anv/cmd_buffer: Enable render pass awareness
[mesa.git] / src / intel / vulkan / anv_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31
32 #include "vk_format_info.h"
33
34 /** \file anv_cmd_buffer.c
35 *
36 * This file contains all of the stuff for emitting commands into a command
37 * buffer. This includes implementations of most of the vkCmd*
38 * entrypoints. This file is concerned entirely with state emission and
39 * not with the command buffer data structure itself. As far as this file
40 * is concerned, most of anv_cmd_buffer is magic.
41 */
42
43 /* TODO: These are taken from GLES. We should check the Vulkan spec */
44 const struct anv_dynamic_state default_dynamic_state = {
45 .viewport = {
46 .count = 0,
47 },
48 .scissor = {
49 .count = 0,
50 },
51 .line_width = 1.0f,
52 .depth_bias = {
53 .bias = 0.0f,
54 .clamp = 0.0f,
55 .slope = 0.0f,
56 },
57 .blend_constants = { 0.0f, 0.0f, 0.0f, 0.0f },
58 .depth_bounds = {
59 .min = 0.0f,
60 .max = 1.0f,
61 },
62 .stencil_compare_mask = {
63 .front = ~0u,
64 .back = ~0u,
65 },
66 .stencil_write_mask = {
67 .front = ~0u,
68 .back = ~0u,
69 },
70 .stencil_reference = {
71 .front = 0u,
72 .back = 0u,
73 },
74 };
75
76 void
77 anv_dynamic_state_copy(struct anv_dynamic_state *dest,
78 const struct anv_dynamic_state *src,
79 uint32_t copy_mask)
80 {
81 if (copy_mask & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
82 dest->viewport.count = src->viewport.count;
83 typed_memcpy(dest->viewport.viewports, src->viewport.viewports,
84 src->viewport.count);
85 }
86
87 if (copy_mask & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
88 dest->scissor.count = src->scissor.count;
89 typed_memcpy(dest->scissor.scissors, src->scissor.scissors,
90 src->scissor.count);
91 }
92
93 if (copy_mask & (1 << VK_DYNAMIC_STATE_LINE_WIDTH))
94 dest->line_width = src->line_width;
95
96 if (copy_mask & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS))
97 dest->depth_bias = src->depth_bias;
98
99 if (copy_mask & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS))
100 typed_memcpy(dest->blend_constants, src->blend_constants, 4);
101
102 if (copy_mask & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS))
103 dest->depth_bounds = src->depth_bounds;
104
105 if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK))
106 dest->stencil_compare_mask = src->stencil_compare_mask;
107
108 if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK))
109 dest->stencil_write_mask = src->stencil_write_mask;
110
111 if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE))
112 dest->stencil_reference = src->stencil_reference;
113 }
114
115 static void
116 anv_cmd_state_reset(struct anv_cmd_buffer *cmd_buffer)
117 {
118 struct anv_cmd_state *state = &cmd_buffer->state;
119
120 memset(&state->descriptors, 0, sizeof(state->descriptors));
121 memset(&state->push_constants, 0, sizeof(state->push_constants));
122 memset(state->binding_tables, 0, sizeof(state->binding_tables));
123 memset(state->samplers, 0, sizeof(state->samplers));
124
125 /* 0 isn't a valid config. This ensures that we always configure L3$. */
126 cmd_buffer->state.current_l3_config = 0;
127
128 state->dirty = 0;
129 state->vb_dirty = 0;
130 state->pending_pipe_bits = 0;
131 state->descriptors_dirty = 0;
132 state->push_constants_dirty = 0;
133 state->pipeline = NULL;
134 state->framebuffer = NULL;
135 state->pass = NULL;
136 state->subpass = NULL;
137 state->push_constant_stages = 0;
138 state->restart_index = UINT32_MAX;
139 state->dynamic = default_dynamic_state;
140 state->need_query_wa = true;
141 state->pma_fix_enabled = false;
142 state->hiz_enabled = false;
143
144 if (state->attachments != NULL) {
145 vk_free(&cmd_buffer->pool->alloc, state->attachments);
146 state->attachments = NULL;
147 }
148
149 state->gen7.index_buffer = NULL;
150 }
151
152 VkResult
153 anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
154 gl_shader_stage stage, uint32_t size)
155 {
156 struct anv_push_constants **ptr = &cmd_buffer->state.push_constants[stage];
157
158 if (*ptr == NULL) {
159 *ptr = vk_alloc(&cmd_buffer->pool->alloc, size, 8,
160 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
161 if (*ptr == NULL)
162 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
163 } else if ((*ptr)->size < size) {
164 *ptr = vk_realloc(&cmd_buffer->pool->alloc, *ptr, size, 8,
165 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
166 if (*ptr == NULL)
167 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
168 }
169 (*ptr)->size = size;
170
171 return VK_SUCCESS;
172 }
173
174 static VkResult anv_create_cmd_buffer(
175 struct anv_device * device,
176 struct anv_cmd_pool * pool,
177 VkCommandBufferLevel level,
178 VkCommandBuffer* pCommandBuffer)
179 {
180 struct anv_cmd_buffer *cmd_buffer;
181 VkResult result;
182
183 cmd_buffer = vk_alloc(&pool->alloc, sizeof(*cmd_buffer), 8,
184 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
185 if (cmd_buffer == NULL)
186 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
187
188 cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
189 cmd_buffer->device = device;
190 cmd_buffer->pool = pool;
191 cmd_buffer->level = level;
192 cmd_buffer->state.attachments = NULL;
193
194 result = anv_cmd_buffer_init_batch_bo_chain(cmd_buffer);
195 if (result != VK_SUCCESS)
196 goto fail;
197
198 anv_state_stream_init(&cmd_buffer->surface_state_stream,
199 &device->surface_state_block_pool);
200 anv_state_stream_init(&cmd_buffer->dynamic_state_stream,
201 &device->dynamic_state_block_pool);
202
203 memset(&cmd_buffer->state.push_descriptor, 0,
204 sizeof(cmd_buffer->state.push_descriptor));
205
206 if (pool) {
207 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
208 } else {
209 /* Init the pool_link so we can safefly call list_del when we destroy
210 * the command buffer
211 */
212 list_inithead(&cmd_buffer->pool_link);
213 }
214
215 *pCommandBuffer = anv_cmd_buffer_to_handle(cmd_buffer);
216
217 return VK_SUCCESS;
218
219 fail:
220 vk_free(&cmd_buffer->pool->alloc, cmd_buffer);
221
222 return result;
223 }
224
225 VkResult anv_AllocateCommandBuffers(
226 VkDevice _device,
227 const VkCommandBufferAllocateInfo* pAllocateInfo,
228 VkCommandBuffer* pCommandBuffers)
229 {
230 ANV_FROM_HANDLE(anv_device, device, _device);
231 ANV_FROM_HANDLE(anv_cmd_pool, pool, pAllocateInfo->commandPool);
232
233 VkResult result = VK_SUCCESS;
234 uint32_t i;
235
236 for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
237 result = anv_create_cmd_buffer(device, pool, pAllocateInfo->level,
238 &pCommandBuffers[i]);
239 if (result != VK_SUCCESS)
240 break;
241 }
242
243 if (result != VK_SUCCESS) {
244 anv_FreeCommandBuffers(_device, pAllocateInfo->commandPool,
245 i, pCommandBuffers);
246 for (i = 0; i < pAllocateInfo->commandBufferCount; i++)
247 pCommandBuffers[i] = VK_NULL_HANDLE;
248 }
249
250 return result;
251 }
252
253 static void
254 anv_cmd_buffer_destroy(struct anv_cmd_buffer *cmd_buffer)
255 {
256 list_del(&cmd_buffer->pool_link);
257
258 anv_cmd_buffer_fini_batch_bo_chain(cmd_buffer);
259
260 anv_state_stream_finish(&cmd_buffer->surface_state_stream);
261 anv_state_stream_finish(&cmd_buffer->dynamic_state_stream);
262
263 vk_free(&cmd_buffer->pool->alloc, cmd_buffer->state.attachments);
264 vk_free(&cmd_buffer->pool->alloc, cmd_buffer);
265 }
266
267 void anv_FreeCommandBuffers(
268 VkDevice device,
269 VkCommandPool commandPool,
270 uint32_t commandBufferCount,
271 const VkCommandBuffer* pCommandBuffers)
272 {
273 for (uint32_t i = 0; i < commandBufferCount; i++) {
274 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
275
276 if (!cmd_buffer)
277 continue;
278
279 anv_cmd_buffer_destroy(cmd_buffer);
280 }
281 }
282
283 VkResult
284 anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer)
285 {
286 cmd_buffer->usage_flags = 0;
287 cmd_buffer->state.current_pipeline = UINT32_MAX;
288 anv_cmd_buffer_reset_batch_bo_chain(cmd_buffer);
289 anv_cmd_state_reset(cmd_buffer);
290
291 anv_state_stream_finish(&cmd_buffer->surface_state_stream);
292 anv_state_stream_init(&cmd_buffer->surface_state_stream,
293 &cmd_buffer->device->surface_state_block_pool);
294
295 anv_state_stream_finish(&cmd_buffer->dynamic_state_stream);
296 anv_state_stream_init(&cmd_buffer->dynamic_state_stream,
297 &cmd_buffer->device->dynamic_state_block_pool);
298 return VK_SUCCESS;
299 }
300
301 VkResult anv_ResetCommandBuffer(
302 VkCommandBuffer commandBuffer,
303 VkCommandBufferResetFlags flags)
304 {
305 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
306 return anv_cmd_buffer_reset(cmd_buffer);
307 }
308
309 void
310 anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer)
311 {
312 switch (cmd_buffer->device->info.gen) {
313 case 7:
314 if (cmd_buffer->device->info.is_haswell)
315 return gen75_cmd_buffer_emit_state_base_address(cmd_buffer);
316 else
317 return gen7_cmd_buffer_emit_state_base_address(cmd_buffer);
318 case 8:
319 return gen8_cmd_buffer_emit_state_base_address(cmd_buffer);
320 case 9:
321 return gen9_cmd_buffer_emit_state_base_address(cmd_buffer);
322 default:
323 unreachable("unsupported gen\n");
324 }
325 }
326
327 void anv_CmdBindPipeline(
328 VkCommandBuffer commandBuffer,
329 VkPipelineBindPoint pipelineBindPoint,
330 VkPipeline _pipeline)
331 {
332 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
333 ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
334
335 switch (pipelineBindPoint) {
336 case VK_PIPELINE_BIND_POINT_COMPUTE:
337 cmd_buffer->state.compute_pipeline = pipeline;
338 cmd_buffer->state.compute_dirty |= ANV_CMD_DIRTY_PIPELINE;
339 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
340 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
341 break;
342
343 case VK_PIPELINE_BIND_POINT_GRAPHICS:
344 cmd_buffer->state.pipeline = pipeline;
345 cmd_buffer->state.vb_dirty |= pipeline->vb_used;
346 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_PIPELINE;
347 cmd_buffer->state.push_constants_dirty |= pipeline->active_stages;
348 cmd_buffer->state.descriptors_dirty |= pipeline->active_stages;
349
350 /* Apply the dynamic state from the pipeline */
351 cmd_buffer->state.dirty |= pipeline->dynamic_state_mask;
352 anv_dynamic_state_copy(&cmd_buffer->state.dynamic,
353 &pipeline->dynamic_state,
354 pipeline->dynamic_state_mask);
355 break;
356
357 default:
358 assert(!"invalid bind point");
359 break;
360 }
361 }
362
363 void anv_CmdSetViewport(
364 VkCommandBuffer commandBuffer,
365 uint32_t firstViewport,
366 uint32_t viewportCount,
367 const VkViewport* pViewports)
368 {
369 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
370
371 const uint32_t total_count = firstViewport + viewportCount;
372 if (cmd_buffer->state.dynamic.viewport.count < total_count)
373 cmd_buffer->state.dynamic.viewport.count = total_count;
374
375 memcpy(cmd_buffer->state.dynamic.viewport.viewports + firstViewport,
376 pViewports, viewportCount * sizeof(*pViewports));
377
378 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
379 }
380
381 void anv_CmdSetScissor(
382 VkCommandBuffer commandBuffer,
383 uint32_t firstScissor,
384 uint32_t scissorCount,
385 const VkRect2D* pScissors)
386 {
387 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
388
389 const uint32_t total_count = firstScissor + scissorCount;
390 if (cmd_buffer->state.dynamic.scissor.count < total_count)
391 cmd_buffer->state.dynamic.scissor.count = total_count;
392
393 memcpy(cmd_buffer->state.dynamic.scissor.scissors + firstScissor,
394 pScissors, scissorCount * sizeof(*pScissors));
395
396 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
397 }
398
399 void anv_CmdSetLineWidth(
400 VkCommandBuffer commandBuffer,
401 float lineWidth)
402 {
403 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
404
405 cmd_buffer->state.dynamic.line_width = lineWidth;
406 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
407 }
408
409 void anv_CmdSetDepthBias(
410 VkCommandBuffer commandBuffer,
411 float depthBiasConstantFactor,
412 float depthBiasClamp,
413 float depthBiasSlopeFactor)
414 {
415 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
416
417 cmd_buffer->state.dynamic.depth_bias.bias = depthBiasConstantFactor;
418 cmd_buffer->state.dynamic.depth_bias.clamp = depthBiasClamp;
419 cmd_buffer->state.dynamic.depth_bias.slope = depthBiasSlopeFactor;
420
421 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
422 }
423
424 void anv_CmdSetBlendConstants(
425 VkCommandBuffer commandBuffer,
426 const float blendConstants[4])
427 {
428 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
429
430 memcpy(cmd_buffer->state.dynamic.blend_constants,
431 blendConstants, sizeof(float) * 4);
432
433 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
434 }
435
436 void anv_CmdSetDepthBounds(
437 VkCommandBuffer commandBuffer,
438 float minDepthBounds,
439 float maxDepthBounds)
440 {
441 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
442
443 cmd_buffer->state.dynamic.depth_bounds.min = minDepthBounds;
444 cmd_buffer->state.dynamic.depth_bounds.max = maxDepthBounds;
445
446 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
447 }
448
449 void anv_CmdSetStencilCompareMask(
450 VkCommandBuffer commandBuffer,
451 VkStencilFaceFlags faceMask,
452 uint32_t compareMask)
453 {
454 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
455
456 if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
457 cmd_buffer->state.dynamic.stencil_compare_mask.front = compareMask;
458 if (faceMask & VK_STENCIL_FACE_BACK_BIT)
459 cmd_buffer->state.dynamic.stencil_compare_mask.back = compareMask;
460
461 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
462 }
463
464 void anv_CmdSetStencilWriteMask(
465 VkCommandBuffer commandBuffer,
466 VkStencilFaceFlags faceMask,
467 uint32_t writeMask)
468 {
469 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
470
471 if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
472 cmd_buffer->state.dynamic.stencil_write_mask.front = writeMask;
473 if (faceMask & VK_STENCIL_FACE_BACK_BIT)
474 cmd_buffer->state.dynamic.stencil_write_mask.back = writeMask;
475
476 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
477 }
478
479 void anv_CmdSetStencilReference(
480 VkCommandBuffer commandBuffer,
481 VkStencilFaceFlags faceMask,
482 uint32_t reference)
483 {
484 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
485
486 if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
487 cmd_buffer->state.dynamic.stencil_reference.front = reference;
488 if (faceMask & VK_STENCIL_FACE_BACK_BIT)
489 cmd_buffer->state.dynamic.stencil_reference.back = reference;
490
491 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
492 }
493
494 void anv_CmdBindDescriptorSets(
495 VkCommandBuffer commandBuffer,
496 VkPipelineBindPoint pipelineBindPoint,
497 VkPipelineLayout _layout,
498 uint32_t firstSet,
499 uint32_t descriptorSetCount,
500 const VkDescriptorSet* pDescriptorSets,
501 uint32_t dynamicOffsetCount,
502 const uint32_t* pDynamicOffsets)
503 {
504 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
505 ANV_FROM_HANDLE(anv_pipeline_layout, layout, _layout);
506 struct anv_descriptor_set_layout *set_layout;
507
508 assert(firstSet + descriptorSetCount < MAX_SETS);
509
510 for (uint32_t i = 0; i < descriptorSetCount; i++) {
511 ANV_FROM_HANDLE(anv_descriptor_set, set, pDescriptorSets[i]);
512 set_layout = layout->set[firstSet + i].layout;
513
514 if (cmd_buffer->state.descriptors[firstSet + i] != set) {
515 cmd_buffer->state.descriptors[firstSet + i] = set;
516 cmd_buffer->state.descriptors_dirty |= set_layout->shader_stages;
517 }
518
519 if (set_layout->dynamic_offset_count > 0) {
520 anv_foreach_stage(s, set_layout->shader_stages) {
521 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, s, dynamic);
522
523 struct anv_push_constants *push =
524 cmd_buffer->state.push_constants[s];
525
526 unsigned d = layout->set[firstSet + i].dynamic_offset_start;
527 const uint32_t *offsets = pDynamicOffsets;
528 struct anv_descriptor *desc = set->descriptors;
529
530 for (unsigned b = 0; b < set_layout->binding_count; b++) {
531 if (set_layout->binding[b].dynamic_offset_index < 0)
532 continue;
533
534 unsigned array_size = set_layout->binding[b].array_size;
535 for (unsigned j = 0; j < array_size; j++) {
536 push->dynamic[d].offset = *(offsets++);
537 push->dynamic[d].range = (desc->buffer_view) ?
538 desc->buffer_view->range : 0;
539 desc++;
540 d++;
541 }
542 }
543 }
544 cmd_buffer->state.push_constants_dirty |= set_layout->shader_stages;
545 }
546 }
547 }
548
549 void anv_CmdBindVertexBuffers(
550 VkCommandBuffer commandBuffer,
551 uint32_t firstBinding,
552 uint32_t bindingCount,
553 const VkBuffer* pBuffers,
554 const VkDeviceSize* pOffsets)
555 {
556 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
557 struct anv_vertex_binding *vb = cmd_buffer->state.vertex_bindings;
558
559 /* We have to defer setting up vertex buffer since we need the buffer
560 * stride from the pipeline. */
561
562 assert(firstBinding + bindingCount < MAX_VBS);
563 for (uint32_t i = 0; i < bindingCount; i++) {
564 vb[firstBinding + i].buffer = anv_buffer_from_handle(pBuffers[i]);
565 vb[firstBinding + i].offset = pOffsets[i];
566 cmd_buffer->state.vb_dirty |= 1 << (firstBinding + i);
567 }
568 }
569
570 enum isl_format
571 anv_isl_format_for_descriptor_type(VkDescriptorType type)
572 {
573 switch (type) {
574 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
575 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
576 return ISL_FORMAT_R32G32B32A32_FLOAT;
577
578 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
579 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
580 return ISL_FORMAT_RAW;
581
582 default:
583 unreachable("Invalid descriptor type");
584 }
585 }
586
587 struct anv_state
588 anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
589 const void *data, uint32_t size, uint32_t alignment)
590 {
591 struct anv_state state;
592
593 state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, alignment);
594 memcpy(state.map, data, size);
595
596 anv_state_flush(cmd_buffer->device, state);
597
598 VG(VALGRIND_CHECK_MEM_IS_DEFINED(state.map, size));
599
600 return state;
601 }
602
603 struct anv_state
604 anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
605 uint32_t *a, uint32_t *b,
606 uint32_t dwords, uint32_t alignment)
607 {
608 struct anv_state state;
609 uint32_t *p;
610
611 state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
612 dwords * 4, alignment);
613 p = state.map;
614 for (uint32_t i = 0; i < dwords; i++)
615 p[i] = a[i] | b[i];
616
617 anv_state_flush(cmd_buffer->device, state);
618
619 VG(VALGRIND_CHECK_MEM_IS_DEFINED(p, dwords * 4));
620
621 return state;
622 }
623
624 struct anv_state
625 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
626 gl_shader_stage stage)
627 {
628 /* If we don't have this stage, bail. */
629 if (!anv_pipeline_has_stage(cmd_buffer->state.pipeline, stage))
630 return (struct anv_state) { .offset = 0 };
631
632 struct anv_push_constants *data =
633 cmd_buffer->state.push_constants[stage];
634 const struct brw_stage_prog_data *prog_data =
635 cmd_buffer->state.pipeline->shaders[stage]->prog_data;
636
637 /* If we don't actually have any push constants, bail. */
638 if (data == NULL || prog_data == NULL || prog_data->nr_params == 0)
639 return (struct anv_state) { .offset = 0 };
640
641 struct anv_state state =
642 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
643 prog_data->nr_params * sizeof(float),
644 32 /* bottom 5 bits MBZ */);
645
646 /* Walk through the param array and fill the buffer with data */
647 uint32_t *u32_map = state.map;
648 for (unsigned i = 0; i < prog_data->nr_params; i++) {
649 uint32_t offset = (uintptr_t)prog_data->param[i];
650 u32_map[i] = *(uint32_t *)((uint8_t *)data + offset);
651 }
652
653 anv_state_flush(cmd_buffer->device, state);
654
655 return state;
656 }
657
658 struct anv_state
659 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer)
660 {
661 struct anv_push_constants *data =
662 cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
663 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
664 const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
665 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
666
667 /* If we don't actually have any push constants, bail. */
668 if (cs_prog_data->push.total.size == 0)
669 return (struct anv_state) { .offset = 0 };
670
671 const unsigned push_constant_alignment =
672 cmd_buffer->device->info.gen < 8 ? 32 : 64;
673 const unsigned aligned_total_push_constants_size =
674 ALIGN(cs_prog_data->push.total.size, push_constant_alignment);
675 struct anv_state state =
676 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
677 aligned_total_push_constants_size,
678 push_constant_alignment);
679
680 /* Walk through the param array and fill the buffer with data */
681 uint32_t *u32_map = state.map;
682
683 if (cs_prog_data->push.cross_thread.size > 0) {
684 assert(cs_prog_data->thread_local_id_index < 0 ||
685 cs_prog_data->thread_local_id_index >=
686 cs_prog_data->push.cross_thread.dwords);
687 for (unsigned i = 0;
688 i < cs_prog_data->push.cross_thread.dwords;
689 i++) {
690 uint32_t offset = (uintptr_t)prog_data->param[i];
691 u32_map[i] = *(uint32_t *)((uint8_t *)data + offset);
692 }
693 }
694
695 if (cs_prog_data->push.per_thread.size > 0) {
696 for (unsigned t = 0; t < cs_prog_data->threads; t++) {
697 unsigned dst =
698 8 * (cs_prog_data->push.per_thread.regs * t +
699 cs_prog_data->push.cross_thread.regs);
700 unsigned src = cs_prog_data->push.cross_thread.dwords;
701 for ( ; src < prog_data->nr_params; src++, dst++) {
702 if (src != cs_prog_data->thread_local_id_index) {
703 uint32_t offset = (uintptr_t)prog_data->param[src];
704 u32_map[dst] = *(uint32_t *)((uint8_t *)data + offset);
705 } else {
706 u32_map[dst] = t * cs_prog_data->simd_size;
707 }
708 }
709 }
710 }
711
712 anv_state_flush(cmd_buffer->device, state);
713
714 return state;
715 }
716
717 void anv_CmdPushConstants(
718 VkCommandBuffer commandBuffer,
719 VkPipelineLayout layout,
720 VkShaderStageFlags stageFlags,
721 uint32_t offset,
722 uint32_t size,
723 const void* pValues)
724 {
725 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
726
727 anv_foreach_stage(stage, stageFlags) {
728 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, client_data);
729
730 memcpy(cmd_buffer->state.push_constants[stage]->client_data + offset,
731 pValues, size);
732 }
733
734 cmd_buffer->state.push_constants_dirty |= stageFlags;
735 }
736
737 VkResult anv_CreateCommandPool(
738 VkDevice _device,
739 const VkCommandPoolCreateInfo* pCreateInfo,
740 const VkAllocationCallbacks* pAllocator,
741 VkCommandPool* pCmdPool)
742 {
743 ANV_FROM_HANDLE(anv_device, device, _device);
744 struct anv_cmd_pool *pool;
745
746 pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
747 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
748 if (pool == NULL)
749 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
750
751 if (pAllocator)
752 pool->alloc = *pAllocator;
753 else
754 pool->alloc = device->alloc;
755
756 list_inithead(&pool->cmd_buffers);
757
758 *pCmdPool = anv_cmd_pool_to_handle(pool);
759
760 return VK_SUCCESS;
761 }
762
763 void anv_DestroyCommandPool(
764 VkDevice _device,
765 VkCommandPool commandPool,
766 const VkAllocationCallbacks* pAllocator)
767 {
768 ANV_FROM_HANDLE(anv_device, device, _device);
769 ANV_FROM_HANDLE(anv_cmd_pool, pool, commandPool);
770
771 if (!pool)
772 return;
773
774 list_for_each_entry_safe(struct anv_cmd_buffer, cmd_buffer,
775 &pool->cmd_buffers, pool_link) {
776 anv_cmd_buffer_destroy(cmd_buffer);
777 }
778
779 vk_free2(&device->alloc, pAllocator, pool);
780 }
781
782 VkResult anv_ResetCommandPool(
783 VkDevice device,
784 VkCommandPool commandPool,
785 VkCommandPoolResetFlags flags)
786 {
787 ANV_FROM_HANDLE(anv_cmd_pool, pool, commandPool);
788
789 list_for_each_entry(struct anv_cmd_buffer, cmd_buffer,
790 &pool->cmd_buffers, pool_link) {
791 anv_cmd_buffer_reset(cmd_buffer);
792 }
793
794 return VK_SUCCESS;
795 }
796
797 void anv_TrimCommandPoolKHR(
798 VkDevice device,
799 VkCommandPool commandPool,
800 VkCommandPoolTrimFlagsKHR flags)
801 {
802 /* Nothing for us to do here. Our pools stay pretty tidy. */
803 }
804
805 /**
806 * Return NULL if the current subpass has no depthstencil attachment.
807 */
808 const struct anv_image_view *
809 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer)
810 {
811 const struct anv_subpass *subpass = cmd_buffer->state.subpass;
812 const struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
813
814 if (subpass->depth_stencil_attachment.attachment == VK_ATTACHMENT_UNUSED)
815 return NULL;
816
817 const struct anv_image_view *iview =
818 fb->attachments[subpass->depth_stencil_attachment.attachment];
819
820 assert(iview->aspect_mask & (VK_IMAGE_ASPECT_DEPTH_BIT |
821 VK_IMAGE_ASPECT_STENCIL_BIT));
822
823 return iview;
824 }
825
826 void anv_CmdPushDescriptorSetKHR(
827 VkCommandBuffer commandBuffer,
828 VkPipelineBindPoint pipelineBindPoint,
829 VkPipelineLayout _layout,
830 uint32_t _set,
831 uint32_t descriptorWriteCount,
832 const VkWriteDescriptorSet* pDescriptorWrites)
833 {
834 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
835 ANV_FROM_HANDLE(anv_pipeline_layout, layout, _layout);
836
837 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS ||
838 pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE);
839 assert(_set < MAX_SETS);
840
841 const struct anv_descriptor_set_layout *set_layout =
842 layout->set[_set].layout;
843 struct anv_descriptor_set *set = &cmd_buffer->state.push_descriptor.set;
844
845 set->layout = set_layout;
846 set->size = anv_descriptor_set_layout_size(set_layout);
847 set->buffer_count = set_layout->buffer_count;
848 set->buffer_views = cmd_buffer->state.push_descriptor.buffer_views;
849
850 /* Go through the user supplied descriptors. */
851 for (uint32_t i = 0; i < descriptorWriteCount; i++) {
852 const VkWriteDescriptorSet *write = &pDescriptorWrites[i];
853
854 switch (write->descriptorType) {
855 case VK_DESCRIPTOR_TYPE_SAMPLER:
856 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
857 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
858 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
859 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
860 for (uint32_t j = 0; j < write->descriptorCount; j++) {
861 anv_descriptor_set_write_image_view(set, &cmd_buffer->device->info,
862 write->pImageInfo + j,
863 write->descriptorType,
864 write->dstBinding,
865 write->dstArrayElement + j);
866 }
867 break;
868
869 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
870 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
871 for (uint32_t j = 0; j < write->descriptorCount; j++) {
872 ANV_FROM_HANDLE(anv_buffer_view, bview,
873 write->pTexelBufferView[j]);
874
875 anv_descriptor_set_write_buffer_view(set,
876 write->descriptorType,
877 bview,
878 write->dstBinding,
879 write->dstArrayElement + j);
880 }
881 break;
882
883 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
884 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
885 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
886 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
887 for (uint32_t j = 0; j < write->descriptorCount; j++) {
888 assert(write->pBufferInfo[j].buffer);
889 ANV_FROM_HANDLE(anv_buffer, buffer, write->pBufferInfo[j].buffer);
890 assert(buffer);
891
892 anv_descriptor_set_write_buffer(set,
893 cmd_buffer->device,
894 &cmd_buffer->surface_state_stream,
895 write->descriptorType,
896 buffer,
897 write->dstBinding,
898 write->dstArrayElement + j,
899 write->pBufferInfo[j].offset,
900 write->pBufferInfo[j].range);
901 }
902 break;
903
904 default:
905 break;
906 }
907 }
908
909 cmd_buffer->state.descriptors[_set] = set;
910 cmd_buffer->state.descriptors_dirty |= set_layout->shader_stages;
911 }
912
913 void anv_CmdPushDescriptorSetWithTemplateKHR(
914 VkCommandBuffer commandBuffer,
915 VkDescriptorUpdateTemplateKHR descriptorUpdateTemplate,
916 VkPipelineLayout _layout,
917 uint32_t _set,
918 const void* pData)
919 {
920 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
921 ANV_FROM_HANDLE(anv_descriptor_update_template, template,
922 descriptorUpdateTemplate);
923 ANV_FROM_HANDLE(anv_pipeline_layout, layout, _layout);
924
925 assert(_set < MAX_PUSH_DESCRIPTORS);
926
927 const struct anv_descriptor_set_layout *set_layout =
928 layout->set[_set].layout;
929 struct anv_descriptor_set *set = &cmd_buffer->state.push_descriptor.set;
930
931 set->layout = set_layout;
932 set->size = anv_descriptor_set_layout_size(set_layout);
933 set->buffer_count = set_layout->buffer_count;
934 set->buffer_views = cmd_buffer->state.push_descriptor.buffer_views;
935
936 anv_descriptor_set_write_template(set,
937 cmd_buffer->device,
938 &cmd_buffer->surface_state_stream,
939 template,
940 pData);
941
942 cmd_buffer->state.descriptors[_set] = set;
943 cmd_buffer->state.descriptors_dirty |= set_layout->shader_stages;
944 }