anv: Handle state pool relocations using "wrapper" BOs
[mesa.git] / src / intel / vulkan / anv_allocator.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <stdlib.h>
25 #include <unistd.h>
26 #include <limits.h>
27 #include <assert.h>
28 #include <sys/mman.h>
29
30 #include "anv_private.h"
31
32 #include "util/simple_mtx.h"
33 #include "util/anon_file.h"
34
35 #ifdef HAVE_VALGRIND
36 #define VG_NOACCESS_READ(__ptr) ({ \
37 VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
38 __typeof(*(__ptr)) __val = *(__ptr); \
39 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
40 __val; \
41 })
42 #define VG_NOACCESS_WRITE(__ptr, __val) ({ \
43 VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \
44 *(__ptr) = (__val); \
45 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \
46 })
47 #else
48 #define VG_NOACCESS_READ(__ptr) (*(__ptr))
49 #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
50 #endif
51
52 #ifndef MAP_POPULATE
53 #define MAP_POPULATE 0
54 #endif
55
56 /* Design goals:
57 *
58 * - Lock free (except when resizing underlying bos)
59 *
60 * - Constant time allocation with typically only one atomic
61 *
62 * - Multiple allocation sizes without fragmentation
63 *
64 * - Can grow while keeping addresses and offset of contents stable
65 *
66 * - All allocations within one bo so we can point one of the
67 * STATE_BASE_ADDRESS pointers at it.
68 *
69 * The overall design is a two-level allocator: top level is a fixed size, big
70 * block (8k) allocator, which operates out of a bo. Allocation is done by
71 * either pulling a block from the free list or growing the used range of the
72 * bo. Growing the range may run out of space in the bo which we then need to
73 * grow. Growing the bo is tricky in a multi-threaded, lockless environment:
74 * we need to keep all pointers and contents in the old map valid. GEM bos in
75 * general can't grow, but we use a trick: we create a memfd and use ftruncate
76 * to grow it as necessary. We mmap the new size and then create a gem bo for
77 * it using the new gem userptr ioctl. Without heavy-handed locking around
78 * our allocation fast-path, there isn't really a way to munmap the old mmap,
79 * so we just keep it around until garbage collection time. While the block
80 * allocator is lockless for normal operations, we block other threads trying
81 * to allocate while we're growing the map. It sholdn't happen often, and
82 * growing is fast anyway.
83 *
84 * At the next level we can use various sub-allocators. The state pool is a
85 * pool of smaller, fixed size objects, which operates much like the block
86 * pool. It uses a free list for freeing objects, but when it runs out of
87 * space it just allocates a new block from the block pool. This allocator is
88 * intended for longer lived state objects such as SURFACE_STATE and most
89 * other persistent state objects in the API. We may need to track more info
90 * with these object and a pointer back to the CPU object (eg VkImage). In
91 * those cases we just allocate a slightly bigger object and put the extra
92 * state after the GPU state object.
93 *
94 * The state stream allocator works similar to how the i965 DRI driver streams
95 * all its state. Even with Vulkan, we need to emit transient state (whether
96 * surface state base or dynamic state base), and for that we can just get a
97 * block and fill it up. These cases are local to a command buffer and the
98 * sub-allocator need not be thread safe. The streaming allocator gets a new
99 * block when it runs out of space and chains them together so they can be
100 * easily freed.
101 */
102
103 /* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
104 * We use it to indicate the free list is empty. */
105 #define EMPTY UINT32_MAX
106
107 #define PAGE_SIZE 4096
108
109 struct anv_mmap_cleanup {
110 void *map;
111 size_t size;
112 uint32_t gem_handle;
113 };
114
115 #define ANV_MMAP_CLEANUP_INIT ((struct anv_mmap_cleanup){0})
116
117 static inline uint32_t
118 ilog2_round_up(uint32_t value)
119 {
120 assert(value != 0);
121 return 32 - __builtin_clz(value - 1);
122 }
123
124 static inline uint32_t
125 round_to_power_of_two(uint32_t value)
126 {
127 return 1 << ilog2_round_up(value);
128 }
129
130 struct anv_state_table_cleanup {
131 void *map;
132 size_t size;
133 };
134
135 #define ANV_STATE_TABLE_CLEANUP_INIT ((struct anv_state_table_cleanup){0})
136 #define ANV_STATE_ENTRY_SIZE (sizeof(struct anv_free_entry))
137
138 static VkResult
139 anv_state_table_expand_range(struct anv_state_table *table, uint32_t size);
140
141 VkResult
142 anv_state_table_init(struct anv_state_table *table,
143 struct anv_device *device,
144 uint32_t initial_entries)
145 {
146 VkResult result;
147
148 table->device = device;
149
150 /* Just make it 2GB up-front. The Linux kernel won't actually back it
151 * with pages until we either map and fault on one of them or we use
152 * userptr and send a chunk of it off to the GPU.
153 */
154 table->fd = os_create_anonymous_file(BLOCK_POOL_MEMFD_SIZE, "state table");
155 if (table->fd == -1) {
156 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
157 goto fail_fd;
158 }
159
160 if (!u_vector_init(&table->cleanups,
161 round_to_power_of_two(sizeof(struct anv_state_table_cleanup)),
162 128)) {
163 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
164 goto fail_fd;
165 }
166
167 table->state.next = 0;
168 table->state.end = 0;
169 table->size = 0;
170
171 uint32_t initial_size = initial_entries * ANV_STATE_ENTRY_SIZE;
172 result = anv_state_table_expand_range(table, initial_size);
173 if (result != VK_SUCCESS)
174 goto fail_cleanups;
175
176 return VK_SUCCESS;
177
178 fail_cleanups:
179 u_vector_finish(&table->cleanups);
180 fail_fd:
181 close(table->fd);
182
183 return result;
184 }
185
186 static VkResult
187 anv_state_table_expand_range(struct anv_state_table *table, uint32_t size)
188 {
189 void *map;
190 struct anv_state_table_cleanup *cleanup;
191
192 /* Assert that we only ever grow the pool */
193 assert(size >= table->state.end);
194
195 /* Make sure that we don't go outside the bounds of the memfd */
196 if (size > BLOCK_POOL_MEMFD_SIZE)
197 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
198
199 cleanup = u_vector_add(&table->cleanups);
200 if (!cleanup)
201 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
202
203 *cleanup = ANV_STATE_TABLE_CLEANUP_INIT;
204
205 /* Just leak the old map until we destroy the pool. We can't munmap it
206 * without races or imposing locking on the block allocate fast path. On
207 * the whole the leaked maps adds up to less than the size of the
208 * current map. MAP_POPULATE seems like the right thing to do, but we
209 * should try to get some numbers.
210 */
211 map = mmap(NULL, size, PROT_READ | PROT_WRITE,
212 MAP_SHARED | MAP_POPULATE, table->fd, 0);
213 if (map == MAP_FAILED) {
214 return vk_errorf(table->device->instance, table->device,
215 VK_ERROR_OUT_OF_HOST_MEMORY, "mmap failed: %m");
216 }
217
218 cleanup->map = map;
219 cleanup->size = size;
220
221 table->map = map;
222 table->size = size;
223
224 return VK_SUCCESS;
225 }
226
227 static VkResult
228 anv_state_table_grow(struct anv_state_table *table)
229 {
230 VkResult result = VK_SUCCESS;
231
232 uint32_t used = align_u32(table->state.next * ANV_STATE_ENTRY_SIZE,
233 PAGE_SIZE);
234 uint32_t old_size = table->size;
235
236 /* The block pool is always initialized to a nonzero size and this function
237 * is always called after initialization.
238 */
239 assert(old_size > 0);
240
241 uint32_t required = MAX2(used, old_size);
242 if (used * 2 <= required) {
243 /* If we're in this case then this isn't the firsta allocation and we
244 * already have enough space on both sides to hold double what we
245 * have allocated. There's nothing for us to do.
246 */
247 goto done;
248 }
249
250 uint32_t size = old_size * 2;
251 while (size < required)
252 size *= 2;
253
254 assert(size > table->size);
255
256 result = anv_state_table_expand_range(table, size);
257
258 done:
259 return result;
260 }
261
262 void
263 anv_state_table_finish(struct anv_state_table *table)
264 {
265 struct anv_state_table_cleanup *cleanup;
266
267 u_vector_foreach(cleanup, &table->cleanups) {
268 if (cleanup->map)
269 munmap(cleanup->map, cleanup->size);
270 }
271
272 u_vector_finish(&table->cleanups);
273
274 close(table->fd);
275 }
276
277 VkResult
278 anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
279 uint32_t count)
280 {
281 struct anv_block_state state, old, new;
282 VkResult result;
283
284 assert(idx);
285
286 while(1) {
287 state.u64 = __sync_fetch_and_add(&table->state.u64, count);
288 if (state.next + count <= state.end) {
289 assert(table->map);
290 struct anv_free_entry *entry = &table->map[state.next];
291 for (int i = 0; i < count; i++) {
292 entry[i].state.idx = state.next + i;
293 }
294 *idx = state.next;
295 return VK_SUCCESS;
296 } else if (state.next <= state.end) {
297 /* We allocated the first block outside the pool so we have to grow
298 * the pool. pool_state->next acts a mutex: threads who try to
299 * allocate now will get block indexes above the current limit and
300 * hit futex_wait below.
301 */
302 new.next = state.next + count;
303 do {
304 result = anv_state_table_grow(table);
305 if (result != VK_SUCCESS)
306 return result;
307 new.end = table->size / ANV_STATE_ENTRY_SIZE;
308 } while (new.end < new.next);
309
310 old.u64 = __sync_lock_test_and_set(&table->state.u64, new.u64);
311 if (old.next != state.next)
312 futex_wake(&table->state.end, INT_MAX);
313 } else {
314 futex_wait(&table->state.end, state.end, NULL);
315 continue;
316 }
317 }
318 }
319
320 void
321 anv_free_list_push(union anv_free_list *list,
322 struct anv_state_table *table,
323 uint32_t first, uint32_t count)
324 {
325 union anv_free_list current, old, new;
326 uint32_t last = first;
327
328 for (uint32_t i = 1; i < count; i++, last++)
329 table->map[last].next = last + 1;
330
331 old = *list;
332 do {
333 current = old;
334 table->map[last].next = current.offset;
335 new.offset = first;
336 new.count = current.count + 1;
337 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
338 } while (old.u64 != current.u64);
339 }
340
341 struct anv_state *
342 anv_free_list_pop(union anv_free_list *list,
343 struct anv_state_table *table)
344 {
345 union anv_free_list current, new, old;
346
347 current.u64 = list->u64;
348 while (current.offset != EMPTY) {
349 __sync_synchronize();
350 new.offset = table->map[current.offset].next;
351 new.count = current.count + 1;
352 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
353 if (old.u64 == current.u64) {
354 struct anv_free_entry *entry = &table->map[current.offset];
355 return &entry->state;
356 }
357 current = old;
358 }
359
360 return NULL;
361 }
362
363 /* All pointers in the ptr_free_list are assumed to be page-aligned. This
364 * means that the bottom 12 bits should all be zero.
365 */
366 #define PFL_COUNT(x) ((uintptr_t)(x) & 0xfff)
367 #define PFL_PTR(x) ((void *)((uintptr_t)(x) & ~(uintptr_t)0xfff))
368 #define PFL_PACK(ptr, count) ({ \
369 (void *)(((uintptr_t)(ptr) & ~(uintptr_t)0xfff) | ((count) & 0xfff)); \
370 })
371
372 static bool
373 anv_ptr_free_list_pop(void **list, void **elem)
374 {
375 void *current = *list;
376 while (PFL_PTR(current) != NULL) {
377 void **next_ptr = PFL_PTR(current);
378 void *new_ptr = VG_NOACCESS_READ(next_ptr);
379 unsigned new_count = PFL_COUNT(current) + 1;
380 void *new = PFL_PACK(new_ptr, new_count);
381 void *old = __sync_val_compare_and_swap(list, current, new);
382 if (old == current) {
383 *elem = PFL_PTR(current);
384 return true;
385 }
386 current = old;
387 }
388
389 return false;
390 }
391
392 static void
393 anv_ptr_free_list_push(void **list, void *elem)
394 {
395 void *old, *current;
396 void **next_ptr = elem;
397
398 /* The pointer-based free list requires that the pointer be
399 * page-aligned. This is because we use the bottom 12 bits of the
400 * pointer to store a counter to solve the ABA concurrency problem.
401 */
402 assert(((uintptr_t)elem & 0xfff) == 0);
403
404 old = *list;
405 do {
406 current = old;
407 VG_NOACCESS_WRITE(next_ptr, PFL_PTR(current));
408 unsigned new_count = PFL_COUNT(current) + 1;
409 void *new = PFL_PACK(elem, new_count);
410 old = __sync_val_compare_and_swap(list, current, new);
411 } while (old != current);
412 }
413
414 static VkResult
415 anv_block_pool_expand_range(struct anv_block_pool *pool,
416 uint32_t center_bo_offset, uint32_t size);
417
418 VkResult
419 anv_block_pool_init(struct anv_block_pool *pool,
420 struct anv_device *device,
421 uint64_t start_address,
422 uint32_t initial_size,
423 uint64_t bo_flags)
424 {
425 VkResult result;
426
427 pool->device = device;
428 pool->bo_flags = bo_flags;
429 pool->nbos = 0;
430 pool->size = 0;
431 pool->center_bo_offset = 0;
432 pool->start_address = gen_canonical_address(start_address);
433 pool->map = NULL;
434
435 if (!(pool->bo_flags & EXEC_OBJECT_PINNED)) {
436 /* Just make it 2GB up-front. The Linux kernel won't actually back it
437 * with pages until we either map and fault on one of them or we use
438 * userptr and send a chunk of it off to the GPU.
439 */
440 pool->fd = os_create_anonymous_file(BLOCK_POOL_MEMFD_SIZE, "block pool");
441 if (pool->fd == -1)
442 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
443
444 anv_bo_init(&pool->wrapper_bo, 0, 0);
445 pool->wrapper_bo.is_wrapper = true;
446 pool->bo = &pool->wrapper_bo;
447 } else {
448 /* This pointer will always point to the first BO in the list */
449 anv_bo_init(&pool->bos[0], 0, 0);
450 pool->bo = &pool->bos[0];
451
452 pool->fd = -1;
453 }
454
455 if (!u_vector_init(&pool->mmap_cleanups,
456 round_to_power_of_two(sizeof(struct anv_mmap_cleanup)),
457 128)) {
458 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
459 goto fail_fd;
460 }
461
462 pool->state.next = 0;
463 pool->state.end = 0;
464 pool->back_state.next = 0;
465 pool->back_state.end = 0;
466
467 result = anv_block_pool_expand_range(pool, 0, initial_size);
468 if (result != VK_SUCCESS)
469 goto fail_mmap_cleanups;
470
471 /* Make the entire pool available in the front of the pool. If back
472 * allocation needs to use this space, the "ends" will be re-arranged.
473 */
474 pool->state.end = pool->size;
475
476 return VK_SUCCESS;
477
478 fail_mmap_cleanups:
479 u_vector_finish(&pool->mmap_cleanups);
480 fail_fd:
481 if (!(pool->bo_flags & EXEC_OBJECT_PINNED))
482 close(pool->fd);
483
484 return result;
485 }
486
487 void
488 anv_block_pool_finish(struct anv_block_pool *pool)
489 {
490 struct anv_mmap_cleanup *cleanup;
491 const bool use_softpin = !!(pool->bo_flags & EXEC_OBJECT_PINNED);
492
493 u_vector_foreach(cleanup, &pool->mmap_cleanups) {
494 if (use_softpin)
495 anv_gem_munmap(cleanup->map, cleanup->size);
496 else
497 munmap(cleanup->map, cleanup->size);
498
499 if (cleanup->gem_handle)
500 anv_gem_close(pool->device, cleanup->gem_handle);
501 }
502
503 u_vector_finish(&pool->mmap_cleanups);
504 if (!(pool->bo_flags & EXEC_OBJECT_PINNED))
505 close(pool->fd);
506 }
507
508 static VkResult
509 anv_block_pool_expand_range(struct anv_block_pool *pool,
510 uint32_t center_bo_offset, uint32_t size)
511 {
512 void *map;
513 uint32_t gem_handle;
514 struct anv_mmap_cleanup *cleanup;
515 const bool use_softpin = !!(pool->bo_flags & EXEC_OBJECT_PINNED);
516
517 /* Assert that we only ever grow the pool */
518 assert(center_bo_offset >= pool->back_state.end);
519 assert(size - center_bo_offset >= pool->state.end);
520
521 /* Assert that we don't go outside the bounds of the memfd */
522 assert(center_bo_offset <= BLOCK_POOL_MEMFD_CENTER);
523 assert(use_softpin ||
524 size - center_bo_offset <=
525 BLOCK_POOL_MEMFD_SIZE - BLOCK_POOL_MEMFD_CENTER);
526
527 cleanup = u_vector_add(&pool->mmap_cleanups);
528 if (!cleanup)
529 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
530
531 *cleanup = ANV_MMAP_CLEANUP_INIT;
532
533 uint32_t newbo_size = size - pool->size;
534 if (use_softpin) {
535 gem_handle = anv_gem_create(pool->device, newbo_size);
536 map = anv_gem_mmap(pool->device, gem_handle, 0, newbo_size, 0);
537 if (map == MAP_FAILED)
538 return vk_errorf(pool->device->instance, pool->device,
539 VK_ERROR_MEMORY_MAP_FAILED, "gem mmap failed: %m");
540 assert(center_bo_offset == 0);
541 } else {
542 /* Just leak the old map until we destroy the pool. We can't munmap it
543 * without races or imposing locking on the block allocate fast path. On
544 * the whole the leaked maps adds up to less than the size of the
545 * current map. MAP_POPULATE seems like the right thing to do, but we
546 * should try to get some numbers.
547 */
548 map = mmap(NULL, size, PROT_READ | PROT_WRITE,
549 MAP_SHARED | MAP_POPULATE, pool->fd,
550 BLOCK_POOL_MEMFD_CENTER - center_bo_offset);
551 if (map == MAP_FAILED)
552 return vk_errorf(pool->device->instance, pool->device,
553 VK_ERROR_MEMORY_MAP_FAILED, "mmap failed: %m");
554
555 /* Now that we mapped the new memory, we can write the new
556 * center_bo_offset back into pool and update pool->map. */
557 pool->center_bo_offset = center_bo_offset;
558 pool->map = map + center_bo_offset;
559 gem_handle = anv_gem_userptr(pool->device, map, size);
560 if (gem_handle == 0) {
561 munmap(map, size);
562 return vk_errorf(pool->device->instance, pool->device,
563 VK_ERROR_TOO_MANY_OBJECTS, "userptr failed: %m");
564 }
565 }
566
567 cleanup->map = map;
568 cleanup->size = use_softpin ? newbo_size : size;
569 cleanup->gem_handle = gem_handle;
570
571 /* Regular objects are created I915_CACHING_CACHED on LLC platforms and
572 * I915_CACHING_NONE on non-LLC platforms. However, userptr objects are
573 * always created as I915_CACHING_CACHED, which on non-LLC means
574 * snooped.
575 *
576 * On platforms that support softpin, we are not going to use userptr
577 * anymore, but we still want to rely on the snooped states. So make sure
578 * everything is set to I915_CACHING_CACHED.
579 */
580 if (!pool->device->info.has_llc)
581 anv_gem_set_caching(pool->device, gem_handle, I915_CACHING_CACHED);
582
583 /* For block pool BOs we have to be a bit careful about where we place them
584 * in the GTT. There are two documented workarounds for state base address
585 * placement : Wa32bitGeneralStateOffset and Wa32bitInstructionBaseOffset
586 * which state that those two base addresses do not support 48-bit
587 * addresses and need to be placed in the bottom 32-bit range.
588 * Unfortunately, this is not quite accurate.
589 *
590 * The real problem is that we always set the size of our state pools in
591 * STATE_BASE_ADDRESS to 0xfffff (the maximum) even though the BO is most
592 * likely significantly smaller. We do this because we do not no at the
593 * time we emit STATE_BASE_ADDRESS whether or not we will need to expand
594 * the pool during command buffer building so we don't actually have a
595 * valid final size. If the address + size, as seen by STATE_BASE_ADDRESS
596 * overflows 48 bits, the GPU appears to treat all accesses to the buffer
597 * as being out of bounds and returns zero. For dynamic state, this
598 * usually just leads to rendering corruptions, but shaders that are all
599 * zero hang the GPU immediately.
600 *
601 * The easiest solution to do is exactly what the bogus workarounds say to
602 * do: restrict these buffers to 32-bit addresses. We could also pin the
603 * BO to some particular location of our choosing, but that's significantly
604 * more work than just not setting a flag. So, we explicitly DO NOT set
605 * the EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and the kernel does all of the
606 * hard work for us.
607 */
608 struct anv_bo *bo;
609 uint32_t bo_size;
610 uint64_t bo_offset;
611
612 assert(pool->nbos < ANV_MAX_BLOCK_POOL_BOS);
613
614 if (use_softpin) {
615 /* With softpin, we add a new BO to the pool, and set its offset to right
616 * where the previous BO ends (the end of the pool).
617 */
618 bo = &pool->bos[pool->nbos++];
619 bo_size = newbo_size;
620 bo_offset = pool->start_address + pool->size;
621 } else {
622 /* Without softpin, we just need one BO, and we already have a pointer to
623 * it. Simply "allocate" it from our array if we didn't do it before.
624 * The offset doesn't matter since we are not pinning the BO anyway.
625 */
626 if (pool->nbos == 0) {
627 pool->wrapper_bo.map = &pool->bos[0];
628 pool->nbos++;
629 }
630 bo = pool->wrapper_bo.map;
631 bo_size = size;
632 bo_offset = 0;
633 }
634
635 anv_bo_init(bo, gem_handle, bo_size);
636 bo->offset = bo_offset;
637 bo->flags = pool->bo_flags;
638 bo->map = map;
639 pool->size = size;
640
641 return VK_SUCCESS;
642 }
643
644 /** Returns current memory map of the block pool.
645 *
646 * The returned pointer points to the map for the memory at the specified
647 * offset. The offset parameter is relative to the "center" of the block pool
648 * rather than the start of the block pool BO map.
649 */
650 void*
651 anv_block_pool_map(struct anv_block_pool *pool, int32_t offset)
652 {
653 if (pool->bo_flags & EXEC_OBJECT_PINNED) {
654 struct anv_bo *bo = NULL;
655 int32_t bo_offset = 0;
656 anv_block_pool_foreach_bo(iter_bo, pool) {
657 if (offset < bo_offset + iter_bo->size) {
658 bo = iter_bo;
659 break;
660 }
661 bo_offset += iter_bo->size;
662 }
663 assert(bo != NULL);
664 assert(offset >= bo_offset);
665
666 return bo->map + (offset - bo_offset);
667 } else {
668 return pool->map + offset;
669 }
670 }
671
672 /** Grows and re-centers the block pool.
673 *
674 * We grow the block pool in one or both directions in such a way that the
675 * following conditions are met:
676 *
677 * 1) The size of the entire pool is always a power of two.
678 *
679 * 2) The pool only grows on both ends. Neither end can get
680 * shortened.
681 *
682 * 3) At the end of the allocation, we have about twice as much space
683 * allocated for each end as we have used. This way the pool doesn't
684 * grow too far in one direction or the other.
685 *
686 * 4) If the _alloc_back() has never been called, then the back portion of
687 * the pool retains a size of zero. (This makes it easier for users of
688 * the block pool that only want a one-sided pool.)
689 *
690 * 5) We have enough space allocated for at least one more block in
691 * whichever side `state` points to.
692 *
693 * 6) The center of the pool is always aligned to both the block_size of
694 * the pool and a 4K CPU page.
695 */
696 static uint32_t
697 anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state)
698 {
699 VkResult result = VK_SUCCESS;
700
701 pthread_mutex_lock(&pool->device->mutex);
702
703 assert(state == &pool->state || state == &pool->back_state);
704
705 /* Gather a little usage information on the pool. Since we may have
706 * threadsd waiting in queue to get some storage while we resize, it's
707 * actually possible that total_used will be larger than old_size. In
708 * particular, block_pool_alloc() increments state->next prior to
709 * calling block_pool_grow, so this ensures that we get enough space for
710 * which ever side tries to grow the pool.
711 *
712 * We align to a page size because it makes it easier to do our
713 * calculations later in such a way that we state page-aigned.
714 */
715 uint32_t back_used = align_u32(pool->back_state.next, PAGE_SIZE);
716 uint32_t front_used = align_u32(pool->state.next, PAGE_SIZE);
717 uint32_t total_used = front_used + back_used;
718
719 assert(state == &pool->state || back_used > 0);
720
721 uint32_t old_size = pool->size;
722
723 /* The block pool is always initialized to a nonzero size and this function
724 * is always called after initialization.
725 */
726 assert(old_size > 0);
727
728 /* The back_used and front_used may actually be smaller than the actual
729 * requirement because they are based on the next pointers which are
730 * updated prior to calling this function.
731 */
732 uint32_t back_required = MAX2(back_used, pool->center_bo_offset);
733 uint32_t front_required = MAX2(front_used, old_size - pool->center_bo_offset);
734
735 if (back_used * 2 <= back_required && front_used * 2 <= front_required) {
736 /* If we're in this case then this isn't the firsta allocation and we
737 * already have enough space on both sides to hold double what we
738 * have allocated. There's nothing for us to do.
739 */
740 goto done;
741 }
742
743 uint32_t size = old_size * 2;
744 while (size < back_required + front_required)
745 size *= 2;
746
747 assert(size > pool->size);
748
749 /* We compute a new center_bo_offset such that, when we double the size
750 * of the pool, we maintain the ratio of how much is used by each side.
751 * This way things should remain more-or-less balanced.
752 */
753 uint32_t center_bo_offset;
754 if (back_used == 0) {
755 /* If we're in this case then we have never called alloc_back(). In
756 * this case, we want keep the offset at 0 to make things as simple
757 * as possible for users that don't care about back allocations.
758 */
759 center_bo_offset = 0;
760 } else {
761 /* Try to "center" the allocation based on how much is currently in
762 * use on each side of the center line.
763 */
764 center_bo_offset = ((uint64_t)size * back_used) / total_used;
765
766 /* Align down to a multiple of the page size */
767 center_bo_offset &= ~(PAGE_SIZE - 1);
768
769 assert(center_bo_offset >= back_used);
770
771 /* Make sure we don't shrink the back end of the pool */
772 if (center_bo_offset < back_required)
773 center_bo_offset = back_required;
774
775 /* Make sure that we don't shrink the front end of the pool */
776 if (size - center_bo_offset < front_required)
777 center_bo_offset = size - front_required;
778 }
779
780 assert(center_bo_offset % PAGE_SIZE == 0);
781
782 result = anv_block_pool_expand_range(pool, center_bo_offset, size);
783
784 done:
785 pthread_mutex_unlock(&pool->device->mutex);
786
787 if (result == VK_SUCCESS) {
788 /* Return the appropriate new size. This function never actually
789 * updates state->next. Instead, we let the caller do that because it
790 * needs to do so in order to maintain its concurrency model.
791 */
792 if (state == &pool->state) {
793 return pool->size - pool->center_bo_offset;
794 } else {
795 assert(pool->center_bo_offset > 0);
796 return pool->center_bo_offset;
797 }
798 } else {
799 return 0;
800 }
801 }
802
803 static uint32_t
804 anv_block_pool_alloc_new(struct anv_block_pool *pool,
805 struct anv_block_state *pool_state,
806 uint32_t block_size, uint32_t *padding)
807 {
808 struct anv_block_state state, old, new;
809
810 /* Most allocations won't generate any padding */
811 if (padding)
812 *padding = 0;
813
814 while (1) {
815 state.u64 = __sync_fetch_and_add(&pool_state->u64, block_size);
816 if (state.next + block_size <= state.end) {
817 return state.next;
818 } else if (state.next <= state.end) {
819 if (pool->bo_flags & EXEC_OBJECT_PINNED && state.next < state.end) {
820 /* We need to grow the block pool, but still have some leftover
821 * space that can't be used by that particular allocation. So we
822 * add that as a "padding", and return it.
823 */
824 uint32_t leftover = state.end - state.next;
825
826 /* If there is some leftover space in the pool, the caller must
827 * deal with it.
828 */
829 assert(leftover == 0 || padding);
830 if (padding)
831 *padding = leftover;
832 state.next += leftover;
833 }
834
835 /* We allocated the first block outside the pool so we have to grow
836 * the pool. pool_state->next acts a mutex: threads who try to
837 * allocate now will get block indexes above the current limit and
838 * hit futex_wait below.
839 */
840 new.next = state.next + block_size;
841 do {
842 new.end = anv_block_pool_grow(pool, pool_state);
843 } while (new.end < new.next);
844
845 old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64);
846 if (old.next != state.next)
847 futex_wake(&pool_state->end, INT_MAX);
848 return state.next;
849 } else {
850 futex_wait(&pool_state->end, state.end, NULL);
851 continue;
852 }
853 }
854 }
855
856 int32_t
857 anv_block_pool_alloc(struct anv_block_pool *pool,
858 uint32_t block_size, uint32_t *padding)
859 {
860 uint32_t offset;
861
862 offset = anv_block_pool_alloc_new(pool, &pool->state, block_size, padding);
863
864 return offset;
865 }
866
867 /* Allocates a block out of the back of the block pool.
868 *
869 * This will allocated a block earlier than the "start" of the block pool.
870 * The offsets returned from this function will be negative but will still
871 * be correct relative to the block pool's map pointer.
872 *
873 * If you ever use anv_block_pool_alloc_back, then you will have to do
874 * gymnastics with the block pool's BO when doing relocations.
875 */
876 int32_t
877 anv_block_pool_alloc_back(struct anv_block_pool *pool,
878 uint32_t block_size)
879 {
880 int32_t offset = anv_block_pool_alloc_new(pool, &pool->back_state,
881 block_size, NULL);
882
883 /* The offset we get out of anv_block_pool_alloc_new() is actually the
884 * number of bytes downwards from the middle to the end of the block.
885 * We need to turn it into a (negative) offset from the middle to the
886 * start of the block.
887 */
888 assert(offset >= 0);
889 return -(offset + block_size);
890 }
891
892 VkResult
893 anv_state_pool_init(struct anv_state_pool *pool,
894 struct anv_device *device,
895 uint64_t start_address,
896 uint32_t block_size,
897 uint64_t bo_flags)
898 {
899 VkResult result = anv_block_pool_init(&pool->block_pool, device,
900 start_address,
901 block_size * 16,
902 bo_flags);
903 if (result != VK_SUCCESS)
904 return result;
905
906 result = anv_state_table_init(&pool->table, device, 64);
907 if (result != VK_SUCCESS) {
908 anv_block_pool_finish(&pool->block_pool);
909 return result;
910 }
911
912 assert(util_is_power_of_two_or_zero(block_size));
913 pool->block_size = block_size;
914 pool->back_alloc_free_list = ANV_FREE_LIST_EMPTY;
915 for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
916 pool->buckets[i].free_list = ANV_FREE_LIST_EMPTY;
917 pool->buckets[i].block.next = 0;
918 pool->buckets[i].block.end = 0;
919 }
920 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
921
922 return VK_SUCCESS;
923 }
924
925 void
926 anv_state_pool_finish(struct anv_state_pool *pool)
927 {
928 VG(VALGRIND_DESTROY_MEMPOOL(pool));
929 anv_state_table_finish(&pool->table);
930 anv_block_pool_finish(&pool->block_pool);
931 }
932
933 static uint32_t
934 anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool *pool,
935 struct anv_block_pool *block_pool,
936 uint32_t state_size,
937 uint32_t block_size,
938 uint32_t *padding)
939 {
940 struct anv_block_state block, old, new;
941 uint32_t offset;
942
943 /* We don't always use anv_block_pool_alloc(), which would set *padding to
944 * zero for us. So if we have a pointer to padding, we must zero it out
945 * ourselves here, to make sure we always return some sensible value.
946 */
947 if (padding)
948 *padding = 0;
949
950 /* If our state is large, we don't need any sub-allocation from a block.
951 * Instead, we just grab whole (potentially large) blocks.
952 */
953 if (state_size >= block_size)
954 return anv_block_pool_alloc(block_pool, state_size, padding);
955
956 restart:
957 block.u64 = __sync_fetch_and_add(&pool->block.u64, state_size);
958
959 if (block.next < block.end) {
960 return block.next;
961 } else if (block.next == block.end) {
962 offset = anv_block_pool_alloc(block_pool, block_size, padding);
963 new.next = offset + state_size;
964 new.end = offset + block_size;
965 old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
966 if (old.next != block.next)
967 futex_wake(&pool->block.end, INT_MAX);
968 return offset;
969 } else {
970 futex_wait(&pool->block.end, block.end, NULL);
971 goto restart;
972 }
973 }
974
975 static uint32_t
976 anv_state_pool_get_bucket(uint32_t size)
977 {
978 unsigned size_log2 = ilog2_round_up(size);
979 assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
980 if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
981 size_log2 = ANV_MIN_STATE_SIZE_LOG2;
982 return size_log2 - ANV_MIN_STATE_SIZE_LOG2;
983 }
984
985 static uint32_t
986 anv_state_pool_get_bucket_size(uint32_t bucket)
987 {
988 uint32_t size_log2 = bucket + ANV_MIN_STATE_SIZE_LOG2;
989 return 1 << size_log2;
990 }
991
992 /** Helper to push a chunk into the state table.
993 *
994 * It creates 'count' entries into the state table and update their sizes,
995 * offsets and maps, also pushing them as "free" states.
996 */
997 static void
998 anv_state_pool_return_blocks(struct anv_state_pool *pool,
999 uint32_t chunk_offset, uint32_t count,
1000 uint32_t block_size)
1001 {
1002 /* Disallow returning 0 chunks */
1003 assert(count != 0);
1004
1005 /* Make sure we always return chunks aligned to the block_size */
1006 assert(chunk_offset % block_size == 0);
1007
1008 uint32_t st_idx;
1009 UNUSED VkResult result = anv_state_table_add(&pool->table, &st_idx, count);
1010 assert(result == VK_SUCCESS);
1011 for (int i = 0; i < count; i++) {
1012 /* update states that were added back to the state table */
1013 struct anv_state *state_i = anv_state_table_get(&pool->table,
1014 st_idx + i);
1015 state_i->alloc_size = block_size;
1016 state_i->offset = chunk_offset + block_size * i;
1017 state_i->map = anv_block_pool_map(&pool->block_pool, state_i->offset);
1018 }
1019
1020 uint32_t block_bucket = anv_state_pool_get_bucket(block_size);
1021 anv_free_list_push(&pool->buckets[block_bucket].free_list,
1022 &pool->table, st_idx, count);
1023 }
1024
1025 /** Returns a chunk of memory back to the state pool.
1026 *
1027 * Do a two-level split. If chunk_size is bigger than divisor
1028 * (pool->block_size), we return as many divisor sized blocks as we can, from
1029 * the end of the chunk.
1030 *
1031 * The remaining is then split into smaller blocks (starting at small_size if
1032 * it is non-zero), with larger blocks always being taken from the end of the
1033 * chunk.
1034 */
1035 static void
1036 anv_state_pool_return_chunk(struct anv_state_pool *pool,
1037 uint32_t chunk_offset, uint32_t chunk_size,
1038 uint32_t small_size)
1039 {
1040 uint32_t divisor = pool->block_size;
1041 uint32_t nblocks = chunk_size / divisor;
1042 uint32_t rest = chunk_size - nblocks * divisor;
1043
1044 if (nblocks > 0) {
1045 /* First return divisor aligned and sized chunks. We start returning
1046 * larger blocks from the end fo the chunk, since they should already be
1047 * aligned to divisor. Also anv_state_pool_return_blocks() only accepts
1048 * aligned chunks.
1049 */
1050 uint32_t offset = chunk_offset + rest;
1051 anv_state_pool_return_blocks(pool, offset, nblocks, divisor);
1052 }
1053
1054 chunk_size = rest;
1055 divisor /= 2;
1056
1057 if (small_size > 0 && small_size < divisor)
1058 divisor = small_size;
1059
1060 uint32_t min_size = 1 << ANV_MIN_STATE_SIZE_LOG2;
1061
1062 /* Just as before, return larger divisor aligned blocks from the end of the
1063 * chunk first.
1064 */
1065 while (chunk_size > 0 && divisor >= min_size) {
1066 nblocks = chunk_size / divisor;
1067 rest = chunk_size - nblocks * divisor;
1068 if (nblocks > 0) {
1069 anv_state_pool_return_blocks(pool, chunk_offset + rest,
1070 nblocks, divisor);
1071 chunk_size = rest;
1072 }
1073 divisor /= 2;
1074 }
1075 }
1076
1077 static struct anv_state
1078 anv_state_pool_alloc_no_vg(struct anv_state_pool *pool,
1079 uint32_t size, uint32_t align)
1080 {
1081 uint32_t bucket = anv_state_pool_get_bucket(MAX2(size, align));
1082
1083 struct anv_state *state;
1084 uint32_t alloc_size = anv_state_pool_get_bucket_size(bucket);
1085 int32_t offset;
1086
1087 /* Try free list first. */
1088 state = anv_free_list_pop(&pool->buckets[bucket].free_list,
1089 &pool->table);
1090 if (state) {
1091 assert(state->offset >= 0);
1092 goto done;
1093 }
1094
1095 /* Try to grab a chunk from some larger bucket and split it up */
1096 for (unsigned b = bucket + 1; b < ANV_STATE_BUCKETS; b++) {
1097 state = anv_free_list_pop(&pool->buckets[b].free_list, &pool->table);
1098 if (state) {
1099 unsigned chunk_size = anv_state_pool_get_bucket_size(b);
1100 int32_t chunk_offset = state->offset;
1101
1102 /* First lets update the state we got to its new size. offset and map
1103 * remain the same.
1104 */
1105 state->alloc_size = alloc_size;
1106
1107 /* Now return the unused part of the chunk back to the pool as free
1108 * blocks
1109 *
1110 * There are a couple of options as to what we do with it:
1111 *
1112 * 1) We could fully split the chunk into state.alloc_size sized
1113 * pieces. However, this would mean that allocating a 16B
1114 * state could potentially split a 2MB chunk into 512K smaller
1115 * chunks. This would lead to unnecessary fragmentation.
1116 *
1117 * 2) The classic "buddy allocator" method would have us split the
1118 * chunk in half and return one half. Then we would split the
1119 * remaining half in half and return one half, and repeat as
1120 * needed until we get down to the size we want. However, if
1121 * you are allocating a bunch of the same size state (which is
1122 * the common case), this means that every other allocation has
1123 * to go up a level and every fourth goes up two levels, etc.
1124 * This is not nearly as efficient as it could be if we did a
1125 * little more work up-front.
1126 *
1127 * 3) Split the difference between (1) and (2) by doing a
1128 * two-level split. If it's bigger than some fixed block_size,
1129 * we split it into block_size sized chunks and return all but
1130 * one of them. Then we split what remains into
1131 * state.alloc_size sized chunks and return them.
1132 *
1133 * We choose something close to option (3), which is implemented with
1134 * anv_state_pool_return_chunk(). That is done by returning the
1135 * remaining of the chunk, with alloc_size as a hint of the size that
1136 * we want the smaller chunk split into.
1137 */
1138 anv_state_pool_return_chunk(pool, chunk_offset + alloc_size,
1139 chunk_size - alloc_size, alloc_size);
1140 goto done;
1141 }
1142 }
1143
1144 uint32_t padding;
1145 offset = anv_fixed_size_state_pool_alloc_new(&pool->buckets[bucket],
1146 &pool->block_pool,
1147 alloc_size,
1148 pool->block_size,
1149 &padding);
1150 /* Everytime we allocate a new state, add it to the state pool */
1151 uint32_t idx;
1152 UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1);
1153 assert(result == VK_SUCCESS);
1154
1155 state = anv_state_table_get(&pool->table, idx);
1156 state->offset = offset;
1157 state->alloc_size = alloc_size;
1158 state->map = anv_block_pool_map(&pool->block_pool, offset);
1159
1160 if (padding > 0) {
1161 uint32_t return_offset = offset - padding;
1162 anv_state_pool_return_chunk(pool, return_offset, padding, 0);
1163 }
1164
1165 done:
1166 return *state;
1167 }
1168
1169 struct anv_state
1170 anv_state_pool_alloc(struct anv_state_pool *pool, uint32_t size, uint32_t align)
1171 {
1172 if (size == 0)
1173 return ANV_STATE_NULL;
1174
1175 struct anv_state state = anv_state_pool_alloc_no_vg(pool, size, align);
1176 VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
1177 return state;
1178 }
1179
1180 struct anv_state
1181 anv_state_pool_alloc_back(struct anv_state_pool *pool)
1182 {
1183 struct anv_state *state;
1184 uint32_t alloc_size = pool->block_size;
1185
1186 state = anv_free_list_pop(&pool->back_alloc_free_list, &pool->table);
1187 if (state) {
1188 assert(state->offset < 0);
1189 goto done;
1190 }
1191
1192 int32_t offset;
1193 offset = anv_block_pool_alloc_back(&pool->block_pool,
1194 pool->block_size);
1195 uint32_t idx;
1196 UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1);
1197 assert(result == VK_SUCCESS);
1198
1199 state = anv_state_table_get(&pool->table, idx);
1200 state->offset = offset;
1201 state->alloc_size = alloc_size;
1202 state->map = anv_block_pool_map(&pool->block_pool, state->offset);
1203
1204 done:
1205 VG(VALGRIND_MEMPOOL_ALLOC(pool, state->map, state->alloc_size));
1206 return *state;
1207 }
1208
1209 static void
1210 anv_state_pool_free_no_vg(struct anv_state_pool *pool, struct anv_state state)
1211 {
1212 assert(util_is_power_of_two_or_zero(state.alloc_size));
1213 unsigned bucket = anv_state_pool_get_bucket(state.alloc_size);
1214
1215 if (state.offset < 0) {
1216 assert(state.alloc_size == pool->block_size);
1217 anv_free_list_push(&pool->back_alloc_free_list,
1218 &pool->table, state.idx, 1);
1219 } else {
1220 anv_free_list_push(&pool->buckets[bucket].free_list,
1221 &pool->table, state.idx, 1);
1222 }
1223 }
1224
1225 void
1226 anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
1227 {
1228 if (state.alloc_size == 0)
1229 return;
1230
1231 VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
1232 anv_state_pool_free_no_vg(pool, state);
1233 }
1234
1235 struct anv_state_stream_block {
1236 struct anv_state block;
1237
1238 /* The next block */
1239 struct anv_state_stream_block *next;
1240
1241 #ifdef HAVE_VALGRIND
1242 /* A pointer to the first user-allocated thing in this block. This is
1243 * what valgrind sees as the start of the block.
1244 */
1245 void *_vg_ptr;
1246 #endif
1247 };
1248
1249 /* The state stream allocator is a one-shot, single threaded allocator for
1250 * variable sized blocks. We use it for allocating dynamic state.
1251 */
1252 void
1253 anv_state_stream_init(struct anv_state_stream *stream,
1254 struct anv_state_pool *state_pool,
1255 uint32_t block_size)
1256 {
1257 stream->state_pool = state_pool;
1258 stream->block_size = block_size;
1259
1260 stream->block = ANV_STATE_NULL;
1261
1262 stream->block_list = NULL;
1263
1264 /* Ensure that next + whatever > block_size. This way the first call to
1265 * state_stream_alloc fetches a new block.
1266 */
1267 stream->next = block_size;
1268
1269 VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
1270 }
1271
1272 void
1273 anv_state_stream_finish(struct anv_state_stream *stream)
1274 {
1275 struct anv_state_stream_block *next = stream->block_list;
1276 while (next != NULL) {
1277 struct anv_state_stream_block sb = VG_NOACCESS_READ(next);
1278 VG(VALGRIND_MEMPOOL_FREE(stream, sb._vg_ptr));
1279 VG(VALGRIND_MAKE_MEM_UNDEFINED(next, stream->block_size));
1280 anv_state_pool_free_no_vg(stream->state_pool, sb.block);
1281 next = sb.next;
1282 }
1283
1284 VG(VALGRIND_DESTROY_MEMPOOL(stream));
1285 }
1286
1287 struct anv_state
1288 anv_state_stream_alloc(struct anv_state_stream *stream,
1289 uint32_t size, uint32_t alignment)
1290 {
1291 if (size == 0)
1292 return ANV_STATE_NULL;
1293
1294 assert(alignment <= PAGE_SIZE);
1295
1296 uint32_t offset = align_u32(stream->next, alignment);
1297 if (offset + size > stream->block.alloc_size) {
1298 uint32_t block_size = stream->block_size;
1299 if (block_size < size)
1300 block_size = round_to_power_of_two(size);
1301
1302 stream->block = anv_state_pool_alloc_no_vg(stream->state_pool,
1303 block_size, PAGE_SIZE);
1304
1305 struct anv_state_stream_block *sb = stream->block.map;
1306 VG_NOACCESS_WRITE(&sb->block, stream->block);
1307 VG_NOACCESS_WRITE(&sb->next, stream->block_list);
1308 stream->block_list = sb;
1309 VG(VG_NOACCESS_WRITE(&sb->_vg_ptr, NULL));
1310
1311 VG(VALGRIND_MAKE_MEM_NOACCESS(stream->block.map, stream->block_size));
1312
1313 /* Reset back to the start plus space for the header */
1314 stream->next = sizeof(*sb);
1315
1316 offset = align_u32(stream->next, alignment);
1317 assert(offset + size <= stream->block.alloc_size);
1318 }
1319
1320 struct anv_state state = stream->block;
1321 state.offset += offset;
1322 state.alloc_size = size;
1323 state.map += offset;
1324
1325 stream->next = offset + size;
1326
1327 #ifdef HAVE_VALGRIND
1328 struct anv_state_stream_block *sb = stream->block_list;
1329 void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr);
1330 if (vg_ptr == NULL) {
1331 vg_ptr = state.map;
1332 VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr);
1333 VALGRIND_MEMPOOL_ALLOC(stream, vg_ptr, size);
1334 } else {
1335 void *state_end = state.map + state.alloc_size;
1336 /* This only updates the mempool. The newly allocated chunk is still
1337 * marked as NOACCESS. */
1338 VALGRIND_MEMPOOL_CHANGE(stream, vg_ptr, vg_ptr, state_end - vg_ptr);
1339 /* Mark the newly allocated chunk as undefined */
1340 VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size);
1341 }
1342 #endif
1343
1344 return state;
1345 }
1346
1347 struct bo_pool_bo_link {
1348 struct bo_pool_bo_link *next;
1349 struct anv_bo bo;
1350 };
1351
1352 void
1353 anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
1354 uint64_t bo_flags)
1355 {
1356 pool->device = device;
1357 pool->bo_flags = bo_flags;
1358 memset(pool->free_list, 0, sizeof(pool->free_list));
1359
1360 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
1361 }
1362
1363 void
1364 anv_bo_pool_finish(struct anv_bo_pool *pool)
1365 {
1366 for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
1367 struct bo_pool_bo_link *link = PFL_PTR(pool->free_list[i]);
1368 while (link != NULL) {
1369 struct bo_pool_bo_link link_copy = VG_NOACCESS_READ(link);
1370
1371 anv_gem_munmap(link_copy.bo.map, link_copy.bo.size);
1372 anv_vma_free(pool->device, &link_copy.bo);
1373 anv_gem_close(pool->device, link_copy.bo.gem_handle);
1374 link = link_copy.next;
1375 }
1376 }
1377
1378 VG(VALGRIND_DESTROY_MEMPOOL(pool));
1379 }
1380
1381 VkResult
1382 anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo, uint32_t size)
1383 {
1384 VkResult result;
1385
1386 const unsigned size_log2 = size < 4096 ? 12 : ilog2_round_up(size);
1387 const unsigned pow2_size = 1 << size_log2;
1388 const unsigned bucket = size_log2 - 12;
1389 assert(bucket < ARRAY_SIZE(pool->free_list));
1390
1391 void *next_free_void;
1392 if (anv_ptr_free_list_pop(&pool->free_list[bucket], &next_free_void)) {
1393 struct bo_pool_bo_link *next_free = next_free_void;
1394 *bo = VG_NOACCESS_READ(&next_free->bo);
1395 assert(bo->gem_handle);
1396 assert(bo->map == next_free);
1397 assert(size <= bo->size);
1398
1399 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1400
1401 return VK_SUCCESS;
1402 }
1403
1404 struct anv_bo new_bo;
1405
1406 result = anv_bo_init_new(&new_bo, pool->device, pow2_size);
1407 if (result != VK_SUCCESS)
1408 return result;
1409
1410 new_bo.flags = pool->bo_flags;
1411
1412 if (!anv_vma_alloc(pool->device, &new_bo))
1413 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1414
1415 assert(new_bo.size == pow2_size);
1416
1417 new_bo.map = anv_gem_mmap(pool->device, new_bo.gem_handle, 0, pow2_size, 0);
1418 if (new_bo.map == MAP_FAILED) {
1419 anv_gem_close(pool->device, new_bo.gem_handle);
1420 anv_vma_free(pool->device, &new_bo);
1421 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
1422 }
1423
1424 /* We are removing the state flushes, so lets make sure that these buffers
1425 * are cached/snooped.
1426 */
1427 if (!pool->device->info.has_llc) {
1428 anv_gem_set_caching(pool->device, new_bo.gem_handle,
1429 I915_CACHING_CACHED);
1430 }
1431
1432 *bo = new_bo;
1433
1434 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1435
1436 return VK_SUCCESS;
1437 }
1438
1439 void
1440 anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo_in)
1441 {
1442 /* Make a copy in case the anv_bo happens to be storred in the BO */
1443 struct anv_bo bo = *bo_in;
1444
1445 VG(VALGRIND_MEMPOOL_FREE(pool, bo.map));
1446
1447 struct bo_pool_bo_link *link = bo.map;
1448 VG_NOACCESS_WRITE(&link->bo, bo);
1449
1450 assert(util_is_power_of_two_or_zero(bo.size));
1451 const unsigned size_log2 = ilog2_round_up(bo.size);
1452 const unsigned bucket = size_log2 - 12;
1453 assert(bucket < ARRAY_SIZE(pool->free_list));
1454
1455 anv_ptr_free_list_push(&pool->free_list[bucket], link);
1456 }
1457
1458 // Scratch pool
1459
1460 void
1461 anv_scratch_pool_init(struct anv_device *device, struct anv_scratch_pool *pool)
1462 {
1463 memset(pool, 0, sizeof(*pool));
1464 }
1465
1466 void
1467 anv_scratch_pool_finish(struct anv_device *device, struct anv_scratch_pool *pool)
1468 {
1469 for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1470 for (unsigned i = 0; i < 16; i++) {
1471 struct anv_scratch_bo *bo = &pool->bos[i][s];
1472 if (bo->exists > 0) {
1473 anv_vma_free(device, &bo->bo);
1474 anv_gem_close(device, bo->bo.gem_handle);
1475 }
1476 }
1477 }
1478 }
1479
1480 struct anv_bo *
1481 anv_scratch_pool_alloc(struct anv_device *device, struct anv_scratch_pool *pool,
1482 gl_shader_stage stage, unsigned per_thread_scratch)
1483 {
1484 if (per_thread_scratch == 0)
1485 return NULL;
1486
1487 unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
1488 assert(scratch_size_log2 < 16);
1489
1490 struct anv_scratch_bo *bo = &pool->bos[scratch_size_log2][stage];
1491
1492 /* We can use "exists" to shortcut and ignore the critical section */
1493 if (bo->exists)
1494 return &bo->bo;
1495
1496 pthread_mutex_lock(&device->mutex);
1497
1498 __sync_synchronize();
1499 if (bo->exists) {
1500 pthread_mutex_unlock(&device->mutex);
1501 return &bo->bo;
1502 }
1503
1504 const struct anv_physical_device *physical_device =
1505 &device->instance->physicalDevice;
1506 const struct gen_device_info *devinfo = &physical_device->info;
1507
1508 const unsigned subslices = MAX2(physical_device->subslice_total, 1);
1509
1510 unsigned scratch_ids_per_subslice;
1511 if (devinfo->gen >= 11) {
1512 /* The MEDIA_VFE_STATE docs say:
1513 *
1514 * "Starting with this configuration, the Maximum Number of
1515 * Threads must be set to (#EU * 8) for GPGPU dispatches.
1516 *
1517 * Although there are only 7 threads per EU in the configuration,
1518 * the FFTID is calculated as if there are 8 threads per EU,
1519 * which in turn requires a larger amount of Scratch Space to be
1520 * allocated by the driver."
1521 */
1522 scratch_ids_per_subslice = 8 * 8;
1523 } else if (devinfo->is_haswell) {
1524 /* WaCSScratchSize:hsw
1525 *
1526 * Haswell's scratch space address calculation appears to be sparse
1527 * rather than tightly packed. The Thread ID has bits indicating
1528 * which subslice, EU within a subslice, and thread within an EU it
1529 * is. There's a maximum of two slices and two subslices, so these
1530 * can be stored with a single bit. Even though there are only 10 EUs
1531 * per subslice, this is stored in 4 bits, so there's an effective
1532 * maximum value of 16 EUs. Similarly, although there are only 7
1533 * threads per EU, this is stored in a 3 bit number, giving an
1534 * effective maximum value of 8 threads per EU.
1535 *
1536 * This means that we need to use 16 * 8 instead of 10 * 7 for the
1537 * number of threads per subslice.
1538 */
1539 scratch_ids_per_subslice = 16 * 8;
1540 } else if (devinfo->is_cherryview) {
1541 /* Cherryview devices have either 6 or 8 EUs per subslice, and each EU
1542 * has 7 threads. The 6 EU devices appear to calculate thread IDs as if
1543 * it had 8 EUs.
1544 */
1545 scratch_ids_per_subslice = 8 * 7;
1546 } else {
1547 scratch_ids_per_subslice = devinfo->max_cs_threads;
1548 }
1549
1550 uint32_t max_threads[] = {
1551 [MESA_SHADER_VERTEX] = devinfo->max_vs_threads,
1552 [MESA_SHADER_TESS_CTRL] = devinfo->max_tcs_threads,
1553 [MESA_SHADER_TESS_EVAL] = devinfo->max_tes_threads,
1554 [MESA_SHADER_GEOMETRY] = devinfo->max_gs_threads,
1555 [MESA_SHADER_FRAGMENT] = devinfo->max_wm_threads,
1556 [MESA_SHADER_COMPUTE] = scratch_ids_per_subslice * subslices,
1557 };
1558
1559 uint32_t size = per_thread_scratch * max_threads[stage];
1560
1561 anv_bo_init_new(&bo->bo, device, size);
1562
1563 /* Even though the Scratch base pointers in 3DSTATE_*S are 64 bits, they
1564 * are still relative to the general state base address. When we emit
1565 * STATE_BASE_ADDRESS, we set general state base address to 0 and the size
1566 * to the maximum (1 page under 4GB). This allows us to just place the
1567 * scratch buffers anywhere we wish in the bottom 32 bits of address space
1568 * and just set the scratch base pointer in 3DSTATE_*S using a relocation.
1569 * However, in order to do so, we need to ensure that the kernel does not
1570 * place the scratch BO above the 32-bit boundary.
1571 *
1572 * NOTE: Technically, it can't go "anywhere" because the top page is off
1573 * limits. However, when EXEC_OBJECT_SUPPORTS_48B_ADDRESS is set, the
1574 * kernel allocates space using
1575 *
1576 * end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
1577 *
1578 * so nothing will ever touch the top page.
1579 */
1580 assert(!(bo->bo.flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS));
1581
1582 if (device->instance->physicalDevice.has_exec_async)
1583 bo->bo.flags |= EXEC_OBJECT_ASYNC;
1584
1585 if (device->instance->physicalDevice.use_softpin)
1586 bo->bo.flags |= EXEC_OBJECT_PINNED;
1587
1588 anv_vma_alloc(device, &bo->bo);
1589
1590 /* Set the exists last because it may be read by other threads */
1591 __sync_synchronize();
1592 bo->exists = true;
1593
1594 pthread_mutex_unlock(&device->mutex);
1595
1596 return &bo->bo;
1597 }
1598
1599 VkResult
1600 anv_bo_cache_init(struct anv_bo_cache *cache)
1601 {
1602 util_sparse_array_init(&cache->bo_map, sizeof(struct anv_bo), 1024);
1603
1604 if (pthread_mutex_init(&cache->mutex, NULL)) {
1605 util_sparse_array_finish(&cache->bo_map);
1606 return vk_errorf(NULL, NULL, VK_ERROR_OUT_OF_HOST_MEMORY,
1607 "pthread_mutex_init failed: %m");
1608 }
1609
1610 return VK_SUCCESS;
1611 }
1612
1613 void
1614 anv_bo_cache_finish(struct anv_bo_cache *cache)
1615 {
1616 util_sparse_array_finish(&cache->bo_map);
1617 pthread_mutex_destroy(&cache->mutex);
1618 }
1619
1620 static struct anv_bo *
1621 anv_bo_cache_lookup(struct anv_bo_cache *cache, uint32_t gem_handle)
1622 {
1623 return util_sparse_array_get(&cache->bo_map, gem_handle);
1624 }
1625
1626 #define ANV_BO_CACHE_SUPPORTED_FLAGS \
1627 (EXEC_OBJECT_WRITE | \
1628 EXEC_OBJECT_ASYNC | \
1629 EXEC_OBJECT_SUPPORTS_48B_ADDRESS | \
1630 EXEC_OBJECT_PINNED)
1631
1632 VkResult
1633 anv_bo_cache_alloc(struct anv_device *device,
1634 struct anv_bo_cache *cache,
1635 uint64_t size, uint64_t bo_flags,
1636 bool is_external,
1637 struct anv_bo **bo_out)
1638 {
1639 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1640
1641 /* The kernel is going to give us whole pages anyway */
1642 size = align_u64(size, 4096);
1643
1644 struct anv_bo new_bo;
1645 VkResult result = anv_bo_init_new(&new_bo, device, size);
1646 if (result != VK_SUCCESS)
1647 return result;
1648
1649 new_bo.flags = bo_flags;
1650 new_bo.is_external = is_external;
1651
1652 if (!anv_vma_alloc(device, &new_bo)) {
1653 anv_gem_close(device, new_bo.gem_handle);
1654 return vk_errorf(device->instance, NULL,
1655 VK_ERROR_OUT_OF_DEVICE_MEMORY,
1656 "failed to allocate virtual address for BO");
1657 }
1658
1659 assert(new_bo.gem_handle);
1660
1661 /* If we just got this gem_handle from anv_bo_init_new then we know no one
1662 * else is touching this BO at the moment so we don't need to lock here.
1663 */
1664 struct anv_bo *bo = anv_bo_cache_lookup(cache, new_bo.gem_handle);
1665 *bo = new_bo;
1666
1667 *bo_out = bo;
1668
1669 return VK_SUCCESS;
1670 }
1671
1672 VkResult
1673 anv_bo_cache_import_host_ptr(struct anv_device *device,
1674 struct anv_bo_cache *cache,
1675 void *host_ptr, uint32_t size,
1676 uint64_t bo_flags, struct anv_bo **bo_out)
1677 {
1678 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1679
1680 uint32_t gem_handle = anv_gem_userptr(device, host_ptr, size);
1681 if (!gem_handle)
1682 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
1683
1684 pthread_mutex_lock(&cache->mutex);
1685
1686 struct anv_bo *bo = anv_bo_cache_lookup(cache, gem_handle);
1687 if (bo->refcount > 0) {
1688 /* VK_EXT_external_memory_host doesn't require handling importing the
1689 * same pointer twice at the same time, but we don't get in the way. If
1690 * kernel gives us the same gem_handle, only succeed if the flags match.
1691 */
1692 assert(bo->gem_handle == gem_handle);
1693 if (bo_flags != bo->flags) {
1694 pthread_mutex_unlock(&cache->mutex);
1695 return vk_errorf(device->instance, NULL,
1696 VK_ERROR_INVALID_EXTERNAL_HANDLE,
1697 "same host pointer imported two different ways");
1698 }
1699 __sync_fetch_and_add(&bo->refcount, 1);
1700 } else {
1701 struct anv_bo new_bo;
1702 anv_bo_init(&new_bo, gem_handle, size);
1703 new_bo.flags = bo_flags;
1704 new_bo.is_external = true;
1705
1706 if (!anv_vma_alloc(device, &new_bo)) {
1707 anv_gem_close(device, new_bo.gem_handle);
1708 pthread_mutex_unlock(&cache->mutex);
1709 return vk_errorf(device->instance, NULL,
1710 VK_ERROR_OUT_OF_DEVICE_MEMORY,
1711 "failed to allocate virtual address for BO");
1712 }
1713
1714 *bo = new_bo;
1715 }
1716
1717 pthread_mutex_unlock(&cache->mutex);
1718 *bo_out = bo;
1719
1720 return VK_SUCCESS;
1721 }
1722
1723 VkResult
1724 anv_bo_cache_import(struct anv_device *device,
1725 struct anv_bo_cache *cache,
1726 int fd, uint64_t bo_flags,
1727 struct anv_bo **bo_out)
1728 {
1729 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1730
1731 pthread_mutex_lock(&cache->mutex);
1732
1733 uint32_t gem_handle = anv_gem_fd_to_handle(device, fd);
1734 if (!gem_handle) {
1735 pthread_mutex_unlock(&cache->mutex);
1736 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
1737 }
1738
1739 struct anv_bo *bo = anv_bo_cache_lookup(cache, gem_handle);
1740 if (bo->refcount > 0) {
1741 /* We have to be careful how we combine flags so that it makes sense.
1742 * Really, though, if we get to this case and it actually matters, the
1743 * client has imported a BO twice in different ways and they get what
1744 * they have coming.
1745 */
1746 uint64_t new_flags = 0;
1747 new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_WRITE;
1748 new_flags |= (bo->flags & bo_flags) & EXEC_OBJECT_ASYNC;
1749 new_flags |= (bo->flags & bo_flags) & EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1750 new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_PINNED;
1751
1752 /* It's theoretically possible for a BO to get imported such that it's
1753 * both pinned and not pinned. The only way this can happen is if it
1754 * gets imported as both a semaphore and a memory object and that would
1755 * be an application error. Just fail out in that case.
1756 */
1757 if ((bo->flags & EXEC_OBJECT_PINNED) !=
1758 (bo_flags & EXEC_OBJECT_PINNED)) {
1759 pthread_mutex_unlock(&cache->mutex);
1760 return vk_errorf(device->instance, NULL,
1761 VK_ERROR_INVALID_EXTERNAL_HANDLE,
1762 "The same BO was imported two different ways");
1763 }
1764
1765 /* It's also theoretically possible that someone could export a BO from
1766 * one heap and import it into another or to import the same BO into two
1767 * different heaps. If this happens, we could potentially end up both
1768 * allowing and disallowing 48-bit addresses. There's not much we can
1769 * do about it if we're pinning so we just throw an error and hope no
1770 * app is actually that stupid.
1771 */
1772 if ((new_flags & EXEC_OBJECT_PINNED) &&
1773 (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) !=
1774 (bo_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) {
1775 pthread_mutex_unlock(&cache->mutex);
1776 return vk_errorf(device->instance, NULL,
1777 VK_ERROR_INVALID_EXTERNAL_HANDLE,
1778 "The same BO was imported on two different heaps");
1779 }
1780
1781 bo->flags = new_flags;
1782
1783 __sync_fetch_and_add(&bo->refcount, 1);
1784 } else {
1785 off_t size = lseek(fd, 0, SEEK_END);
1786 if (size == (off_t)-1) {
1787 anv_gem_close(device, gem_handle);
1788 pthread_mutex_unlock(&cache->mutex);
1789 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
1790 }
1791
1792 struct anv_bo new_bo;
1793 anv_bo_init(&new_bo, gem_handle, size);
1794 new_bo.flags = bo_flags;
1795 new_bo.is_external = true;
1796
1797 if (!anv_vma_alloc(device, &new_bo)) {
1798 anv_gem_close(device, new_bo.gem_handle);
1799 pthread_mutex_unlock(&cache->mutex);
1800 return vk_errorf(device->instance, NULL,
1801 VK_ERROR_OUT_OF_DEVICE_MEMORY,
1802 "failed to allocate virtual address for BO");
1803 }
1804
1805 *bo = new_bo;
1806 }
1807
1808 pthread_mutex_unlock(&cache->mutex);
1809 *bo_out = bo;
1810
1811 return VK_SUCCESS;
1812 }
1813
1814 VkResult
1815 anv_bo_cache_export(struct anv_device *device,
1816 struct anv_bo_cache *cache,
1817 struct anv_bo *bo, int *fd_out)
1818 {
1819 assert(anv_bo_cache_lookup(cache, bo->gem_handle) == bo);
1820
1821 /* This BO must have been flagged external in order for us to be able
1822 * to export it. This is done based on external options passed into
1823 * anv_AllocateMemory.
1824 */
1825 assert(bo->is_external);
1826
1827 int fd = anv_gem_handle_to_fd(device, bo->gem_handle);
1828 if (fd < 0)
1829 return vk_error(VK_ERROR_TOO_MANY_OBJECTS);
1830
1831 *fd_out = fd;
1832
1833 return VK_SUCCESS;
1834 }
1835
1836 static bool
1837 atomic_dec_not_one(uint32_t *counter)
1838 {
1839 uint32_t old, val;
1840
1841 val = *counter;
1842 while (1) {
1843 if (val == 1)
1844 return false;
1845
1846 old = __sync_val_compare_and_swap(counter, val, val - 1);
1847 if (old == val)
1848 return true;
1849
1850 val = old;
1851 }
1852 }
1853
1854 void
1855 anv_bo_cache_release(struct anv_device *device,
1856 struct anv_bo_cache *cache,
1857 struct anv_bo *bo)
1858 {
1859 assert(anv_bo_cache_lookup(cache, bo->gem_handle) == bo);
1860
1861 /* Try to decrement the counter but don't go below one. If this succeeds
1862 * then the refcount has been decremented and we are not the last
1863 * reference.
1864 */
1865 if (atomic_dec_not_one(&bo->refcount))
1866 return;
1867
1868 pthread_mutex_lock(&cache->mutex);
1869
1870 /* We are probably the last reference since our attempt to decrement above
1871 * failed. However, we can't actually know until we are inside the mutex.
1872 * Otherwise, someone could import the BO between the decrement and our
1873 * taking the mutex.
1874 */
1875 if (unlikely(__sync_sub_and_fetch(&bo->refcount, 1) > 0)) {
1876 /* Turns out we're not the last reference. Unlock and bail. */
1877 pthread_mutex_unlock(&cache->mutex);
1878 return;
1879 }
1880 assert(bo->refcount == 0);
1881
1882 if (bo->map)
1883 anv_gem_munmap(bo->map, bo->size);
1884
1885 anv_vma_free(device, bo);
1886
1887 anv_gem_close(device, bo->gem_handle);
1888
1889 /* Don't unlock until we've actually closed the BO. The whole point of
1890 * the BO cache is to ensure that we correctly handle races with creating
1891 * and releasing GEM handles and we don't want to let someone import the BO
1892 * again between mutex unlock and closing the GEM handle.
1893 */
1894 pthread_mutex_unlock(&cache->mutex);
1895 }