95854f42c2537da1f64e92bc4c35787397932d61
[mesa.git] / src / intel / vulkan / anv_batch_chain.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31
32 #include "genxml/gen7_pack.h"
33 #include "genxml/gen8_pack.h"
34
35 /** \file anv_batch_chain.c
36 *
37 * This file contains functions related to anv_cmd_buffer as a data
38 * structure. This involves everything required to create and destroy
39 * the actual batch buffers as well as link them together and handle
40 * relocations and surface state. It specifically does *not* contain any
41 * handling of actual vkCmd calls beyond vkCmdExecuteCommands.
42 */
43
44 /*-----------------------------------------------------------------------*
45 * Functions related to anv_reloc_list
46 *-----------------------------------------------------------------------*/
47
48 static VkResult
49 anv_reloc_list_init_clone(struct anv_reloc_list *list,
50 const VkAllocationCallbacks *alloc,
51 const struct anv_reloc_list *other_list)
52 {
53 if (other_list) {
54 list->num_relocs = other_list->num_relocs;
55 list->array_length = other_list->array_length;
56 } else {
57 list->num_relocs = 0;
58 list->array_length = 256;
59 }
60
61 list->relocs =
62 anv_alloc(alloc, list->array_length * sizeof(*list->relocs), 8,
63 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
64
65 if (list->relocs == NULL)
66 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
67
68 list->reloc_bos =
69 anv_alloc(alloc, list->array_length * sizeof(*list->reloc_bos), 8,
70 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
71
72 if (list->reloc_bos == NULL) {
73 anv_free(alloc, list->relocs);
74 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
75 }
76
77 if (other_list) {
78 memcpy(list->relocs, other_list->relocs,
79 list->array_length * sizeof(*list->relocs));
80 memcpy(list->reloc_bos, other_list->reloc_bos,
81 list->array_length * sizeof(*list->reloc_bos));
82 }
83
84 return VK_SUCCESS;
85 }
86
87 VkResult
88 anv_reloc_list_init(struct anv_reloc_list *list,
89 const VkAllocationCallbacks *alloc)
90 {
91 return anv_reloc_list_init_clone(list, alloc, NULL);
92 }
93
94 void
95 anv_reloc_list_finish(struct anv_reloc_list *list,
96 const VkAllocationCallbacks *alloc)
97 {
98 anv_free(alloc, list->relocs);
99 anv_free(alloc, list->reloc_bos);
100 }
101
102 static VkResult
103 anv_reloc_list_grow(struct anv_reloc_list *list,
104 const VkAllocationCallbacks *alloc,
105 size_t num_additional_relocs)
106 {
107 if (list->num_relocs + num_additional_relocs <= list->array_length)
108 return VK_SUCCESS;
109
110 size_t new_length = list->array_length * 2;
111 while (new_length < list->num_relocs + num_additional_relocs)
112 new_length *= 2;
113
114 struct drm_i915_gem_relocation_entry *new_relocs =
115 anv_alloc(alloc, new_length * sizeof(*list->relocs), 8,
116 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
117 if (new_relocs == NULL)
118 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
119
120 struct anv_bo **new_reloc_bos =
121 anv_alloc(alloc, new_length * sizeof(*list->reloc_bos), 8,
122 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
123 if (new_reloc_bos == NULL) {
124 anv_free(alloc, new_relocs);
125 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
126 }
127
128 memcpy(new_relocs, list->relocs, list->num_relocs * sizeof(*list->relocs));
129 memcpy(new_reloc_bos, list->reloc_bos,
130 list->num_relocs * sizeof(*list->reloc_bos));
131
132 anv_free(alloc, list->relocs);
133 anv_free(alloc, list->reloc_bos);
134
135 list->array_length = new_length;
136 list->relocs = new_relocs;
137 list->reloc_bos = new_reloc_bos;
138
139 return VK_SUCCESS;
140 }
141
142 uint64_t
143 anv_reloc_list_add(struct anv_reloc_list *list,
144 const VkAllocationCallbacks *alloc,
145 uint32_t offset, struct anv_bo *target_bo, uint32_t delta)
146 {
147 struct drm_i915_gem_relocation_entry *entry;
148 int index;
149
150 const uint32_t domain =
151 target_bo->is_winsys_bo ? I915_GEM_DOMAIN_RENDER : 0;
152
153 anv_reloc_list_grow(list, alloc, 1);
154 /* TODO: Handle failure */
155
156 /* XXX: Can we use I915_EXEC_HANDLE_LUT? */
157 index = list->num_relocs++;
158 list->reloc_bos[index] = target_bo;
159 entry = &list->relocs[index];
160 entry->target_handle = target_bo->gem_handle;
161 entry->delta = delta;
162 entry->offset = offset;
163 entry->presumed_offset = target_bo->offset;
164 entry->read_domains = domain;
165 entry->write_domain = domain;
166 VG(VALGRIND_CHECK_MEM_IS_DEFINED(entry, sizeof(*entry)));
167
168 return target_bo->offset + delta;
169 }
170
171 static void
172 anv_reloc_list_append(struct anv_reloc_list *list,
173 const VkAllocationCallbacks *alloc,
174 struct anv_reloc_list *other, uint32_t offset)
175 {
176 anv_reloc_list_grow(list, alloc, other->num_relocs);
177 /* TODO: Handle failure */
178
179 memcpy(&list->relocs[list->num_relocs], &other->relocs[0],
180 other->num_relocs * sizeof(other->relocs[0]));
181 memcpy(&list->reloc_bos[list->num_relocs], &other->reloc_bos[0],
182 other->num_relocs * sizeof(other->reloc_bos[0]));
183
184 for (uint32_t i = 0; i < other->num_relocs; i++)
185 list->relocs[i + list->num_relocs].offset += offset;
186
187 list->num_relocs += other->num_relocs;
188 }
189
190 /*-----------------------------------------------------------------------*
191 * Functions related to anv_batch
192 *-----------------------------------------------------------------------*/
193
194 void *
195 anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords)
196 {
197 if (batch->next + num_dwords * 4 > batch->end)
198 batch->extend_cb(batch, batch->user_data);
199
200 void *p = batch->next;
201
202 batch->next += num_dwords * 4;
203 assert(batch->next <= batch->end);
204
205 return p;
206 }
207
208 uint64_t
209 anv_batch_emit_reloc(struct anv_batch *batch,
210 void *location, struct anv_bo *bo, uint32_t delta)
211 {
212 return anv_reloc_list_add(batch->relocs, batch->alloc,
213 location - batch->start, bo, delta);
214 }
215
216 void
217 anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other)
218 {
219 uint32_t size, offset;
220
221 size = other->next - other->start;
222 assert(size % 4 == 0);
223
224 if (batch->next + size > batch->end)
225 batch->extend_cb(batch, batch->user_data);
226
227 assert(batch->next + size <= batch->end);
228
229 VG(VALGRIND_CHECK_MEM_IS_DEFINED(other->start, size));
230 memcpy(batch->next, other->start, size);
231
232 offset = batch->next - batch->start;
233 anv_reloc_list_append(batch->relocs, batch->alloc,
234 other->relocs, offset);
235
236 batch->next += size;
237 }
238
239 /*-----------------------------------------------------------------------*
240 * Functions related to anv_batch_bo
241 *-----------------------------------------------------------------------*/
242
243 static VkResult
244 anv_batch_bo_create(struct anv_cmd_buffer *cmd_buffer,
245 struct anv_batch_bo **bbo_out)
246 {
247 VkResult result;
248
249 struct anv_batch_bo *bbo = anv_alloc(&cmd_buffer->pool->alloc, sizeof(*bbo),
250 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
251 if (bbo == NULL)
252 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
253
254 result = anv_bo_pool_alloc(&cmd_buffer->device->batch_bo_pool, &bbo->bo,
255 ANV_CMD_BUFFER_BATCH_SIZE);
256 if (result != VK_SUCCESS)
257 goto fail_alloc;
258
259 result = anv_reloc_list_init(&bbo->relocs, &cmd_buffer->pool->alloc);
260 if (result != VK_SUCCESS)
261 goto fail_bo_alloc;
262
263 *bbo_out = bbo;
264
265 return VK_SUCCESS;
266
267 fail_bo_alloc:
268 anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, &bbo->bo);
269 fail_alloc:
270 anv_free(&cmd_buffer->pool->alloc, bbo);
271
272 return result;
273 }
274
275 static VkResult
276 anv_batch_bo_clone(struct anv_cmd_buffer *cmd_buffer,
277 const struct anv_batch_bo *other_bbo,
278 struct anv_batch_bo **bbo_out)
279 {
280 VkResult result;
281
282 struct anv_batch_bo *bbo = anv_alloc(&cmd_buffer->pool->alloc, sizeof(*bbo),
283 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
284 if (bbo == NULL)
285 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
286
287 result = anv_bo_pool_alloc(&cmd_buffer->device->batch_bo_pool, &bbo->bo,
288 other_bbo->bo.size);
289 if (result != VK_SUCCESS)
290 goto fail_alloc;
291
292 result = anv_reloc_list_init_clone(&bbo->relocs, &cmd_buffer->pool->alloc,
293 &other_bbo->relocs);
294 if (result != VK_SUCCESS)
295 goto fail_bo_alloc;
296
297 bbo->length = other_bbo->length;
298 memcpy(bbo->bo.map, other_bbo->bo.map, other_bbo->length);
299
300 bbo->last_ss_pool_bo_offset = other_bbo->last_ss_pool_bo_offset;
301
302 *bbo_out = bbo;
303
304 return VK_SUCCESS;
305
306 fail_bo_alloc:
307 anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, &bbo->bo);
308 fail_alloc:
309 anv_free(&cmd_buffer->pool->alloc, bbo);
310
311 return result;
312 }
313
314 static void
315 anv_batch_bo_start(struct anv_batch_bo *bbo, struct anv_batch *batch,
316 size_t batch_padding)
317 {
318 batch->next = batch->start = bbo->bo.map;
319 batch->end = bbo->bo.map + bbo->bo.size - batch_padding;
320 batch->relocs = &bbo->relocs;
321 bbo->last_ss_pool_bo_offset = 0;
322 bbo->relocs.num_relocs = 0;
323 }
324
325 static void
326 anv_batch_bo_continue(struct anv_batch_bo *bbo, struct anv_batch *batch,
327 size_t batch_padding)
328 {
329 batch->start = bbo->bo.map;
330 batch->next = bbo->bo.map + bbo->length;
331 batch->end = bbo->bo.map + bbo->bo.size - batch_padding;
332 batch->relocs = &bbo->relocs;
333 }
334
335 static void
336 anv_batch_bo_finish(struct anv_batch_bo *bbo, struct anv_batch *batch)
337 {
338 assert(batch->start == bbo->bo.map);
339 bbo->length = batch->next - batch->start;
340 VG(VALGRIND_CHECK_MEM_IS_DEFINED(batch->start, bbo->length));
341 }
342
343 static VkResult
344 anv_batch_bo_grow(struct anv_cmd_buffer *cmd_buffer, struct anv_batch_bo *bbo,
345 struct anv_batch *batch, size_t aditional,
346 size_t batch_padding)
347 {
348 assert(batch->start == bbo->bo.map);
349 bbo->length = batch->next - batch->start;
350
351 size_t new_size = bbo->bo.size;
352 while (new_size <= bbo->length + aditional + batch_padding)
353 new_size *= 2;
354
355 if (new_size == bbo->bo.size)
356 return VK_SUCCESS;
357
358 struct anv_bo new_bo;
359 VkResult result = anv_bo_pool_alloc(&cmd_buffer->device->batch_bo_pool,
360 &new_bo, new_size);
361 if (result != VK_SUCCESS)
362 return result;
363
364 memcpy(new_bo.map, bbo->bo.map, bbo->length);
365
366 anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, &bbo->bo);
367
368 bbo->bo = new_bo;
369 anv_batch_bo_continue(bbo, batch, batch_padding);
370
371 return VK_SUCCESS;
372 }
373
374 static void
375 anv_batch_bo_destroy(struct anv_batch_bo *bbo,
376 struct anv_cmd_buffer *cmd_buffer)
377 {
378 anv_reloc_list_finish(&bbo->relocs, &cmd_buffer->pool->alloc);
379 anv_bo_pool_free(&cmd_buffer->device->batch_bo_pool, &bbo->bo);
380 anv_free(&cmd_buffer->pool->alloc, bbo);
381 }
382
383 static VkResult
384 anv_batch_bo_list_clone(const struct list_head *list,
385 struct anv_cmd_buffer *cmd_buffer,
386 struct list_head *new_list)
387 {
388 VkResult result = VK_SUCCESS;
389
390 list_inithead(new_list);
391
392 struct anv_batch_bo *prev_bbo = NULL;
393 list_for_each_entry(struct anv_batch_bo, bbo, list, link) {
394 struct anv_batch_bo *new_bbo = NULL;
395 result = anv_batch_bo_clone(cmd_buffer, bbo, &new_bbo);
396 if (result != VK_SUCCESS)
397 break;
398 list_addtail(&new_bbo->link, new_list);
399
400 if (prev_bbo) {
401 /* As we clone this list of batch_bo's, they chain one to the
402 * other using MI_BATCH_BUFFER_START commands. We need to fix up
403 * those relocations as we go. Fortunately, this is pretty easy
404 * as it will always be the last relocation in the list.
405 */
406 uint32_t last_idx = prev_bbo->relocs.num_relocs - 1;
407 assert(prev_bbo->relocs.reloc_bos[last_idx] == &bbo->bo);
408 prev_bbo->relocs.reloc_bos[last_idx] = &new_bbo->bo;
409 }
410
411 prev_bbo = new_bbo;
412 }
413
414 if (result != VK_SUCCESS) {
415 list_for_each_entry_safe(struct anv_batch_bo, bbo, new_list, link)
416 anv_batch_bo_destroy(bbo, cmd_buffer);
417 }
418
419 return result;
420 }
421
422 /*-----------------------------------------------------------------------*
423 * Functions related to anv_batch_bo
424 *-----------------------------------------------------------------------*/
425
426 static inline struct anv_batch_bo *
427 anv_cmd_buffer_current_batch_bo(struct anv_cmd_buffer *cmd_buffer)
428 {
429 return LIST_ENTRY(struct anv_batch_bo, cmd_buffer->batch_bos.prev, link);
430 }
431
432 struct anv_address
433 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer)
434 {
435 return (struct anv_address) {
436 .bo = &cmd_buffer->device->surface_state_block_pool.bo,
437 .offset = *(int32_t *)anv_vector_head(&cmd_buffer->bt_blocks),
438 };
439 }
440
441 static void
442 emit_batch_buffer_start(struct anv_cmd_buffer *cmd_buffer,
443 struct anv_bo *bo, uint32_t offset)
444 {
445 /* In gen8+ the address field grew to two dwords to accomodate 48 bit
446 * offsets. The high 16 bits are in the last dword, so we can use the gen8
447 * version in either case, as long as we set the instruction length in the
448 * header accordingly. This means that we always emit three dwords here
449 * and all the padding and adjustment we do in this file works for all
450 * gens.
451 */
452
453 const uint32_t gen7_length =
454 GEN7_MI_BATCH_BUFFER_START_length - GEN7_MI_BATCH_BUFFER_START_length_bias;
455 const uint32_t gen8_length =
456 GEN8_MI_BATCH_BUFFER_START_length - GEN8_MI_BATCH_BUFFER_START_length_bias;
457
458 anv_batch_emit(&cmd_buffer->batch, GEN8_MI_BATCH_BUFFER_START, bbs) {
459 bbs.DWordLength = cmd_buffer->device->info.gen < 8 ?
460 gen7_length : gen8_length;
461 bbs._2ndLevelBatchBuffer = _1stlevelbatch;
462 bbs.AddressSpaceIndicator = ASI_PPGTT;
463 bbs.BatchBufferStartAddress = (struct anv_address) { bo, offset };
464 }
465 }
466
467 static void
468 cmd_buffer_chain_to_batch_bo(struct anv_cmd_buffer *cmd_buffer,
469 struct anv_batch_bo *bbo)
470 {
471 struct anv_batch *batch = &cmd_buffer->batch;
472 struct anv_batch_bo *current_bbo =
473 anv_cmd_buffer_current_batch_bo(cmd_buffer);
474
475 /* We set the end of the batch a little short so we would be sure we
476 * have room for the chaining command. Since we're about to emit the
477 * chaining command, let's set it back where it should go.
478 */
479 batch->end += GEN8_MI_BATCH_BUFFER_START_length * 4;
480 assert(batch->end == current_bbo->bo.map + current_bbo->bo.size);
481
482 emit_batch_buffer_start(cmd_buffer, &bbo->bo, 0);
483
484 anv_batch_bo_finish(current_bbo, batch);
485 }
486
487 static VkResult
488 anv_cmd_buffer_chain_batch(struct anv_batch *batch, void *_data)
489 {
490 struct anv_cmd_buffer *cmd_buffer = _data;
491 struct anv_batch_bo *new_bbo;
492
493 VkResult result = anv_batch_bo_create(cmd_buffer, &new_bbo);
494 if (result != VK_SUCCESS)
495 return result;
496
497 struct anv_batch_bo **seen_bbo = anv_vector_add(&cmd_buffer->seen_bbos);
498 if (seen_bbo == NULL) {
499 anv_batch_bo_destroy(new_bbo, cmd_buffer);
500 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
501 }
502 *seen_bbo = new_bbo;
503
504 cmd_buffer_chain_to_batch_bo(cmd_buffer, new_bbo);
505
506 list_addtail(&new_bbo->link, &cmd_buffer->batch_bos);
507
508 anv_batch_bo_start(new_bbo, batch, GEN8_MI_BATCH_BUFFER_START_length * 4);
509
510 return VK_SUCCESS;
511 }
512
513 static VkResult
514 anv_cmd_buffer_grow_batch(struct anv_batch *batch, void *_data)
515 {
516 struct anv_cmd_buffer *cmd_buffer = _data;
517 struct anv_batch_bo *bbo = anv_cmd_buffer_current_batch_bo(cmd_buffer);
518
519 anv_batch_bo_grow(cmd_buffer, bbo, &cmd_buffer->batch, 4096,
520 GEN8_MI_BATCH_BUFFER_START_length * 4);
521
522 return VK_SUCCESS;
523 }
524
525 struct anv_state
526 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
527 uint32_t entries, uint32_t *state_offset)
528 {
529 struct anv_block_pool *block_pool =
530 &cmd_buffer->device->surface_state_block_pool;
531 int32_t *bt_block = anv_vector_head(&cmd_buffer->bt_blocks);
532 struct anv_state state;
533
534 state.alloc_size = align_u32(entries * 4, 32);
535
536 if (cmd_buffer->bt_next + state.alloc_size > block_pool->block_size)
537 return (struct anv_state) { 0 };
538
539 state.offset = cmd_buffer->bt_next;
540 state.map = block_pool->map + *bt_block + state.offset;
541
542 cmd_buffer->bt_next += state.alloc_size;
543
544 assert(*bt_block < 0);
545 *state_offset = -(*bt_block);
546
547 return state;
548 }
549
550 struct anv_state
551 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer)
552 {
553 return anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
554 }
555
556 struct anv_state
557 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
558 uint32_t size, uint32_t alignment)
559 {
560 return anv_state_stream_alloc(&cmd_buffer->dynamic_state_stream,
561 size, alignment);
562 }
563
564 VkResult
565 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer)
566 {
567 struct anv_block_pool *block_pool =
568 &cmd_buffer->device->surface_state_block_pool;
569
570 int32_t *offset = anv_vector_add(&cmd_buffer->bt_blocks);
571 if (offset == NULL)
572 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
573
574 *offset = anv_block_pool_alloc_back(block_pool);
575 cmd_buffer->bt_next = 0;
576
577 return VK_SUCCESS;
578 }
579
580 VkResult
581 anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer)
582 {
583 struct anv_batch_bo *batch_bo;
584 VkResult result;
585
586 list_inithead(&cmd_buffer->batch_bos);
587
588 result = anv_batch_bo_create(cmd_buffer, &batch_bo);
589 if (result != VK_SUCCESS)
590 return result;
591
592 list_addtail(&batch_bo->link, &cmd_buffer->batch_bos);
593
594 cmd_buffer->batch.alloc = &cmd_buffer->pool->alloc;
595 cmd_buffer->batch.user_data = cmd_buffer;
596
597 if (cmd_buffer->device->can_chain_batches) {
598 cmd_buffer->batch.extend_cb = anv_cmd_buffer_chain_batch;
599 } else {
600 cmd_buffer->batch.extend_cb = anv_cmd_buffer_grow_batch;
601 }
602
603 anv_batch_bo_start(batch_bo, &cmd_buffer->batch,
604 GEN8_MI_BATCH_BUFFER_START_length * 4);
605
606 int success = anv_vector_init(&cmd_buffer->seen_bbos,
607 sizeof(struct anv_bo *),
608 8 * sizeof(struct anv_bo *));
609 if (!success)
610 goto fail_batch_bo;
611
612 *(struct anv_batch_bo **)anv_vector_add(&cmd_buffer->seen_bbos) = batch_bo;
613
614 success = anv_vector_init(&cmd_buffer->bt_blocks, sizeof(int32_t),
615 8 * sizeof(int32_t));
616 if (!success)
617 goto fail_seen_bbos;
618
619 result = anv_reloc_list_init(&cmd_buffer->surface_relocs,
620 &cmd_buffer->pool->alloc);
621 if (result != VK_SUCCESS)
622 goto fail_bt_blocks;
623
624 anv_cmd_buffer_new_binding_table_block(cmd_buffer);
625
626 cmd_buffer->execbuf2.objects = NULL;
627 cmd_buffer->execbuf2.bos = NULL;
628 cmd_buffer->execbuf2.array_length = 0;
629
630 return VK_SUCCESS;
631
632 fail_bt_blocks:
633 anv_vector_finish(&cmd_buffer->bt_blocks);
634 fail_seen_bbos:
635 anv_vector_finish(&cmd_buffer->seen_bbos);
636 fail_batch_bo:
637 anv_batch_bo_destroy(batch_bo, cmd_buffer);
638
639 return result;
640 }
641
642 void
643 anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer)
644 {
645 int32_t *bt_block;
646 anv_vector_foreach(bt_block, &cmd_buffer->bt_blocks) {
647 anv_block_pool_free(&cmd_buffer->device->surface_state_block_pool,
648 *bt_block);
649 }
650 anv_vector_finish(&cmd_buffer->bt_blocks);
651
652 anv_reloc_list_finish(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc);
653
654 anv_vector_finish(&cmd_buffer->seen_bbos);
655
656 /* Destroy all of the batch buffers */
657 list_for_each_entry_safe(struct anv_batch_bo, bbo,
658 &cmd_buffer->batch_bos, link) {
659 anv_batch_bo_destroy(bbo, cmd_buffer);
660 }
661
662 anv_free(&cmd_buffer->pool->alloc, cmd_buffer->execbuf2.objects);
663 anv_free(&cmd_buffer->pool->alloc, cmd_buffer->execbuf2.bos);
664 }
665
666 void
667 anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer)
668 {
669 /* Delete all but the first batch bo */
670 assert(!list_empty(&cmd_buffer->batch_bos));
671 while (cmd_buffer->batch_bos.next != cmd_buffer->batch_bos.prev) {
672 struct anv_batch_bo *bbo = anv_cmd_buffer_current_batch_bo(cmd_buffer);
673 list_del(&bbo->link);
674 anv_batch_bo_destroy(bbo, cmd_buffer);
675 }
676 assert(!list_empty(&cmd_buffer->batch_bos));
677
678 anv_batch_bo_start(anv_cmd_buffer_current_batch_bo(cmd_buffer),
679 &cmd_buffer->batch,
680 GEN8_MI_BATCH_BUFFER_START_length * 4);
681
682 while (anv_vector_length(&cmd_buffer->bt_blocks) > 1) {
683 int32_t *bt_block = anv_vector_remove(&cmd_buffer->bt_blocks);
684 anv_block_pool_free(&cmd_buffer->device->surface_state_block_pool,
685 *bt_block);
686 }
687 assert(anv_vector_length(&cmd_buffer->bt_blocks) == 1);
688 cmd_buffer->bt_next = 0;
689
690 cmd_buffer->surface_relocs.num_relocs = 0;
691
692 /* Reset the list of seen buffers */
693 cmd_buffer->seen_bbos.head = 0;
694 cmd_buffer->seen_bbos.tail = 0;
695
696 *(struct anv_batch_bo **)anv_vector_add(&cmd_buffer->seen_bbos) =
697 anv_cmd_buffer_current_batch_bo(cmd_buffer);
698 }
699
700 void
701 anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer)
702 {
703 struct anv_batch_bo *batch_bo = anv_cmd_buffer_current_batch_bo(cmd_buffer);
704
705 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
706 /* When we start a batch buffer, we subtract a certain amount of
707 * padding from the end to ensure that we always have room to emit a
708 * BATCH_BUFFER_START to chain to the next BO. We need to remove
709 * that padding before we end the batch; otherwise, we may end up
710 * with our BATCH_BUFFER_END in another BO.
711 */
712 cmd_buffer->batch.end += GEN8_MI_BATCH_BUFFER_START_length * 4;
713 assert(cmd_buffer->batch.end == batch_bo->bo.map + batch_bo->bo.size);
714
715 anv_batch_emit(&cmd_buffer->batch, GEN7_MI_BATCH_BUFFER_END, bbe);
716
717 /* Round batch up to an even number of dwords. */
718 if ((cmd_buffer->batch.next - cmd_buffer->batch.start) & 4)
719 anv_batch_emit(&cmd_buffer->batch, GEN7_MI_NOOP, noop);
720
721 cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_PRIMARY;
722 }
723
724 anv_batch_bo_finish(batch_bo, &cmd_buffer->batch);
725
726 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
727 /* If this is a secondary command buffer, we need to determine the
728 * mode in which it will be executed with vkExecuteCommands. We
729 * determine this statically here so that this stays in sync with the
730 * actual ExecuteCommands implementation.
731 */
732 if (!cmd_buffer->device->can_chain_batches) {
733 cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT;
734 } else if ((cmd_buffer->batch_bos.next == cmd_buffer->batch_bos.prev) &&
735 (batch_bo->length < ANV_CMD_BUFFER_BATCH_SIZE / 2)) {
736 /* If the secondary has exactly one batch buffer in its list *and*
737 * that batch buffer is less than half of the maximum size, we're
738 * probably better of simply copying it into our batch.
739 */
740 cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_EMIT;
741 } else if (!(cmd_buffer->usage_flags &
742 VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT)) {
743 cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_CHAIN;
744
745 /* When we chain, we need to add an MI_BATCH_BUFFER_START command
746 * with its relocation. In order to handle this we'll increment here
747 * so we can unconditionally decrement right before adding the
748 * MI_BATCH_BUFFER_START command.
749 */
750 batch_bo->relocs.num_relocs++;
751 cmd_buffer->batch.next += GEN8_MI_BATCH_BUFFER_START_length * 4;
752 } else {
753 cmd_buffer->exec_mode = ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN;
754 }
755 }
756 }
757
758 static inline VkResult
759 anv_cmd_buffer_add_seen_bbos(struct anv_cmd_buffer *cmd_buffer,
760 struct list_head *list)
761 {
762 list_for_each_entry(struct anv_batch_bo, bbo, list, link) {
763 struct anv_batch_bo **bbo_ptr = anv_vector_add(&cmd_buffer->seen_bbos);
764 if (bbo_ptr == NULL)
765 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
766
767 *bbo_ptr = bbo;
768 }
769
770 return VK_SUCCESS;
771 }
772
773 void
774 anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
775 struct anv_cmd_buffer *secondary)
776 {
777 switch (secondary->exec_mode) {
778 case ANV_CMD_BUFFER_EXEC_MODE_EMIT:
779 anv_batch_emit_batch(&primary->batch, &secondary->batch);
780 break;
781 case ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT: {
782 struct anv_batch_bo *bbo = anv_cmd_buffer_current_batch_bo(primary);
783 unsigned length = secondary->batch.end - secondary->batch.start;
784 anv_batch_bo_grow(primary, bbo, &primary->batch, length,
785 GEN8_MI_BATCH_BUFFER_START_length * 4);
786 anv_batch_emit_batch(&primary->batch, &secondary->batch);
787 break;
788 }
789 case ANV_CMD_BUFFER_EXEC_MODE_CHAIN: {
790 struct anv_batch_bo *first_bbo =
791 list_first_entry(&secondary->batch_bos, struct anv_batch_bo, link);
792 struct anv_batch_bo *last_bbo =
793 list_last_entry(&secondary->batch_bos, struct anv_batch_bo, link);
794
795 emit_batch_buffer_start(primary, &first_bbo->bo, 0);
796
797 struct anv_batch_bo *this_bbo = anv_cmd_buffer_current_batch_bo(primary);
798 assert(primary->batch.start == this_bbo->bo.map);
799 uint32_t offset = primary->batch.next - primary->batch.start;
800 const uint32_t inst_size = GEN8_MI_BATCH_BUFFER_START_length * 4;
801
802 /* Roll back the previous MI_BATCH_BUFFER_START and its relocation so we
803 * can emit a new command and relocation for the current splice. In
804 * order to handle the initial-use case, we incremented next and
805 * num_relocs in end_batch_buffer() so we can alyways just subtract
806 * here.
807 */
808 last_bbo->relocs.num_relocs--;
809 secondary->batch.next -= inst_size;
810 emit_batch_buffer_start(secondary, &this_bbo->bo, offset);
811 anv_cmd_buffer_add_seen_bbos(primary, &secondary->batch_bos);
812
813 /* After patching up the secondary buffer, we need to clflush the
814 * modified instruction in case we're on a !llc platform. We use a
815 * little loop to handle the case where the instruction crosses a cache
816 * line boundary.
817 */
818 if (!primary->device->info.has_llc) {
819 void *inst = secondary->batch.next - inst_size;
820 void *p = (void *) (((uintptr_t) inst) & ~CACHELINE_MASK);
821 __builtin_ia32_mfence();
822 while (p < secondary->batch.next) {
823 __builtin_ia32_clflush(p);
824 p += CACHELINE_SIZE;
825 }
826 }
827 break;
828 }
829 case ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN: {
830 struct list_head copy_list;
831 VkResult result = anv_batch_bo_list_clone(&secondary->batch_bos,
832 secondary,
833 &copy_list);
834 if (result != VK_SUCCESS)
835 return; /* FIXME */
836
837 anv_cmd_buffer_add_seen_bbos(primary, &copy_list);
838
839 struct anv_batch_bo *first_bbo =
840 list_first_entry(&copy_list, struct anv_batch_bo, link);
841 struct anv_batch_bo *last_bbo =
842 list_last_entry(&copy_list, struct anv_batch_bo, link);
843
844 cmd_buffer_chain_to_batch_bo(primary, first_bbo);
845
846 list_splicetail(&copy_list, &primary->batch_bos);
847
848 anv_batch_bo_continue(last_bbo, &primary->batch,
849 GEN8_MI_BATCH_BUFFER_START_length * 4);
850 break;
851 }
852 default:
853 assert(!"Invalid execution mode");
854 }
855
856 anv_reloc_list_append(&primary->surface_relocs, &primary->pool->alloc,
857 &secondary->surface_relocs, 0);
858 }
859
860 static VkResult
861 anv_cmd_buffer_add_bo(struct anv_cmd_buffer *cmd_buffer,
862 struct anv_bo *bo,
863 struct anv_reloc_list *relocs)
864 {
865 struct drm_i915_gem_exec_object2 *obj = NULL;
866
867 if (bo->index < cmd_buffer->execbuf2.bo_count &&
868 cmd_buffer->execbuf2.bos[bo->index] == bo)
869 obj = &cmd_buffer->execbuf2.objects[bo->index];
870
871 if (obj == NULL) {
872 /* We've never seen this one before. Add it to the list and assign
873 * an id that we can use later.
874 */
875 if (cmd_buffer->execbuf2.bo_count >= cmd_buffer->execbuf2.array_length) {
876 uint32_t new_len = cmd_buffer->execbuf2.objects ?
877 cmd_buffer->execbuf2.array_length * 2 : 64;
878
879 struct drm_i915_gem_exec_object2 *new_objects =
880 anv_alloc(&cmd_buffer->pool->alloc, new_len * sizeof(*new_objects),
881 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
882 if (new_objects == NULL)
883 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
884
885 struct anv_bo **new_bos =
886 anv_alloc(&cmd_buffer->pool->alloc, new_len * sizeof(*new_bos),
887 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
888 if (new_bos == NULL) {
889 anv_free(&cmd_buffer->pool->alloc, new_objects);
890 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
891 }
892
893 if (cmd_buffer->execbuf2.objects) {
894 memcpy(new_objects, cmd_buffer->execbuf2.objects,
895 cmd_buffer->execbuf2.bo_count * sizeof(*new_objects));
896 memcpy(new_bos, cmd_buffer->execbuf2.bos,
897 cmd_buffer->execbuf2.bo_count * sizeof(*new_bos));
898 }
899
900 cmd_buffer->execbuf2.objects = new_objects;
901 cmd_buffer->execbuf2.bos = new_bos;
902 cmd_buffer->execbuf2.array_length = new_len;
903 }
904
905 assert(cmd_buffer->execbuf2.bo_count < cmd_buffer->execbuf2.array_length);
906
907 bo->index = cmd_buffer->execbuf2.bo_count++;
908 obj = &cmd_buffer->execbuf2.objects[bo->index];
909 cmd_buffer->execbuf2.bos[bo->index] = bo;
910
911 obj->handle = bo->gem_handle;
912 obj->relocation_count = 0;
913 obj->relocs_ptr = 0;
914 obj->alignment = 0;
915 obj->offset = bo->offset;
916 obj->flags = bo->is_winsys_bo ? EXEC_OBJECT_WRITE : 0;
917 obj->rsvd1 = 0;
918 obj->rsvd2 = 0;
919 }
920
921 if (relocs != NULL && obj->relocation_count == 0) {
922 /* This is the first time we've ever seen a list of relocations for
923 * this BO. Go ahead and set the relocations and then walk the list
924 * of relocations and add them all.
925 */
926 obj->relocation_count = relocs->num_relocs;
927 obj->relocs_ptr = (uintptr_t) relocs->relocs;
928
929 for (size_t i = 0; i < relocs->num_relocs; i++) {
930 /* A quick sanity check on relocations */
931 assert(relocs->relocs[i].offset < bo->size);
932 anv_cmd_buffer_add_bo(cmd_buffer, relocs->reloc_bos[i], NULL);
933 }
934 }
935
936 return VK_SUCCESS;
937 }
938
939 static void
940 anv_cmd_buffer_process_relocs(struct anv_cmd_buffer *cmd_buffer,
941 struct anv_reloc_list *list)
942 {
943 struct anv_bo *bo;
944
945 /* If the kernel supports I915_EXEC_NO_RELOC, it will compare offset in
946 * struct drm_i915_gem_exec_object2 against the bos current offset and if
947 * all bos haven't moved it will skip relocation processing alltogether.
948 * If I915_EXEC_NO_RELOC is not supported, the kernel ignores the incoming
949 * value of offset so we can set it either way. For that to work we need
950 * to make sure all relocs use the same presumed offset.
951 */
952
953 for (size_t i = 0; i < list->num_relocs; i++) {
954 bo = list->reloc_bos[i];
955 if (bo->offset != list->relocs[i].presumed_offset)
956 cmd_buffer->execbuf2.need_reloc = true;
957
958 list->relocs[i].target_handle = bo->index;
959 }
960 }
961
962 static uint64_t
963 read_reloc(const struct anv_device *device, const void *p)
964 {
965 if (device->info.gen >= 8)
966 return *(uint64_t *)p;
967 else
968 return *(uint32_t *)p;
969 }
970
971 static void
972 write_reloc(const struct anv_device *device, void *p, uint64_t v)
973 {
974 if (device->info.gen >= 8)
975 *(uint64_t *)p = v;
976 else
977 *(uint32_t *)p = v;
978 }
979
980 static void
981 adjust_relocations_from_block_pool(struct anv_block_pool *pool,
982 struct anv_reloc_list *relocs)
983 {
984 for (size_t i = 0; i < relocs->num_relocs; i++) {
985 /* In general, we don't know how stale the relocated value is. It
986 * may have been used last time or it may not. Since we don't want
987 * to stomp it while the GPU may be accessing it, we haven't updated
988 * it anywhere else in the code. Instead, we just set the presumed
989 * offset to what it is now based on the delta and the data in the
990 * block pool. Then the kernel will update it for us if needed.
991 */
992 assert(relocs->relocs[i].offset < pool->state.end);
993 const void *p = pool->map + relocs->relocs[i].offset;
994
995 /* We're reading back the relocated value from potentially incoherent
996 * memory here. However, any change to the value will be from the kernel
997 * writing out relocations, which will keep the CPU cache up to date.
998 */
999 relocs->relocs[i].presumed_offset =
1000 read_reloc(pool->device, p) - relocs->relocs[i].delta;
1001
1002 /* All of the relocations from this block pool to other BO's should
1003 * have been emitted relative to the surface block pool center. We
1004 * need to add the center offset to make them relative to the
1005 * beginning of the actual GEM bo.
1006 */
1007 relocs->relocs[i].offset += pool->center_bo_offset;
1008 }
1009 }
1010
1011 static void
1012 adjust_relocations_to_block_pool(struct anv_block_pool *pool,
1013 struct anv_bo *from_bo,
1014 struct anv_reloc_list *relocs,
1015 uint32_t *last_pool_center_bo_offset)
1016 {
1017 assert(*last_pool_center_bo_offset <= pool->center_bo_offset);
1018 uint32_t delta = pool->center_bo_offset - *last_pool_center_bo_offset;
1019
1020 /* When we initially emit relocations into a block pool, we don't
1021 * actually know what the final center_bo_offset will be so we just emit
1022 * it as if center_bo_offset == 0. Now that we know what the center
1023 * offset is, we need to walk the list of relocations and adjust any
1024 * relocations that point to the pool bo with the correct offset.
1025 */
1026 for (size_t i = 0; i < relocs->num_relocs; i++) {
1027 if (relocs->reloc_bos[i] == &pool->bo) {
1028 /* Adjust the delta value in the relocation to correctly
1029 * correspond to the new delta. Initially, this value may have
1030 * been negative (if treated as unsigned), but we trust in
1031 * uint32_t roll-over to fix that for us at this point.
1032 */
1033 relocs->relocs[i].delta += delta;
1034
1035 /* Since the delta has changed, we need to update the actual
1036 * relocated value with the new presumed value. This function
1037 * should only be called on batch buffers, so we know it isn't in
1038 * use by the GPU at the moment.
1039 */
1040 assert(relocs->relocs[i].offset < from_bo->size);
1041 write_reloc(pool->device, from_bo->map + relocs->relocs[i].offset,
1042 relocs->relocs[i].presumed_offset +
1043 relocs->relocs[i].delta);
1044 }
1045 }
1046
1047 *last_pool_center_bo_offset = pool->center_bo_offset;
1048 }
1049
1050 void
1051 anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer)
1052 {
1053 struct anv_batch *batch = &cmd_buffer->batch;
1054 struct anv_block_pool *ss_pool =
1055 &cmd_buffer->device->surface_state_block_pool;
1056
1057 cmd_buffer->execbuf2.bo_count = 0;
1058 cmd_buffer->execbuf2.need_reloc = false;
1059
1060 adjust_relocations_from_block_pool(ss_pool, &cmd_buffer->surface_relocs);
1061 anv_cmd_buffer_add_bo(cmd_buffer, &ss_pool->bo, &cmd_buffer->surface_relocs);
1062
1063 /* First, we walk over all of the bos we've seen and add them and their
1064 * relocations to the validate list.
1065 */
1066 struct anv_batch_bo **bbo;
1067 anv_vector_foreach(bbo, &cmd_buffer->seen_bbos) {
1068 adjust_relocations_to_block_pool(ss_pool, &(*bbo)->bo, &(*bbo)->relocs,
1069 &(*bbo)->last_ss_pool_bo_offset);
1070
1071 anv_cmd_buffer_add_bo(cmd_buffer, &(*bbo)->bo, &(*bbo)->relocs);
1072 }
1073
1074 struct anv_batch_bo *first_batch_bo =
1075 list_first_entry(&cmd_buffer->batch_bos, struct anv_batch_bo, link);
1076
1077 /* The kernel requires that the last entry in the validation list be the
1078 * batch buffer to execute. We can simply swap the element
1079 * corresponding to the first batch_bo in the chain with the last
1080 * element in the list.
1081 */
1082 if (first_batch_bo->bo.index != cmd_buffer->execbuf2.bo_count - 1) {
1083 uint32_t idx = first_batch_bo->bo.index;
1084 uint32_t last_idx = cmd_buffer->execbuf2.bo_count - 1;
1085
1086 struct drm_i915_gem_exec_object2 tmp_obj =
1087 cmd_buffer->execbuf2.objects[idx];
1088 assert(cmd_buffer->execbuf2.bos[idx] == &first_batch_bo->bo);
1089
1090 cmd_buffer->execbuf2.objects[idx] = cmd_buffer->execbuf2.objects[last_idx];
1091 cmd_buffer->execbuf2.bos[idx] = cmd_buffer->execbuf2.bos[last_idx];
1092 cmd_buffer->execbuf2.bos[idx]->index = idx;
1093
1094 cmd_buffer->execbuf2.objects[last_idx] = tmp_obj;
1095 cmd_buffer->execbuf2.bos[last_idx] = &first_batch_bo->bo;
1096 first_batch_bo->bo.index = last_idx;
1097 }
1098
1099 /* Now we go through and fixup all of the relocation lists to point to
1100 * the correct indices in the object array. We have to do this after we
1101 * reorder the list above as some of the indices may have changed.
1102 */
1103 anv_vector_foreach(bbo, &cmd_buffer->seen_bbos)
1104 anv_cmd_buffer_process_relocs(cmd_buffer, &(*bbo)->relocs);
1105
1106 anv_cmd_buffer_process_relocs(cmd_buffer, &cmd_buffer->surface_relocs);
1107
1108 if (!cmd_buffer->device->info.has_llc) {
1109 __builtin_ia32_mfence();
1110 anv_vector_foreach(bbo, &cmd_buffer->seen_bbos) {
1111 for (uint32_t i = 0; i < (*bbo)->length; i += CACHELINE_SIZE)
1112 __builtin_ia32_clflush((*bbo)->bo.map + i);
1113 }
1114 }
1115
1116 cmd_buffer->execbuf2.execbuf = (struct drm_i915_gem_execbuffer2) {
1117 .buffers_ptr = (uintptr_t) cmd_buffer->execbuf2.objects,
1118 .buffer_count = cmd_buffer->execbuf2.bo_count,
1119 .batch_start_offset = 0,
1120 .batch_len = batch->next - batch->start,
1121 .cliprects_ptr = 0,
1122 .num_cliprects = 0,
1123 .DR1 = 0,
1124 .DR4 = 0,
1125 .flags = I915_EXEC_HANDLE_LUT | I915_EXEC_RENDER |
1126 I915_EXEC_CONSTANTS_REL_GENERAL,
1127 .rsvd1 = cmd_buffer->device->context_id,
1128 .rsvd2 = 0,
1129 };
1130
1131 if (!cmd_buffer->execbuf2.need_reloc)
1132 cmd_buffer->execbuf2.execbuf.flags |= I915_EXEC_NO_RELOC;
1133 }