82fec5262c3b8e7d1eaeca9b966d783dacda4c70
[mesa.git] / src / intel / vulkan / anv_allocator.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <stdlib.h>
25 #include <unistd.h>
26 #include <limits.h>
27 #include <assert.h>
28 #include <sys/mman.h>
29
30 #include "anv_private.h"
31
32 #include "util/simple_mtx.h"
33 #include "util/anon_file.h"
34
35 #ifdef HAVE_VALGRIND
36 #define VG_NOACCESS_READ(__ptr) ({ \
37 VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
38 __typeof(*(__ptr)) __val = *(__ptr); \
39 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
40 __val; \
41 })
42 #define VG_NOACCESS_WRITE(__ptr, __val) ({ \
43 VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \
44 *(__ptr) = (__val); \
45 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \
46 })
47 #else
48 #define VG_NOACCESS_READ(__ptr) (*(__ptr))
49 #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
50 #endif
51
52 #ifndef MAP_POPULATE
53 #define MAP_POPULATE 0
54 #endif
55
56 /* Design goals:
57 *
58 * - Lock free (except when resizing underlying bos)
59 *
60 * - Constant time allocation with typically only one atomic
61 *
62 * - Multiple allocation sizes without fragmentation
63 *
64 * - Can grow while keeping addresses and offset of contents stable
65 *
66 * - All allocations within one bo so we can point one of the
67 * STATE_BASE_ADDRESS pointers at it.
68 *
69 * The overall design is a two-level allocator: top level is a fixed size, big
70 * block (8k) allocator, which operates out of a bo. Allocation is done by
71 * either pulling a block from the free list or growing the used range of the
72 * bo. Growing the range may run out of space in the bo which we then need to
73 * grow. Growing the bo is tricky in a multi-threaded, lockless environment:
74 * we need to keep all pointers and contents in the old map valid. GEM bos in
75 * general can't grow, but we use a trick: we create a memfd and use ftruncate
76 * to grow it as necessary. We mmap the new size and then create a gem bo for
77 * it using the new gem userptr ioctl. Without heavy-handed locking around
78 * our allocation fast-path, there isn't really a way to munmap the old mmap,
79 * so we just keep it around until garbage collection time. While the block
80 * allocator is lockless for normal operations, we block other threads trying
81 * to allocate while we're growing the map. It sholdn't happen often, and
82 * growing is fast anyway.
83 *
84 * At the next level we can use various sub-allocators. The state pool is a
85 * pool of smaller, fixed size objects, which operates much like the block
86 * pool. It uses a free list for freeing objects, but when it runs out of
87 * space it just allocates a new block from the block pool. This allocator is
88 * intended for longer lived state objects such as SURFACE_STATE and most
89 * other persistent state objects in the API. We may need to track more info
90 * with these object and a pointer back to the CPU object (eg VkImage). In
91 * those cases we just allocate a slightly bigger object and put the extra
92 * state after the GPU state object.
93 *
94 * The state stream allocator works similar to how the i965 DRI driver streams
95 * all its state. Even with Vulkan, we need to emit transient state (whether
96 * surface state base or dynamic state base), and for that we can just get a
97 * block and fill it up. These cases are local to a command buffer and the
98 * sub-allocator need not be thread safe. The streaming allocator gets a new
99 * block when it runs out of space and chains them together so they can be
100 * easily freed.
101 */
102
103 /* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
104 * We use it to indicate the free list is empty. */
105 #define EMPTY UINT32_MAX
106
107 #define PAGE_SIZE 4096
108
109 struct anv_mmap_cleanup {
110 void *map;
111 size_t size;
112 };
113
114 static inline uint32_t
115 ilog2_round_up(uint32_t value)
116 {
117 assert(value != 0);
118 return 32 - __builtin_clz(value - 1);
119 }
120
121 static inline uint32_t
122 round_to_power_of_two(uint32_t value)
123 {
124 return 1 << ilog2_round_up(value);
125 }
126
127 struct anv_state_table_cleanup {
128 void *map;
129 size_t size;
130 };
131
132 #define ANV_STATE_TABLE_CLEANUP_INIT ((struct anv_state_table_cleanup){0})
133 #define ANV_STATE_ENTRY_SIZE (sizeof(struct anv_free_entry))
134
135 static VkResult
136 anv_state_table_expand_range(struct anv_state_table *table, uint32_t size);
137
138 VkResult
139 anv_state_table_init(struct anv_state_table *table,
140 struct anv_device *device,
141 uint32_t initial_entries)
142 {
143 VkResult result;
144
145 table->device = device;
146
147 /* Just make it 2GB up-front. The Linux kernel won't actually back it
148 * with pages until we either map and fault on one of them or we use
149 * userptr and send a chunk of it off to the GPU.
150 */
151 table->fd = os_create_anonymous_file(BLOCK_POOL_MEMFD_SIZE, "state table");
152 if (table->fd == -1) {
153 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
154 goto fail_fd;
155 }
156
157 if (!u_vector_init(&table->cleanups,
158 round_to_power_of_two(sizeof(struct anv_state_table_cleanup)),
159 128)) {
160 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
161 goto fail_fd;
162 }
163
164 table->state.next = 0;
165 table->state.end = 0;
166 table->size = 0;
167
168 uint32_t initial_size = initial_entries * ANV_STATE_ENTRY_SIZE;
169 result = anv_state_table_expand_range(table, initial_size);
170 if (result != VK_SUCCESS)
171 goto fail_cleanups;
172
173 return VK_SUCCESS;
174
175 fail_cleanups:
176 u_vector_finish(&table->cleanups);
177 fail_fd:
178 close(table->fd);
179
180 return result;
181 }
182
183 static VkResult
184 anv_state_table_expand_range(struct anv_state_table *table, uint32_t size)
185 {
186 void *map;
187 struct anv_state_table_cleanup *cleanup;
188
189 /* Assert that we only ever grow the pool */
190 assert(size >= table->state.end);
191
192 /* Make sure that we don't go outside the bounds of the memfd */
193 if (size > BLOCK_POOL_MEMFD_SIZE)
194 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
195
196 cleanup = u_vector_add(&table->cleanups);
197 if (!cleanup)
198 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
199
200 *cleanup = ANV_STATE_TABLE_CLEANUP_INIT;
201
202 /* Just leak the old map until we destroy the pool. We can't munmap it
203 * without races or imposing locking on the block allocate fast path. On
204 * the whole the leaked maps adds up to less than the size of the
205 * current map. MAP_POPULATE seems like the right thing to do, but we
206 * should try to get some numbers.
207 */
208 map = mmap(NULL, size, PROT_READ | PROT_WRITE,
209 MAP_SHARED | MAP_POPULATE, table->fd, 0);
210 if (map == MAP_FAILED) {
211 return vk_errorf(table->device->instance, table->device,
212 VK_ERROR_OUT_OF_HOST_MEMORY, "mmap failed: %m");
213 }
214
215 cleanup->map = map;
216 cleanup->size = size;
217
218 table->map = map;
219 table->size = size;
220
221 return VK_SUCCESS;
222 }
223
224 static VkResult
225 anv_state_table_grow(struct anv_state_table *table)
226 {
227 VkResult result = VK_SUCCESS;
228
229 uint32_t used = align_u32(table->state.next * ANV_STATE_ENTRY_SIZE,
230 PAGE_SIZE);
231 uint32_t old_size = table->size;
232
233 /* The block pool is always initialized to a nonzero size and this function
234 * is always called after initialization.
235 */
236 assert(old_size > 0);
237
238 uint32_t required = MAX2(used, old_size);
239 if (used * 2 <= required) {
240 /* If we're in this case then this isn't the firsta allocation and we
241 * already have enough space on both sides to hold double what we
242 * have allocated. There's nothing for us to do.
243 */
244 goto done;
245 }
246
247 uint32_t size = old_size * 2;
248 while (size < required)
249 size *= 2;
250
251 assert(size > table->size);
252
253 result = anv_state_table_expand_range(table, size);
254
255 done:
256 return result;
257 }
258
259 void
260 anv_state_table_finish(struct anv_state_table *table)
261 {
262 struct anv_state_table_cleanup *cleanup;
263
264 u_vector_foreach(cleanup, &table->cleanups) {
265 if (cleanup->map)
266 munmap(cleanup->map, cleanup->size);
267 }
268
269 u_vector_finish(&table->cleanups);
270
271 close(table->fd);
272 }
273
274 VkResult
275 anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
276 uint32_t count)
277 {
278 struct anv_block_state state, old, new;
279 VkResult result;
280
281 assert(idx);
282
283 while(1) {
284 state.u64 = __sync_fetch_and_add(&table->state.u64, count);
285 if (state.next + count <= state.end) {
286 assert(table->map);
287 struct anv_free_entry *entry = &table->map[state.next];
288 for (int i = 0; i < count; i++) {
289 entry[i].state.idx = state.next + i;
290 }
291 *idx = state.next;
292 return VK_SUCCESS;
293 } else if (state.next <= state.end) {
294 /* We allocated the first block outside the pool so we have to grow
295 * the pool. pool_state->next acts a mutex: threads who try to
296 * allocate now will get block indexes above the current limit and
297 * hit futex_wait below.
298 */
299 new.next = state.next + count;
300 do {
301 result = anv_state_table_grow(table);
302 if (result != VK_SUCCESS)
303 return result;
304 new.end = table->size / ANV_STATE_ENTRY_SIZE;
305 } while (new.end < new.next);
306
307 old.u64 = __sync_lock_test_and_set(&table->state.u64, new.u64);
308 if (old.next != state.next)
309 futex_wake(&table->state.end, INT_MAX);
310 } else {
311 futex_wait(&table->state.end, state.end, NULL);
312 continue;
313 }
314 }
315 }
316
317 void
318 anv_free_list_push(union anv_free_list *list,
319 struct anv_state_table *table,
320 uint32_t first, uint32_t count)
321 {
322 union anv_free_list current, old, new;
323 uint32_t last = first;
324
325 for (uint32_t i = 1; i < count; i++, last++)
326 table->map[last].next = last + 1;
327
328 old = *list;
329 do {
330 current = old;
331 table->map[last].next = current.offset;
332 new.offset = first;
333 new.count = current.count + 1;
334 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
335 } while (old.u64 != current.u64);
336 }
337
338 struct anv_state *
339 anv_free_list_pop(union anv_free_list *list,
340 struct anv_state_table *table)
341 {
342 union anv_free_list current, new, old;
343
344 current.u64 = list->u64;
345 while (current.offset != EMPTY) {
346 __sync_synchronize();
347 new.offset = table->map[current.offset].next;
348 new.count = current.count + 1;
349 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
350 if (old.u64 == current.u64) {
351 struct anv_free_entry *entry = &table->map[current.offset];
352 return &entry->state;
353 }
354 current = old;
355 }
356
357 return NULL;
358 }
359
360 static VkResult
361 anv_block_pool_expand_range(struct anv_block_pool *pool,
362 uint32_t center_bo_offset, uint32_t size);
363
364 VkResult
365 anv_block_pool_init(struct anv_block_pool *pool,
366 struct anv_device *device,
367 uint64_t start_address,
368 uint32_t initial_size)
369 {
370 VkResult result;
371
372 pool->device = device;
373 pool->use_softpin = device->instance->physicalDevice.use_softpin;
374 pool->nbos = 0;
375 pool->size = 0;
376 pool->center_bo_offset = 0;
377 pool->start_address = gen_canonical_address(start_address);
378 pool->map = NULL;
379
380 if (pool->use_softpin) {
381 pool->bo = NULL;
382 pool->fd = -1;
383 } else {
384 /* Just make it 2GB up-front. The Linux kernel won't actually back it
385 * with pages until we either map and fault on one of them or we use
386 * userptr and send a chunk of it off to the GPU.
387 */
388 pool->fd = os_create_anonymous_file(BLOCK_POOL_MEMFD_SIZE, "block pool");
389 if (pool->fd == -1)
390 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
391
392 pool->wrapper_bo = (struct anv_bo) {
393 .refcount = 1,
394 .offset = -1,
395 .is_wrapper = true,
396 };
397 pool->bo = &pool->wrapper_bo;
398 }
399
400 if (!u_vector_init(&pool->mmap_cleanups,
401 round_to_power_of_two(sizeof(struct anv_mmap_cleanup)),
402 128)) {
403 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
404 goto fail_fd;
405 }
406
407 pool->state.next = 0;
408 pool->state.end = 0;
409 pool->back_state.next = 0;
410 pool->back_state.end = 0;
411
412 result = anv_block_pool_expand_range(pool, 0, initial_size);
413 if (result != VK_SUCCESS)
414 goto fail_mmap_cleanups;
415
416 /* Make the entire pool available in the front of the pool. If back
417 * allocation needs to use this space, the "ends" will be re-arranged.
418 */
419 pool->state.end = pool->size;
420
421 return VK_SUCCESS;
422
423 fail_mmap_cleanups:
424 u_vector_finish(&pool->mmap_cleanups);
425 fail_fd:
426 if (pool->fd >= 0)
427 close(pool->fd);
428
429 return result;
430 }
431
432 void
433 anv_block_pool_finish(struct anv_block_pool *pool)
434 {
435 anv_block_pool_foreach_bo(bo, pool) {
436 if (bo->map)
437 anv_gem_munmap(bo->map, bo->size);
438 anv_gem_close(pool->device, bo->gem_handle);
439 }
440
441 struct anv_mmap_cleanup *cleanup;
442 u_vector_foreach(cleanup, &pool->mmap_cleanups)
443 munmap(cleanup->map, cleanup->size);
444 u_vector_finish(&pool->mmap_cleanups);
445
446 if (pool->fd >= 0)
447 close(pool->fd);
448 }
449
450 static VkResult
451 anv_block_pool_expand_range(struct anv_block_pool *pool,
452 uint32_t center_bo_offset, uint32_t size)
453 {
454 /* Assert that we only ever grow the pool */
455 assert(center_bo_offset >= pool->back_state.end);
456 assert(size - center_bo_offset >= pool->state.end);
457
458 /* Assert that we don't go outside the bounds of the memfd */
459 assert(center_bo_offset <= BLOCK_POOL_MEMFD_CENTER);
460 assert(pool->use_softpin ||
461 size - center_bo_offset <=
462 BLOCK_POOL_MEMFD_SIZE - BLOCK_POOL_MEMFD_CENTER);
463
464 /* For state pool BOs we have to be a bit careful about where we place them
465 * in the GTT. There are two documented workarounds for state base address
466 * placement : Wa32bitGeneralStateOffset and Wa32bitInstructionBaseOffset
467 * which state that those two base addresses do not support 48-bit
468 * addresses and need to be placed in the bottom 32-bit range.
469 * Unfortunately, this is not quite accurate.
470 *
471 * The real problem is that we always set the size of our state pools in
472 * STATE_BASE_ADDRESS to 0xfffff (the maximum) even though the BO is most
473 * likely significantly smaller. We do this because we do not no at the
474 * time we emit STATE_BASE_ADDRESS whether or not we will need to expand
475 * the pool during command buffer building so we don't actually have a
476 * valid final size. If the address + size, as seen by STATE_BASE_ADDRESS
477 * overflows 48 bits, the GPU appears to treat all accesses to the buffer
478 * as being out of bounds and returns zero. For dynamic state, this
479 * usually just leads to rendering corruptions, but shaders that are all
480 * zero hang the GPU immediately.
481 *
482 * The easiest solution to do is exactly what the bogus workarounds say to
483 * do: restrict these buffers to 32-bit addresses. We could also pin the
484 * BO to some particular location of our choosing, but that's significantly
485 * more work than just not setting a flag. So, we explicitly DO NOT set
486 * the EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and the kernel does all of the
487 * hard work for us. When using softpin, we're in control and the fixed
488 * addresses we choose are fine for base addresses.
489 */
490 enum anv_bo_alloc_flags bo_alloc_flags = ANV_BO_ALLOC_CAPTURE;
491 if (!pool->use_softpin)
492 bo_alloc_flags |= ANV_BO_ALLOC_32BIT_ADDRESS;
493
494 if (pool->use_softpin) {
495 uint32_t new_bo_size = size - pool->size;
496 struct anv_bo *new_bo;
497 assert(center_bo_offset == 0);
498 VkResult result = anv_device_alloc_bo(pool->device, new_bo_size,
499 bo_alloc_flags |
500 ANV_BO_ALLOC_FIXED_ADDRESS |
501 ANV_BO_ALLOC_MAPPED |
502 ANV_BO_ALLOC_SNOOPED,
503 pool->start_address + pool->size,
504 &new_bo);
505 if (result != VK_SUCCESS)
506 return result;
507
508 pool->bos[pool->nbos++] = new_bo;
509
510 /* This pointer will always point to the first BO in the list */
511 pool->bo = pool->bos[0];
512 } else {
513 /* Just leak the old map until we destroy the pool. We can't munmap it
514 * without races or imposing locking on the block allocate fast path. On
515 * the whole the leaked maps adds up to less than the size of the
516 * current map. MAP_POPULATE seems like the right thing to do, but we
517 * should try to get some numbers.
518 */
519 void *map = mmap(NULL, size, PROT_READ | PROT_WRITE,
520 MAP_SHARED | MAP_POPULATE, pool->fd,
521 BLOCK_POOL_MEMFD_CENTER - center_bo_offset);
522 if (map == MAP_FAILED)
523 return vk_errorf(pool->device->instance, pool->device,
524 VK_ERROR_MEMORY_MAP_FAILED, "mmap failed: %m");
525
526 struct anv_bo *new_bo;
527 VkResult result = anv_device_import_bo_from_host_ptr(pool->device,
528 map, size,
529 bo_alloc_flags,
530 0 /* client_address */,
531 &new_bo);
532 if (result != VK_SUCCESS) {
533 munmap(map, size);
534 return result;
535 }
536
537 struct anv_mmap_cleanup *cleanup = u_vector_add(&pool->mmap_cleanups);
538 if (!cleanup) {
539 munmap(map, size);
540 anv_device_release_bo(pool->device, new_bo);
541 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
542 }
543 cleanup->map = map;
544 cleanup->size = size;
545
546 /* Now that we mapped the new memory, we can write the new
547 * center_bo_offset back into pool and update pool->map. */
548 pool->center_bo_offset = center_bo_offset;
549 pool->map = map + center_bo_offset;
550
551 pool->bos[pool->nbos++] = new_bo;
552 pool->wrapper_bo.map = new_bo;
553 }
554
555 assert(pool->nbos < ANV_MAX_BLOCK_POOL_BOS);
556 pool->size = size;
557
558 return VK_SUCCESS;
559 }
560
561 /** Returns current memory map of the block pool.
562 *
563 * The returned pointer points to the map for the memory at the specified
564 * offset. The offset parameter is relative to the "center" of the block pool
565 * rather than the start of the block pool BO map.
566 */
567 void*
568 anv_block_pool_map(struct anv_block_pool *pool, int32_t offset)
569 {
570 if (pool->use_softpin) {
571 struct anv_bo *bo = NULL;
572 int32_t bo_offset = 0;
573 anv_block_pool_foreach_bo(iter_bo, pool) {
574 if (offset < bo_offset + iter_bo->size) {
575 bo = iter_bo;
576 break;
577 }
578 bo_offset += iter_bo->size;
579 }
580 assert(bo != NULL);
581 assert(offset >= bo_offset);
582
583 return bo->map + (offset - bo_offset);
584 } else {
585 return pool->map + offset;
586 }
587 }
588
589 /** Grows and re-centers the block pool.
590 *
591 * We grow the block pool in one or both directions in such a way that the
592 * following conditions are met:
593 *
594 * 1) The size of the entire pool is always a power of two.
595 *
596 * 2) The pool only grows on both ends. Neither end can get
597 * shortened.
598 *
599 * 3) At the end of the allocation, we have about twice as much space
600 * allocated for each end as we have used. This way the pool doesn't
601 * grow too far in one direction or the other.
602 *
603 * 4) If the _alloc_back() has never been called, then the back portion of
604 * the pool retains a size of zero. (This makes it easier for users of
605 * the block pool that only want a one-sided pool.)
606 *
607 * 5) We have enough space allocated for at least one more block in
608 * whichever side `state` points to.
609 *
610 * 6) The center of the pool is always aligned to both the block_size of
611 * the pool and a 4K CPU page.
612 */
613 static uint32_t
614 anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state)
615 {
616 VkResult result = VK_SUCCESS;
617
618 pthread_mutex_lock(&pool->device->mutex);
619
620 assert(state == &pool->state || state == &pool->back_state);
621
622 /* Gather a little usage information on the pool. Since we may have
623 * threadsd waiting in queue to get some storage while we resize, it's
624 * actually possible that total_used will be larger than old_size. In
625 * particular, block_pool_alloc() increments state->next prior to
626 * calling block_pool_grow, so this ensures that we get enough space for
627 * which ever side tries to grow the pool.
628 *
629 * We align to a page size because it makes it easier to do our
630 * calculations later in such a way that we state page-aigned.
631 */
632 uint32_t back_used = align_u32(pool->back_state.next, PAGE_SIZE);
633 uint32_t front_used = align_u32(pool->state.next, PAGE_SIZE);
634 uint32_t total_used = front_used + back_used;
635
636 assert(state == &pool->state || back_used > 0);
637
638 uint32_t old_size = pool->size;
639
640 /* The block pool is always initialized to a nonzero size and this function
641 * is always called after initialization.
642 */
643 assert(old_size > 0);
644
645 /* The back_used and front_used may actually be smaller than the actual
646 * requirement because they are based on the next pointers which are
647 * updated prior to calling this function.
648 */
649 uint32_t back_required = MAX2(back_used, pool->center_bo_offset);
650 uint32_t front_required = MAX2(front_used, old_size - pool->center_bo_offset);
651
652 if (back_used * 2 <= back_required && front_used * 2 <= front_required) {
653 /* If we're in this case then this isn't the firsta allocation and we
654 * already have enough space on both sides to hold double what we
655 * have allocated. There's nothing for us to do.
656 */
657 goto done;
658 }
659
660 uint32_t size = old_size * 2;
661 while (size < back_required + front_required)
662 size *= 2;
663
664 assert(size > pool->size);
665
666 /* We compute a new center_bo_offset such that, when we double the size
667 * of the pool, we maintain the ratio of how much is used by each side.
668 * This way things should remain more-or-less balanced.
669 */
670 uint32_t center_bo_offset;
671 if (back_used == 0) {
672 /* If we're in this case then we have never called alloc_back(). In
673 * this case, we want keep the offset at 0 to make things as simple
674 * as possible for users that don't care about back allocations.
675 */
676 center_bo_offset = 0;
677 } else {
678 /* Try to "center" the allocation based on how much is currently in
679 * use on each side of the center line.
680 */
681 center_bo_offset = ((uint64_t)size * back_used) / total_used;
682
683 /* Align down to a multiple of the page size */
684 center_bo_offset &= ~(PAGE_SIZE - 1);
685
686 assert(center_bo_offset >= back_used);
687
688 /* Make sure we don't shrink the back end of the pool */
689 if (center_bo_offset < back_required)
690 center_bo_offset = back_required;
691
692 /* Make sure that we don't shrink the front end of the pool */
693 if (size - center_bo_offset < front_required)
694 center_bo_offset = size - front_required;
695 }
696
697 assert(center_bo_offset % PAGE_SIZE == 0);
698
699 result = anv_block_pool_expand_range(pool, center_bo_offset, size);
700
701 done:
702 pthread_mutex_unlock(&pool->device->mutex);
703
704 if (result == VK_SUCCESS) {
705 /* Return the appropriate new size. This function never actually
706 * updates state->next. Instead, we let the caller do that because it
707 * needs to do so in order to maintain its concurrency model.
708 */
709 if (state == &pool->state) {
710 return pool->size - pool->center_bo_offset;
711 } else {
712 assert(pool->center_bo_offset > 0);
713 return pool->center_bo_offset;
714 }
715 } else {
716 return 0;
717 }
718 }
719
720 static uint32_t
721 anv_block_pool_alloc_new(struct anv_block_pool *pool,
722 struct anv_block_state *pool_state,
723 uint32_t block_size, uint32_t *padding)
724 {
725 struct anv_block_state state, old, new;
726
727 /* Most allocations won't generate any padding */
728 if (padding)
729 *padding = 0;
730
731 while (1) {
732 state.u64 = __sync_fetch_and_add(&pool_state->u64, block_size);
733 if (state.next + block_size <= state.end) {
734 return state.next;
735 } else if (state.next <= state.end) {
736 if (pool->use_softpin && state.next < state.end) {
737 /* We need to grow the block pool, but still have some leftover
738 * space that can't be used by that particular allocation. So we
739 * add that as a "padding", and return it.
740 */
741 uint32_t leftover = state.end - state.next;
742
743 /* If there is some leftover space in the pool, the caller must
744 * deal with it.
745 */
746 assert(leftover == 0 || padding);
747 if (padding)
748 *padding = leftover;
749 state.next += leftover;
750 }
751
752 /* We allocated the first block outside the pool so we have to grow
753 * the pool. pool_state->next acts a mutex: threads who try to
754 * allocate now will get block indexes above the current limit and
755 * hit futex_wait below.
756 */
757 new.next = state.next + block_size;
758 do {
759 new.end = anv_block_pool_grow(pool, pool_state);
760 } while (new.end < new.next);
761
762 old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64);
763 if (old.next != state.next)
764 futex_wake(&pool_state->end, INT_MAX);
765 return state.next;
766 } else {
767 futex_wait(&pool_state->end, state.end, NULL);
768 continue;
769 }
770 }
771 }
772
773 int32_t
774 anv_block_pool_alloc(struct anv_block_pool *pool,
775 uint32_t block_size, uint32_t *padding)
776 {
777 uint32_t offset;
778
779 offset = anv_block_pool_alloc_new(pool, &pool->state, block_size, padding);
780
781 return offset;
782 }
783
784 /* Allocates a block out of the back of the block pool.
785 *
786 * This will allocated a block earlier than the "start" of the block pool.
787 * The offsets returned from this function will be negative but will still
788 * be correct relative to the block pool's map pointer.
789 *
790 * If you ever use anv_block_pool_alloc_back, then you will have to do
791 * gymnastics with the block pool's BO when doing relocations.
792 */
793 int32_t
794 anv_block_pool_alloc_back(struct anv_block_pool *pool,
795 uint32_t block_size)
796 {
797 int32_t offset = anv_block_pool_alloc_new(pool, &pool->back_state,
798 block_size, NULL);
799
800 /* The offset we get out of anv_block_pool_alloc_new() is actually the
801 * number of bytes downwards from the middle to the end of the block.
802 * We need to turn it into a (negative) offset from the middle to the
803 * start of the block.
804 */
805 assert(offset >= 0);
806 return -(offset + block_size);
807 }
808
809 VkResult
810 anv_state_pool_init(struct anv_state_pool *pool,
811 struct anv_device *device,
812 uint64_t start_address,
813 uint32_t block_size)
814 {
815 VkResult result = anv_block_pool_init(&pool->block_pool, device,
816 start_address,
817 block_size * 16);
818 if (result != VK_SUCCESS)
819 return result;
820
821 result = anv_state_table_init(&pool->table, device, 64);
822 if (result != VK_SUCCESS) {
823 anv_block_pool_finish(&pool->block_pool);
824 return result;
825 }
826
827 assert(util_is_power_of_two_or_zero(block_size));
828 pool->block_size = block_size;
829 pool->back_alloc_free_list = ANV_FREE_LIST_EMPTY;
830 for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
831 pool->buckets[i].free_list = ANV_FREE_LIST_EMPTY;
832 pool->buckets[i].block.next = 0;
833 pool->buckets[i].block.end = 0;
834 }
835 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
836
837 return VK_SUCCESS;
838 }
839
840 void
841 anv_state_pool_finish(struct anv_state_pool *pool)
842 {
843 VG(VALGRIND_DESTROY_MEMPOOL(pool));
844 anv_state_table_finish(&pool->table);
845 anv_block_pool_finish(&pool->block_pool);
846 }
847
848 static uint32_t
849 anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool *pool,
850 struct anv_block_pool *block_pool,
851 uint32_t state_size,
852 uint32_t block_size,
853 uint32_t *padding)
854 {
855 struct anv_block_state block, old, new;
856 uint32_t offset;
857
858 /* We don't always use anv_block_pool_alloc(), which would set *padding to
859 * zero for us. So if we have a pointer to padding, we must zero it out
860 * ourselves here, to make sure we always return some sensible value.
861 */
862 if (padding)
863 *padding = 0;
864
865 /* If our state is large, we don't need any sub-allocation from a block.
866 * Instead, we just grab whole (potentially large) blocks.
867 */
868 if (state_size >= block_size)
869 return anv_block_pool_alloc(block_pool, state_size, padding);
870
871 restart:
872 block.u64 = __sync_fetch_and_add(&pool->block.u64, state_size);
873
874 if (block.next < block.end) {
875 return block.next;
876 } else if (block.next == block.end) {
877 offset = anv_block_pool_alloc(block_pool, block_size, padding);
878 new.next = offset + state_size;
879 new.end = offset + block_size;
880 old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
881 if (old.next != block.next)
882 futex_wake(&pool->block.end, INT_MAX);
883 return offset;
884 } else {
885 futex_wait(&pool->block.end, block.end, NULL);
886 goto restart;
887 }
888 }
889
890 static uint32_t
891 anv_state_pool_get_bucket(uint32_t size)
892 {
893 unsigned size_log2 = ilog2_round_up(size);
894 assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
895 if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
896 size_log2 = ANV_MIN_STATE_SIZE_LOG2;
897 return size_log2 - ANV_MIN_STATE_SIZE_LOG2;
898 }
899
900 static uint32_t
901 anv_state_pool_get_bucket_size(uint32_t bucket)
902 {
903 uint32_t size_log2 = bucket + ANV_MIN_STATE_SIZE_LOG2;
904 return 1 << size_log2;
905 }
906
907 /** Helper to push a chunk into the state table.
908 *
909 * It creates 'count' entries into the state table and update their sizes,
910 * offsets and maps, also pushing them as "free" states.
911 */
912 static void
913 anv_state_pool_return_blocks(struct anv_state_pool *pool,
914 uint32_t chunk_offset, uint32_t count,
915 uint32_t block_size)
916 {
917 /* Disallow returning 0 chunks */
918 assert(count != 0);
919
920 /* Make sure we always return chunks aligned to the block_size */
921 assert(chunk_offset % block_size == 0);
922
923 uint32_t st_idx;
924 UNUSED VkResult result = anv_state_table_add(&pool->table, &st_idx, count);
925 assert(result == VK_SUCCESS);
926 for (int i = 0; i < count; i++) {
927 /* update states that were added back to the state table */
928 struct anv_state *state_i = anv_state_table_get(&pool->table,
929 st_idx + i);
930 state_i->alloc_size = block_size;
931 state_i->offset = chunk_offset + block_size * i;
932 state_i->map = anv_block_pool_map(&pool->block_pool, state_i->offset);
933 }
934
935 uint32_t block_bucket = anv_state_pool_get_bucket(block_size);
936 anv_free_list_push(&pool->buckets[block_bucket].free_list,
937 &pool->table, st_idx, count);
938 }
939
940 /** Returns a chunk of memory back to the state pool.
941 *
942 * Do a two-level split. If chunk_size is bigger than divisor
943 * (pool->block_size), we return as many divisor sized blocks as we can, from
944 * the end of the chunk.
945 *
946 * The remaining is then split into smaller blocks (starting at small_size if
947 * it is non-zero), with larger blocks always being taken from the end of the
948 * chunk.
949 */
950 static void
951 anv_state_pool_return_chunk(struct anv_state_pool *pool,
952 uint32_t chunk_offset, uint32_t chunk_size,
953 uint32_t small_size)
954 {
955 uint32_t divisor = pool->block_size;
956 uint32_t nblocks = chunk_size / divisor;
957 uint32_t rest = chunk_size - nblocks * divisor;
958
959 if (nblocks > 0) {
960 /* First return divisor aligned and sized chunks. We start returning
961 * larger blocks from the end fo the chunk, since they should already be
962 * aligned to divisor. Also anv_state_pool_return_blocks() only accepts
963 * aligned chunks.
964 */
965 uint32_t offset = chunk_offset + rest;
966 anv_state_pool_return_blocks(pool, offset, nblocks, divisor);
967 }
968
969 chunk_size = rest;
970 divisor /= 2;
971
972 if (small_size > 0 && small_size < divisor)
973 divisor = small_size;
974
975 uint32_t min_size = 1 << ANV_MIN_STATE_SIZE_LOG2;
976
977 /* Just as before, return larger divisor aligned blocks from the end of the
978 * chunk first.
979 */
980 while (chunk_size > 0 && divisor >= min_size) {
981 nblocks = chunk_size / divisor;
982 rest = chunk_size - nblocks * divisor;
983 if (nblocks > 0) {
984 anv_state_pool_return_blocks(pool, chunk_offset + rest,
985 nblocks, divisor);
986 chunk_size = rest;
987 }
988 divisor /= 2;
989 }
990 }
991
992 static struct anv_state
993 anv_state_pool_alloc_no_vg(struct anv_state_pool *pool,
994 uint32_t size, uint32_t align)
995 {
996 uint32_t bucket = anv_state_pool_get_bucket(MAX2(size, align));
997
998 struct anv_state *state;
999 uint32_t alloc_size = anv_state_pool_get_bucket_size(bucket);
1000 int32_t offset;
1001
1002 /* Try free list first. */
1003 state = anv_free_list_pop(&pool->buckets[bucket].free_list,
1004 &pool->table);
1005 if (state) {
1006 assert(state->offset >= 0);
1007 goto done;
1008 }
1009
1010 /* Try to grab a chunk from some larger bucket and split it up */
1011 for (unsigned b = bucket + 1; b < ANV_STATE_BUCKETS; b++) {
1012 state = anv_free_list_pop(&pool->buckets[b].free_list, &pool->table);
1013 if (state) {
1014 unsigned chunk_size = anv_state_pool_get_bucket_size(b);
1015 int32_t chunk_offset = state->offset;
1016
1017 /* First lets update the state we got to its new size. offset and map
1018 * remain the same.
1019 */
1020 state->alloc_size = alloc_size;
1021
1022 /* Now return the unused part of the chunk back to the pool as free
1023 * blocks
1024 *
1025 * There are a couple of options as to what we do with it:
1026 *
1027 * 1) We could fully split the chunk into state.alloc_size sized
1028 * pieces. However, this would mean that allocating a 16B
1029 * state could potentially split a 2MB chunk into 512K smaller
1030 * chunks. This would lead to unnecessary fragmentation.
1031 *
1032 * 2) The classic "buddy allocator" method would have us split the
1033 * chunk in half and return one half. Then we would split the
1034 * remaining half in half and return one half, and repeat as
1035 * needed until we get down to the size we want. However, if
1036 * you are allocating a bunch of the same size state (which is
1037 * the common case), this means that every other allocation has
1038 * to go up a level and every fourth goes up two levels, etc.
1039 * This is not nearly as efficient as it could be if we did a
1040 * little more work up-front.
1041 *
1042 * 3) Split the difference between (1) and (2) by doing a
1043 * two-level split. If it's bigger than some fixed block_size,
1044 * we split it into block_size sized chunks and return all but
1045 * one of them. Then we split what remains into
1046 * state.alloc_size sized chunks and return them.
1047 *
1048 * We choose something close to option (3), which is implemented with
1049 * anv_state_pool_return_chunk(). That is done by returning the
1050 * remaining of the chunk, with alloc_size as a hint of the size that
1051 * we want the smaller chunk split into.
1052 */
1053 anv_state_pool_return_chunk(pool, chunk_offset + alloc_size,
1054 chunk_size - alloc_size, alloc_size);
1055 goto done;
1056 }
1057 }
1058
1059 uint32_t padding;
1060 offset = anv_fixed_size_state_pool_alloc_new(&pool->buckets[bucket],
1061 &pool->block_pool,
1062 alloc_size,
1063 pool->block_size,
1064 &padding);
1065 /* Everytime we allocate a new state, add it to the state pool */
1066 uint32_t idx;
1067 UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1);
1068 assert(result == VK_SUCCESS);
1069
1070 state = anv_state_table_get(&pool->table, idx);
1071 state->offset = offset;
1072 state->alloc_size = alloc_size;
1073 state->map = anv_block_pool_map(&pool->block_pool, offset);
1074
1075 if (padding > 0) {
1076 uint32_t return_offset = offset - padding;
1077 anv_state_pool_return_chunk(pool, return_offset, padding, 0);
1078 }
1079
1080 done:
1081 return *state;
1082 }
1083
1084 struct anv_state
1085 anv_state_pool_alloc(struct anv_state_pool *pool, uint32_t size, uint32_t align)
1086 {
1087 if (size == 0)
1088 return ANV_STATE_NULL;
1089
1090 struct anv_state state = anv_state_pool_alloc_no_vg(pool, size, align);
1091 VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
1092 return state;
1093 }
1094
1095 struct anv_state
1096 anv_state_pool_alloc_back(struct anv_state_pool *pool)
1097 {
1098 struct anv_state *state;
1099 uint32_t alloc_size = pool->block_size;
1100
1101 state = anv_free_list_pop(&pool->back_alloc_free_list, &pool->table);
1102 if (state) {
1103 assert(state->offset < 0);
1104 goto done;
1105 }
1106
1107 int32_t offset;
1108 offset = anv_block_pool_alloc_back(&pool->block_pool,
1109 pool->block_size);
1110 uint32_t idx;
1111 UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1);
1112 assert(result == VK_SUCCESS);
1113
1114 state = anv_state_table_get(&pool->table, idx);
1115 state->offset = offset;
1116 state->alloc_size = alloc_size;
1117 state->map = anv_block_pool_map(&pool->block_pool, state->offset);
1118
1119 done:
1120 VG(VALGRIND_MEMPOOL_ALLOC(pool, state->map, state->alloc_size));
1121 return *state;
1122 }
1123
1124 static void
1125 anv_state_pool_free_no_vg(struct anv_state_pool *pool, struct anv_state state)
1126 {
1127 assert(util_is_power_of_two_or_zero(state.alloc_size));
1128 unsigned bucket = anv_state_pool_get_bucket(state.alloc_size);
1129
1130 if (state.offset < 0) {
1131 assert(state.alloc_size == pool->block_size);
1132 anv_free_list_push(&pool->back_alloc_free_list,
1133 &pool->table, state.idx, 1);
1134 } else {
1135 anv_free_list_push(&pool->buckets[bucket].free_list,
1136 &pool->table, state.idx, 1);
1137 }
1138 }
1139
1140 void
1141 anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
1142 {
1143 if (state.alloc_size == 0)
1144 return;
1145
1146 VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
1147 anv_state_pool_free_no_vg(pool, state);
1148 }
1149
1150 struct anv_state_stream_block {
1151 struct anv_state block;
1152
1153 /* The next block */
1154 struct anv_state_stream_block *next;
1155
1156 #ifdef HAVE_VALGRIND
1157 /* A pointer to the first user-allocated thing in this block. This is
1158 * what valgrind sees as the start of the block.
1159 */
1160 void *_vg_ptr;
1161 #endif
1162 };
1163
1164 /* The state stream allocator is a one-shot, single threaded allocator for
1165 * variable sized blocks. We use it for allocating dynamic state.
1166 */
1167 void
1168 anv_state_stream_init(struct anv_state_stream *stream,
1169 struct anv_state_pool *state_pool,
1170 uint32_t block_size)
1171 {
1172 stream->state_pool = state_pool;
1173 stream->block_size = block_size;
1174
1175 stream->block = ANV_STATE_NULL;
1176
1177 stream->block_list = NULL;
1178
1179 /* Ensure that next + whatever > block_size. This way the first call to
1180 * state_stream_alloc fetches a new block.
1181 */
1182 stream->next = block_size;
1183
1184 VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
1185 }
1186
1187 void
1188 anv_state_stream_finish(struct anv_state_stream *stream)
1189 {
1190 struct anv_state_stream_block *next = stream->block_list;
1191 while (next != NULL) {
1192 struct anv_state_stream_block sb = VG_NOACCESS_READ(next);
1193 VG(VALGRIND_MEMPOOL_FREE(stream, sb._vg_ptr));
1194 VG(VALGRIND_MAKE_MEM_UNDEFINED(next, stream->block_size));
1195 anv_state_pool_free_no_vg(stream->state_pool, sb.block);
1196 next = sb.next;
1197 }
1198
1199 VG(VALGRIND_DESTROY_MEMPOOL(stream));
1200 }
1201
1202 struct anv_state
1203 anv_state_stream_alloc(struct anv_state_stream *stream,
1204 uint32_t size, uint32_t alignment)
1205 {
1206 if (size == 0)
1207 return ANV_STATE_NULL;
1208
1209 assert(alignment <= PAGE_SIZE);
1210
1211 uint32_t offset = align_u32(stream->next, alignment);
1212 if (offset + size > stream->block.alloc_size) {
1213 uint32_t block_size = stream->block_size;
1214 if (block_size < size)
1215 block_size = round_to_power_of_two(size);
1216
1217 stream->block = anv_state_pool_alloc_no_vg(stream->state_pool,
1218 block_size, PAGE_SIZE);
1219
1220 struct anv_state_stream_block *sb = stream->block.map;
1221 VG_NOACCESS_WRITE(&sb->block, stream->block);
1222 VG_NOACCESS_WRITE(&sb->next, stream->block_list);
1223 stream->block_list = sb;
1224 VG(VG_NOACCESS_WRITE(&sb->_vg_ptr, NULL));
1225
1226 VG(VALGRIND_MAKE_MEM_NOACCESS(stream->block.map, stream->block_size));
1227
1228 /* Reset back to the start plus space for the header */
1229 stream->next = sizeof(*sb);
1230
1231 offset = align_u32(stream->next, alignment);
1232 assert(offset + size <= stream->block.alloc_size);
1233 }
1234
1235 struct anv_state state = stream->block;
1236 state.offset += offset;
1237 state.alloc_size = size;
1238 state.map += offset;
1239
1240 stream->next = offset + size;
1241
1242 #ifdef HAVE_VALGRIND
1243 struct anv_state_stream_block *sb = stream->block_list;
1244 void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr);
1245 if (vg_ptr == NULL) {
1246 vg_ptr = state.map;
1247 VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr);
1248 VALGRIND_MEMPOOL_ALLOC(stream, vg_ptr, size);
1249 } else {
1250 void *state_end = state.map + state.alloc_size;
1251 /* This only updates the mempool. The newly allocated chunk is still
1252 * marked as NOACCESS. */
1253 VALGRIND_MEMPOOL_CHANGE(stream, vg_ptr, vg_ptr, state_end - vg_ptr);
1254 /* Mark the newly allocated chunk as undefined */
1255 VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size);
1256 }
1257 #endif
1258
1259 return state;
1260 }
1261
1262 void
1263 anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device)
1264 {
1265 pool->device = device;
1266 for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
1267 util_sparse_array_free_list_init(&pool->free_list[i],
1268 &device->bo_cache.bo_map, 0,
1269 offsetof(struct anv_bo, free_index));
1270 }
1271
1272 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
1273 }
1274
1275 void
1276 anv_bo_pool_finish(struct anv_bo_pool *pool)
1277 {
1278 for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
1279 while (1) {
1280 struct anv_bo *bo =
1281 util_sparse_array_free_list_pop_elem(&pool->free_list[i]);
1282 if (bo == NULL)
1283 break;
1284
1285 /* anv_device_release_bo is going to "free" it */
1286 VG(VALGRIND_MALLOCLIKE_BLOCK(bo->map, bo->size, 0, 1));
1287 anv_device_release_bo(pool->device, bo);
1288 }
1289 }
1290
1291 VG(VALGRIND_DESTROY_MEMPOOL(pool));
1292 }
1293
1294 VkResult
1295 anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
1296 struct anv_bo **bo_out)
1297 {
1298 const unsigned size_log2 = size < 4096 ? 12 : ilog2_round_up(size);
1299 const unsigned pow2_size = 1 << size_log2;
1300 const unsigned bucket = size_log2 - 12;
1301 assert(bucket < ARRAY_SIZE(pool->free_list));
1302
1303 struct anv_bo *bo =
1304 util_sparse_array_free_list_pop_elem(&pool->free_list[bucket]);
1305 if (bo != NULL) {
1306 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1307 *bo_out = bo;
1308 return VK_SUCCESS;
1309 }
1310
1311 VkResult result = anv_device_alloc_bo(pool->device,
1312 pow2_size,
1313 ANV_BO_ALLOC_MAPPED |
1314 ANV_BO_ALLOC_SNOOPED |
1315 ANV_BO_ALLOC_CAPTURE,
1316 0 /* explicit_address */,
1317 &bo);
1318 if (result != VK_SUCCESS)
1319 return result;
1320
1321 /* We want it to look like it came from this pool */
1322 VG(VALGRIND_FREELIKE_BLOCK(bo->map, 0));
1323 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1324
1325 *bo_out = bo;
1326
1327 return VK_SUCCESS;
1328 }
1329
1330 void
1331 anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo)
1332 {
1333 VG(VALGRIND_MEMPOOL_FREE(pool, bo->map));
1334
1335 assert(util_is_power_of_two_or_zero(bo->size));
1336 const unsigned size_log2 = ilog2_round_up(bo->size);
1337 const unsigned bucket = size_log2 - 12;
1338 assert(bucket < ARRAY_SIZE(pool->free_list));
1339
1340 assert(util_sparse_array_get(&pool->device->bo_cache.bo_map,
1341 bo->gem_handle) == bo);
1342 util_sparse_array_free_list_push(&pool->free_list[bucket],
1343 &bo->gem_handle, 1);
1344 }
1345
1346 // Scratch pool
1347
1348 void
1349 anv_scratch_pool_init(struct anv_device *device, struct anv_scratch_pool *pool)
1350 {
1351 memset(pool, 0, sizeof(*pool));
1352 }
1353
1354 void
1355 anv_scratch_pool_finish(struct anv_device *device, struct anv_scratch_pool *pool)
1356 {
1357 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1358 for (unsigned i = 0; i < 16; i++) {
1359 if (pool->bos[i][s] != NULL)
1360 anv_device_release_bo(device, pool->bos[i][s]);
1361 }
1362 }
1363 }
1364
1365 struct anv_bo *
1366 anv_scratch_pool_alloc(struct anv_device *device, struct anv_scratch_pool *pool,
1367 gl_shader_stage stage, unsigned per_thread_scratch)
1368 {
1369 if (per_thread_scratch == 0)
1370 return NULL;
1371
1372 unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
1373 assert(scratch_size_log2 < 16);
1374
1375 struct anv_bo *bo = p_atomic_read(&pool->bos[scratch_size_log2][stage]);
1376
1377 if (bo != NULL)
1378 return bo;
1379
1380 const struct anv_physical_device *physical_device =
1381 &device->instance->physicalDevice;
1382 const struct gen_device_info *devinfo = &physical_device->info;
1383
1384 const unsigned subslices = MAX2(physical_device->subslice_total, 1);
1385
1386 unsigned scratch_ids_per_subslice;
1387 if (devinfo->gen >= 11) {
1388 /* The MEDIA_VFE_STATE docs say:
1389 *
1390 * "Starting with this configuration, the Maximum Number of
1391 * Threads must be set to (#EU * 8) for GPGPU dispatches.
1392 *
1393 * Although there are only 7 threads per EU in the configuration,
1394 * the FFTID is calculated as if there are 8 threads per EU,
1395 * which in turn requires a larger amount of Scratch Space to be
1396 * allocated by the driver."
1397 */
1398 scratch_ids_per_subslice = 8 * 8;
1399 } else if (devinfo->is_haswell) {
1400 /* WaCSScratchSize:hsw
1401 *
1402 * Haswell's scratch space address calculation appears to be sparse
1403 * rather than tightly packed. The Thread ID has bits indicating
1404 * which subslice, EU within a subslice, and thread within an EU it
1405 * is. There's a maximum of two slices and two subslices, so these
1406 * can be stored with a single bit. Even though there are only 10 EUs
1407 * per subslice, this is stored in 4 bits, so there's an effective
1408 * maximum value of 16 EUs. Similarly, although there are only 7
1409 * threads per EU, this is stored in a 3 bit number, giving an
1410 * effective maximum value of 8 threads per EU.
1411 *
1412 * This means that we need to use 16 * 8 instead of 10 * 7 for the
1413 * number of threads per subslice.
1414 */
1415 scratch_ids_per_subslice = 16 * 8;
1416 } else if (devinfo->is_cherryview) {
1417 /* Cherryview devices have either 6 or 8 EUs per subslice, and each EU
1418 * has 7 threads. The 6 EU devices appear to calculate thread IDs as if
1419 * it had 8 EUs.
1420 */
1421 scratch_ids_per_subslice = 8 * 7;
1422 } else {
1423 scratch_ids_per_subslice = devinfo->max_cs_threads;
1424 }
1425
1426 uint32_t max_threads[] = {
1427 [MESA_SHADER_VERTEX] = devinfo->max_vs_threads,
1428 [MESA_SHADER_TESS_CTRL] = devinfo->max_tcs_threads,
1429 [MESA_SHADER_TESS_EVAL] = devinfo->max_tes_threads,
1430 [MESA_SHADER_GEOMETRY] = devinfo->max_gs_threads,
1431 [MESA_SHADER_FRAGMENT] = devinfo->max_wm_threads,
1432 [MESA_SHADER_COMPUTE] = scratch_ids_per_subslice * subslices,
1433 };
1434
1435 uint32_t size = per_thread_scratch * max_threads[stage];
1436
1437 /* Even though the Scratch base pointers in 3DSTATE_*S are 64 bits, they
1438 * are still relative to the general state base address. When we emit
1439 * STATE_BASE_ADDRESS, we set general state base address to 0 and the size
1440 * to the maximum (1 page under 4GB). This allows us to just place the
1441 * scratch buffers anywhere we wish in the bottom 32 bits of address space
1442 * and just set the scratch base pointer in 3DSTATE_*S using a relocation.
1443 * However, in order to do so, we need to ensure that the kernel does not
1444 * place the scratch BO above the 32-bit boundary.
1445 *
1446 * NOTE: Technically, it can't go "anywhere" because the top page is off
1447 * limits. However, when EXEC_OBJECT_SUPPORTS_48B_ADDRESS is set, the
1448 * kernel allocates space using
1449 *
1450 * end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
1451 *
1452 * so nothing will ever touch the top page.
1453 */
1454 VkResult result = anv_device_alloc_bo(device, size,
1455 ANV_BO_ALLOC_32BIT_ADDRESS,
1456 0 /* explicit_address */,
1457 &bo);
1458 if (result != VK_SUCCESS)
1459 return NULL; /* TODO */
1460
1461 struct anv_bo *current_bo =
1462 p_atomic_cmpxchg(&pool->bos[scratch_size_log2][stage], NULL, bo);
1463 if (current_bo) {
1464 anv_device_release_bo(device, bo);
1465 return current_bo;
1466 } else {
1467 return bo;
1468 }
1469 }
1470
1471 VkResult
1472 anv_bo_cache_init(struct anv_bo_cache *cache)
1473 {
1474 util_sparse_array_init(&cache->bo_map, sizeof(struct anv_bo), 1024);
1475
1476 if (pthread_mutex_init(&cache->mutex, NULL)) {
1477 util_sparse_array_finish(&cache->bo_map);
1478 return vk_errorf(NULL, NULL, VK_ERROR_OUT_OF_HOST_MEMORY,
1479 "pthread_mutex_init failed: %m");
1480 }
1481
1482 return VK_SUCCESS;
1483 }
1484
1485 void
1486 anv_bo_cache_finish(struct anv_bo_cache *cache)
1487 {
1488 util_sparse_array_finish(&cache->bo_map);
1489 pthread_mutex_destroy(&cache->mutex);
1490 }
1491
1492 #define ANV_BO_CACHE_SUPPORTED_FLAGS \
1493 (EXEC_OBJECT_WRITE | \
1494 EXEC_OBJECT_ASYNC | \
1495 EXEC_OBJECT_SUPPORTS_48B_ADDRESS | \
1496 EXEC_OBJECT_PINNED | \
1497 EXEC_OBJECT_CAPTURE)
1498
1499 static uint32_t
1500 anv_bo_alloc_flags_to_bo_flags(struct anv_device *device,
1501 enum anv_bo_alloc_flags alloc_flags)
1502 {
1503 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
1504
1505 uint64_t bo_flags = 0;
1506 if (!(alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS) &&
1507 pdevice->supports_48bit_addresses)
1508 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1509
1510 if ((alloc_flags & ANV_BO_ALLOC_CAPTURE) && pdevice->has_exec_capture)
1511 bo_flags |= EXEC_OBJECT_CAPTURE;
1512
1513 if (alloc_flags & ANV_BO_ALLOC_IMPLICIT_WRITE) {
1514 assert(alloc_flags & ANV_BO_ALLOC_IMPLICIT_SYNC);
1515 bo_flags |= EXEC_OBJECT_WRITE;
1516 }
1517
1518 if (!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_SYNC) && pdevice->has_exec_async)
1519 bo_flags |= EXEC_OBJECT_ASYNC;
1520
1521 if (pdevice->use_softpin)
1522 bo_flags |= EXEC_OBJECT_PINNED;
1523
1524 return bo_flags;
1525 }
1526
1527 VkResult
1528 anv_device_alloc_bo(struct anv_device *device,
1529 uint64_t size,
1530 enum anv_bo_alloc_flags alloc_flags,
1531 uint64_t explicit_address,
1532 struct anv_bo **bo_out)
1533 {
1534 const uint32_t bo_flags =
1535 anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1536 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1537
1538 /* The kernel is going to give us whole pages anyway */
1539 size = align_u64(size, 4096);
1540
1541 uint32_t gem_handle = anv_gem_create(device, size);
1542 if (gem_handle == 0)
1543 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1544
1545 struct anv_bo new_bo = {
1546 .gem_handle = gem_handle,
1547 .refcount = 1,
1548 .offset = -1,
1549 .size = size,
1550 .flags = bo_flags,
1551 .is_external = (alloc_flags & ANV_BO_ALLOC_EXTERNAL),
1552 .has_client_visible_address =
1553 (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
1554 };
1555
1556 if (alloc_flags & ANV_BO_ALLOC_MAPPED) {
1557 new_bo.map = anv_gem_mmap(device, new_bo.gem_handle, 0, size, 0);
1558 if (new_bo.map == MAP_FAILED) {
1559 anv_gem_close(device, new_bo.gem_handle);
1560 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1561 }
1562 }
1563
1564 if (alloc_flags & ANV_BO_ALLOC_SNOOPED) {
1565 assert(alloc_flags & ANV_BO_ALLOC_MAPPED);
1566 /* We don't want to change these defaults if it's going to be shared
1567 * with another process.
1568 */
1569 assert(!(alloc_flags & ANV_BO_ALLOC_EXTERNAL));
1570
1571 /* Regular objects are created I915_CACHING_CACHED on LLC platforms and
1572 * I915_CACHING_NONE on non-LLC platforms. For many internal state
1573 * objects, we'd rather take the snooping overhead than risk forgetting
1574 * a CLFLUSH somewhere. Userptr objects are always created as
1575 * I915_CACHING_CACHED, which on non-LLC means snooped so there's no
1576 * need to do this there.
1577 */
1578 if (!device->info.has_llc) {
1579 anv_gem_set_caching(device, new_bo.gem_handle,
1580 I915_CACHING_CACHED);
1581 }
1582 }
1583
1584 if (alloc_flags & ANV_BO_ALLOC_FIXED_ADDRESS) {
1585 new_bo.has_fixed_address = true;
1586 new_bo.offset = explicit_address;
1587 } else {
1588 if (!anv_vma_alloc(device, &new_bo, explicit_address)) {
1589 if (new_bo.map)
1590 anv_gem_munmap(new_bo.map, size);
1591 anv_gem_close(device, new_bo.gem_handle);
1592 return vk_errorf(device->instance, NULL,
1593 VK_ERROR_OUT_OF_DEVICE_MEMORY,
1594 "failed to allocate virtual address for BO");
1595 }
1596 }
1597
1598 assert(new_bo.gem_handle);
1599
1600 /* If we just got this gem_handle from anv_bo_init_new then we know no one
1601 * else is touching this BO at the moment so we don't need to lock here.
1602 */
1603 struct anv_bo *bo = anv_device_lookup_bo(device, new_bo.gem_handle);
1604 *bo = new_bo;
1605
1606 *bo_out = bo;
1607
1608 return VK_SUCCESS;
1609 }
1610
1611 VkResult
1612 anv_device_import_bo_from_host_ptr(struct anv_device *device,
1613 void *host_ptr, uint32_t size,
1614 enum anv_bo_alloc_flags alloc_flags,
1615 uint64_t client_address,
1616 struct anv_bo **bo_out)
1617 {
1618 assert(!(alloc_flags & (ANV_BO_ALLOC_MAPPED |
1619 ANV_BO_ALLOC_SNOOPED |
1620 ANV_BO_ALLOC_FIXED_ADDRESS)));
1621
1622 struct anv_bo_cache *cache = &device->bo_cache;
1623 const uint32_t bo_flags =
1624 anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1625 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1626
1627 uint32_t gem_handle = anv_gem_userptr(device, host_ptr, size);
1628 if (!gem_handle)
1629 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
1630
1631 pthread_mutex_lock(&cache->mutex);
1632
1633 struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle);
1634 if (bo->refcount > 0) {
1635 /* VK_EXT_external_memory_host doesn't require handling importing the
1636 * same pointer twice at the same time, but we don't get in the way. If
1637 * kernel gives us the same gem_handle, only succeed if the flags match.
1638 */
1639 assert(bo->gem_handle == gem_handle);
1640 if (bo_flags != bo->flags) {
1641 pthread_mutex_unlock(&cache->mutex);
1642 return vk_errorf(device->instance, NULL,
1643 VK_ERROR_INVALID_EXTERNAL_HANDLE,
1644 "same host pointer imported two different ways");
1645 }
1646
1647 if (bo->has_client_visible_address !=
1648 ((alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0)) {
1649 pthread_mutex_unlock(&cache->mutex);
1650 return vk_errorf(device->instance, NULL,
1651 VK_ERROR_INVALID_EXTERNAL_HANDLE,
1652 "The same BO was imported with and without buffer "
1653 "device address");
1654 }
1655
1656 if (client_address && client_address != gen_48b_address(bo->offset)) {
1657 pthread_mutex_unlock(&cache->mutex);
1658 return vk_errorf(device->instance, NULL,
1659 VK_ERROR_INVALID_EXTERNAL_HANDLE,
1660 "The same BO was imported at two different "
1661 "addresses");
1662 }
1663
1664 __sync_fetch_and_add(&bo->refcount, 1);
1665 } else {
1666 struct anv_bo new_bo = {
1667 .gem_handle = gem_handle,
1668 .refcount = 1,
1669 .offset = -1,
1670 .size = size,
1671 .map = host_ptr,
1672 .flags = bo_flags,
1673 .is_external = true,
1674 .from_host_ptr = true,
1675 .has_client_visible_address =
1676 (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
1677 };
1678
1679 assert(client_address == gen_48b_address(client_address));
1680 if (!anv_vma_alloc(device, &new_bo, client_address)) {
1681 anv_gem_close(device, new_bo.gem_handle);
1682 pthread_mutex_unlock(&cache->mutex);
1683 return vk_errorf(device->instance, NULL,
1684 VK_ERROR_OUT_OF_DEVICE_MEMORY,
1685 "failed to allocate virtual address for BO");
1686 }
1687
1688 *bo = new_bo;
1689 }
1690
1691 pthread_mutex_unlock(&cache->mutex);
1692 *bo_out = bo;
1693
1694 return VK_SUCCESS;
1695 }
1696
1697 VkResult
1698 anv_device_import_bo(struct anv_device *device,
1699 int fd,
1700 enum anv_bo_alloc_flags alloc_flags,
1701 uint64_t client_address,
1702 struct anv_bo **bo_out)
1703 {
1704 assert(!(alloc_flags & (ANV_BO_ALLOC_MAPPED |
1705 ANV_BO_ALLOC_SNOOPED |
1706 ANV_BO_ALLOC_FIXED_ADDRESS)));
1707
1708 struct anv_bo_cache *cache = &device->bo_cache;
1709 const uint32_t bo_flags =
1710 anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1711 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1712
1713 pthread_mutex_lock(&cache->mutex);
1714
1715 uint32_t gem_handle = anv_gem_fd_to_handle(device, fd);
1716 if (!gem_handle) {
1717 pthread_mutex_unlock(&cache->mutex);
1718 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
1719 }
1720
1721 struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle);
1722 if (bo->refcount > 0) {
1723 /* We have to be careful how we combine flags so that it makes sense.
1724 * Really, though, if we get to this case and it actually matters, the
1725 * client has imported a BO twice in different ways and they get what
1726 * they have coming.
1727 */
1728 uint64_t new_flags = 0;
1729 new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_WRITE;
1730 new_flags |= (bo->flags & bo_flags) & EXEC_OBJECT_ASYNC;
1731 new_flags |= (bo->flags & bo_flags) & EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1732 new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_PINNED;
1733 new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_CAPTURE;
1734
1735 /* It's theoretically possible for a BO to get imported such that it's
1736 * both pinned and not pinned. The only way this can happen is if it
1737 * gets imported as both a semaphore and a memory object and that would
1738 * be an application error. Just fail out in that case.
1739 */
1740 if ((bo->flags & EXEC_OBJECT_PINNED) !=
1741 (bo_flags & EXEC_OBJECT_PINNED)) {
1742 pthread_mutex_unlock(&cache->mutex);
1743 return vk_errorf(device->instance, NULL,
1744 VK_ERROR_INVALID_EXTERNAL_HANDLE,
1745 "The same BO was imported two different ways");
1746 }
1747
1748 /* It's also theoretically possible that someone could export a BO from
1749 * one heap and import it into another or to import the same BO into two
1750 * different heaps. If this happens, we could potentially end up both
1751 * allowing and disallowing 48-bit addresses. There's not much we can
1752 * do about it if we're pinning so we just throw an error and hope no
1753 * app is actually that stupid.
1754 */
1755 if ((new_flags & EXEC_OBJECT_PINNED) &&
1756 (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) !=
1757 (bo_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) {
1758 pthread_mutex_unlock(&cache->mutex);
1759 return vk_errorf(device->instance, NULL,
1760 VK_ERROR_INVALID_EXTERNAL_HANDLE,
1761 "The same BO was imported on two different heaps");
1762 }
1763
1764 if (bo->has_client_visible_address !=
1765 ((alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0)) {
1766 pthread_mutex_unlock(&cache->mutex);
1767 return vk_errorf(device->instance, NULL,
1768 VK_ERROR_INVALID_EXTERNAL_HANDLE,
1769 "The same BO was imported with and without buffer "
1770 "device address");
1771 }
1772
1773 if (client_address && client_address != gen_48b_address(bo->offset)) {
1774 pthread_mutex_unlock(&cache->mutex);
1775 return vk_errorf(device->instance, NULL,
1776 VK_ERROR_INVALID_EXTERNAL_HANDLE,
1777 "The same BO was imported at two different "
1778 "addresses");
1779 }
1780
1781 bo->flags = new_flags;
1782
1783 __sync_fetch_and_add(&bo->refcount, 1);
1784 } else {
1785 off_t size = lseek(fd, 0, SEEK_END);
1786 if (size == (off_t)-1) {
1787 anv_gem_close(device, gem_handle);
1788 pthread_mutex_unlock(&cache->mutex);
1789 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
1790 }
1791
1792 struct anv_bo new_bo = {
1793 .gem_handle = gem_handle,
1794 .refcount = 1,
1795 .offset = -1,
1796 .size = size,
1797 .flags = bo_flags,
1798 .is_external = true,
1799 .has_client_visible_address =
1800 (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
1801 };
1802
1803 assert(client_address == gen_48b_address(client_address));
1804 if (!anv_vma_alloc(device, &new_bo, client_address)) {
1805 anv_gem_close(device, new_bo.gem_handle);
1806 pthread_mutex_unlock(&cache->mutex);
1807 return vk_errorf(device->instance, NULL,
1808 VK_ERROR_OUT_OF_DEVICE_MEMORY,
1809 "failed to allocate virtual address for BO");
1810 }
1811
1812 *bo = new_bo;
1813 }
1814
1815 pthread_mutex_unlock(&cache->mutex);
1816 *bo_out = bo;
1817
1818 return VK_SUCCESS;
1819 }
1820
1821 VkResult
1822 anv_device_export_bo(struct anv_device *device,
1823 struct anv_bo *bo, int *fd_out)
1824 {
1825 assert(anv_device_lookup_bo(device, bo->gem_handle) == bo);
1826
1827 /* This BO must have been flagged external in order for us to be able
1828 * to export it. This is done based on external options passed into
1829 * anv_AllocateMemory.
1830 */
1831 assert(bo->is_external);
1832
1833 int fd = anv_gem_handle_to_fd(device, bo->gem_handle);
1834 if (fd < 0)
1835 return vk_error(VK_ERROR_TOO_MANY_OBJECTS);
1836
1837 *fd_out = fd;
1838
1839 return VK_SUCCESS;
1840 }
1841
1842 static bool
1843 atomic_dec_not_one(uint32_t *counter)
1844 {
1845 uint32_t old, val;
1846
1847 val = *counter;
1848 while (1) {
1849 if (val == 1)
1850 return false;
1851
1852 old = __sync_val_compare_and_swap(counter, val, val - 1);
1853 if (old == val)
1854 return true;
1855
1856 val = old;
1857 }
1858 }
1859
1860 void
1861 anv_device_release_bo(struct anv_device *device,
1862 struct anv_bo *bo)
1863 {
1864 struct anv_bo_cache *cache = &device->bo_cache;
1865 assert(anv_device_lookup_bo(device, bo->gem_handle) == bo);
1866
1867 /* Try to decrement the counter but don't go below one. If this succeeds
1868 * then the refcount has been decremented and we are not the last
1869 * reference.
1870 */
1871 if (atomic_dec_not_one(&bo->refcount))
1872 return;
1873
1874 pthread_mutex_lock(&cache->mutex);
1875
1876 /* We are probably the last reference since our attempt to decrement above
1877 * failed. However, we can't actually know until we are inside the mutex.
1878 * Otherwise, someone could import the BO between the decrement and our
1879 * taking the mutex.
1880 */
1881 if (unlikely(__sync_sub_and_fetch(&bo->refcount, 1) > 0)) {
1882 /* Turns out we're not the last reference. Unlock and bail. */
1883 pthread_mutex_unlock(&cache->mutex);
1884 return;
1885 }
1886 assert(bo->refcount == 0);
1887
1888 if (bo->map && !bo->from_host_ptr)
1889 anv_gem_munmap(bo->map, bo->size);
1890
1891 if (!bo->has_fixed_address)
1892 anv_vma_free(device, bo);
1893
1894 uint32_t gem_handle = bo->gem_handle;
1895
1896 /* Memset the BO just in case. The refcount being zero should be enough to
1897 * prevent someone from assuming the data is valid but it's safer to just
1898 * stomp to zero just in case. We explicitly do this *before* we close the
1899 * GEM handle to ensure that if anyone allocates something and gets the
1900 * same GEM handle, the memset has already happen and won't stomp all over
1901 * any data they may write in this BO.
1902 */
1903 memset(bo, 0, sizeof(*bo));
1904
1905 anv_gem_close(device, gem_handle);
1906
1907 /* Don't unlock until we've actually closed the BO. The whole point of
1908 * the BO cache is to ensure that we correctly handle races with creating
1909 * and releasing GEM handles and we don't want to let someone import the BO
1910 * again between mutex unlock and closing the GEM handle.
1911 */
1912 pthread_mutex_unlock(&cache->mutex);
1913 }