anv: Properly handle destroying NULL devices and instances
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <unistd.h>
29 #include <fcntl.h>
30
31 #include "anv_private.h"
32 #include "util/strtod.h"
33 #include "util/debug.h"
34 #include "util/build_id.h"
35 #include "util/vk_util.h"
36
37 #include "genxml/gen7_pack.h"
38
39 static void
40 compiler_debug_log(void *data, const char *fmt, ...)
41 { }
42
43 static void
44 compiler_perf_log(void *data, const char *fmt, ...)
45 {
46 va_list args;
47 va_start(args, fmt);
48
49 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
50 vfprintf(stderr, fmt, args);
51
52 va_end(args);
53 }
54
55 static bool
56 anv_device_get_cache_uuid(void *uuid)
57 {
58 const struct build_id_note *note = build_id_find_nhdr("libvulkan_intel.so");
59 if (!note)
60 return false;
61
62 unsigned len = build_id_length(note);
63 if (len < VK_UUID_SIZE)
64 return false;
65
66 build_id_read(note, uuid, VK_UUID_SIZE);
67 return true;
68 }
69
70 static VkResult
71 anv_physical_device_init(struct anv_physical_device *device,
72 struct anv_instance *instance,
73 const char *path)
74 {
75 VkResult result;
76 int fd;
77
78 fd = open(path, O_RDWR | O_CLOEXEC);
79 if (fd < 0)
80 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
81
82 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
83 device->instance = instance;
84
85 assert(strlen(path) < ARRAY_SIZE(device->path));
86 strncpy(device->path, path, ARRAY_SIZE(device->path));
87
88 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
89 if (!device->chipset_id) {
90 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
91 goto fail;
92 }
93
94 device->name = gen_get_device_name(device->chipset_id);
95 if (!gen_get_device_info(device->chipset_id, &device->info)) {
96 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
97 goto fail;
98 }
99
100 if (device->info.is_haswell) {
101 fprintf(stderr, "WARNING: Haswell Vulkan support is incomplete\n");
102 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
103 fprintf(stderr, "WARNING: Ivy Bridge Vulkan support is incomplete\n");
104 } else if (device->info.gen == 7 && device->info.is_baytrail) {
105 fprintf(stderr, "WARNING: Bay Trail Vulkan support is incomplete\n");
106 } else if (device->info.gen >= 8) {
107 /* Broadwell, Cherryview, Skylake, Broxton, Kabylake is as fully
108 * supported as anything */
109 } else {
110 result = vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
111 "Vulkan not yet supported on %s", device->name);
112 goto fail;
113 }
114
115 device->cmd_parser_version = -1;
116 if (device->info.gen == 7) {
117 device->cmd_parser_version =
118 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
119 if (device->cmd_parser_version == -1) {
120 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
121 "failed to get command parser version");
122 goto fail;
123 }
124 }
125
126 if (anv_gem_get_aperture(fd, &device->aperture_size) == -1) {
127 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
128 "failed to get aperture size: %m");
129 goto fail;
130 }
131
132 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
133 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
134 "kernel missing gem wait");
135 goto fail;
136 }
137
138 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
139 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
140 "kernel missing execbuf2");
141 goto fail;
142 }
143
144 if (!device->info.has_llc &&
145 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
146 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
147 "kernel missing wc mmap");
148 goto fail;
149 }
150
151 if (!anv_device_get_cache_uuid(device->uuid)) {
152 result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
153 "cannot generate UUID");
154 goto fail;
155 }
156 bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
157
158 /* GENs prior to 8 do not support EU/Subslice info */
159 if (device->info.gen >= 8) {
160 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
161 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
162
163 /* Without this information, we cannot get the right Braswell
164 * brandstrings, and we have to use conservative numbers for GPGPU on
165 * many platforms, but otherwise, things will just work.
166 */
167 if (device->subslice_total < 1 || device->eu_total < 1) {
168 fprintf(stderr, "WARNING: Kernel 4.1 required to properly"
169 " query GPU properties.\n");
170 }
171 } else if (device->info.gen == 7) {
172 device->subslice_total = 1 << (device->info.gt - 1);
173 }
174
175 if (device->info.is_cherryview &&
176 device->subslice_total > 0 && device->eu_total > 0) {
177 /* Logical CS threads = EUs per subslice * 7 threads per EU */
178 uint32_t max_cs_threads = device->eu_total / device->subslice_total * 7;
179
180 /* Fuse configurations may give more threads than expected, never less. */
181 if (max_cs_threads > device->info.max_cs_threads)
182 device->info.max_cs_threads = max_cs_threads;
183 }
184
185 brw_process_intel_debug_variable();
186
187 device->compiler = brw_compiler_create(NULL, &device->info);
188 if (device->compiler == NULL) {
189 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
190 goto fail;
191 }
192 device->compiler->shader_debug_log = compiler_debug_log;
193 device->compiler->shader_perf_log = compiler_perf_log;
194
195 result = anv_init_wsi(device);
196 if (result != VK_SUCCESS) {
197 ralloc_free(device->compiler);
198 goto fail;
199 }
200
201 isl_device_init(&device->isl_dev, &device->info, swizzled);
202
203 device->local_fd = fd;
204 return VK_SUCCESS;
205
206 fail:
207 close(fd);
208 return result;
209 }
210
211 static void
212 anv_physical_device_finish(struct anv_physical_device *device)
213 {
214 anv_finish_wsi(device);
215 ralloc_free(device->compiler);
216 close(device->local_fd);
217 }
218
219 static const VkExtensionProperties global_extensions[] = {
220 {
221 .extensionName = VK_KHR_SURFACE_EXTENSION_NAME,
222 .specVersion = 25,
223 },
224 #ifdef VK_USE_PLATFORM_XCB_KHR
225 {
226 .extensionName = VK_KHR_XCB_SURFACE_EXTENSION_NAME,
227 .specVersion = 6,
228 },
229 #endif
230 #ifdef VK_USE_PLATFORM_XLIB_KHR
231 {
232 .extensionName = VK_KHR_XLIB_SURFACE_EXTENSION_NAME,
233 .specVersion = 6,
234 },
235 #endif
236 #ifdef VK_USE_PLATFORM_WAYLAND_KHR
237 {
238 .extensionName = VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME,
239 .specVersion = 5,
240 },
241 #endif
242 {
243 .extensionName = VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME,
244 .specVersion = 1,
245 },
246 };
247
248 static const VkExtensionProperties device_extensions[] = {
249 {
250 .extensionName = VK_KHR_SWAPCHAIN_EXTENSION_NAME,
251 .specVersion = 68,
252 },
253 {
254 .extensionName = VK_KHR_SAMPLER_MIRROR_CLAMP_TO_EDGE_EXTENSION_NAME,
255 .specVersion = 1,
256 },
257 {
258 .extensionName = VK_KHR_MAINTENANCE1_EXTENSION_NAME,
259 .specVersion = 1,
260 },
261 {
262 .extensionName = VK_KHR_SHADER_DRAW_PARAMETERS_EXTENSION_NAME,
263 .specVersion = 1,
264 }
265 };
266
267 static void *
268 default_alloc_func(void *pUserData, size_t size, size_t align,
269 VkSystemAllocationScope allocationScope)
270 {
271 return malloc(size);
272 }
273
274 static void *
275 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
276 size_t align, VkSystemAllocationScope allocationScope)
277 {
278 return realloc(pOriginal, size);
279 }
280
281 static void
282 default_free_func(void *pUserData, void *pMemory)
283 {
284 free(pMemory);
285 }
286
287 static const VkAllocationCallbacks default_alloc = {
288 .pUserData = NULL,
289 .pfnAllocation = default_alloc_func,
290 .pfnReallocation = default_realloc_func,
291 .pfnFree = default_free_func,
292 };
293
294 VkResult anv_CreateInstance(
295 const VkInstanceCreateInfo* pCreateInfo,
296 const VkAllocationCallbacks* pAllocator,
297 VkInstance* pInstance)
298 {
299 struct anv_instance *instance;
300
301 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
302
303 uint32_t client_version;
304 if (pCreateInfo->pApplicationInfo &&
305 pCreateInfo->pApplicationInfo->apiVersion != 0) {
306 client_version = pCreateInfo->pApplicationInfo->apiVersion;
307 } else {
308 client_version = VK_MAKE_VERSION(1, 0, 0);
309 }
310
311 if (VK_MAKE_VERSION(1, 0, 0) > client_version ||
312 client_version > VK_MAKE_VERSION(1, 0, 0xfff)) {
313 return vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
314 "Client requested version %d.%d.%d",
315 VK_VERSION_MAJOR(client_version),
316 VK_VERSION_MINOR(client_version),
317 VK_VERSION_PATCH(client_version));
318 }
319
320 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
321 bool found = false;
322 for (uint32_t j = 0; j < ARRAY_SIZE(global_extensions); j++) {
323 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
324 global_extensions[j].extensionName) == 0) {
325 found = true;
326 break;
327 }
328 }
329 if (!found)
330 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
331 }
332
333 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
334 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
335 if (!instance)
336 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
337
338 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
339
340 if (pAllocator)
341 instance->alloc = *pAllocator;
342 else
343 instance->alloc = default_alloc;
344
345 instance->apiVersion = client_version;
346 instance->physicalDeviceCount = -1;
347
348 _mesa_locale_init();
349
350 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
351
352 *pInstance = anv_instance_to_handle(instance);
353
354 return VK_SUCCESS;
355 }
356
357 void anv_DestroyInstance(
358 VkInstance _instance,
359 const VkAllocationCallbacks* pAllocator)
360 {
361 ANV_FROM_HANDLE(anv_instance, instance, _instance);
362
363 if (!instance)
364 return;
365
366 if (instance->physicalDeviceCount > 0) {
367 /* We support at most one physical device. */
368 assert(instance->physicalDeviceCount == 1);
369 anv_physical_device_finish(&instance->physicalDevice);
370 }
371
372 VG(VALGRIND_DESTROY_MEMPOOL(instance));
373
374 _mesa_locale_fini();
375
376 vk_free(&instance->alloc, instance);
377 }
378
379 VkResult anv_EnumeratePhysicalDevices(
380 VkInstance _instance,
381 uint32_t* pPhysicalDeviceCount,
382 VkPhysicalDevice* pPhysicalDevices)
383 {
384 ANV_FROM_HANDLE(anv_instance, instance, _instance);
385 VkResult result;
386
387 if (instance->physicalDeviceCount < 0) {
388 char path[20];
389 for (unsigned i = 0; i < 8; i++) {
390 snprintf(path, sizeof(path), "/dev/dri/renderD%d", 128 + i);
391 result = anv_physical_device_init(&instance->physicalDevice,
392 instance, path);
393 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
394 break;
395 }
396
397 if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
398 instance->physicalDeviceCount = 0;
399 } else if (result == VK_SUCCESS) {
400 instance->physicalDeviceCount = 1;
401 } else {
402 return result;
403 }
404 }
405
406 /* pPhysicalDeviceCount is an out parameter if pPhysicalDevices is NULL;
407 * otherwise it's an inout parameter.
408 *
409 * The Vulkan spec (git aaed022) says:
410 *
411 * pPhysicalDeviceCount is a pointer to an unsigned integer variable
412 * that is initialized with the number of devices the application is
413 * prepared to receive handles to. pname:pPhysicalDevices is pointer to
414 * an array of at least this many VkPhysicalDevice handles [...].
415 *
416 * Upon success, if pPhysicalDevices is NULL, vkEnumeratePhysicalDevices
417 * overwrites the contents of the variable pointed to by
418 * pPhysicalDeviceCount with the number of physical devices in in the
419 * instance; otherwise, vkEnumeratePhysicalDevices overwrites
420 * pPhysicalDeviceCount with the number of physical handles written to
421 * pPhysicalDevices.
422 */
423 if (!pPhysicalDevices) {
424 *pPhysicalDeviceCount = instance->physicalDeviceCount;
425 } else if (*pPhysicalDeviceCount >= 1) {
426 pPhysicalDevices[0] = anv_physical_device_to_handle(&instance->physicalDevice);
427 *pPhysicalDeviceCount = 1;
428 } else if (*pPhysicalDeviceCount < instance->physicalDeviceCount) {
429 return VK_INCOMPLETE;
430 } else {
431 *pPhysicalDeviceCount = 0;
432 }
433
434 return VK_SUCCESS;
435 }
436
437 void anv_GetPhysicalDeviceFeatures(
438 VkPhysicalDevice physicalDevice,
439 VkPhysicalDeviceFeatures* pFeatures)
440 {
441 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
442
443 *pFeatures = (VkPhysicalDeviceFeatures) {
444 .robustBufferAccess = true,
445 .fullDrawIndexUint32 = true,
446 .imageCubeArray = true,
447 .independentBlend = true,
448 .geometryShader = true,
449 .tessellationShader = true,
450 .sampleRateShading = true,
451 .dualSrcBlend = true,
452 .logicOp = true,
453 .multiDrawIndirect = false,
454 .drawIndirectFirstInstance = true,
455 .depthClamp = true,
456 .depthBiasClamp = true,
457 .fillModeNonSolid = true,
458 .depthBounds = false,
459 .wideLines = true,
460 .largePoints = true,
461 .alphaToOne = true,
462 .multiViewport = true,
463 .samplerAnisotropy = true,
464 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
465 pdevice->info.is_baytrail,
466 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
467 .textureCompressionBC = true,
468 .occlusionQueryPrecise = true,
469 .pipelineStatisticsQuery = false,
470 .fragmentStoresAndAtomics = true,
471 .shaderTessellationAndGeometryPointSize = true,
472 .shaderImageGatherExtended = true,
473 .shaderStorageImageExtendedFormats = true,
474 .shaderStorageImageMultisample = false,
475 .shaderStorageImageReadWithoutFormat = false,
476 .shaderStorageImageWriteWithoutFormat = true,
477 .shaderUniformBufferArrayDynamicIndexing = true,
478 .shaderSampledImageArrayDynamicIndexing = true,
479 .shaderStorageBufferArrayDynamicIndexing = true,
480 .shaderStorageImageArrayDynamicIndexing = true,
481 .shaderClipDistance = true,
482 .shaderCullDistance = true,
483 .shaderFloat64 = pdevice->info.gen >= 8,
484 .shaderInt64 = false,
485 .shaderInt16 = false,
486 .shaderResourceMinLod = false,
487 .variableMultisampleRate = false,
488 .inheritedQueries = false,
489 };
490
491 /* We can't do image stores in vec4 shaders */
492 pFeatures->vertexPipelineStoresAndAtomics =
493 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
494 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
495 }
496
497 void anv_GetPhysicalDeviceFeatures2KHR(
498 VkPhysicalDevice physicalDevice,
499 VkPhysicalDeviceFeatures2KHR* pFeatures)
500 {
501 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
502
503 vk_foreach_struct(ext, pFeatures->pNext) {
504 switch (ext->sType) {
505 default:
506 anv_debug_ignored_stype(ext->sType);
507 break;
508 }
509 }
510 }
511
512 void anv_GetPhysicalDeviceProperties(
513 VkPhysicalDevice physicalDevice,
514 VkPhysicalDeviceProperties* pProperties)
515 {
516 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
517 const struct gen_device_info *devinfo = &pdevice->info;
518
519 const float time_stamp_base = devinfo->gen >= 9 ? 83.333 : 80.0;
520
521 /* See assertions made when programming the buffer surface state. */
522 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
523 (1ul << 30) : (1ul << 27);
524
525 VkSampleCountFlags sample_counts =
526 isl_device_get_sample_counts(&pdevice->isl_dev);
527
528 VkPhysicalDeviceLimits limits = {
529 .maxImageDimension1D = (1 << 14),
530 .maxImageDimension2D = (1 << 14),
531 .maxImageDimension3D = (1 << 11),
532 .maxImageDimensionCube = (1 << 14),
533 .maxImageArrayLayers = (1 << 11),
534 .maxTexelBufferElements = 128 * 1024 * 1024,
535 .maxUniformBufferRange = (1ul << 27),
536 .maxStorageBufferRange = max_raw_buffer_sz,
537 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
538 .maxMemoryAllocationCount = UINT32_MAX,
539 .maxSamplerAllocationCount = 64 * 1024,
540 .bufferImageGranularity = 64, /* A cache line */
541 .sparseAddressSpaceSize = 0,
542 .maxBoundDescriptorSets = MAX_SETS,
543 .maxPerStageDescriptorSamplers = 64,
544 .maxPerStageDescriptorUniformBuffers = 64,
545 .maxPerStageDescriptorStorageBuffers = 64,
546 .maxPerStageDescriptorSampledImages = 64,
547 .maxPerStageDescriptorStorageImages = 64,
548 .maxPerStageDescriptorInputAttachments = 64,
549 .maxPerStageResources = 128,
550 .maxDescriptorSetSamplers = 256,
551 .maxDescriptorSetUniformBuffers = 256,
552 .maxDescriptorSetUniformBuffersDynamic = 256,
553 .maxDescriptorSetStorageBuffers = 256,
554 .maxDescriptorSetStorageBuffersDynamic = 256,
555 .maxDescriptorSetSampledImages = 256,
556 .maxDescriptorSetStorageImages = 256,
557 .maxDescriptorSetInputAttachments = 256,
558 .maxVertexInputAttributes = MAX_VBS,
559 .maxVertexInputBindings = MAX_VBS,
560 .maxVertexInputAttributeOffset = 2047,
561 .maxVertexInputBindingStride = 2048,
562 .maxVertexOutputComponents = 128,
563 .maxTessellationGenerationLevel = 64,
564 .maxTessellationPatchSize = 32,
565 .maxTessellationControlPerVertexInputComponents = 128,
566 .maxTessellationControlPerVertexOutputComponents = 128,
567 .maxTessellationControlPerPatchOutputComponents = 128,
568 .maxTessellationControlTotalOutputComponents = 2048,
569 .maxTessellationEvaluationInputComponents = 128,
570 .maxTessellationEvaluationOutputComponents = 128,
571 .maxGeometryShaderInvocations = 32,
572 .maxGeometryInputComponents = 64,
573 .maxGeometryOutputComponents = 128,
574 .maxGeometryOutputVertices = 256,
575 .maxGeometryTotalOutputComponents = 1024,
576 .maxFragmentInputComponents = 128,
577 .maxFragmentOutputAttachments = 8,
578 .maxFragmentDualSrcAttachments = 1,
579 .maxFragmentCombinedOutputResources = 8,
580 .maxComputeSharedMemorySize = 32768,
581 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
582 .maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
583 .maxComputeWorkGroupSize = {
584 16 * devinfo->max_cs_threads,
585 16 * devinfo->max_cs_threads,
586 16 * devinfo->max_cs_threads,
587 },
588 .subPixelPrecisionBits = 4 /* FIXME */,
589 .subTexelPrecisionBits = 4 /* FIXME */,
590 .mipmapPrecisionBits = 4 /* FIXME */,
591 .maxDrawIndexedIndexValue = UINT32_MAX,
592 .maxDrawIndirectCount = UINT32_MAX,
593 .maxSamplerLodBias = 16,
594 .maxSamplerAnisotropy = 16,
595 .maxViewports = MAX_VIEWPORTS,
596 .maxViewportDimensions = { (1 << 14), (1 << 14) },
597 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
598 .viewportSubPixelBits = 13, /* We take a float? */
599 .minMemoryMapAlignment = 4096, /* A page */
600 .minTexelBufferOffsetAlignment = 1,
601 .minUniformBufferOffsetAlignment = 16,
602 .minStorageBufferOffsetAlignment = 4,
603 .minTexelOffset = -8,
604 .maxTexelOffset = 7,
605 .minTexelGatherOffset = -32,
606 .maxTexelGatherOffset = 31,
607 .minInterpolationOffset = -0.5,
608 .maxInterpolationOffset = 0.4375,
609 .subPixelInterpolationOffsetBits = 4,
610 .maxFramebufferWidth = (1 << 14),
611 .maxFramebufferHeight = (1 << 14),
612 .maxFramebufferLayers = (1 << 11),
613 .framebufferColorSampleCounts = sample_counts,
614 .framebufferDepthSampleCounts = sample_counts,
615 .framebufferStencilSampleCounts = sample_counts,
616 .framebufferNoAttachmentsSampleCounts = sample_counts,
617 .maxColorAttachments = MAX_RTS,
618 .sampledImageColorSampleCounts = sample_counts,
619 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
620 .sampledImageDepthSampleCounts = sample_counts,
621 .sampledImageStencilSampleCounts = sample_counts,
622 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
623 .maxSampleMaskWords = 1,
624 .timestampComputeAndGraphics = false,
625 .timestampPeriod = time_stamp_base,
626 .maxClipDistances = 8,
627 .maxCullDistances = 8,
628 .maxCombinedClipAndCullDistances = 8,
629 .discreteQueuePriorities = 1,
630 .pointSizeRange = { 0.125, 255.875 },
631 .lineWidthRange = { 0.0, 7.9921875 },
632 .pointSizeGranularity = (1.0 / 8.0),
633 .lineWidthGranularity = (1.0 / 128.0),
634 .strictLines = false, /* FINISHME */
635 .standardSampleLocations = true,
636 .optimalBufferCopyOffsetAlignment = 128,
637 .optimalBufferCopyRowPitchAlignment = 128,
638 .nonCoherentAtomSize = 64,
639 };
640
641 *pProperties = (VkPhysicalDeviceProperties) {
642 .apiVersion = VK_MAKE_VERSION(1, 0, 42),
643 .driverVersion = 1,
644 .vendorID = 0x8086,
645 .deviceID = pdevice->chipset_id,
646 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
647 .limits = limits,
648 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
649 };
650
651 strcpy(pProperties->deviceName, pdevice->name);
652 memcpy(pProperties->pipelineCacheUUID, pdevice->uuid, VK_UUID_SIZE);
653 }
654
655 void anv_GetPhysicalDeviceProperties2KHR(
656 VkPhysicalDevice physicalDevice,
657 VkPhysicalDeviceProperties2KHR* pProperties)
658 {
659 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
660
661 vk_foreach_struct(ext, pProperties->pNext) {
662 switch (ext->sType) {
663 default:
664 anv_debug_ignored_stype(ext->sType);
665 break;
666 }
667 }
668 }
669
670 static void
671 anv_get_queue_family_properties(struct anv_physical_device *phys_dev,
672 VkQueueFamilyProperties *props)
673 {
674 *props = (VkQueueFamilyProperties) {
675 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
676 VK_QUEUE_COMPUTE_BIT |
677 VK_QUEUE_TRANSFER_BIT,
678 .queueCount = 1,
679 .timestampValidBits = 36, /* XXX: Real value here */
680 .minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
681 };
682 }
683
684 void anv_GetPhysicalDeviceQueueFamilyProperties(
685 VkPhysicalDevice physicalDevice,
686 uint32_t* pCount,
687 VkQueueFamilyProperties* pQueueFamilyProperties)
688 {
689 ANV_FROM_HANDLE(anv_physical_device, phys_dev, physicalDevice);
690
691 if (pQueueFamilyProperties == NULL) {
692 *pCount = 1;
693 return;
694 }
695
696 /* The spec implicitly allows the incoming count to be 0. From the Vulkan
697 * 1.0.38 spec, Section 4.1 Physical Devices:
698 *
699 * If the value referenced by pQueueFamilyPropertyCount is not 0 [then
700 * do stuff].
701 */
702 if (*pCount == 0)
703 return;
704
705 *pCount = 1;
706 anv_get_queue_family_properties(phys_dev, pQueueFamilyProperties);
707 }
708
709 void anv_GetPhysicalDeviceQueueFamilyProperties2KHR(
710 VkPhysicalDevice physicalDevice,
711 uint32_t* pQueueFamilyPropertyCount,
712 VkQueueFamilyProperties2KHR* pQueueFamilyProperties)
713 {
714
715 ANV_FROM_HANDLE(anv_physical_device, phys_dev, physicalDevice);
716
717 if (pQueueFamilyProperties == NULL) {
718 *pQueueFamilyPropertyCount = 1;
719 return;
720 }
721
722 /* The spec implicitly allows the incoming count to be 0. From the Vulkan
723 * 1.0.38 spec, Section 4.1 Physical Devices:
724 *
725 * If the value referenced by pQueueFamilyPropertyCount is not 0 [then
726 * do stuff].
727 */
728 if (*pQueueFamilyPropertyCount == 0)
729 return;
730
731 /* We support exactly one queue family. So need to traverse only the first
732 * array element's pNext chain.
733 */
734 *pQueueFamilyPropertyCount = 1;
735 anv_get_queue_family_properties(phys_dev,
736 &pQueueFamilyProperties->queueFamilyProperties);
737
738 vk_foreach_struct(ext, pQueueFamilyProperties->pNext) {
739 switch (ext->sType) {
740 default:
741 anv_debug_ignored_stype(ext->sType);
742 break;
743 }
744 }
745 }
746
747 void anv_GetPhysicalDeviceMemoryProperties(
748 VkPhysicalDevice physicalDevice,
749 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
750 {
751 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
752 VkDeviceSize heap_size;
753
754 /* Reserve some wiggle room for the driver by exposing only 75% of the
755 * aperture to the heap.
756 */
757 heap_size = 3 * physical_device->aperture_size / 4;
758
759 if (physical_device->info.has_llc) {
760 /* Big core GPUs share LLC with the CPU and thus one memory type can be
761 * both cached and coherent at the same time.
762 */
763 pMemoryProperties->memoryTypeCount = 1;
764 pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
765 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
766 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
767 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
768 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
769 .heapIndex = 0,
770 };
771 } else {
772 /* The spec requires that we expose a host-visible, coherent memory
773 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
774 * to give the application a choice between cached, but not coherent and
775 * coherent but uncached (WC though).
776 */
777 pMemoryProperties->memoryTypeCount = 2;
778 pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
779 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
780 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
781 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
782 .heapIndex = 0,
783 };
784 pMemoryProperties->memoryTypes[1] = (VkMemoryType) {
785 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
786 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
787 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
788 .heapIndex = 0,
789 };
790 }
791
792 pMemoryProperties->memoryHeapCount = 1;
793 pMemoryProperties->memoryHeaps[0] = (VkMemoryHeap) {
794 .size = heap_size,
795 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
796 };
797 }
798
799 void anv_GetPhysicalDeviceMemoryProperties2KHR(
800 VkPhysicalDevice physicalDevice,
801 VkPhysicalDeviceMemoryProperties2KHR* pMemoryProperties)
802 {
803 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
804 &pMemoryProperties->memoryProperties);
805
806 vk_foreach_struct(ext, pMemoryProperties->pNext) {
807 switch (ext->sType) {
808 default:
809 anv_debug_ignored_stype(ext->sType);
810 break;
811 }
812 }
813 }
814
815 PFN_vkVoidFunction anv_GetInstanceProcAddr(
816 VkInstance instance,
817 const char* pName)
818 {
819 return anv_lookup_entrypoint(NULL, pName);
820 }
821
822 /* With version 1+ of the loader interface the ICD should expose
823 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
824 */
825 PUBLIC
826 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
827 VkInstance instance,
828 const char* pName);
829
830 PUBLIC
831 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
832 VkInstance instance,
833 const char* pName)
834 {
835 return anv_GetInstanceProcAddr(instance, pName);
836 }
837
838 PFN_vkVoidFunction anv_GetDeviceProcAddr(
839 VkDevice _device,
840 const char* pName)
841 {
842 ANV_FROM_HANDLE(anv_device, device, _device);
843 return anv_lookup_entrypoint(&device->info, pName);
844 }
845
846 static void
847 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
848 {
849 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
850 queue->device = device;
851 queue->pool = &device->surface_state_pool;
852 }
853
854 static void
855 anv_queue_finish(struct anv_queue *queue)
856 {
857 }
858
859 static struct anv_state
860 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
861 {
862 struct anv_state state;
863
864 state = anv_state_pool_alloc(pool, size, align);
865 memcpy(state.map, p, size);
866
867 anv_state_flush(pool->block_pool->device, state);
868
869 return state;
870 }
871
872 struct gen8_border_color {
873 union {
874 float float32[4];
875 uint32_t uint32[4];
876 };
877 /* Pad out to 64 bytes */
878 uint32_t _pad[12];
879 };
880
881 static void
882 anv_device_init_border_colors(struct anv_device *device)
883 {
884 static const struct gen8_border_color border_colors[] = {
885 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
886 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
887 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
888 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
889 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
890 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
891 };
892
893 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
894 sizeof(border_colors), 64,
895 border_colors);
896 }
897
898 VkResult
899 anv_device_submit_simple_batch(struct anv_device *device,
900 struct anv_batch *batch)
901 {
902 struct drm_i915_gem_execbuffer2 execbuf;
903 struct drm_i915_gem_exec_object2 exec2_objects[1];
904 struct anv_bo bo, *exec_bos[1];
905 VkResult result = VK_SUCCESS;
906 uint32_t size;
907 int64_t timeout;
908 int ret;
909
910 /* Kernel driver requires 8 byte aligned batch length */
911 size = align_u32(batch->next - batch->start, 8);
912 result = anv_bo_pool_alloc(&device->batch_bo_pool, &bo, size);
913 if (result != VK_SUCCESS)
914 return result;
915
916 memcpy(bo.map, batch->start, size);
917 if (!device->info.has_llc)
918 anv_flush_range(bo.map, size);
919
920 exec_bos[0] = &bo;
921 exec2_objects[0].handle = bo.gem_handle;
922 exec2_objects[0].relocation_count = 0;
923 exec2_objects[0].relocs_ptr = 0;
924 exec2_objects[0].alignment = 0;
925 exec2_objects[0].offset = bo.offset;
926 exec2_objects[0].flags = 0;
927 exec2_objects[0].rsvd1 = 0;
928 exec2_objects[0].rsvd2 = 0;
929
930 execbuf.buffers_ptr = (uintptr_t) exec2_objects;
931 execbuf.buffer_count = 1;
932 execbuf.batch_start_offset = 0;
933 execbuf.batch_len = size;
934 execbuf.cliprects_ptr = 0;
935 execbuf.num_cliprects = 0;
936 execbuf.DR1 = 0;
937 execbuf.DR4 = 0;
938
939 execbuf.flags =
940 I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
941 execbuf.rsvd1 = device->context_id;
942 execbuf.rsvd2 = 0;
943
944 result = anv_device_execbuf(device, &execbuf, exec_bos);
945 if (result != VK_SUCCESS)
946 goto fail;
947
948 timeout = INT64_MAX;
949 ret = anv_gem_wait(device, bo.gem_handle, &timeout);
950 if (ret != 0) {
951 /* We don't know the real error. */
952 result = vk_errorf(VK_ERROR_DEVICE_LOST, "execbuf2 failed: %m");
953 goto fail;
954 }
955
956 fail:
957 anv_bo_pool_free(&device->batch_bo_pool, &bo);
958
959 return result;
960 }
961
962 VkResult anv_CreateDevice(
963 VkPhysicalDevice physicalDevice,
964 const VkDeviceCreateInfo* pCreateInfo,
965 const VkAllocationCallbacks* pAllocator,
966 VkDevice* pDevice)
967 {
968 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
969 VkResult result;
970 struct anv_device *device;
971
972 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
973
974 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
975 bool found = false;
976 for (uint32_t j = 0; j < ARRAY_SIZE(device_extensions); j++) {
977 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
978 device_extensions[j].extensionName) == 0) {
979 found = true;
980 break;
981 }
982 }
983 if (!found)
984 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
985 }
986
987 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
988 sizeof(*device), 8,
989 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
990 if (!device)
991 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
992
993 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
994 device->instance = physical_device->instance;
995 device->chipset_id = physical_device->chipset_id;
996
997 if (pAllocator)
998 device->alloc = *pAllocator;
999 else
1000 device->alloc = physical_device->instance->alloc;
1001
1002 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
1003 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
1004 if (device->fd == -1) {
1005 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1006 goto fail_device;
1007 }
1008
1009 device->context_id = anv_gem_create_context(device);
1010 if (device->context_id == -1) {
1011 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1012 goto fail_fd;
1013 }
1014
1015 device->info = physical_device->info;
1016 device->isl_dev = physical_device->isl_dev;
1017
1018 /* On Broadwell and later, we can use batch chaining to more efficiently
1019 * implement growing command buffers. Prior to Haswell, the kernel
1020 * command parser gets in the way and we have to fall back to growing
1021 * the batch.
1022 */
1023 device->can_chain_batches = device->info.gen >= 8;
1024
1025 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
1026 pCreateInfo->pEnabledFeatures->robustBufferAccess;
1027
1028 pthread_mutex_init(&device->mutex, NULL);
1029
1030 pthread_condattr_t condattr;
1031 pthread_condattr_init(&condattr);
1032 pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC);
1033 pthread_cond_init(&device->queue_submit, NULL);
1034 pthread_condattr_destroy(&condattr);
1035
1036 anv_bo_pool_init(&device->batch_bo_pool, device);
1037
1038 anv_block_pool_init(&device->dynamic_state_block_pool, device, 16384);
1039
1040 anv_state_pool_init(&device->dynamic_state_pool,
1041 &device->dynamic_state_block_pool);
1042
1043 anv_block_pool_init(&device->instruction_block_pool, device, 1024 * 1024);
1044 anv_state_pool_init(&device->instruction_state_pool,
1045 &device->instruction_block_pool);
1046
1047 anv_block_pool_init(&device->surface_state_block_pool, device, 4096);
1048
1049 anv_state_pool_init(&device->surface_state_pool,
1050 &device->surface_state_block_pool);
1051
1052 anv_bo_init_new(&device->workaround_bo, device, 1024);
1053
1054 anv_scratch_pool_init(device, &device->scratch_pool);
1055
1056 anv_queue_init(device, &device->queue);
1057
1058 switch (device->info.gen) {
1059 case 7:
1060 if (!device->info.is_haswell)
1061 result = gen7_init_device_state(device);
1062 else
1063 result = gen75_init_device_state(device);
1064 break;
1065 case 8:
1066 result = gen8_init_device_state(device);
1067 break;
1068 case 9:
1069 result = gen9_init_device_state(device);
1070 break;
1071 default:
1072 /* Shouldn't get here as we don't create physical devices for any other
1073 * gens. */
1074 unreachable("unhandled gen");
1075 }
1076 if (result != VK_SUCCESS)
1077 goto fail_fd;
1078
1079 anv_device_init_blorp(device);
1080
1081 anv_device_init_border_colors(device);
1082
1083 *pDevice = anv_device_to_handle(device);
1084
1085 return VK_SUCCESS;
1086
1087 fail_fd:
1088 close(device->fd);
1089 fail_device:
1090 vk_free(&device->alloc, device);
1091
1092 return result;
1093 }
1094
1095 void anv_DestroyDevice(
1096 VkDevice _device,
1097 const VkAllocationCallbacks* pAllocator)
1098 {
1099 ANV_FROM_HANDLE(anv_device, device, _device);
1100
1101 if (!device)
1102 return;
1103
1104 anv_device_finish_blorp(device);
1105
1106 anv_queue_finish(&device->queue);
1107
1108 #ifdef HAVE_VALGRIND
1109 /* We only need to free these to prevent valgrind errors. The backing
1110 * BO will go away in a couple of lines so we don't actually leak.
1111 */
1112 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
1113 #endif
1114
1115 anv_scratch_pool_finish(device, &device->scratch_pool);
1116
1117 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1118 anv_gem_close(device, device->workaround_bo.gem_handle);
1119
1120 anv_state_pool_finish(&device->surface_state_pool);
1121 anv_block_pool_finish(&device->surface_state_block_pool);
1122 anv_state_pool_finish(&device->instruction_state_pool);
1123 anv_block_pool_finish(&device->instruction_block_pool);
1124 anv_state_pool_finish(&device->dynamic_state_pool);
1125 anv_block_pool_finish(&device->dynamic_state_block_pool);
1126
1127 anv_bo_pool_finish(&device->batch_bo_pool);
1128
1129 pthread_cond_destroy(&device->queue_submit);
1130 pthread_mutex_destroy(&device->mutex);
1131
1132 anv_gem_destroy_context(device, device->context_id);
1133
1134 close(device->fd);
1135
1136 vk_free(&device->alloc, device);
1137 }
1138
1139 VkResult anv_EnumerateInstanceExtensionProperties(
1140 const char* pLayerName,
1141 uint32_t* pPropertyCount,
1142 VkExtensionProperties* pProperties)
1143 {
1144 if (pProperties == NULL) {
1145 *pPropertyCount = ARRAY_SIZE(global_extensions);
1146 return VK_SUCCESS;
1147 }
1148
1149 *pPropertyCount = MIN2(*pPropertyCount, ARRAY_SIZE(global_extensions));
1150 typed_memcpy(pProperties, global_extensions, *pPropertyCount);
1151
1152 if (*pPropertyCount < ARRAY_SIZE(global_extensions))
1153 return VK_INCOMPLETE;
1154
1155 return VK_SUCCESS;
1156 }
1157
1158 VkResult anv_EnumerateDeviceExtensionProperties(
1159 VkPhysicalDevice physicalDevice,
1160 const char* pLayerName,
1161 uint32_t* pPropertyCount,
1162 VkExtensionProperties* pProperties)
1163 {
1164 if (pProperties == NULL) {
1165 *pPropertyCount = ARRAY_SIZE(device_extensions);
1166 return VK_SUCCESS;
1167 }
1168
1169 *pPropertyCount = MIN2(*pPropertyCount, ARRAY_SIZE(device_extensions));
1170 typed_memcpy(pProperties, device_extensions, *pPropertyCount);
1171
1172 if (*pPropertyCount < ARRAY_SIZE(device_extensions))
1173 return VK_INCOMPLETE;
1174
1175 return VK_SUCCESS;
1176 }
1177
1178 VkResult anv_EnumerateInstanceLayerProperties(
1179 uint32_t* pPropertyCount,
1180 VkLayerProperties* pProperties)
1181 {
1182 if (pProperties == NULL) {
1183 *pPropertyCount = 0;
1184 return VK_SUCCESS;
1185 }
1186
1187 /* None supported at this time */
1188 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1189 }
1190
1191 VkResult anv_EnumerateDeviceLayerProperties(
1192 VkPhysicalDevice physicalDevice,
1193 uint32_t* pPropertyCount,
1194 VkLayerProperties* pProperties)
1195 {
1196 if (pProperties == NULL) {
1197 *pPropertyCount = 0;
1198 return VK_SUCCESS;
1199 }
1200
1201 /* None supported at this time */
1202 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1203 }
1204
1205 void anv_GetDeviceQueue(
1206 VkDevice _device,
1207 uint32_t queueNodeIndex,
1208 uint32_t queueIndex,
1209 VkQueue* pQueue)
1210 {
1211 ANV_FROM_HANDLE(anv_device, device, _device);
1212
1213 assert(queueIndex == 0);
1214
1215 *pQueue = anv_queue_to_handle(&device->queue);
1216 }
1217
1218 VkResult
1219 anv_device_execbuf(struct anv_device *device,
1220 struct drm_i915_gem_execbuffer2 *execbuf,
1221 struct anv_bo **execbuf_bos)
1222 {
1223 int ret = anv_gem_execbuffer(device, execbuf);
1224 if (ret != 0) {
1225 /* We don't know the real error. */
1226 return vk_errorf(VK_ERROR_DEVICE_LOST, "execbuf2 failed: %m");
1227 }
1228
1229 struct drm_i915_gem_exec_object2 *objects =
1230 (void *)(uintptr_t)execbuf->buffers_ptr;
1231 for (uint32_t k = 0; k < execbuf->buffer_count; k++)
1232 execbuf_bos[k]->offset = objects[k].offset;
1233
1234 return VK_SUCCESS;
1235 }
1236
1237 VkResult anv_QueueSubmit(
1238 VkQueue _queue,
1239 uint32_t submitCount,
1240 const VkSubmitInfo* pSubmits,
1241 VkFence _fence)
1242 {
1243 ANV_FROM_HANDLE(anv_queue, queue, _queue);
1244 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1245 struct anv_device *device = queue->device;
1246 VkResult result = VK_SUCCESS;
1247
1248 /* We lock around QueueSubmit for three main reasons:
1249 *
1250 * 1) When a block pool is resized, we create a new gem handle with a
1251 * different size and, in the case of surface states, possibly a
1252 * different center offset but we re-use the same anv_bo struct when
1253 * we do so. If this happens in the middle of setting up an execbuf,
1254 * we could end up with our list of BOs out of sync with our list of
1255 * gem handles.
1256 *
1257 * 2) The algorithm we use for building the list of unique buffers isn't
1258 * thread-safe. While the client is supposed to syncronize around
1259 * QueueSubmit, this would be extremely difficult to debug if it ever
1260 * came up in the wild due to a broken app. It's better to play it
1261 * safe and just lock around QueueSubmit.
1262 *
1263 * 3) The anv_cmd_buffer_execbuf function may perform relocations in
1264 * userspace. Due to the fact that the surface state buffer is shared
1265 * between batches, we can't afford to have that happen from multiple
1266 * threads at the same time. Even though the user is supposed to
1267 * ensure this doesn't happen, we play it safe as in (2) above.
1268 *
1269 * Since the only other things that ever take the device lock such as block
1270 * pool resize only rarely happen, this will almost never be contended so
1271 * taking a lock isn't really an expensive operation in this case.
1272 */
1273 pthread_mutex_lock(&device->mutex);
1274
1275 for (uint32_t i = 0; i < submitCount; i++) {
1276 for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
1277 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer,
1278 pSubmits[i].pCommandBuffers[j]);
1279 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1280
1281 result = anv_cmd_buffer_execbuf(device, cmd_buffer);
1282 if (result != VK_SUCCESS)
1283 goto out;
1284 }
1285 }
1286
1287 if (fence) {
1288 struct anv_bo *fence_bo = &fence->bo;
1289 result = anv_device_execbuf(device, &fence->execbuf, &fence_bo);
1290 if (result != VK_SUCCESS)
1291 goto out;
1292
1293 /* Update the fence and wake up any waiters */
1294 assert(fence->state == ANV_FENCE_STATE_RESET);
1295 fence->state = ANV_FENCE_STATE_SUBMITTED;
1296 pthread_cond_broadcast(&device->queue_submit);
1297 }
1298
1299 out:
1300 pthread_mutex_unlock(&device->mutex);
1301
1302 return result;
1303 }
1304
1305 VkResult anv_QueueWaitIdle(
1306 VkQueue _queue)
1307 {
1308 ANV_FROM_HANDLE(anv_queue, queue, _queue);
1309
1310 return anv_DeviceWaitIdle(anv_device_to_handle(queue->device));
1311 }
1312
1313 VkResult anv_DeviceWaitIdle(
1314 VkDevice _device)
1315 {
1316 ANV_FROM_HANDLE(anv_device, device, _device);
1317 struct anv_batch batch;
1318
1319 uint32_t cmds[8];
1320 batch.start = batch.next = cmds;
1321 batch.end = (void *) cmds + sizeof(cmds);
1322
1323 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1324 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1325
1326 return anv_device_submit_simple_batch(device, &batch);
1327 }
1328
1329 VkResult
1330 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
1331 {
1332 uint32_t gem_handle = anv_gem_create(device, size);
1333 if (!gem_handle)
1334 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1335
1336 anv_bo_init(bo, gem_handle, size);
1337
1338 return VK_SUCCESS;
1339 }
1340
1341 VkResult anv_AllocateMemory(
1342 VkDevice _device,
1343 const VkMemoryAllocateInfo* pAllocateInfo,
1344 const VkAllocationCallbacks* pAllocator,
1345 VkDeviceMemory* pMem)
1346 {
1347 ANV_FROM_HANDLE(anv_device, device, _device);
1348 struct anv_device_memory *mem;
1349 VkResult result;
1350
1351 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
1352
1353 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
1354 assert(pAllocateInfo->allocationSize > 0);
1355
1356 /* We support exactly one memory heap. */
1357 assert(pAllocateInfo->memoryTypeIndex == 0 ||
1358 (!device->info.has_llc && pAllocateInfo->memoryTypeIndex < 2));
1359
1360 /* FINISHME: Fail if allocation request exceeds heap size. */
1361
1362 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
1363 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1364 if (mem == NULL)
1365 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1366
1367 /* The kernel is going to give us whole pages anyway */
1368 uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096);
1369
1370 result = anv_bo_init_new(&mem->bo, device, alloc_size);
1371 if (result != VK_SUCCESS)
1372 goto fail;
1373
1374 mem->type_index = pAllocateInfo->memoryTypeIndex;
1375
1376 mem->map = NULL;
1377 mem->map_size = 0;
1378
1379 *pMem = anv_device_memory_to_handle(mem);
1380
1381 return VK_SUCCESS;
1382
1383 fail:
1384 vk_free2(&device->alloc, pAllocator, mem);
1385
1386 return result;
1387 }
1388
1389 void anv_FreeMemory(
1390 VkDevice _device,
1391 VkDeviceMemory _mem,
1392 const VkAllocationCallbacks* pAllocator)
1393 {
1394 ANV_FROM_HANDLE(anv_device, device, _device);
1395 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
1396
1397 if (mem == NULL)
1398 return;
1399
1400 if (mem->map)
1401 anv_UnmapMemory(_device, _mem);
1402
1403 if (mem->bo.map)
1404 anv_gem_munmap(mem->bo.map, mem->bo.size);
1405
1406 if (mem->bo.gem_handle != 0)
1407 anv_gem_close(device, mem->bo.gem_handle);
1408
1409 vk_free2(&device->alloc, pAllocator, mem);
1410 }
1411
1412 VkResult anv_MapMemory(
1413 VkDevice _device,
1414 VkDeviceMemory _memory,
1415 VkDeviceSize offset,
1416 VkDeviceSize size,
1417 VkMemoryMapFlags flags,
1418 void** ppData)
1419 {
1420 ANV_FROM_HANDLE(anv_device, device, _device);
1421 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1422
1423 if (mem == NULL) {
1424 *ppData = NULL;
1425 return VK_SUCCESS;
1426 }
1427
1428 if (size == VK_WHOLE_SIZE)
1429 size = mem->bo.size - offset;
1430
1431 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
1432 *
1433 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
1434 * assert(size != 0);
1435 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
1436 * equal to the size of the memory minus offset
1437 */
1438 assert(size > 0);
1439 assert(offset + size <= mem->bo.size);
1440
1441 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
1442 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
1443 * at a time is valid. We could just mmap up front and return an offset
1444 * pointer here, but that may exhaust virtual memory on 32 bit
1445 * userspace. */
1446
1447 uint32_t gem_flags = 0;
1448 if (!device->info.has_llc && mem->type_index == 0)
1449 gem_flags |= I915_MMAP_WC;
1450
1451 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
1452 uint64_t map_offset = offset & ~4095ull;
1453 assert(offset >= map_offset);
1454 uint64_t map_size = (offset + size) - map_offset;
1455
1456 /* Let's map whole pages */
1457 map_size = align_u64(map_size, 4096);
1458
1459 void *map = anv_gem_mmap(device, mem->bo.gem_handle,
1460 map_offset, map_size, gem_flags);
1461 if (map == MAP_FAILED)
1462 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
1463
1464 mem->map = map;
1465 mem->map_size = map_size;
1466
1467 *ppData = mem->map + (offset - map_offset);
1468
1469 return VK_SUCCESS;
1470 }
1471
1472 void anv_UnmapMemory(
1473 VkDevice _device,
1474 VkDeviceMemory _memory)
1475 {
1476 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1477
1478 if (mem == NULL)
1479 return;
1480
1481 anv_gem_munmap(mem->map, mem->map_size);
1482
1483 mem->map = NULL;
1484 mem->map_size = 0;
1485 }
1486
1487 static void
1488 clflush_mapped_ranges(struct anv_device *device,
1489 uint32_t count,
1490 const VkMappedMemoryRange *ranges)
1491 {
1492 for (uint32_t i = 0; i < count; i++) {
1493 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
1494 if (ranges[i].offset >= mem->map_size)
1495 continue;
1496
1497 anv_clflush_range(mem->map + ranges[i].offset,
1498 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
1499 }
1500 }
1501
1502 VkResult anv_FlushMappedMemoryRanges(
1503 VkDevice _device,
1504 uint32_t memoryRangeCount,
1505 const VkMappedMemoryRange* pMemoryRanges)
1506 {
1507 ANV_FROM_HANDLE(anv_device, device, _device);
1508
1509 if (device->info.has_llc)
1510 return VK_SUCCESS;
1511
1512 /* Make sure the writes we're flushing have landed. */
1513 __builtin_ia32_mfence();
1514
1515 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1516
1517 return VK_SUCCESS;
1518 }
1519
1520 VkResult anv_InvalidateMappedMemoryRanges(
1521 VkDevice _device,
1522 uint32_t memoryRangeCount,
1523 const VkMappedMemoryRange* pMemoryRanges)
1524 {
1525 ANV_FROM_HANDLE(anv_device, device, _device);
1526
1527 if (device->info.has_llc)
1528 return VK_SUCCESS;
1529
1530 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1531
1532 /* Make sure no reads get moved up above the invalidate. */
1533 __builtin_ia32_mfence();
1534
1535 return VK_SUCCESS;
1536 }
1537
1538 void anv_GetBufferMemoryRequirements(
1539 VkDevice _device,
1540 VkBuffer _buffer,
1541 VkMemoryRequirements* pMemoryRequirements)
1542 {
1543 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1544 ANV_FROM_HANDLE(anv_device, device, _device);
1545
1546 /* The Vulkan spec (git aaed022) says:
1547 *
1548 * memoryTypeBits is a bitfield and contains one bit set for every
1549 * supported memory type for the resource. The bit `1<<i` is set if and
1550 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1551 * structure for the physical device is supported.
1552 *
1553 * We support exactly one memory type on LLC, two on non-LLC.
1554 */
1555 pMemoryRequirements->memoryTypeBits = device->info.has_llc ? 1 : 3;
1556
1557 pMemoryRequirements->size = buffer->size;
1558 pMemoryRequirements->alignment = 16;
1559 }
1560
1561 void anv_GetImageMemoryRequirements(
1562 VkDevice _device,
1563 VkImage _image,
1564 VkMemoryRequirements* pMemoryRequirements)
1565 {
1566 ANV_FROM_HANDLE(anv_image, image, _image);
1567 ANV_FROM_HANDLE(anv_device, device, _device);
1568
1569 /* The Vulkan spec (git aaed022) says:
1570 *
1571 * memoryTypeBits is a bitfield and contains one bit set for every
1572 * supported memory type for the resource. The bit `1<<i` is set if and
1573 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
1574 * structure for the physical device is supported.
1575 *
1576 * We support exactly one memory type on LLC, two on non-LLC.
1577 */
1578 pMemoryRequirements->memoryTypeBits = device->info.has_llc ? 1 : 3;
1579
1580 pMemoryRequirements->size = image->size;
1581 pMemoryRequirements->alignment = image->alignment;
1582 }
1583
1584 void anv_GetImageSparseMemoryRequirements(
1585 VkDevice device,
1586 VkImage image,
1587 uint32_t* pSparseMemoryRequirementCount,
1588 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
1589 {
1590 stub();
1591 }
1592
1593 void anv_GetDeviceMemoryCommitment(
1594 VkDevice device,
1595 VkDeviceMemory memory,
1596 VkDeviceSize* pCommittedMemoryInBytes)
1597 {
1598 *pCommittedMemoryInBytes = 0;
1599 }
1600
1601 VkResult anv_BindBufferMemory(
1602 VkDevice device,
1603 VkBuffer _buffer,
1604 VkDeviceMemory _memory,
1605 VkDeviceSize memoryOffset)
1606 {
1607 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1608 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1609
1610 if (mem) {
1611 buffer->bo = &mem->bo;
1612 buffer->offset = memoryOffset;
1613 } else {
1614 buffer->bo = NULL;
1615 buffer->offset = 0;
1616 }
1617
1618 return VK_SUCCESS;
1619 }
1620
1621 VkResult anv_QueueBindSparse(
1622 VkQueue queue,
1623 uint32_t bindInfoCount,
1624 const VkBindSparseInfo* pBindInfo,
1625 VkFence fence)
1626 {
1627 stub_return(VK_ERROR_INCOMPATIBLE_DRIVER);
1628 }
1629
1630 VkResult anv_CreateFence(
1631 VkDevice _device,
1632 const VkFenceCreateInfo* pCreateInfo,
1633 const VkAllocationCallbacks* pAllocator,
1634 VkFence* pFence)
1635 {
1636 ANV_FROM_HANDLE(anv_device, device, _device);
1637 struct anv_bo fence_bo;
1638 struct anv_fence *fence;
1639 struct anv_batch batch;
1640 VkResult result;
1641
1642 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FENCE_CREATE_INFO);
1643
1644 result = anv_bo_pool_alloc(&device->batch_bo_pool, &fence_bo, 4096);
1645 if (result != VK_SUCCESS)
1646 return result;
1647
1648 /* Fences are small. Just store the CPU data structure in the BO. */
1649 fence = fence_bo.map;
1650 fence->bo = fence_bo;
1651
1652 /* Place the batch after the CPU data but on its own cache line. */
1653 const uint32_t batch_offset = align_u32(sizeof(*fence), CACHELINE_SIZE);
1654 batch.next = batch.start = fence->bo.map + batch_offset;
1655 batch.end = fence->bo.map + fence->bo.size;
1656 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1657 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1658
1659 if (!device->info.has_llc) {
1660 assert(((uintptr_t) batch.start & CACHELINE_MASK) == 0);
1661 assert(batch.next - batch.start <= CACHELINE_SIZE);
1662 __builtin_ia32_mfence();
1663 __builtin_ia32_clflush(batch.start);
1664 }
1665
1666 fence->exec2_objects[0].handle = fence->bo.gem_handle;
1667 fence->exec2_objects[0].relocation_count = 0;
1668 fence->exec2_objects[0].relocs_ptr = 0;
1669 fence->exec2_objects[0].alignment = 0;
1670 fence->exec2_objects[0].offset = fence->bo.offset;
1671 fence->exec2_objects[0].flags = 0;
1672 fence->exec2_objects[0].rsvd1 = 0;
1673 fence->exec2_objects[0].rsvd2 = 0;
1674
1675 fence->execbuf.buffers_ptr = (uintptr_t) fence->exec2_objects;
1676 fence->execbuf.buffer_count = 1;
1677 fence->execbuf.batch_start_offset = batch.start - fence->bo.map;
1678 fence->execbuf.batch_len = batch.next - batch.start;
1679 fence->execbuf.cliprects_ptr = 0;
1680 fence->execbuf.num_cliprects = 0;
1681 fence->execbuf.DR1 = 0;
1682 fence->execbuf.DR4 = 0;
1683
1684 fence->execbuf.flags =
1685 I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
1686 fence->execbuf.rsvd1 = device->context_id;
1687 fence->execbuf.rsvd2 = 0;
1688
1689 if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT) {
1690 fence->state = ANV_FENCE_STATE_SIGNALED;
1691 } else {
1692 fence->state = ANV_FENCE_STATE_RESET;
1693 }
1694
1695 *pFence = anv_fence_to_handle(fence);
1696
1697 return VK_SUCCESS;
1698 }
1699
1700 void anv_DestroyFence(
1701 VkDevice _device,
1702 VkFence _fence,
1703 const VkAllocationCallbacks* pAllocator)
1704 {
1705 ANV_FROM_HANDLE(anv_device, device, _device);
1706 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1707
1708 if (!fence)
1709 return;
1710
1711 assert(fence->bo.map == fence);
1712 anv_bo_pool_free(&device->batch_bo_pool, &fence->bo);
1713 }
1714
1715 VkResult anv_ResetFences(
1716 VkDevice _device,
1717 uint32_t fenceCount,
1718 const VkFence* pFences)
1719 {
1720 for (uint32_t i = 0; i < fenceCount; i++) {
1721 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1722 fence->state = ANV_FENCE_STATE_RESET;
1723 }
1724
1725 return VK_SUCCESS;
1726 }
1727
1728 VkResult anv_GetFenceStatus(
1729 VkDevice _device,
1730 VkFence _fence)
1731 {
1732 ANV_FROM_HANDLE(anv_device, device, _device);
1733 ANV_FROM_HANDLE(anv_fence, fence, _fence);
1734 int64_t t = 0;
1735 int ret;
1736
1737 switch (fence->state) {
1738 case ANV_FENCE_STATE_RESET:
1739 /* If it hasn't even been sent off to the GPU yet, it's not ready */
1740 return VK_NOT_READY;
1741
1742 case ANV_FENCE_STATE_SIGNALED:
1743 /* It's been signaled, return success */
1744 return VK_SUCCESS;
1745
1746 case ANV_FENCE_STATE_SUBMITTED:
1747 /* It's been submitted to the GPU but we don't know if it's done yet. */
1748 ret = anv_gem_wait(device, fence->bo.gem_handle, &t);
1749 if (ret == 0) {
1750 fence->state = ANV_FENCE_STATE_SIGNALED;
1751 return VK_SUCCESS;
1752 } else {
1753 return VK_NOT_READY;
1754 }
1755 default:
1756 unreachable("Invalid fence status");
1757 }
1758 }
1759
1760 #define NSEC_PER_SEC 1000000000
1761 #define INT_TYPE_MAX(type) ((1ull << (sizeof(type) * 8 - 1)) - 1)
1762
1763 VkResult anv_WaitForFences(
1764 VkDevice _device,
1765 uint32_t fenceCount,
1766 const VkFence* pFences,
1767 VkBool32 waitAll,
1768 uint64_t _timeout)
1769 {
1770 ANV_FROM_HANDLE(anv_device, device, _device);
1771 int ret;
1772
1773 /* DRM_IOCTL_I915_GEM_WAIT uses a signed 64 bit timeout and is supposed
1774 * to block indefinitely timeouts <= 0. Unfortunately, this was broken
1775 * for a couple of kernel releases. Since there's no way to know
1776 * whether or not the kernel we're using is one of the broken ones, the
1777 * best we can do is to clamp the timeout to INT64_MAX. This limits the
1778 * maximum timeout from 584 years to 292 years - likely not a big deal.
1779 */
1780 int64_t timeout = MIN2(_timeout, INT64_MAX);
1781
1782 uint32_t pending_fences = fenceCount;
1783 while (pending_fences) {
1784 pending_fences = 0;
1785 bool signaled_fences = false;
1786 for (uint32_t i = 0; i < fenceCount; i++) {
1787 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1788 switch (fence->state) {
1789 case ANV_FENCE_STATE_RESET:
1790 /* This fence hasn't been submitted yet, we'll catch it the next
1791 * time around. Yes, this may mean we dead-loop but, short of
1792 * lots of locking and a condition variable, there's not much that
1793 * we can do about that.
1794 */
1795 pending_fences++;
1796 continue;
1797
1798 case ANV_FENCE_STATE_SIGNALED:
1799 /* This fence is not pending. If waitAll isn't set, we can return
1800 * early. Otherwise, we have to keep going.
1801 */
1802 if (!waitAll)
1803 return VK_SUCCESS;
1804 continue;
1805
1806 case ANV_FENCE_STATE_SUBMITTED:
1807 /* These are the fences we really care about. Go ahead and wait
1808 * on it until we hit a timeout.
1809 */
1810 ret = anv_gem_wait(device, fence->bo.gem_handle, &timeout);
1811 if (ret == -1 && errno == ETIME) {
1812 return VK_TIMEOUT;
1813 } else if (ret == -1) {
1814 /* We don't know the real error. */
1815 return vk_errorf(VK_ERROR_DEVICE_LOST, "gem wait failed: %m");
1816 } else {
1817 fence->state = ANV_FENCE_STATE_SIGNALED;
1818 signaled_fences = true;
1819 if (!waitAll)
1820 return VK_SUCCESS;
1821 continue;
1822 }
1823 }
1824 }
1825
1826 if (pending_fences && !signaled_fences) {
1827 /* If we've hit this then someone decided to vkWaitForFences before
1828 * they've actually submitted any of them to a queue. This is a
1829 * fairly pessimal case, so it's ok to lock here and use a standard
1830 * pthreads condition variable.
1831 */
1832 pthread_mutex_lock(&device->mutex);
1833
1834 /* It's possible that some of the fences have changed state since the
1835 * last time we checked. Now that we have the lock, check for
1836 * pending fences again and don't wait if it's changed.
1837 */
1838 uint32_t now_pending_fences = 0;
1839 for (uint32_t i = 0; i < fenceCount; i++) {
1840 ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
1841 if (fence->state == ANV_FENCE_STATE_RESET)
1842 now_pending_fences++;
1843 }
1844 assert(now_pending_fences <= pending_fences);
1845
1846 if (now_pending_fences == pending_fences) {
1847 struct timespec before;
1848 clock_gettime(CLOCK_MONOTONIC, &before);
1849
1850 uint32_t abs_nsec = before.tv_nsec + timeout % NSEC_PER_SEC;
1851 uint64_t abs_sec = before.tv_sec + (abs_nsec / NSEC_PER_SEC) +
1852 (timeout / NSEC_PER_SEC);
1853 abs_nsec %= NSEC_PER_SEC;
1854
1855 /* Avoid roll-over in tv_sec on 32-bit systems if the user
1856 * provided timeout is UINT64_MAX
1857 */
1858 struct timespec abstime;
1859 abstime.tv_nsec = abs_nsec;
1860 abstime.tv_sec = MIN2(abs_sec, INT_TYPE_MAX(abstime.tv_sec));
1861
1862 ret = pthread_cond_timedwait(&device->queue_submit,
1863 &device->mutex, &abstime);
1864 assert(ret != EINVAL);
1865
1866 struct timespec after;
1867 clock_gettime(CLOCK_MONOTONIC, &after);
1868 uint64_t time_elapsed =
1869 ((uint64_t)after.tv_sec * NSEC_PER_SEC + after.tv_nsec) -
1870 ((uint64_t)before.tv_sec * NSEC_PER_SEC + before.tv_nsec);
1871
1872 if (time_elapsed >= timeout) {
1873 pthread_mutex_unlock(&device->mutex);
1874 return VK_TIMEOUT;
1875 }
1876
1877 timeout -= time_elapsed;
1878 }
1879
1880 pthread_mutex_unlock(&device->mutex);
1881 }
1882 }
1883
1884 return VK_SUCCESS;
1885 }
1886
1887 // Queue semaphore functions
1888
1889 VkResult anv_CreateSemaphore(
1890 VkDevice device,
1891 const VkSemaphoreCreateInfo* pCreateInfo,
1892 const VkAllocationCallbacks* pAllocator,
1893 VkSemaphore* pSemaphore)
1894 {
1895 /* The DRM execbuffer ioctl always execute in-oder, even between different
1896 * rings. As such, there's nothing to do for the user space semaphore.
1897 */
1898
1899 *pSemaphore = (VkSemaphore)1;
1900
1901 return VK_SUCCESS;
1902 }
1903
1904 void anv_DestroySemaphore(
1905 VkDevice device,
1906 VkSemaphore semaphore,
1907 const VkAllocationCallbacks* pAllocator)
1908 {
1909 }
1910
1911 // Event functions
1912
1913 VkResult anv_CreateEvent(
1914 VkDevice _device,
1915 const VkEventCreateInfo* pCreateInfo,
1916 const VkAllocationCallbacks* pAllocator,
1917 VkEvent* pEvent)
1918 {
1919 ANV_FROM_HANDLE(anv_device, device, _device);
1920 struct anv_state state;
1921 struct anv_event *event;
1922
1923 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
1924
1925 state = anv_state_pool_alloc(&device->dynamic_state_pool,
1926 sizeof(*event), 8);
1927 event = state.map;
1928 event->state = state;
1929 event->semaphore = VK_EVENT_RESET;
1930
1931 if (!device->info.has_llc) {
1932 /* Make sure the writes we're flushing have landed. */
1933 __builtin_ia32_mfence();
1934 __builtin_ia32_clflush(event);
1935 }
1936
1937 *pEvent = anv_event_to_handle(event);
1938
1939 return VK_SUCCESS;
1940 }
1941
1942 void anv_DestroyEvent(
1943 VkDevice _device,
1944 VkEvent _event,
1945 const VkAllocationCallbacks* pAllocator)
1946 {
1947 ANV_FROM_HANDLE(anv_device, device, _device);
1948 ANV_FROM_HANDLE(anv_event, event, _event);
1949
1950 if (!event)
1951 return;
1952
1953 anv_state_pool_free(&device->dynamic_state_pool, event->state);
1954 }
1955
1956 VkResult anv_GetEventStatus(
1957 VkDevice _device,
1958 VkEvent _event)
1959 {
1960 ANV_FROM_HANDLE(anv_device, device, _device);
1961 ANV_FROM_HANDLE(anv_event, event, _event);
1962
1963 if (!device->info.has_llc) {
1964 /* Invalidate read cache before reading event written by GPU. */
1965 __builtin_ia32_clflush(event);
1966 __builtin_ia32_mfence();
1967
1968 }
1969
1970 return event->semaphore;
1971 }
1972
1973 VkResult anv_SetEvent(
1974 VkDevice _device,
1975 VkEvent _event)
1976 {
1977 ANV_FROM_HANDLE(anv_device, device, _device);
1978 ANV_FROM_HANDLE(anv_event, event, _event);
1979
1980 event->semaphore = VK_EVENT_SET;
1981
1982 if (!device->info.has_llc) {
1983 /* Make sure the writes we're flushing have landed. */
1984 __builtin_ia32_mfence();
1985 __builtin_ia32_clflush(event);
1986 }
1987
1988 return VK_SUCCESS;
1989 }
1990
1991 VkResult anv_ResetEvent(
1992 VkDevice _device,
1993 VkEvent _event)
1994 {
1995 ANV_FROM_HANDLE(anv_device, device, _device);
1996 ANV_FROM_HANDLE(anv_event, event, _event);
1997
1998 event->semaphore = VK_EVENT_RESET;
1999
2000 if (!device->info.has_llc) {
2001 /* Make sure the writes we're flushing have landed. */
2002 __builtin_ia32_mfence();
2003 __builtin_ia32_clflush(event);
2004 }
2005
2006 return VK_SUCCESS;
2007 }
2008
2009 // Buffer functions
2010
2011 VkResult anv_CreateBuffer(
2012 VkDevice _device,
2013 const VkBufferCreateInfo* pCreateInfo,
2014 const VkAllocationCallbacks* pAllocator,
2015 VkBuffer* pBuffer)
2016 {
2017 ANV_FROM_HANDLE(anv_device, device, _device);
2018 struct anv_buffer *buffer;
2019
2020 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
2021
2022 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
2023 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2024 if (buffer == NULL)
2025 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2026
2027 buffer->size = pCreateInfo->size;
2028 buffer->usage = pCreateInfo->usage;
2029 buffer->bo = NULL;
2030 buffer->offset = 0;
2031
2032 *pBuffer = anv_buffer_to_handle(buffer);
2033
2034 return VK_SUCCESS;
2035 }
2036
2037 void anv_DestroyBuffer(
2038 VkDevice _device,
2039 VkBuffer _buffer,
2040 const VkAllocationCallbacks* pAllocator)
2041 {
2042 ANV_FROM_HANDLE(anv_device, device, _device);
2043 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2044
2045 if (!buffer)
2046 return;
2047
2048 vk_free2(&device->alloc, pAllocator, buffer);
2049 }
2050
2051 void
2052 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
2053 enum isl_format format,
2054 uint32_t offset, uint32_t range, uint32_t stride)
2055 {
2056 isl_buffer_fill_state(&device->isl_dev, state.map,
2057 .address = offset,
2058 .mocs = device->default_mocs,
2059 .size = range,
2060 .format = format,
2061 .stride = stride);
2062
2063 anv_state_flush(device, state);
2064 }
2065
2066 void anv_DestroySampler(
2067 VkDevice _device,
2068 VkSampler _sampler,
2069 const VkAllocationCallbacks* pAllocator)
2070 {
2071 ANV_FROM_HANDLE(anv_device, device, _device);
2072 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
2073
2074 if (!sampler)
2075 return;
2076
2077 vk_free2(&device->alloc, pAllocator, sampler);
2078 }
2079
2080 VkResult anv_CreateFramebuffer(
2081 VkDevice _device,
2082 const VkFramebufferCreateInfo* pCreateInfo,
2083 const VkAllocationCallbacks* pAllocator,
2084 VkFramebuffer* pFramebuffer)
2085 {
2086 ANV_FROM_HANDLE(anv_device, device, _device);
2087 struct anv_framebuffer *framebuffer;
2088
2089 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
2090
2091 size_t size = sizeof(*framebuffer) +
2092 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
2093 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
2094 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2095 if (framebuffer == NULL)
2096 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2097
2098 framebuffer->attachment_count = pCreateInfo->attachmentCount;
2099 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
2100 VkImageView _iview = pCreateInfo->pAttachments[i];
2101 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
2102 }
2103
2104 framebuffer->width = pCreateInfo->width;
2105 framebuffer->height = pCreateInfo->height;
2106 framebuffer->layers = pCreateInfo->layers;
2107
2108 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
2109
2110 return VK_SUCCESS;
2111 }
2112
2113 void anv_DestroyFramebuffer(
2114 VkDevice _device,
2115 VkFramebuffer _fb,
2116 const VkAllocationCallbacks* pAllocator)
2117 {
2118 ANV_FROM_HANDLE(anv_device, device, _device);
2119 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
2120
2121 if (!fb)
2122 return;
2123
2124 vk_free2(&device->alloc, pAllocator, fb);
2125 }
2126
2127 /* vk_icd.h does not declare this function, so we declare it here to
2128 * suppress Wmissing-prototypes.
2129 */
2130 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2131 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
2132
2133 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2134 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
2135 {
2136 /* For the full details on loader interface versioning, see
2137 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
2138 * What follows is a condensed summary, to help you navigate the large and
2139 * confusing official doc.
2140 *
2141 * - Loader interface v0 is incompatible with later versions. We don't
2142 * support it.
2143 *
2144 * - In loader interface v1:
2145 * - The first ICD entrypoint called by the loader is
2146 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
2147 * entrypoint.
2148 * - The ICD must statically expose no other Vulkan symbol unless it is
2149 * linked with -Bsymbolic.
2150 * - Each dispatchable Vulkan handle created by the ICD must be
2151 * a pointer to a struct whose first member is VK_LOADER_DATA. The
2152 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
2153 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
2154 * vkDestroySurfaceKHR(). The ICD must be capable of working with
2155 * such loader-managed surfaces.
2156 *
2157 * - Loader interface v2 differs from v1 in:
2158 * - The first ICD entrypoint called by the loader is
2159 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
2160 * statically expose this entrypoint.
2161 *
2162 * - Loader interface v3 differs from v2 in:
2163 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
2164 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
2165 * because the loader no longer does so.
2166 */
2167 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
2168 return VK_SUCCESS;
2169 }