, this is the only multisample format; so no term is used.
977 * The Ivybridge docs refer to surfaces in this format as IMS (Interleaved
978 * Multisample Surface). Later hardware docs additionally refer to this
979 * format as MSFMT_DEPTH_STENCIL (because the format is deprecated for
980 * color surfaces).
981 *
982 * See the Sandybridge PRM, Volume 4, Part 1, Section 2.7 "Multisampled
983 * Surface Behavior".
984 *
985 * See the Ivybridge PRM, Volume 1, Part 1, Section 6.18.4.1 "Interleaved
986 * Multisampled Surfaces".
987 */
988 ISL_MSAA_LAYOUT_INTERLEAVED,
989
990 /**
991 * @brief [IVB+] Array Multisample Format
992 *
993 * In this format, the surface's physical layout resembles that of a
994 * 2D array surface.
995 *
996 * Suppose the multisample surface's logical extent is (w, h) and its
997 * sample count is N. Then surface's physical extent is the same as
998 * a singlesample 2D surface whose logical extent is (w, h) and array
999 * length is N. Array slice `i` contains the pixel values for sample
1000 * index `i`.
1001 *
1002 * The Ivybridge docs refer to surfaces in this format as UMS
1003 * (Uncompressed Multsample Layout) and CMS (Compressed Multisample
1004 * Surface). The Broadwell docs additionally refer to this format as
1005 * MSFMT_MSS (MSS=Multisample Surface Storage).
1006 *
1007 * See the Broadwell PRM, Volume 5 "Memory Views", Section "Uncompressed
1008 * Multisample Surfaces".
1009 *
1010 * See the Broadwell PRM, Volume 5 "Memory Views", Section "Compressed
1011 * Multisample Surfaces".
1012 */
1013 ISL_MSAA_LAYOUT_ARRAY,
1014 };
1015
1016 typedef enum {
1017 ISL_MEMCPY = 0,
1018 ISL_MEMCPY_BGRA8,
1019 ISL_MEMCPY_STREAMING_LOAD,
1020 ISL_MEMCPY_INVALID,
1021 } isl_memcpy_type;
1022
1023 struct isl_device {
1024 const struct gen_device_info *info;
1025 bool use_separate_stencil;
1026 bool has_bit6_swizzling;
1027
1028 /**
1029 * Describes the layout of a RENDER_SURFACE_STATE structure for the
1030 * current gen.
1031 */
1032 struct {
1033 uint8_t size;
1034 uint8_t align;
1035 uint8_t addr_offset;
1036 uint8_t aux_addr_offset;
1037
1038 /* Rounded up to the nearest dword to simplify GPU memcpy operations. */
1039
1040 /* size of the state buffer used to store the clear color + extra
1041 * additional space used by the hardware */
1042 uint8_t clear_color_state_size;
1043 uint8_t clear_color_state_offset;
1044 /* size of the clear color itself - used to copy it to/from a BO */
1045 uint8_t clear_value_size;
1046 uint8_t clear_value_offset;
1047 } ss;
1048
1049 /**
1050 * Describes the layout of the depth/stencil/hiz commands as emitted by
1051 * isl_emit_depth_stencil_hiz.
1052 */
1053 struct {
1054 uint8_t size;
1055 uint8_t depth_offset;
1056 uint8_t stencil_offset;
1057 uint8_t hiz_offset;
1058 } ds;
1059
1060 struct {
1061 uint32_t internal;
1062 uint32_t external;
1063 } mocs;
1064 };
1065
1066 struct isl_extent2d {
1067 union { uint32_t w, width; };
1068 union { uint32_t h, height; };
1069 };
1070
1071 struct isl_extent3d {
1072 union { uint32_t w, width; };
1073 union { uint32_t h, height; };
1074 union { uint32_t d, depth; };
1075 };
1076
1077 struct isl_extent4d {
1078 union { uint32_t w, width; };
1079 union { uint32_t h, height; };
1080 union { uint32_t d, depth; };
1081 union { uint32_t a, array_len; };
1082 };
1083
1084 struct isl_channel_layout {
1085 enum isl_base_type type;
1086 uint8_t start_bit; /**< Bit at which this channel starts */
1087 uint8_t bits; /**< Size in bits */
1088 };
1089
1090 /**
1091 * Each format has 3D block extent (width, height, depth). The block extent of
1092 * compressed formats is that of the format's compression block. For example,
1093 * the block extent of ISL_FORMAT_ETC2_RGB8 is (w=4, h=4, d=1). The block
1094 * extent of uncompressed pixel formats, such as ISL_FORMAT_R8G8B8A8_UNORM, is
1095 * is (w=1, h=1, d=1).
1096 */
1097 struct isl_format_layout {
1098 enum isl_format format;
1099 const char *name;
1100
1101 uint16_t bpb; /**< Bits per block */
1102 uint8_t bw; /**< Block width, in pixels */
1103 uint8_t bh; /**< Block height, in pixels */
1104 uint8_t bd; /**< Block depth, in pixels */
1105
1106 union {
1107 struct {
1108 struct isl_channel_layout r; /**< Red channel */
1109 struct isl_channel_layout g; /**< Green channel */
1110 struct isl_channel_layout b; /**< Blue channel */
1111 struct isl_channel_layout a; /**< Alpha channel */
1112 struct isl_channel_layout l; /**< Luminance channel */
1113 struct isl_channel_layout i; /**< Intensity channel */
1114 struct isl_channel_layout p; /**< Palette channel */
1115 } channels;
1116 struct isl_channel_layout channels_array[7];
1117 };
1118
1119 enum isl_colorspace colorspace;
1120 enum isl_txc txc;
1121 };
1122
1123 struct isl_tile_info {
1124 enum isl_tiling tiling;
1125
1126 /* The size (in bits per block) of a single surface element
1127 *
1128 * For surfaces with power-of-two formats, this is the same as
1129 * isl_format_layout::bpb. For non-power-of-two formats it may be smaller.
1130 * The logical_extent_el field is in terms of elements of this size.
1131 *
1132 * For example, consider ISL_FORMAT_R32G32B32_FLOAT for which
1133 * isl_format_layout::bpb is 96 (a non-power-of-two). In this case, none
1134 * of the tiling formats can actually hold an integer number of 96-bit
1135 * surface elements so isl_tiling_get_info returns an isl_tile_info for a
1136 * 32-bit element size. It is the responsibility of the caller to
1137 * recognize that 32 != 96 ad adjust accordingly. For instance, to compute
1138 * the width of a surface in tiles, you would do:
1139 *
1140 * width_tl = DIV_ROUND_UP(width_el * (format_bpb / tile_info.format_bpb),
1141 * tile_info.logical_extent_el.width);
1142 */
1143 uint32_t format_bpb;
1144
1145 /** The logical size of the tile in units of format_bpb size elements
1146 *
1147 * This field determines how a given surface is cut up into tiles. It is
1148 * used to compute the size of a surface in tiles and can be used to
1149 * determine the location of the tile containing any given surface element.
1150 * The exact value of this field depends heavily on the bits-per-block of
1151 * the format being used.
1152 */
1153 struct isl_extent2d logical_extent_el;
1154
1155 /** The physical size of the tile in bytes and rows of bytes
1156 *
1157 * This field determines how the tiles of a surface are physically layed
1158 * out in memory. The logical and physical tile extent are frequently the
1159 * same but this is not always the case. For instance, a W-tile (which is
1160 * always used with ISL_FORMAT_R8) has a logical size of 64el x 64el but
1161 * its physical size is 128B x 32rows, the same as a Y-tile.
1162 *
1163 * @see isl_surf::row_pitch_B
1164 */
1165 struct isl_extent2d phys_extent_B;
1166 };
1167
1168 /**
1169 * Metadata about a DRM format modifier.
1170 */
1171 struct isl_drm_modifier_info {
1172 uint64_t modifier;
1173
1174 /** Text name of the modifier */
1175 const char *name;
1176
1177 /** ISL tiling implied by this modifier */
1178 enum isl_tiling tiling;
1179
1180 /** ISL aux usage implied by this modifier */
1181 enum isl_aux_usage aux_usage;
1182
1183 /** Whether or not this modifier supports clear color */
1184 bool supports_clear_color;
1185 };
1186
1187 /**
1188 * @brief Input to surface initialization
1189 *
1190 * @invariant width >= 1
1191 * @invariant height >= 1
1192 * @invariant depth >= 1
1193 * @invariant levels >= 1
1194 * @invariant samples >= 1
1195 * @invariant array_len >= 1
1196 *
1197 * @invariant if 1D then height == 1 and depth == 1 and samples == 1
1198 * @invariant if 2D then depth == 1
1199 * @invariant if 3D then array_len == 1 and samples == 1
1200 */
1201 struct isl_surf_init_info {
1202 enum isl_surf_dim dim;
1203 enum isl_format format;
1204
1205 uint32_t width;
1206 uint32_t height;
1207 uint32_t depth;
1208 uint32_t levels;
1209 uint32_t array_len;
1210 uint32_t samples;
1211
1212 /** Lower bound for isl_surf::alignment, in bytes. */
1213 uint32_t min_alignment_B;
1214
1215 /**
1216 * Exact value for isl_surf::row_pitch. Ignored if zero. isl_surf_init()
1217 * will fail if this is misaligned or out of bounds.
1218 */
1219 uint32_t row_pitch_B;
1220
1221 isl_surf_usage_flags_t usage;
1222
1223 /** Flags that alter how ISL selects isl_surf::tiling. */
1224 isl_tiling_flags_t tiling_flags;
1225 };
1226
1227 struct isl_surf {
1228 enum isl_surf_dim dim;
1229 enum isl_dim_layout dim_layout;
1230 enum isl_msaa_layout msaa_layout;
1231 enum isl_tiling tiling;
1232 enum isl_format format;
1233
1234 /**
1235 * Alignment of the upper-left sample of each subimage, in units of surface
1236 * elements.
1237 */
1238 struct isl_extent3d image_alignment_el;
1239
1240 /**
1241 * Logical extent of the surface's base level, in units of pixels. This is
1242 * identical to the extent defined in isl_surf_init_info.
1243 */
1244 struct isl_extent4d logical_level0_px;
1245
1246 /**
1247 * Physical extent of the surface's base level, in units of physical
1248 * surface samples.
1249 *
1250 * Consider isl_dim_layout as an operator that transforms a logical surface
1251 * layout to a physical surface layout. Then
1252 *
1253 * logical_layout := (isl_surf::dim, isl_surf::logical_level0_px)
1254 * isl_surf::phys_level0_sa := isl_surf::dim_layout * logical_layout
1255 */
1256 struct isl_extent4d phys_level0_sa;
1257
1258 uint32_t levels;
1259 uint32_t samples;
1260
1261 /** Total size of the surface, in bytes. */
1262 uint64_t size_B;
1263
1264 /** Required alignment for the surface's base address. */
1265 uint32_t alignment_B;
1266
1267 /**
1268 * The interpretation of this field depends on the value of
1269 * isl_tile_info::physical_extent_B. In particular, the width of the
1270 * surface in tiles is row_pitch_B / isl_tile_info::physical_extent_B.width
1271 * and the distance in bytes between vertically adjacent tiles in the image
1272 * is given by row_pitch_B * isl_tile_info::physical_extent_B.height.
1273 *
1274 * For linear images where isl_tile_info::physical_extent_B.height == 1,
1275 * this cleanly reduces to being the distance, in bytes, between vertically
1276 * adjacent surface elements.
1277 *
1278 * @see isl_tile_info::phys_extent_B;
1279 */
1280 uint32_t row_pitch_B;
1281
1282 /**
1283 * Pitch between physical array slices, in rows of surface elements.
1284 */
1285 uint32_t array_pitch_el_rows;
1286
1287 enum isl_array_pitch_span array_pitch_span;
1288
1289 /** Copy of isl_surf_init_info::usage. */
1290 isl_surf_usage_flags_t usage;
1291 };
1292
1293 struct isl_swizzle {
1294 enum isl_channel_select r:4;
1295 enum isl_channel_select g:4;
1296 enum isl_channel_select b:4;
1297 enum isl_channel_select a:4;
1298 };
1299
1300 #define ISL_SWIZZLE(R, G, B, A) ((struct isl_swizzle) { \
1301 .r = ISL_CHANNEL_SELECT_##R, \
1302 .g = ISL_CHANNEL_SELECT_##G, \
1303 .b = ISL_CHANNEL_SELECT_##B, \
1304 .a = ISL_CHANNEL_SELECT_##A, \
1305 })
1306
1307 #define ISL_SWIZZLE_IDENTITY ISL_SWIZZLE(RED, GREEN, BLUE, ALPHA)
1308
1309 struct isl_view {
1310 /**
1311 * Indicates the usage of the particular view
1312 *
1313 * Normally, this is one bit. However, for a cube map texture, it
1314 * should be ISL_SURF_USAGE_TEXTURE_BIT | ISL_SURF_USAGE_CUBE_BIT.
1315 */
1316 isl_surf_usage_flags_t usage;
1317
1318 /**
1319 * The format to use in the view
1320 *
1321 * This may differ from the format of the actual isl_surf but must have
1322 * the same block size.
1323 */
1324 enum isl_format format;
1325
1326 uint32_t base_level;
1327 uint32_t levels;
1328
1329 /**
1330 * Base array layer
1331 *
1332 * For cube maps, both base_array_layer and array_len should be
1333 * specified in terms of 2-D layers and must be a multiple of 6.
1334 *
1335 * 3-D textures are effectively treated as 2-D arrays when used as a
1336 * storage image or render target. If `usage` contains
1337 * ISL_SURF_USAGE_RENDER_TARGET_BIT or ISL_SURF_USAGE_STORAGE_BIT then
1338 * base_array_layer and array_len are applied. If the surface is only used
1339 * for texturing, they are ignored.
1340 */
1341 uint32_t base_array_layer;
1342
1343 /**
1344 * Array Length
1345 *
1346 * Indicates the number of array elements starting at Base Array Layer.
1347 */
1348 uint32_t array_len;
1349
1350 struct isl_swizzle swizzle;
1351 };
1352
1353 union isl_color_value {
1354 float f32[4];
1355 uint32_t u32[4];
1356 int32_t i32[4];
1357 };
1358
1359 struct isl_surf_fill_state_info {
1360 const struct isl_surf *surf;
1361 const struct isl_view *view;
1362
1363 /**
1364 * The address of the surface in GPU memory.
1365 */
1366 uint64_t address;
1367
1368 /**
1369 * The Memory Object Control state for the filled surface state.
1370 *
1371 * The exact format of this value depends on hardware generation.
1372 */
1373 uint32_t mocs;
1374
1375 /**
1376 * The auxilary surface or NULL if no auxilary surface is to be used.
1377 */
1378 const struct isl_surf *aux_surf;
1379 enum isl_aux_usage aux_usage;
1380 uint64_t aux_address;
1381
1382 /**
1383 * The clear color for this surface
1384 *
1385 * Valid values depend on hardware generation.
1386 */
1387 union isl_color_value clear_color;
1388
1389 /**
1390 * Send only the clear value address
1391 *
1392 * If set, we only pass the clear address to the GPU and it will fetch it
1393 * from wherever it is.
1394 */
1395 bool use_clear_address;
1396 uint64_t clear_address;
1397
1398 /**
1399 * Surface write disables for gen4-5
1400 */
1401 isl_channel_mask_t write_disables;
1402
1403 /* Intra-tile offset */
1404 uint16_t x_offset_sa, y_offset_sa;
1405 };
1406
1407 struct isl_buffer_fill_state_info {
1408 /**
1409 * The address of the surface in GPU memory.
1410 */
1411 uint64_t address;
1412
1413 /**
1414 * The size of the buffer
1415 */
1416 uint64_t size_B;
1417
1418 /**
1419 * The Memory Object Control state for the filled surface state.
1420 *
1421 * The exact format of this value depends on hardware generation.
1422 */
1423 uint32_t mocs;
1424
1425 /**
1426 * The format to use in the surface state
1427 *
1428 * This may differ from the format of the actual isl_surf but have the
1429 * same block size.
1430 */
1431 enum isl_format format;
1432
1433 /**
1434 * The swizzle to use in the surface state
1435 */
1436 struct isl_swizzle swizzle;
1437
1438 uint32_t stride_B;
1439 };
1440
1441 struct isl_depth_stencil_hiz_emit_info {
1442 /**
1443 * The depth surface
1444 */
1445 const struct isl_surf *depth_surf;
1446
1447 /**
1448 * The stencil surface
1449 *
1450 * If separate stencil is not available, this must point to the same
1451 * isl_surf as depth_surf.
1452 */
1453 const struct isl_surf *stencil_surf;
1454
1455 /**
1456 * The view into the depth and stencil surfaces.
1457 *
1458 * This view applies to both surfaces simultaneously.
1459 */
1460 const struct isl_view *view;
1461
1462 /**
1463 * The address of the depth surface in GPU memory
1464 */
1465 uint64_t depth_address;
1466
1467 /**
1468 * The address of the stencil surface in GPU memory
1469 *
1470 * If separate stencil is not available, this must have the same value as
1471 * depth_address.
1472 */
1473 uint64_t stencil_address;
1474
1475 /**
1476 * The Memory Object Control state for depth and stencil buffers
1477 *
1478 * Both depth and stencil will get the same MOCS value. The exact format
1479 * of this value depends on hardware generation.
1480 */
1481 uint32_t mocs;
1482
1483 /**
1484 * The HiZ surface or NULL if HiZ is disabled.
1485 */
1486 const struct isl_surf *hiz_surf;
1487 enum isl_aux_usage hiz_usage;
1488 uint64_t hiz_address;
1489
1490 /**
1491 * The depth clear value
1492 */
1493 float depth_clear_value;
1494
1495 /**
1496 * Track stencil aux usage for Gen >= 12
1497 */
1498 enum isl_aux_usage stencil_aux_usage;
1499 };
1500
1501 extern const struct isl_format_layout isl_format_layouts[];
1502
1503 void
1504 isl_device_init(struct isl_device *dev,
1505 const struct gen_device_info *info,
1506 bool has_bit6_swizzling);
1507
1508 isl_sample_count_mask_t ATTRIBUTE_CONST
1509 isl_device_get_sample_counts(struct isl_device *dev);
1510
1511 static inline const struct isl_format_layout * ATTRIBUTE_CONST
1512 isl_format_get_layout(enum isl_format fmt)
1513 {
1514 assert(fmt != ISL_FORMAT_UNSUPPORTED);
1515 assert(fmt < ISL_NUM_FORMATS);
1516 return &isl_format_layouts[fmt];
1517 }
1518
1519 bool isl_format_is_valid(enum isl_format);
1520
1521 static inline const char * ATTRIBUTE_CONST
1522 isl_format_get_name(enum isl_format fmt)
1523 {
1524 return isl_format_get_layout(fmt)->name;
1525 }
1526
1527 enum isl_format isl_format_for_pipe_format(enum pipe_format pf);
1528
1529 bool isl_format_supports_rendering(const struct gen_device_info *devinfo,
1530 enum isl_format format);
1531 bool isl_format_supports_alpha_blending(const struct gen_device_info *devinfo,
1532 enum isl_format format);
1533 bool isl_format_supports_sampling(const struct gen_device_info *devinfo,
1534 enum isl_format format);
1535 bool isl_format_supports_filtering(const struct gen_device_info *devinfo,
1536 enum isl_format format);
1537 bool isl_format_supports_vertex_fetch(const struct gen_device_info *devinfo,
1538 enum isl_format format);
1539 bool isl_format_supports_typed_writes(const struct gen_device_info *devinfo,
1540 enum isl_format format);
1541 bool isl_format_supports_typed_reads(const struct gen_device_info *devinfo,
1542 enum isl_format format);
1543 bool isl_format_supports_ccs_d(const struct gen_device_info *devinfo,
1544 enum isl_format format);
1545 bool isl_format_supports_ccs_e(const struct gen_device_info *devinfo,
1546 enum isl_format format);
1547 bool isl_format_supports_multisampling(const struct gen_device_info *devinfo,
1548 enum isl_format format);
1549
1550 bool isl_formats_are_ccs_e_compatible(const struct gen_device_info *devinfo,
1551 enum isl_format format1,
1552 enum isl_format format2);
1553 uint8_t isl_format_get_aux_map_encoding(enum isl_format format);
1554
1555 bool isl_format_has_unorm_channel(enum isl_format fmt) ATTRIBUTE_CONST;
1556 bool isl_format_has_snorm_channel(enum isl_format fmt) ATTRIBUTE_CONST;
1557 bool isl_format_has_ufloat_channel(enum isl_format fmt) ATTRIBUTE_CONST;
1558 bool isl_format_has_sfloat_channel(enum isl_format fmt) ATTRIBUTE_CONST;
1559 bool isl_format_has_uint_channel(enum isl_format fmt) ATTRIBUTE_CONST;
1560 bool isl_format_has_sint_channel(enum isl_format fmt) ATTRIBUTE_CONST;
1561
1562 static inline bool
1563 isl_format_has_normalized_channel(enum isl_format fmt)
1564 {
1565 return isl_format_has_unorm_channel(fmt) ||
1566 isl_format_has_snorm_channel(fmt);
1567 }
1568
1569 static inline bool
1570 isl_format_has_float_channel(enum isl_format fmt)
1571 {
1572 return isl_format_has_ufloat_channel(fmt) ||
1573 isl_format_has_sfloat_channel(fmt);
1574 }
1575
1576 static inline bool
1577 isl_format_has_int_channel(enum isl_format fmt)
1578 {
1579 return isl_format_has_uint_channel(fmt) ||
1580 isl_format_has_sint_channel(fmt);
1581 }
1582
1583 bool isl_format_has_color_component(enum isl_format fmt,
1584 int component) ATTRIBUTE_CONST;
1585
1586 unsigned isl_format_get_num_channels(enum isl_format fmt);
1587
1588 uint32_t isl_format_get_depth_format(enum isl_format fmt, bool has_stencil);
1589
1590 static inline bool
1591 isl_format_is_compressed(enum isl_format fmt)
1592 {
1593 const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
1594
1595 return fmtl->txc != ISL_TXC_NONE;
1596 }
1597
1598 static inline bool
1599 isl_format_has_bc_compression(enum isl_format fmt)
1600 {
1601 switch (isl_format_get_layout(fmt)->txc) {
1602 case ISL_TXC_DXT1:
1603 case ISL_TXC_DXT3:
1604 case ISL_TXC_DXT5:
1605 return true;
1606 case ISL_TXC_NONE:
1607 case ISL_TXC_FXT1:
1608 case ISL_TXC_RGTC1:
1609 case ISL_TXC_RGTC2:
1610 case ISL_TXC_BPTC:
1611 case ISL_TXC_ETC1:
1612 case ISL_TXC_ETC2:
1613 case ISL_TXC_ASTC:
1614 return false;
1615
1616 case ISL_TXC_HIZ:
1617 case ISL_TXC_MCS:
1618 case ISL_TXC_CCS:
1619 unreachable("Should not be called on an aux surface");
1620 }
1621
1622 unreachable("bad texture compression mode");
1623 return false;
1624 }
1625
1626 static inline bool
1627 isl_format_is_yuv(enum isl_format fmt)
1628 {
1629 const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
1630
1631 return fmtl->colorspace == ISL_COLORSPACE_YUV;
1632 }
1633
1634 static inline bool
1635 isl_format_block_is_1x1x1(enum isl_format fmt)
1636 {
1637 const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
1638
1639 return fmtl->bw == 1 && fmtl->bh == 1 && fmtl->bd == 1;
1640 }
1641
1642 static inline bool
1643 isl_format_is_srgb(enum isl_format fmt)
1644 {
1645 return isl_format_get_layout(fmt)->colorspace == ISL_COLORSPACE_SRGB;
1646 }
1647
1648 enum isl_format isl_format_srgb_to_linear(enum isl_format fmt);
1649
1650 static inline bool
1651 isl_format_is_rgb(enum isl_format fmt)
1652 {
1653 if (isl_format_is_yuv(fmt))
1654 return false;
1655
1656 const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
1657
1658 return fmtl->channels.r.bits > 0 &&
1659 fmtl->channels.g.bits > 0 &&
1660 fmtl->channels.b.bits > 0 &&
1661 fmtl->channels.a.bits == 0;
1662 }
1663
1664 static inline bool
1665 isl_format_is_rgbx(enum isl_format fmt)
1666 {
1667 const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
1668
1669 return fmtl->channels.r.bits > 0 &&
1670 fmtl->channels.g.bits > 0 &&
1671 fmtl->channels.b.bits > 0 &&
1672 fmtl->channels.a.bits > 0 &&
1673 fmtl->channels.a.type == ISL_VOID;
1674 }
1675
1676 enum isl_format isl_format_rgb_to_rgba(enum isl_format rgb) ATTRIBUTE_CONST;
1677 enum isl_format isl_format_rgb_to_rgbx(enum isl_format rgb) ATTRIBUTE_CONST;
1678 enum isl_format isl_format_rgbx_to_rgba(enum isl_format rgb) ATTRIBUTE_CONST;
1679
1680 void isl_color_value_pack(const union isl_color_value *value,
1681 enum isl_format format,
1682 uint32_t *data_out);
1683 void isl_color_value_unpack(union isl_color_value *value,
1684 enum isl_format format,
1685 const uint32_t *data_in);
1686
1687 bool isl_is_storage_image_format(enum isl_format fmt);
1688
1689 enum isl_format
1690 isl_lower_storage_image_format(const struct gen_device_info *devinfo,
1691 enum isl_format fmt);
1692
1693 /* Returns true if this hardware supports typed load/store on a format with
1694 * the same size as the given format.
1695 */
1696 bool
1697 isl_has_matching_typed_storage_image_format(const struct gen_device_info *devinfo,
1698 enum isl_format fmt);
1699
1700 static inline enum isl_tiling
1701 isl_tiling_flag_to_enum(isl_tiling_flags_t flag)
1702 {
1703 assert(__builtin_popcount(flag) == 1);
1704 return (enum isl_tiling) (__builtin_ffs(flag) - 1);
1705 }
1706
1707 static inline bool
1708 isl_tiling_is_any_y(enum isl_tiling tiling)
1709 {
1710 return (1u << tiling) & ISL_TILING_ANY_Y_MASK;
1711 }
1712
1713 static inline bool
1714 isl_tiling_is_std_y(enum isl_tiling tiling)
1715 {
1716 return (1u << tiling) & ISL_TILING_STD_Y_MASK;
1717 }
1718
1719 uint32_t
1720 isl_tiling_to_i915_tiling(enum isl_tiling tiling);
1721
1722 enum isl_tiling
1723 isl_tiling_from_i915_tiling(uint32_t tiling);
1724
1725 /**
1726 * Return an isl_aux_op needed to enable an access to occur in an
1727 * isl_aux_state suitable for the isl_aux_usage.
1728 *
1729 * NOTE: If the access will invalidate the main surface, this function should
1730 * not be called and the isl_aux_op of NONE should be used instead.
1731 * Otherwise, an extra (but still lossless) ambiguate may occur.
1732 *
1733 * @invariant initial_state is possible with an isl_aux_usage compatible with
1734 * the given usage. Two usages are compatible if it's possible to
1735 * switch between them (e.g. CCS_E <-> CCS_D).
1736 * @invariant fast_clear is false if the aux doesn't support fast clears.
1737 */
1738 enum isl_aux_op
1739 isl_aux_prepare_access(enum isl_aux_state initial_state,
1740 enum isl_aux_usage usage,
1741 bool fast_clear_supported);
1742
1743 /**
1744 * Return the isl_aux_state entered after performing an isl_aux_op.
1745 *
1746 * @invariant initial_state is possible with the given usage.
1747 * @invariant op is possible with the given usage.
1748 * @invariant op must not cause HW to read from an invalid aux.
1749 */
1750 enum isl_aux_state
1751 isl_aux_state_transition_aux_op(enum isl_aux_state initial_state,
1752 enum isl_aux_usage usage,
1753 enum isl_aux_op op);
1754
1755 /**
1756 * Return the isl_aux_state entered after performing a write.
1757 *
1758 * NOTE: full_surface should be true if the write covers the entire
1759 * slice. Setting it to false in this case will still result in a
1760 * correct (but imprecise) aux state.
1761 *
1762 * @invariant if usage is not ISL_AUX_USAGE_NONE, then initial_state is
1763 * possible with the given usage.
1764 * @invariant usage can be ISL_AUX_USAGE_NONE iff:
1765 * * the main surface is valid, or
1766 * * the main surface is being invalidated/replaced.
1767 */
1768 enum isl_aux_state
1769 isl_aux_state_transition_write(enum isl_aux_state initial_state,
1770 enum isl_aux_usage usage,
1771 bool full_surface);
1772
1773 bool
1774 isl_aux_usage_has_fast_clears(enum isl_aux_usage usage);
1775
1776 static inline bool
1777 isl_aux_usage_has_hiz(enum isl_aux_usage usage)
1778 {
1779 return usage == ISL_AUX_USAGE_HIZ ||
1780 usage == ISL_AUX_USAGE_HIZ_CCS_WT ||
1781 usage == ISL_AUX_USAGE_HIZ_CCS;
1782 }
1783
1784 static inline bool
1785 isl_aux_usage_has_mcs(enum isl_aux_usage usage)
1786 {
1787 return usage == ISL_AUX_USAGE_MCS ||
1788 usage == ISL_AUX_USAGE_MCS_CCS;
1789 }
1790
1791 static inline bool
1792 isl_aux_usage_has_ccs(enum isl_aux_usage usage)
1793 {
1794 return usage == ISL_AUX_USAGE_CCS_D ||
1795 usage == ISL_AUX_USAGE_CCS_E ||
1796 usage == ISL_AUX_USAGE_MC ||
1797 usage == ISL_AUX_USAGE_HIZ_CCS_WT ||
1798 usage == ISL_AUX_USAGE_HIZ_CCS ||
1799 usage == ISL_AUX_USAGE_MCS_CCS ||
1800 usage == ISL_AUX_USAGE_STC_CCS;
1801 }
1802
1803 static inline bool
1804 isl_aux_state_has_valid_primary(enum isl_aux_state state)
1805 {
1806 return state == ISL_AUX_STATE_RESOLVED ||
1807 state == ISL_AUX_STATE_PASS_THROUGH ||
1808 state == ISL_AUX_STATE_AUX_INVALID;
1809 }
1810
1811 static inline bool
1812 isl_aux_state_has_valid_aux(enum isl_aux_state state)
1813 {
1814 return state != ISL_AUX_STATE_AUX_INVALID;
1815 }
1816
1817 const struct isl_drm_modifier_info * ATTRIBUTE_CONST
1818 isl_drm_modifier_get_info(uint64_t modifier);
1819
1820 static inline bool
1821 isl_drm_modifier_has_aux(uint64_t modifier)
1822 {
1823 return isl_drm_modifier_get_info(modifier)->aux_usage != ISL_AUX_USAGE_NONE;
1824 }
1825
1826 /** Returns the default isl_aux_state for the given modifier.
1827 *
1828 * If we have a modifier which supports compression, then the auxiliary data
1829 * could be in state other than ISL_AUX_STATE_AUX_INVALID. In particular, it
1830 * can be in any of the following:
1831 *
1832 * - ISL_AUX_STATE_CLEAR
1833 * - ISL_AUX_STATE_PARTIAL_CLEAR
1834 * - ISL_AUX_STATE_COMPRESSED_CLEAR
1835 * - ISL_AUX_STATE_COMPRESSED_NO_CLEAR
1836 * - ISL_AUX_STATE_RESOLVED
1837 * - ISL_AUX_STATE_PASS_THROUGH
1838 *
1839 * If the modifier does not support fast-clears, then we are guaranteed
1840 * that the surface is at least partially resolved and the first three not
1841 * possible. We return ISL_AUX_STATE_COMPRESSED_CLEAR if the modifier
1842 * supports fast clears and ISL_AUX_STATE_COMPRESSED_NO_CLEAR if it does not
1843 * because they are the least common denominator of the set of possible aux
1844 * states and will yield a valid interpretation of the aux data.
1845 *
1846 * For modifiers with no aux support, ISL_AUX_STATE_AUX_INVALID is returned.
1847 */
1848 static inline enum isl_aux_state
1849 isl_drm_modifier_get_default_aux_state(uint64_t modifier)
1850 {
1851 const struct isl_drm_modifier_info *mod_info =
1852 isl_drm_modifier_get_info(modifier);
1853
1854 if (!mod_info || mod_info->aux_usage == ISL_AUX_USAGE_NONE)
1855 return ISL_AUX_STATE_AUX_INVALID;
1856
1857 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1858 return mod_info->supports_clear_color ? ISL_AUX_STATE_COMPRESSED_CLEAR :
1859 ISL_AUX_STATE_COMPRESSED_NO_CLEAR;
1860 }
1861
1862 struct isl_extent2d ATTRIBUTE_CONST
1863 isl_get_interleaved_msaa_px_size_sa(uint32_t samples);
1864
1865 static inline bool
1866 isl_surf_usage_is_display(isl_surf_usage_flags_t usage)
1867 {
1868 return usage & ISL_SURF_USAGE_DISPLAY_BIT;
1869 }
1870
1871 static inline bool
1872 isl_surf_usage_is_depth(isl_surf_usage_flags_t usage)
1873 {
1874 return usage & ISL_SURF_USAGE_DEPTH_BIT;
1875 }
1876
1877 static inline bool
1878 isl_surf_usage_is_stencil(isl_surf_usage_flags_t usage)
1879 {
1880 return usage & ISL_SURF_USAGE_STENCIL_BIT;
1881 }
1882
1883 static inline bool
1884 isl_surf_usage_is_depth_and_stencil(isl_surf_usage_flags_t usage)
1885 {
1886 return (usage & ISL_SURF_USAGE_DEPTH_BIT) &&
1887 (usage & ISL_SURF_USAGE_STENCIL_BIT);
1888 }
1889
1890 static inline bool
1891 isl_surf_usage_is_depth_or_stencil(isl_surf_usage_flags_t usage)
1892 {
1893 return usage & (ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_STENCIL_BIT);
1894 }
1895
1896 static inline bool
1897 isl_surf_info_is_z16(const struct isl_surf_init_info *info)
1898 {
1899 return (info->usage & ISL_SURF_USAGE_DEPTH_BIT) &&
1900 (info->format == ISL_FORMAT_R16_UNORM);
1901 }
1902
1903 static inline bool
1904 isl_surf_info_is_z32_float(const struct isl_surf_init_info *info)
1905 {
1906 return (info->usage & ISL_SURF_USAGE_DEPTH_BIT) &&
1907 (info->format == ISL_FORMAT_R32_FLOAT);
1908 }
1909
1910 static inline struct isl_extent2d
1911 isl_extent2d(uint32_t width, uint32_t height)
1912 {
1913 struct isl_extent2d e = { { 0 } };
1914
1915 e.width = width;
1916 e.height = height;
1917
1918 return e;
1919 }
1920
1921 static inline struct isl_extent3d
1922 isl_extent3d(uint32_t width, uint32_t height, uint32_t depth)
1923 {
1924 struct isl_extent3d e = { { 0 } };
1925
1926 e.width = width;
1927 e.height = height;
1928 e.depth = depth;
1929
1930 return e;
1931 }
1932
1933 static inline struct isl_extent4d
1934 isl_extent4d(uint32_t width, uint32_t height, uint32_t depth,
1935 uint32_t array_len)
1936 {
1937 struct isl_extent4d e = { { 0 } };
1938
1939 e.width = width;
1940 e.height = height;
1941 e.depth = depth;
1942 e.array_len = array_len;
1943
1944 return e;
1945 }
1946
1947 bool isl_color_value_is_zero(union isl_color_value value,
1948 enum isl_format format);
1949
1950 bool isl_color_value_is_zero_one(union isl_color_value value,
1951 enum isl_format format);
1952
1953 static inline bool
1954 isl_swizzle_is_identity(struct isl_swizzle swizzle)
1955 {
1956 return swizzle.r == ISL_CHANNEL_SELECT_RED &&
1957 swizzle.g == ISL_CHANNEL_SELECT_GREEN &&
1958 swizzle.b == ISL_CHANNEL_SELECT_BLUE &&
1959 swizzle.a == ISL_CHANNEL_SELECT_ALPHA;
1960 }
1961
1962 bool
1963 isl_swizzle_supports_rendering(const struct gen_device_info *devinfo,
1964 struct isl_swizzle swizzle);
1965
1966 struct isl_swizzle
1967 isl_swizzle_compose(struct isl_swizzle first, struct isl_swizzle second);
1968 struct isl_swizzle
1969 isl_swizzle_invert(struct isl_swizzle swizzle);
1970
1971 #define isl_surf_init(dev, surf, ...) \
1972 isl_surf_init_s((dev), (surf), \
1973 &(struct isl_surf_init_info) { __VA_ARGS__ });
1974
1975 bool
1976 isl_surf_init_s(const struct isl_device *dev,
1977 struct isl_surf *surf,
1978 const struct isl_surf_init_info *restrict info);
1979
1980 void
1981 isl_surf_get_tile_info(const struct isl_surf *surf,
1982 struct isl_tile_info *tile_info);
1983
1984 bool
1985 isl_surf_get_hiz_surf(const struct isl_device *dev,
1986 const struct isl_surf *surf,
1987 struct isl_surf *hiz_surf);
1988
1989 bool
1990 isl_surf_get_mcs_surf(const struct isl_device *dev,
1991 const struct isl_surf *surf,
1992 struct isl_surf *mcs_surf);
1993
1994 bool
1995 isl_surf_get_ccs_surf(const struct isl_device *dev,
1996 const struct isl_surf *surf,
1997 struct isl_surf *aux_surf,
1998 struct isl_surf *extra_aux_surf,
1999 uint32_t row_pitch_B /**< Ignored if 0 */);
2000
2001 #define isl_surf_fill_state(dev, state, ...) \
2002 isl_surf_fill_state_s((dev), (state), \
2003 &(struct isl_surf_fill_state_info) { __VA_ARGS__ });
2004
2005 void
2006 isl_surf_fill_state_s(const struct isl_device *dev, void *state,
2007 const struct isl_surf_fill_state_info *restrict info);
2008
2009 #define isl_buffer_fill_state(dev, state, ...) \
2010 isl_buffer_fill_state_s((dev), (state), \
2011 &(struct isl_buffer_fill_state_info) { __VA_ARGS__ });
2012
2013 void
2014 isl_buffer_fill_state_s(const struct isl_device *dev, void *state,
2015 const struct isl_buffer_fill_state_info *restrict info);
2016
2017 void
2018 isl_null_fill_state(const struct isl_device *dev, void *state,
2019 struct isl_extent3d size);
2020
2021 #define isl_emit_depth_stencil_hiz(dev, batch, ...) \
2022 isl_emit_depth_stencil_hiz_s((dev), (batch), \
2023 &(struct isl_depth_stencil_hiz_emit_info) { __VA_ARGS__ })
2024
2025 void
2026 isl_emit_depth_stencil_hiz_s(const struct isl_device *dev, void *batch,
2027 const struct isl_depth_stencil_hiz_emit_info *restrict info);
2028
2029 void
2030 isl_surf_fill_image_param(const struct isl_device *dev,
2031 struct brw_image_param *param,
2032 const struct isl_surf *surf,
2033 const struct isl_view *view);
2034
2035 void
2036 isl_buffer_fill_image_param(const struct isl_device *dev,
2037 struct brw_image_param *param,
2038 enum isl_format format,
2039 uint64_t size);
2040
2041 /**
2042 * Alignment of the upper-left sample of each subimage, in units of surface
2043 * elements.
2044 */
2045 static inline struct isl_extent3d
2046 isl_surf_get_image_alignment_el(const struct isl_surf *surf)
2047 {
2048 return surf->image_alignment_el;
2049 }
2050
2051 /**
2052 * Alignment of the upper-left sample of each subimage, in units of surface
2053 * samples.
2054 */
2055 static inline struct isl_extent3d
2056 isl_surf_get_image_alignment_sa(const struct isl_surf *surf)
2057 {
2058 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2059
2060 return isl_extent3d(fmtl->bw * surf->image_alignment_el.w,
2061 fmtl->bh * surf->image_alignment_el.h,
2062 fmtl->bd * surf->image_alignment_el.d);
2063 }
2064
2065 /**
2066 * Logical extent of level 0 in units of surface elements.
2067 */
2068 static inline struct isl_extent4d
2069 isl_surf_get_logical_level0_el(const struct isl_surf *surf)
2070 {
2071 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2072
2073 return isl_extent4d(DIV_ROUND_UP(surf->logical_level0_px.w, fmtl->bw),
2074 DIV_ROUND_UP(surf->logical_level0_px.h, fmtl->bh),
2075 DIV_ROUND_UP(surf->logical_level0_px.d, fmtl->bd),
2076 surf->logical_level0_px.a);
2077 }
2078
2079 /**
2080 * Physical extent of level 0 in units of surface elements.
2081 */
2082 static inline struct isl_extent4d
2083 isl_surf_get_phys_level0_el(const struct isl_surf *surf)
2084 {
2085 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2086
2087 return isl_extent4d(DIV_ROUND_UP(surf->phys_level0_sa.w, fmtl->bw),
2088 DIV_ROUND_UP(surf->phys_level0_sa.h, fmtl->bh),
2089 DIV_ROUND_UP(surf->phys_level0_sa.d, fmtl->bd),
2090 surf->phys_level0_sa.a);
2091 }
2092
2093 /**
2094 * Pitch between vertically adjacent surface elements, in bytes.
2095 */
2096 static inline uint32_t
2097 isl_surf_get_row_pitch_B(const struct isl_surf *surf)
2098 {
2099 return surf->row_pitch_B;
2100 }
2101
2102 /**
2103 * Pitch between vertically adjacent surface elements, in units of surface elements.
2104 */
2105 static inline uint32_t
2106 isl_surf_get_row_pitch_el(const struct isl_surf *surf)
2107 {
2108 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2109
2110 assert(surf->row_pitch_B % (fmtl->bpb / 8) == 0);
2111 return surf->row_pitch_B / (fmtl->bpb / 8);
2112 }
2113
2114 /**
2115 * Pitch between physical array slices, in rows of surface elements.
2116 */
2117 static inline uint32_t
2118 isl_surf_get_array_pitch_el_rows(const struct isl_surf *surf)
2119 {
2120 return surf->array_pitch_el_rows;
2121 }
2122
2123 /**
2124 * Pitch between physical array slices, in units of surface elements.
2125 */
2126 static inline uint32_t
2127 isl_surf_get_array_pitch_el(const struct isl_surf *surf)
2128 {
2129 return isl_surf_get_array_pitch_el_rows(surf) *
2130 isl_surf_get_row_pitch_el(surf);
2131 }
2132
2133 /**
2134 * Pitch between physical array slices, in rows of surface samples.
2135 */
2136 static inline uint32_t
2137 isl_surf_get_array_pitch_sa_rows(const struct isl_surf *surf)
2138 {
2139 const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2140 return fmtl->bh * isl_surf_get_array_pitch_el_rows(surf);
2141 }
2142
2143 /**
2144 * Pitch between physical array slices, in bytes.
2145 */
2146 static inline uint32_t
2147 isl_surf_get_array_pitch(const struct isl_surf *surf)
2148 {
2149 return isl_surf_get_array_pitch_sa_rows(surf) * surf->row_pitch_B;
2150 }
2151
2152 /**
2153 * Calculate the offset, in units of surface samples, to a subimage in the
2154 * surface.
2155 *
2156 * @invariant level < surface levels
2157 * @invariant logical_array_layer < logical array length of surface
2158 * @invariant logical_z_offset_px < logical depth of surface at level
2159 */
2160 void
2161 isl_surf_get_image_offset_sa(const struct isl_surf *surf,
2162 uint32_t level,
2163 uint32_t logical_array_layer,
2164 uint32_t logical_z_offset_px,
2165 uint32_t *x_offset_sa,
2166 uint32_t *y_offset_sa);
2167
2168 /**
2169 * Calculate the offset, in units of surface elements, to a subimage in the
2170 * surface.
2171 *
2172 * @invariant level < surface levels
2173 * @invariant logical_array_layer < logical array length of surface
2174 * @invariant logical_z_offset_px < logical depth of surface at level
2175 */
2176 void
2177 isl_surf_get_image_offset_el(const struct isl_surf *surf,
2178 uint32_t level,
2179 uint32_t logical_array_layer,
2180 uint32_t logical_z_offset_px,
2181 uint32_t *x_offset_el,
2182 uint32_t *y_offset_el);
2183
2184 /**
2185 * Calculate the offset, in bytes and intratile surface samples, to a
2186 * subimage in the surface.
2187 *
2188 * This is equivalent to calling isl_surf_get_image_offset_el, passing the
2189 * result to isl_tiling_get_intratile_offset_el, and converting the tile
2190 * offsets to samples.
2191 *
2192 * @invariant level < surface levels
2193 * @invariant logical_array_layer < logical array length of surface
2194 * @invariant logical_z_offset_px < logical depth of surface at level
2195 */
2196 void
2197 isl_surf_get_image_offset_B_tile_sa(const struct isl_surf *surf,
2198 uint32_t level,
2199 uint32_t logical_array_layer,
2200 uint32_t logical_z_offset_px,
2201 uint32_t *offset_B,
2202 uint32_t *x_offset_sa,
2203 uint32_t *y_offset_sa);
2204
2205 /**
2206 * Calculate the range in bytes occupied by a subimage, to the nearest tile.
2207 *
2208 * The range returned will be the smallest memory range in which the give
2209 * subimage fits, rounded to even tiles. Intel images do not usually have a
2210 * direct subimage -> range mapping so the range returned may contain data
2211 * from other sub-images. The returned range is a half-open interval where
2212 * all of the addresses within the subimage are < end_tile_B.
2213 *
2214 * @invariant level < surface levels
2215 * @invariant logical_array_layer < logical array length of surface
2216 * @invariant logical_z_offset_px < logical depth of surface at level
2217 */
2218 void
2219 isl_surf_get_image_range_B_tile(const struct isl_surf *surf,
2220 uint32_t level,
2221 uint32_t logical_array_layer,
2222 uint32_t logical_z_offset_px,
2223 uint32_t *start_tile_B,
2224 uint32_t *end_tile_B);
2225
2226 /**
2227 * Create an isl_surf that represents a particular subimage in the surface.
2228 *
2229 * The newly created surface will have a single miplevel and array slice. The
2230 * surface lives at the returned byte and intratile offsets, in samples.
2231 *
2232 * It is safe to call this function with surf == image_surf.
2233 *
2234 * @invariant level < surface levels
2235 * @invariant logical_array_layer < logical array length of surface
2236 * @invariant logical_z_offset_px < logical depth of surface at level
2237 */
2238 void
2239 isl_surf_get_image_surf(const struct isl_device *dev,
2240 const struct isl_surf *surf,
2241 uint32_t level,
2242 uint32_t logical_array_layer,
2243 uint32_t logical_z_offset_px,
2244 struct isl_surf *image_surf,
2245 uint32_t *offset_B,
2246 uint32_t *x_offset_sa,
2247 uint32_t *y_offset_sa);
2248
2249 /**
2250 * @brief Calculate the intratile offsets to a surface.
2251 *
2252 * In @a base_address_offset return the offset from the base of the surface to
2253 * the base address of the first tile of the subimage. In @a x_offset_B and
2254 * @a y_offset_rows, return the offset, in units of bytes and rows, from the
2255 * tile's base to the subimage's first surface element. The x and y offsets
2256 * are intratile offsets; that is, they do not exceed the boundary of the
2257 * surface's tiling format.
2258 */
2259 void
2260 isl_tiling_get_intratile_offset_el(enum isl_tiling tiling,
2261 uint32_t bpb,
2262 uint32_t row_pitch_B,
2263 uint32_t total_x_offset_el,
2264 uint32_t total_y_offset_el,
2265 uint32_t *base_address_offset,
2266 uint32_t *x_offset_el,
2267 uint32_t *y_offset_el);
2268
2269 static inline void
2270 isl_tiling_get_intratile_offset_sa(enum isl_tiling tiling,
2271 enum isl_format format,
2272 uint32_t row_pitch_B,
2273 uint32_t total_x_offset_sa,
2274 uint32_t total_y_offset_sa,
2275 uint32_t *base_address_offset,
2276 uint32_t *x_offset_sa,
2277 uint32_t *y_offset_sa)
2278 {
2279 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
2280
2281 /* For computing the intratile offsets, we actually want a strange unit
2282 * which is samples for multisampled surfaces but elements for compressed
2283 * surfaces.
2284 */
2285 assert(total_x_offset_sa % fmtl->bw == 0);
2286 assert(total_y_offset_sa % fmtl->bh == 0);
2287 const uint32_t total_x_offset = total_x_offset_sa / fmtl->bw;
2288 const uint32_t total_y_offset = total_y_offset_sa / fmtl->bh;
2289
2290 isl_tiling_get_intratile_offset_el(tiling, fmtl->bpb, row_pitch_B,
2291 total_x_offset, total_y_offset,
2292 base_address_offset,
2293 x_offset_sa, y_offset_sa);
2294 *x_offset_sa *= fmtl->bw;
2295 *y_offset_sa *= fmtl->bh;
2296 }
2297
2298 /**
2299 * @brief Get value of 3DSTATE_DEPTH_BUFFER.SurfaceFormat
2300 *
2301 * @pre surf->usage has ISL_SURF_USAGE_DEPTH_BIT
2302 * @pre surf->format must be a valid format for depth surfaces
2303 */
2304 uint32_t
2305 isl_surf_get_depth_format(const struct isl_device *dev,
2306 const struct isl_surf *surf);
2307
2308 /**
2309 * @brief performs a copy from linear to tiled surface
2310 *
2311 */
2312 void
2313 isl_memcpy_linear_to_tiled(uint32_t xt1, uint32_t xt2,
2314 uint32_t yt1, uint32_t yt2,
2315 char *dst, const char *src,
2316 uint32_t dst_pitch, int32_t src_pitch,
2317 bool has_swizzling,
2318 enum isl_tiling tiling,
2319 isl_memcpy_type copy_type);
2320
2321 /**
2322 * @brief performs a copy from tiled to linear surface
2323 *
2324 */
2325 void
2326 isl_memcpy_tiled_to_linear(uint32_t xt1, uint32_t xt2,
2327 uint32_t yt1, uint32_t yt2,
2328 char *dst, const char *src,
2329 int32_t dst_pitch, uint32_t src_pitch,
2330 bool has_swizzling,
2331 enum isl_tiling tiling,
2332 isl_memcpy_type copy_type);
2333
2334 #ifdef __cplusplus
2335 }
2336 #endif
2337
2338 #endif /* ISL_H */