2abf73dd95ed457f6251b91359d34161844d5a36
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include <drm_fourcc.h>
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/mesa-sha1.h"
39 #include "vk_util.h"
40
41 #include "genxml/gen7_pack.h"
42
43 static void
44 compiler_debug_log(void *data, const char *fmt, ...)
45 { }
46
47 static void
48 compiler_perf_log(void *data, const char *fmt, ...)
49 {
50 va_list args;
51 va_start(args, fmt);
52
53 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
54 intel_logd_v(fmt, args);
55
56 va_end(args);
57 }
58
59 static VkResult
60 anv_compute_heap_size(int fd, uint64_t *heap_size)
61 {
62 uint64_t gtt_size;
63 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
64 &gtt_size) == -1) {
65 /* If, for whatever reason, we can't actually get the GTT size from the
66 * kernel (too old?) fall back to the aperture size.
67 */
68 anv_perf_warn(NULL, NULL,
69 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
70
71 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
72 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
73 "failed to get aperture size: %m");
74 }
75 }
76
77 /* Query the total ram from the system */
78 struct sysinfo info;
79 sysinfo(&info);
80
81 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
82
83 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
84 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
85 */
86 uint64_t available_ram;
87 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
88 available_ram = total_ram / 2;
89 else
90 available_ram = total_ram * 3 / 4;
91
92 /* We also want to leave some padding for things we allocate in the driver,
93 * so don't go over 3/4 of the GTT either.
94 */
95 uint64_t available_gtt = gtt_size * 3 / 4;
96
97 *heap_size = MIN2(available_ram, available_gtt);
98
99 return VK_SUCCESS;
100 }
101
102 static VkResult
103 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
104 {
105 /* The kernel query only tells us whether or not the kernel supports the
106 * EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and not whether or not the
107 * hardware has actual 48bit address support.
108 */
109 device->supports_48bit_addresses =
110 (device->info.gen >= 8) && anv_gem_supports_48b_addresses(fd);
111
112 uint64_t heap_size;
113 VkResult result = anv_compute_heap_size(fd, &heap_size);
114 if (result != VK_SUCCESS)
115 return result;
116
117 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
118 /* When running with an overridden PCI ID, we may get a GTT size from
119 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
120 * address support can still fail. Just clamp the address space size to
121 * 2 GiB if we don't have 48-bit support.
122 */
123 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
124 "not support for 48-bit addresses",
125 __FILE__, __LINE__);
126 heap_size = 2ull << 30;
127 }
128
129 if (heap_size <= 3ull * (1ull << 30)) {
130 /* In this case, everything fits nicely into the 32-bit address space,
131 * so there's no need for supporting 48bit addresses on client-allocated
132 * memory objects.
133 */
134 device->memory.heap_count = 1;
135 device->memory.heaps[0] = (struct anv_memory_heap) {
136 .size = heap_size,
137 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
138 .supports_48bit_addresses = false,
139 };
140 } else {
141 /* Not everything will fit nicely into a 32-bit address space. In this
142 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
143 * larger 48-bit heap. If we're in this case, then we have a total heap
144 * size larger than 3GiB which most likely means they have 8 GiB of
145 * video memory and so carving off 1 GiB for the 32-bit heap should be
146 * reasonable.
147 */
148 const uint64_t heap_size_32bit = 1ull << 30;
149 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
150
151 assert(device->supports_48bit_addresses);
152
153 device->memory.heap_count = 2;
154 device->memory.heaps[0] = (struct anv_memory_heap) {
155 .size = heap_size_48bit,
156 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
157 .supports_48bit_addresses = true,
158 };
159 device->memory.heaps[1] = (struct anv_memory_heap) {
160 .size = heap_size_32bit,
161 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
162 .supports_48bit_addresses = false,
163 };
164 }
165
166 uint32_t type_count = 0;
167 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
168 uint32_t valid_buffer_usage = ~0;
169
170 /* There appears to be a hardware issue in the VF cache where it only
171 * considers the bottom 32 bits of memory addresses. If you happen to
172 * have two vertex buffers which get placed exactly 4 GiB apart and use
173 * them in back-to-back draw calls, you can get collisions. In order to
174 * solve this problem, we require vertex and index buffers be bound to
175 * memory allocated out of the 32-bit heap.
176 */
177 if (device->memory.heaps[heap].supports_48bit_addresses) {
178 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
179 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
180 }
181
182 if (device->info.has_llc) {
183 /* Big core GPUs share LLC with the CPU and thus one memory type can be
184 * both cached and coherent at the same time.
185 */
186 device->memory.types[type_count++] = (struct anv_memory_type) {
187 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
188 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
189 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
190 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
191 .heapIndex = heap,
192 .valid_buffer_usage = valid_buffer_usage,
193 };
194 } else {
195 /* The spec requires that we expose a host-visible, coherent memory
196 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
197 * to give the application a choice between cached, but not coherent and
198 * coherent but uncached (WC though).
199 */
200 device->memory.types[type_count++] = (struct anv_memory_type) {
201 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
202 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
203 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
204 .heapIndex = heap,
205 .valid_buffer_usage = valid_buffer_usage,
206 };
207 device->memory.types[type_count++] = (struct anv_memory_type) {
208 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
209 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
210 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
211 .heapIndex = heap,
212 .valid_buffer_usage = valid_buffer_usage,
213 };
214 }
215 }
216 device->memory.type_count = type_count;
217
218 return VK_SUCCESS;
219 }
220
221 static VkResult
222 anv_physical_device_init_uuids(struct anv_physical_device *device)
223 {
224 const struct build_id_note *note =
225 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
226 if (!note) {
227 return vk_errorf(device->instance, device,
228 VK_ERROR_INITIALIZATION_FAILED,
229 "Failed to find build-id");
230 }
231
232 unsigned build_id_len = build_id_length(note);
233 if (build_id_len < 20) {
234 return vk_errorf(device->instance, device,
235 VK_ERROR_INITIALIZATION_FAILED,
236 "build-id too short. It needs to be a SHA");
237 }
238
239 struct mesa_sha1 sha1_ctx;
240 uint8_t sha1[20];
241 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
242
243 /* The pipeline cache UUID is used for determining when a pipeline cache is
244 * invalid. It needs both a driver build and the PCI ID of the device.
245 */
246 _mesa_sha1_init(&sha1_ctx);
247 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
248 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
249 sizeof(device->chipset_id));
250 _mesa_sha1_final(&sha1_ctx, sha1);
251 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
252
253 /* The driver UUID is used for determining sharability of images and memory
254 * between two Vulkan instances in separate processes. People who want to
255 * share memory need to also check the device UUID (below) so all this
256 * needs to be is the build-id.
257 */
258 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
259
260 /* The device UUID uniquely identifies the given device within the machine.
261 * Since we never have more than one device, this doesn't need to be a real
262 * UUID. However, on the off-chance that someone tries to use this to
263 * cache pre-tiled images or something of the like, we use the PCI ID and
264 * some bits of ISL info to ensure that this is safe.
265 */
266 _mesa_sha1_init(&sha1_ctx);
267 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
268 sizeof(device->chipset_id));
269 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
270 sizeof(device->isl_dev.has_bit6_swizzling));
271 _mesa_sha1_final(&sha1_ctx, sha1);
272 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
273
274 return VK_SUCCESS;
275 }
276
277 static VkResult
278 anv_physical_device_init(struct anv_physical_device *device,
279 struct anv_instance *instance,
280 const char *path)
281 {
282 VkResult result;
283 int fd;
284
285 brw_process_intel_debug_variable();
286
287 fd = open(path, O_RDWR | O_CLOEXEC);
288 if (fd < 0)
289 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
290
291 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
292 device->instance = instance;
293
294 assert(strlen(path) < ARRAY_SIZE(device->path));
295 strncpy(device->path, path, ARRAY_SIZE(device->path));
296
297 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
298 if (!device->chipset_id) {
299 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
300 goto fail;
301 }
302
303 device->name = gen_get_device_name(device->chipset_id);
304 if (!gen_get_device_info(device->chipset_id, &device->info)) {
305 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
306 goto fail;
307 }
308
309 if (device->info.is_haswell) {
310 intel_logw("Haswell Vulkan support is incomplete");
311 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
312 intel_logw("Ivy Bridge Vulkan support is incomplete");
313 } else if (device->info.gen == 7 && device->info.is_baytrail) {
314 intel_logw("Bay Trail Vulkan support is incomplete");
315 } else if (device->info.gen >= 8 && device->info.gen <= 9) {
316 /* Broadwell, Cherryview, Skylake, Broxton, Kabylake, Coffelake is as
317 * fully supported as anything */
318 } else if (device->info.gen == 10) {
319 intel_logw("Cannonlake Vulkan support is alpha");
320 } else {
321 result = vk_errorf(device->instance, device,
322 VK_ERROR_INCOMPATIBLE_DRIVER,
323 "Vulkan not yet supported on %s", device->name);
324 goto fail;
325 }
326
327 device->cmd_parser_version = -1;
328 if (device->info.gen == 7) {
329 device->cmd_parser_version =
330 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
331 if (device->cmd_parser_version == -1) {
332 result = vk_errorf(device->instance, device,
333 VK_ERROR_INITIALIZATION_FAILED,
334 "failed to get command parser version");
335 goto fail;
336 }
337 }
338
339 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
340 result = vk_errorf(device->instance, device,
341 VK_ERROR_INITIALIZATION_FAILED,
342 "kernel missing gem wait");
343 goto fail;
344 }
345
346 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
347 result = vk_errorf(device->instance, device,
348 VK_ERROR_INITIALIZATION_FAILED,
349 "kernel missing execbuf2");
350 goto fail;
351 }
352
353 if (!device->info.has_llc &&
354 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
355 result = vk_errorf(device->instance, device,
356 VK_ERROR_INITIALIZATION_FAILED,
357 "kernel missing wc mmap");
358 goto fail;
359 }
360
361 result = anv_physical_device_init_heaps(device, fd);
362 if (result != VK_SUCCESS)
363 goto fail;
364
365 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
366 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
367 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
368 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
369 device->has_syncobj_wait = device->has_syncobj &&
370 anv_gem_supports_syncobj_wait(fd);
371
372 bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
373
374 /* Starting with Gen10, the timestamp frequency of the command streamer may
375 * vary from one part to another. We can query the value from the kernel.
376 */
377 if (device->info.gen >= 10) {
378 int timestamp_frequency =
379 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
380
381 if (timestamp_frequency < 0)
382 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
383 else
384 device->info.timestamp_frequency = timestamp_frequency;
385 }
386
387 /* GENs prior to 8 do not support EU/Subslice info */
388 if (device->info.gen >= 8) {
389 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
390 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
391
392 /* Without this information, we cannot get the right Braswell
393 * brandstrings, and we have to use conservative numbers for GPGPU on
394 * many platforms, but otherwise, things will just work.
395 */
396 if (device->subslice_total < 1 || device->eu_total < 1) {
397 intel_logw("Kernel 4.1 required to properly query GPU properties");
398 }
399 } else if (device->info.gen == 7) {
400 device->subslice_total = 1 << (device->info.gt - 1);
401 }
402
403 if (device->info.is_cherryview &&
404 device->subslice_total > 0 && device->eu_total > 0) {
405 /* Logical CS threads = EUs per subslice * num threads per EU */
406 uint32_t max_cs_threads =
407 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
408
409 /* Fuse configurations may give more threads than expected, never less. */
410 if (max_cs_threads > device->info.max_cs_threads)
411 device->info.max_cs_threads = max_cs_threads;
412 }
413
414 device->compiler = brw_compiler_create(NULL, &device->info);
415 if (device->compiler == NULL) {
416 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
417 goto fail;
418 }
419 device->compiler->shader_debug_log = compiler_debug_log;
420 device->compiler->shader_perf_log = compiler_perf_log;
421 device->compiler->supports_pull_constants = false;
422 device->compiler->constant_buffer_0_is_relative = true;
423
424 isl_device_init(&device->isl_dev, &device->info, swizzled);
425
426 result = anv_physical_device_init_uuids(device);
427 if (result != VK_SUCCESS)
428 goto fail;
429
430 result = anv_init_wsi(device);
431 if (result != VK_SUCCESS) {
432 ralloc_free(device->compiler);
433 goto fail;
434 }
435
436 anv_physical_device_get_supported_extensions(device,
437 &device->supported_extensions);
438
439 device->local_fd = fd;
440 return VK_SUCCESS;
441
442 fail:
443 close(fd);
444 return result;
445 }
446
447 static void
448 anv_physical_device_finish(struct anv_physical_device *device)
449 {
450 anv_finish_wsi(device);
451 ralloc_free(device->compiler);
452 close(device->local_fd);
453 }
454
455 static void *
456 default_alloc_func(void *pUserData, size_t size, size_t align,
457 VkSystemAllocationScope allocationScope)
458 {
459 return malloc(size);
460 }
461
462 static void *
463 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
464 size_t align, VkSystemAllocationScope allocationScope)
465 {
466 return realloc(pOriginal, size);
467 }
468
469 static void
470 default_free_func(void *pUserData, void *pMemory)
471 {
472 free(pMemory);
473 }
474
475 static const VkAllocationCallbacks default_alloc = {
476 .pUserData = NULL,
477 .pfnAllocation = default_alloc_func,
478 .pfnReallocation = default_realloc_func,
479 .pfnFree = default_free_func,
480 };
481
482 VkResult anv_EnumerateInstanceExtensionProperties(
483 const char* pLayerName,
484 uint32_t* pPropertyCount,
485 VkExtensionProperties* pProperties)
486 {
487 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
488
489 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
490 if (anv_instance_extensions_supported.extensions[i]) {
491 vk_outarray_append(&out, prop) {
492 *prop = anv_instance_extensions[i];
493 }
494 }
495 }
496
497 return vk_outarray_status(&out);
498 }
499
500 VkResult anv_CreateInstance(
501 const VkInstanceCreateInfo* pCreateInfo,
502 const VkAllocationCallbacks* pAllocator,
503 VkInstance* pInstance)
504 {
505 struct anv_instance *instance;
506 VkResult result;
507
508 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
509
510 /* Check if user passed a debug report callback to be used during
511 * Create/Destroy of instance.
512 */
513 const VkDebugReportCallbackCreateInfoEXT *ctor_cb =
514 vk_find_struct_const(pCreateInfo->pNext,
515 DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT);
516
517 uint32_t client_version;
518 if (pCreateInfo->pApplicationInfo &&
519 pCreateInfo->pApplicationInfo->apiVersion != 0) {
520 client_version = pCreateInfo->pApplicationInfo->apiVersion;
521 } else {
522 client_version = VK_MAKE_VERSION(1, 0, 0);
523 }
524
525 if (VK_MAKE_VERSION(1, 0, 0) > client_version ||
526 client_version > VK_MAKE_VERSION(1, 0, 0xfff)) {
527
528 if (ctor_cb && ctor_cb->flags & VK_DEBUG_REPORT_ERROR_BIT_EXT)
529 ctor_cb->pfnCallback(VK_DEBUG_REPORT_ERROR_BIT_EXT,
530 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT,
531 VK_NULL_HANDLE, /* No handle available yet. */
532 __LINE__,
533 0,
534 "anv",
535 "incompatible driver version",
536 ctor_cb->pUserData);
537
538 return vk_errorf(NULL, NULL, VK_ERROR_INCOMPATIBLE_DRIVER,
539 "Client requested version %d.%d.%d",
540 VK_VERSION_MAJOR(client_version),
541 VK_VERSION_MINOR(client_version),
542 VK_VERSION_PATCH(client_version));
543 }
544
545 struct anv_instance_extension_table enabled_extensions = {};
546 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
547 int idx;
548 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
549 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
550 anv_instance_extensions[idx].extensionName) == 0)
551 break;
552 }
553
554 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
555 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
556
557 if (!anv_instance_extensions_supported.extensions[idx])
558 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
559
560 enabled_extensions.extensions[idx] = true;
561 }
562
563 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
564 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
565 if (!instance)
566 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
567
568 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
569
570 if (pAllocator)
571 instance->alloc = *pAllocator;
572 else
573 instance->alloc = default_alloc;
574
575 instance->apiVersion = client_version;
576 instance->enabled_extensions = enabled_extensions;
577 instance->physicalDeviceCount = -1;
578
579 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
580 if (result != VK_SUCCESS) {
581 vk_free2(&default_alloc, pAllocator, instance);
582 return vk_error(result);
583 }
584
585 _mesa_locale_init();
586
587 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
588
589 *pInstance = anv_instance_to_handle(instance);
590
591 return VK_SUCCESS;
592 }
593
594 void anv_DestroyInstance(
595 VkInstance _instance,
596 const VkAllocationCallbacks* pAllocator)
597 {
598 ANV_FROM_HANDLE(anv_instance, instance, _instance);
599
600 if (!instance)
601 return;
602
603 if (instance->physicalDeviceCount > 0) {
604 /* We support at most one physical device. */
605 assert(instance->physicalDeviceCount == 1);
606 anv_physical_device_finish(&instance->physicalDevice);
607 }
608
609 VG(VALGRIND_DESTROY_MEMPOOL(instance));
610
611 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
612
613 _mesa_locale_fini();
614
615 vk_free(&instance->alloc, instance);
616 }
617
618 static VkResult
619 anv_enumerate_devices(struct anv_instance *instance)
620 {
621 /* TODO: Check for more devices ? */
622 drmDevicePtr devices[8];
623 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
624 int max_devices;
625
626 instance->physicalDeviceCount = 0;
627
628 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
629 if (max_devices < 1)
630 return VK_ERROR_INCOMPATIBLE_DRIVER;
631
632 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
633 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
634 devices[i]->bustype == DRM_BUS_PCI &&
635 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
636
637 result = anv_physical_device_init(&instance->physicalDevice,
638 instance,
639 devices[i]->nodes[DRM_NODE_RENDER]);
640 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
641 break;
642 }
643 }
644 drmFreeDevices(devices, max_devices);
645
646 if (result == VK_SUCCESS)
647 instance->physicalDeviceCount = 1;
648
649 return result;
650 }
651
652
653 VkResult anv_EnumeratePhysicalDevices(
654 VkInstance _instance,
655 uint32_t* pPhysicalDeviceCount,
656 VkPhysicalDevice* pPhysicalDevices)
657 {
658 ANV_FROM_HANDLE(anv_instance, instance, _instance);
659 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
660 VkResult result;
661
662 if (instance->physicalDeviceCount < 0) {
663 result = anv_enumerate_devices(instance);
664 if (result != VK_SUCCESS &&
665 result != VK_ERROR_INCOMPATIBLE_DRIVER)
666 return result;
667 }
668
669 if (instance->physicalDeviceCount > 0) {
670 assert(instance->physicalDeviceCount == 1);
671 vk_outarray_append(&out, i) {
672 *i = anv_physical_device_to_handle(&instance->physicalDevice);
673 }
674 }
675
676 return vk_outarray_status(&out);
677 }
678
679 void anv_GetPhysicalDeviceFeatures(
680 VkPhysicalDevice physicalDevice,
681 VkPhysicalDeviceFeatures* pFeatures)
682 {
683 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
684
685 *pFeatures = (VkPhysicalDeviceFeatures) {
686 .robustBufferAccess = true,
687 .fullDrawIndexUint32 = true,
688 .imageCubeArray = true,
689 .independentBlend = true,
690 .geometryShader = true,
691 .tessellationShader = true,
692 .sampleRateShading = true,
693 .dualSrcBlend = true,
694 .logicOp = true,
695 .multiDrawIndirect = true,
696 .drawIndirectFirstInstance = true,
697 .depthClamp = true,
698 .depthBiasClamp = true,
699 .fillModeNonSolid = true,
700 .depthBounds = false,
701 .wideLines = true,
702 .largePoints = true,
703 .alphaToOne = true,
704 .multiViewport = true,
705 .samplerAnisotropy = true,
706 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
707 pdevice->info.is_baytrail,
708 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
709 .textureCompressionBC = true,
710 .occlusionQueryPrecise = true,
711 .pipelineStatisticsQuery = true,
712 .fragmentStoresAndAtomics = true,
713 .shaderTessellationAndGeometryPointSize = true,
714 .shaderImageGatherExtended = true,
715 .shaderStorageImageExtendedFormats = true,
716 .shaderStorageImageMultisample = false,
717 .shaderStorageImageReadWithoutFormat = false,
718 .shaderStorageImageWriteWithoutFormat = true,
719 .shaderUniformBufferArrayDynamicIndexing = true,
720 .shaderSampledImageArrayDynamicIndexing = true,
721 .shaderStorageBufferArrayDynamicIndexing = true,
722 .shaderStorageImageArrayDynamicIndexing = true,
723 .shaderClipDistance = true,
724 .shaderCullDistance = true,
725 .shaderFloat64 = pdevice->info.gen >= 8,
726 .shaderInt64 = pdevice->info.gen >= 8,
727 .shaderInt16 = false,
728 .shaderResourceMinLod = false,
729 .variableMultisampleRate = false,
730 .inheritedQueries = true,
731 };
732
733 /* We can't do image stores in vec4 shaders */
734 pFeatures->vertexPipelineStoresAndAtomics =
735 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
736 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
737 }
738
739 void anv_GetPhysicalDeviceFeatures2KHR(
740 VkPhysicalDevice physicalDevice,
741 VkPhysicalDeviceFeatures2KHR* pFeatures)
742 {
743 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
744
745 vk_foreach_struct(ext, pFeatures->pNext) {
746 switch (ext->sType) {
747 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES_KHX: {
748 VkPhysicalDeviceMultiviewFeaturesKHX *features =
749 (VkPhysicalDeviceMultiviewFeaturesKHX *)ext;
750 features->multiview = true;
751 features->multiviewGeometryShader = true;
752 features->multiviewTessellationShader = true;
753 break;
754 }
755
756 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES_KHR: {
757 VkPhysicalDeviceVariablePointerFeaturesKHR *features = (void *)ext;
758 features->variablePointersStorageBuffer = true;
759 features->variablePointers = true;
760 break;
761 }
762
763 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES_KHR: {
764 VkPhysicalDeviceSamplerYcbcrConversionFeaturesKHR *features =
765 (VkPhysicalDeviceSamplerYcbcrConversionFeaturesKHR *) ext;
766 features->samplerYcbcrConversion = true;
767 break;
768 }
769
770 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES_KHR: {
771 VkPhysicalDevice16BitStorageFeaturesKHR *features =
772 (VkPhysicalDevice16BitStorageFeaturesKHR *)ext;
773
774 features->storageBuffer16BitAccess = false;
775 features->uniformAndStorageBuffer16BitAccess = false;
776 features->storagePushConstant16 = false;
777 features->storageInputOutput16 = false;
778 break;
779 }
780
781 default:
782 anv_debug_ignored_stype(ext->sType);
783 break;
784 }
785 }
786 }
787
788 void anv_GetPhysicalDeviceProperties(
789 VkPhysicalDevice physicalDevice,
790 VkPhysicalDeviceProperties* pProperties)
791 {
792 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
793 const struct gen_device_info *devinfo = &pdevice->info;
794
795 /* See assertions made when programming the buffer surface state. */
796 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
797 (1ul << 30) : (1ul << 27);
798
799 const uint32_t max_samplers = (devinfo->gen >= 8 || devinfo->is_haswell) ?
800 128 : 16;
801
802 VkSampleCountFlags sample_counts =
803 isl_device_get_sample_counts(&pdevice->isl_dev);
804
805 VkPhysicalDeviceLimits limits = {
806 .maxImageDimension1D = (1 << 14),
807 .maxImageDimension2D = (1 << 14),
808 .maxImageDimension3D = (1 << 11),
809 .maxImageDimensionCube = (1 << 14),
810 .maxImageArrayLayers = (1 << 11),
811 .maxTexelBufferElements = 128 * 1024 * 1024,
812 .maxUniformBufferRange = (1ul << 27),
813 .maxStorageBufferRange = max_raw_buffer_sz,
814 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
815 .maxMemoryAllocationCount = UINT32_MAX,
816 .maxSamplerAllocationCount = 64 * 1024,
817 .bufferImageGranularity = 64, /* A cache line */
818 .sparseAddressSpaceSize = 0,
819 .maxBoundDescriptorSets = MAX_SETS,
820 .maxPerStageDescriptorSamplers = max_samplers,
821 .maxPerStageDescriptorUniformBuffers = 64,
822 .maxPerStageDescriptorStorageBuffers = 64,
823 .maxPerStageDescriptorSampledImages = max_samplers,
824 .maxPerStageDescriptorStorageImages = 64,
825 .maxPerStageDescriptorInputAttachments = 64,
826 .maxPerStageResources = 250,
827 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
828 .maxDescriptorSetUniformBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorUniformBuffers */
829 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
830 .maxDescriptorSetStorageBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorStorageBuffers */
831 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
832 .maxDescriptorSetSampledImages = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSampledImages */
833 .maxDescriptorSetStorageImages = 6 * 64, /* number of stages * maxPerStageDescriptorStorageImages */
834 .maxDescriptorSetInputAttachments = 256,
835 .maxVertexInputAttributes = MAX_VBS,
836 .maxVertexInputBindings = MAX_VBS,
837 .maxVertexInputAttributeOffset = 2047,
838 .maxVertexInputBindingStride = 2048,
839 .maxVertexOutputComponents = 128,
840 .maxTessellationGenerationLevel = 64,
841 .maxTessellationPatchSize = 32,
842 .maxTessellationControlPerVertexInputComponents = 128,
843 .maxTessellationControlPerVertexOutputComponents = 128,
844 .maxTessellationControlPerPatchOutputComponents = 128,
845 .maxTessellationControlTotalOutputComponents = 2048,
846 .maxTessellationEvaluationInputComponents = 128,
847 .maxTessellationEvaluationOutputComponents = 128,
848 .maxGeometryShaderInvocations = 32,
849 .maxGeometryInputComponents = 64,
850 .maxGeometryOutputComponents = 128,
851 .maxGeometryOutputVertices = 256,
852 .maxGeometryTotalOutputComponents = 1024,
853 .maxFragmentInputComponents = 128,
854 .maxFragmentOutputAttachments = 8,
855 .maxFragmentDualSrcAttachments = 1,
856 .maxFragmentCombinedOutputResources = 8,
857 .maxComputeSharedMemorySize = 32768,
858 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
859 .maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
860 .maxComputeWorkGroupSize = {
861 16 * devinfo->max_cs_threads,
862 16 * devinfo->max_cs_threads,
863 16 * devinfo->max_cs_threads,
864 },
865 .subPixelPrecisionBits = 4 /* FIXME */,
866 .subTexelPrecisionBits = 4 /* FIXME */,
867 .mipmapPrecisionBits = 4 /* FIXME */,
868 .maxDrawIndexedIndexValue = UINT32_MAX,
869 .maxDrawIndirectCount = UINT32_MAX,
870 .maxSamplerLodBias = 16,
871 .maxSamplerAnisotropy = 16,
872 .maxViewports = MAX_VIEWPORTS,
873 .maxViewportDimensions = { (1 << 14), (1 << 14) },
874 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
875 .viewportSubPixelBits = 13, /* We take a float? */
876 .minMemoryMapAlignment = 4096, /* A page */
877 .minTexelBufferOffsetAlignment = 1,
878 /* We need 16 for UBO block reads to work and 32 for push UBOs */
879 .minUniformBufferOffsetAlignment = 32,
880 .minStorageBufferOffsetAlignment = 4,
881 .minTexelOffset = -8,
882 .maxTexelOffset = 7,
883 .minTexelGatherOffset = -32,
884 .maxTexelGatherOffset = 31,
885 .minInterpolationOffset = -0.5,
886 .maxInterpolationOffset = 0.4375,
887 .subPixelInterpolationOffsetBits = 4,
888 .maxFramebufferWidth = (1 << 14),
889 .maxFramebufferHeight = (1 << 14),
890 .maxFramebufferLayers = (1 << 11),
891 .framebufferColorSampleCounts = sample_counts,
892 .framebufferDepthSampleCounts = sample_counts,
893 .framebufferStencilSampleCounts = sample_counts,
894 .framebufferNoAttachmentsSampleCounts = sample_counts,
895 .maxColorAttachments = MAX_RTS,
896 .sampledImageColorSampleCounts = sample_counts,
897 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
898 .sampledImageDepthSampleCounts = sample_counts,
899 .sampledImageStencilSampleCounts = sample_counts,
900 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
901 .maxSampleMaskWords = 1,
902 .timestampComputeAndGraphics = false,
903 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
904 .maxClipDistances = 8,
905 .maxCullDistances = 8,
906 .maxCombinedClipAndCullDistances = 8,
907 .discreteQueuePriorities = 1,
908 .pointSizeRange = { 0.125, 255.875 },
909 .lineWidthRange = { 0.0, 7.9921875 },
910 .pointSizeGranularity = (1.0 / 8.0),
911 .lineWidthGranularity = (1.0 / 128.0),
912 .strictLines = false, /* FINISHME */
913 .standardSampleLocations = true,
914 .optimalBufferCopyOffsetAlignment = 128,
915 .optimalBufferCopyRowPitchAlignment = 128,
916 .nonCoherentAtomSize = 64,
917 };
918
919 *pProperties = (VkPhysicalDeviceProperties) {
920 .apiVersion = anv_physical_device_api_version(pdevice),
921 .driverVersion = vk_get_driver_version(),
922 .vendorID = 0x8086,
923 .deviceID = pdevice->chipset_id,
924 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
925 .limits = limits,
926 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
927 };
928
929 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
930 "%s", pdevice->name);
931 memcpy(pProperties->pipelineCacheUUID,
932 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
933 }
934
935 void anv_GetPhysicalDeviceProperties2KHR(
936 VkPhysicalDevice physicalDevice,
937 VkPhysicalDeviceProperties2KHR* pProperties)
938 {
939 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
940
941 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
942
943 vk_foreach_struct(ext, pProperties->pNext) {
944 switch (ext->sType) {
945 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
946 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
947 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
948
949 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
950 break;
951 }
952
953 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES_KHR: {
954 VkPhysicalDeviceIDPropertiesKHR *id_props =
955 (VkPhysicalDeviceIDPropertiesKHR *)ext;
956 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
957 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
958 /* The LUID is for Windows. */
959 id_props->deviceLUIDValid = false;
960 break;
961 }
962
963 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES_KHX: {
964 VkPhysicalDeviceMultiviewPropertiesKHX *properties =
965 (VkPhysicalDeviceMultiviewPropertiesKHX *)ext;
966 properties->maxMultiviewViewCount = 16;
967 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
968 break;
969 }
970
971 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES_KHR: {
972 VkPhysicalDevicePointClippingPropertiesKHR *properties =
973 (VkPhysicalDevicePointClippingPropertiesKHR *) ext;
974 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES_KHR;
975 anv_finishme("Implement pop-free point clipping");
976 break;
977 }
978
979 default:
980 anv_debug_ignored_stype(ext->sType);
981 break;
982 }
983 }
984 }
985
986 /* We support exactly one queue family. */
987 static const VkQueueFamilyProperties
988 anv_queue_family_properties = {
989 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
990 VK_QUEUE_COMPUTE_BIT |
991 VK_QUEUE_TRANSFER_BIT,
992 .queueCount = 1,
993 .timestampValidBits = 36, /* XXX: Real value here */
994 .minImageTransferGranularity = { 1, 1, 1 },
995 };
996
997 void anv_GetPhysicalDeviceQueueFamilyProperties(
998 VkPhysicalDevice physicalDevice,
999 uint32_t* pCount,
1000 VkQueueFamilyProperties* pQueueFamilyProperties)
1001 {
1002 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1003
1004 vk_outarray_append(&out, p) {
1005 *p = anv_queue_family_properties;
1006 }
1007 }
1008
1009 void anv_GetPhysicalDeviceQueueFamilyProperties2KHR(
1010 VkPhysicalDevice physicalDevice,
1011 uint32_t* pQueueFamilyPropertyCount,
1012 VkQueueFamilyProperties2KHR* pQueueFamilyProperties)
1013 {
1014
1015 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1016
1017 vk_outarray_append(&out, p) {
1018 p->queueFamilyProperties = anv_queue_family_properties;
1019
1020 vk_foreach_struct(s, p->pNext) {
1021 anv_debug_ignored_stype(s->sType);
1022 }
1023 }
1024 }
1025
1026 void anv_GetPhysicalDeviceMemoryProperties(
1027 VkPhysicalDevice physicalDevice,
1028 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1029 {
1030 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1031
1032 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1033 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1034 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1035 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1036 .heapIndex = physical_device->memory.types[i].heapIndex,
1037 };
1038 }
1039
1040 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1041 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1042 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1043 .size = physical_device->memory.heaps[i].size,
1044 .flags = physical_device->memory.heaps[i].flags,
1045 };
1046 }
1047 }
1048
1049 void anv_GetPhysicalDeviceMemoryProperties2KHR(
1050 VkPhysicalDevice physicalDevice,
1051 VkPhysicalDeviceMemoryProperties2KHR* pMemoryProperties)
1052 {
1053 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1054 &pMemoryProperties->memoryProperties);
1055
1056 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1057 switch (ext->sType) {
1058 default:
1059 anv_debug_ignored_stype(ext->sType);
1060 break;
1061 }
1062 }
1063 }
1064
1065 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1066 VkInstance instance,
1067 const char* pName)
1068 {
1069 return anv_lookup_entrypoint(NULL, pName);
1070 }
1071
1072 /* With version 1+ of the loader interface the ICD should expose
1073 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1074 */
1075 PUBLIC
1076 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1077 VkInstance instance,
1078 const char* pName);
1079
1080 PUBLIC
1081 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1082 VkInstance instance,
1083 const char* pName)
1084 {
1085 return anv_GetInstanceProcAddr(instance, pName);
1086 }
1087
1088 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1089 VkDevice _device,
1090 const char* pName)
1091 {
1092 ANV_FROM_HANDLE(anv_device, device, _device);
1093 return anv_lookup_entrypoint(&device->info, pName);
1094 }
1095
1096 VkResult
1097 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1098 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1099 const VkAllocationCallbacks* pAllocator,
1100 VkDebugReportCallbackEXT* pCallback)
1101 {
1102 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1103 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1104 pCreateInfo, pAllocator, &instance->alloc,
1105 pCallback);
1106 }
1107
1108 void
1109 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1110 VkDebugReportCallbackEXT _callback,
1111 const VkAllocationCallbacks* pAllocator)
1112 {
1113 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1114 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1115 _callback, pAllocator, &instance->alloc);
1116 }
1117
1118 void
1119 anv_DebugReportMessageEXT(VkInstance _instance,
1120 VkDebugReportFlagsEXT flags,
1121 VkDebugReportObjectTypeEXT objectType,
1122 uint64_t object,
1123 size_t location,
1124 int32_t messageCode,
1125 const char* pLayerPrefix,
1126 const char* pMessage)
1127 {
1128 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1129 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
1130 object, location, messageCode, pLayerPrefix, pMessage);
1131 }
1132
1133 static void
1134 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1135 {
1136 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1137 queue->device = device;
1138 queue->pool = &device->surface_state_pool;
1139 }
1140
1141 static void
1142 anv_queue_finish(struct anv_queue *queue)
1143 {
1144 }
1145
1146 static struct anv_state
1147 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1148 {
1149 struct anv_state state;
1150
1151 state = anv_state_pool_alloc(pool, size, align);
1152 memcpy(state.map, p, size);
1153
1154 anv_state_flush(pool->block_pool.device, state);
1155
1156 return state;
1157 }
1158
1159 struct gen8_border_color {
1160 union {
1161 float float32[4];
1162 uint32_t uint32[4];
1163 };
1164 /* Pad out to 64 bytes */
1165 uint32_t _pad[12];
1166 };
1167
1168 static void
1169 anv_device_init_border_colors(struct anv_device *device)
1170 {
1171 static const struct gen8_border_color border_colors[] = {
1172 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1173 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1174 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1175 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1176 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1177 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1178 };
1179
1180 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
1181 sizeof(border_colors), 64,
1182 border_colors);
1183 }
1184
1185 static void
1186 anv_device_init_trivial_batch(struct anv_device *device)
1187 {
1188 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
1189
1190 if (device->instance->physicalDevice.has_exec_async)
1191 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
1192
1193 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
1194 0, 4096, 0);
1195
1196 struct anv_batch batch = {
1197 .start = map,
1198 .next = map,
1199 .end = map + 4096,
1200 };
1201
1202 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1203 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1204
1205 if (!device->info.has_llc)
1206 gen_clflush_range(map, batch.next - map);
1207
1208 anv_gem_munmap(map, device->trivial_batch_bo.size);
1209 }
1210
1211 VkResult anv_EnumerateDeviceExtensionProperties(
1212 VkPhysicalDevice physicalDevice,
1213 const char* pLayerName,
1214 uint32_t* pPropertyCount,
1215 VkExtensionProperties* pProperties)
1216 {
1217 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1218 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
1219 (void)device;
1220
1221 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
1222 if (device->supported_extensions.extensions[i]) {
1223 vk_outarray_append(&out, prop) {
1224 *prop = anv_device_extensions[i];
1225 }
1226 }
1227 }
1228
1229 return vk_outarray_status(&out);
1230 }
1231
1232 VkResult anv_CreateDevice(
1233 VkPhysicalDevice physicalDevice,
1234 const VkDeviceCreateInfo* pCreateInfo,
1235 const VkAllocationCallbacks* pAllocator,
1236 VkDevice* pDevice)
1237 {
1238 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1239 VkResult result;
1240 struct anv_device *device;
1241
1242 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
1243
1244 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
1245 int idx;
1246 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
1247 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
1248 anv_device_extensions[idx].extensionName) == 0)
1249 break;
1250 }
1251
1252 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
1253 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1254
1255 if (!physical_device->supported_extensions.extensions[idx])
1256 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1257 }
1258
1259 /* Check enabled features */
1260 if (pCreateInfo->pEnabledFeatures) {
1261 VkPhysicalDeviceFeatures supported_features;
1262 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
1263 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
1264 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
1265 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
1266 for (uint32_t i = 0; i < num_features; i++) {
1267 if (enabled_feature[i] && !supported_feature[i])
1268 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
1269 }
1270 }
1271
1272 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
1273 sizeof(*device), 8,
1274 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1275 if (!device)
1276 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1277
1278 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1279 device->instance = physical_device->instance;
1280 device->chipset_id = physical_device->chipset_id;
1281 device->lost = false;
1282
1283 if (pAllocator)
1284 device->alloc = *pAllocator;
1285 else
1286 device->alloc = physical_device->instance->alloc;
1287
1288 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
1289 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
1290 if (device->fd == -1) {
1291 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1292 goto fail_device;
1293 }
1294
1295 device->context_id = anv_gem_create_context(device);
1296 if (device->context_id == -1) {
1297 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1298 goto fail_fd;
1299 }
1300
1301 device->info = physical_device->info;
1302 device->isl_dev = physical_device->isl_dev;
1303
1304 /* On Broadwell and later, we can use batch chaining to more efficiently
1305 * implement growing command buffers. Prior to Haswell, the kernel
1306 * command parser gets in the way and we have to fall back to growing
1307 * the batch.
1308 */
1309 device->can_chain_batches = device->info.gen >= 8;
1310
1311 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
1312 pCreateInfo->pEnabledFeatures->robustBufferAccess;
1313
1314 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
1315 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1316 goto fail_context_id;
1317 }
1318
1319 pthread_condattr_t condattr;
1320 if (pthread_condattr_init(&condattr) != 0) {
1321 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1322 goto fail_mutex;
1323 }
1324 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
1325 pthread_condattr_destroy(&condattr);
1326 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1327 goto fail_mutex;
1328 }
1329 if (pthread_cond_init(&device->queue_submit, NULL) != 0) {
1330 pthread_condattr_destroy(&condattr);
1331 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1332 goto fail_mutex;
1333 }
1334 pthread_condattr_destroy(&condattr);
1335
1336 uint64_t bo_flags =
1337 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
1338 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
1339 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0);
1340
1341 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
1342
1343 result = anv_bo_cache_init(&device->bo_cache);
1344 if (result != VK_SUCCESS)
1345 goto fail_batch_bo_pool;
1346
1347 /* For the state pools we explicitly disable 48bit. */
1348 bo_flags = (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
1349 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0);
1350
1351 result = anv_state_pool_init(&device->dynamic_state_pool, device, 16384,
1352 bo_flags);
1353 if (result != VK_SUCCESS)
1354 goto fail_bo_cache;
1355
1356 result = anv_state_pool_init(&device->instruction_state_pool, device, 16384,
1357 bo_flags);
1358 if (result != VK_SUCCESS)
1359 goto fail_dynamic_state_pool;
1360
1361 result = anv_state_pool_init(&device->surface_state_pool, device, 4096,
1362 bo_flags);
1363 if (result != VK_SUCCESS)
1364 goto fail_instruction_state_pool;
1365
1366 result = anv_bo_init_new(&device->workaround_bo, device, 1024);
1367 if (result != VK_SUCCESS)
1368 goto fail_surface_state_pool;
1369
1370 anv_device_init_trivial_batch(device);
1371
1372 anv_scratch_pool_init(device, &device->scratch_pool);
1373
1374 anv_queue_init(device, &device->queue);
1375
1376 switch (device->info.gen) {
1377 case 7:
1378 if (!device->info.is_haswell)
1379 result = gen7_init_device_state(device);
1380 else
1381 result = gen75_init_device_state(device);
1382 break;
1383 case 8:
1384 result = gen8_init_device_state(device);
1385 break;
1386 case 9:
1387 result = gen9_init_device_state(device);
1388 break;
1389 case 10:
1390 result = gen10_init_device_state(device);
1391 break;
1392 default:
1393 /* Shouldn't get here as we don't create physical devices for any other
1394 * gens. */
1395 unreachable("unhandled gen");
1396 }
1397 if (result != VK_SUCCESS)
1398 goto fail_workaround_bo;
1399
1400 anv_device_init_blorp(device);
1401
1402 anv_device_init_border_colors(device);
1403
1404 *pDevice = anv_device_to_handle(device);
1405
1406 return VK_SUCCESS;
1407
1408 fail_workaround_bo:
1409 anv_queue_finish(&device->queue);
1410 anv_scratch_pool_finish(device, &device->scratch_pool);
1411 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1412 anv_gem_close(device, device->workaround_bo.gem_handle);
1413 fail_surface_state_pool:
1414 anv_state_pool_finish(&device->surface_state_pool);
1415 fail_instruction_state_pool:
1416 anv_state_pool_finish(&device->instruction_state_pool);
1417 fail_dynamic_state_pool:
1418 anv_state_pool_finish(&device->dynamic_state_pool);
1419 fail_bo_cache:
1420 anv_bo_cache_finish(&device->bo_cache);
1421 fail_batch_bo_pool:
1422 anv_bo_pool_finish(&device->batch_bo_pool);
1423 pthread_cond_destroy(&device->queue_submit);
1424 fail_mutex:
1425 pthread_mutex_destroy(&device->mutex);
1426 fail_context_id:
1427 anv_gem_destroy_context(device, device->context_id);
1428 fail_fd:
1429 close(device->fd);
1430 fail_device:
1431 vk_free(&device->alloc, device);
1432
1433 return result;
1434 }
1435
1436 void anv_DestroyDevice(
1437 VkDevice _device,
1438 const VkAllocationCallbacks* pAllocator)
1439 {
1440 ANV_FROM_HANDLE(anv_device, device, _device);
1441
1442 if (!device)
1443 return;
1444
1445 anv_device_finish_blorp(device);
1446
1447 anv_queue_finish(&device->queue);
1448
1449 #ifdef HAVE_VALGRIND
1450 /* We only need to free these to prevent valgrind errors. The backing
1451 * BO will go away in a couple of lines so we don't actually leak.
1452 */
1453 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
1454 #endif
1455
1456 anv_scratch_pool_finish(device, &device->scratch_pool);
1457
1458 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
1459 anv_gem_close(device, device->workaround_bo.gem_handle);
1460
1461 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
1462
1463 anv_state_pool_finish(&device->surface_state_pool);
1464 anv_state_pool_finish(&device->instruction_state_pool);
1465 anv_state_pool_finish(&device->dynamic_state_pool);
1466
1467 anv_bo_cache_finish(&device->bo_cache);
1468
1469 anv_bo_pool_finish(&device->batch_bo_pool);
1470
1471 pthread_cond_destroy(&device->queue_submit);
1472 pthread_mutex_destroy(&device->mutex);
1473
1474 anv_gem_destroy_context(device, device->context_id);
1475
1476 close(device->fd);
1477
1478 vk_free(&device->alloc, device);
1479 }
1480
1481 VkResult anv_EnumerateInstanceLayerProperties(
1482 uint32_t* pPropertyCount,
1483 VkLayerProperties* pProperties)
1484 {
1485 if (pProperties == NULL) {
1486 *pPropertyCount = 0;
1487 return VK_SUCCESS;
1488 }
1489
1490 /* None supported at this time */
1491 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1492 }
1493
1494 VkResult anv_EnumerateDeviceLayerProperties(
1495 VkPhysicalDevice physicalDevice,
1496 uint32_t* pPropertyCount,
1497 VkLayerProperties* pProperties)
1498 {
1499 if (pProperties == NULL) {
1500 *pPropertyCount = 0;
1501 return VK_SUCCESS;
1502 }
1503
1504 /* None supported at this time */
1505 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
1506 }
1507
1508 void anv_GetDeviceQueue(
1509 VkDevice _device,
1510 uint32_t queueNodeIndex,
1511 uint32_t queueIndex,
1512 VkQueue* pQueue)
1513 {
1514 ANV_FROM_HANDLE(anv_device, device, _device);
1515
1516 assert(queueIndex == 0);
1517
1518 *pQueue = anv_queue_to_handle(&device->queue);
1519 }
1520
1521 VkResult
1522 anv_device_query_status(struct anv_device *device)
1523 {
1524 /* This isn't likely as most of the callers of this function already check
1525 * for it. However, it doesn't hurt to check and it potentially lets us
1526 * avoid an ioctl.
1527 */
1528 if (unlikely(device->lost))
1529 return VK_ERROR_DEVICE_LOST;
1530
1531 uint32_t active, pending;
1532 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
1533 if (ret == -1) {
1534 /* We don't know the real error. */
1535 device->lost = true;
1536 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1537 "get_reset_stats failed: %m");
1538 }
1539
1540 if (active) {
1541 device->lost = true;
1542 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1543 "GPU hung on one of our command buffers");
1544 } else if (pending) {
1545 device->lost = true;
1546 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1547 "GPU hung with commands in-flight");
1548 }
1549
1550 return VK_SUCCESS;
1551 }
1552
1553 VkResult
1554 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
1555 {
1556 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
1557 * Other usages of the BO (such as on different hardware) will not be
1558 * flagged as "busy" by this ioctl. Use with care.
1559 */
1560 int ret = anv_gem_busy(device, bo->gem_handle);
1561 if (ret == 1) {
1562 return VK_NOT_READY;
1563 } else if (ret == -1) {
1564 /* We don't know the real error. */
1565 device->lost = true;
1566 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1567 "gem wait failed: %m");
1568 }
1569
1570 /* Query for device status after the busy call. If the BO we're checking
1571 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
1572 * client because it clearly doesn't have valid data. Yes, this most
1573 * likely means an ioctl, but we just did an ioctl to query the busy status
1574 * so it's no great loss.
1575 */
1576 return anv_device_query_status(device);
1577 }
1578
1579 VkResult
1580 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1581 int64_t timeout)
1582 {
1583 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
1584 if (ret == -1 && errno == ETIME) {
1585 return VK_TIMEOUT;
1586 } else if (ret == -1) {
1587 /* We don't know the real error. */
1588 device->lost = true;
1589 return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
1590 "gem wait failed: %m");
1591 }
1592
1593 /* Query for device status after the wait. If the BO we're waiting on got
1594 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
1595 * because it clearly doesn't have valid data. Yes, this most likely means
1596 * an ioctl, but we just did an ioctl to wait so it's no great loss.
1597 */
1598 return anv_device_query_status(device);
1599 }
1600
1601 VkResult anv_DeviceWaitIdle(
1602 VkDevice _device)
1603 {
1604 ANV_FROM_HANDLE(anv_device, device, _device);
1605 if (unlikely(device->lost))
1606 return VK_ERROR_DEVICE_LOST;
1607
1608 struct anv_batch batch;
1609
1610 uint32_t cmds[8];
1611 batch.start = batch.next = cmds;
1612 batch.end = (void *) cmds + sizeof(cmds);
1613
1614 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1615 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1616
1617 return anv_device_submit_simple_batch(device, &batch);
1618 }
1619
1620 VkResult
1621 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
1622 {
1623 uint32_t gem_handle = anv_gem_create(device, size);
1624 if (!gem_handle)
1625 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
1626
1627 anv_bo_init(bo, gem_handle, size);
1628
1629 return VK_SUCCESS;
1630 }
1631
1632 VkResult anv_AllocateMemory(
1633 VkDevice _device,
1634 const VkMemoryAllocateInfo* pAllocateInfo,
1635 const VkAllocationCallbacks* pAllocator,
1636 VkDeviceMemory* pMem)
1637 {
1638 ANV_FROM_HANDLE(anv_device, device, _device);
1639 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
1640 struct anv_device_memory *mem;
1641 VkResult result = VK_SUCCESS;
1642
1643 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
1644
1645 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
1646 assert(pAllocateInfo->allocationSize > 0);
1647
1648 /* The kernel relocation API has a limitation of a 32-bit delta value
1649 * applied to the address before it is written which, in spite of it being
1650 * unsigned, is treated as signed . Because of the way that this maps to
1651 * the Vulkan API, we cannot handle an offset into a buffer that does not
1652 * fit into a signed 32 bits. The only mechanism we have for dealing with
1653 * this at the moment is to limit all VkDeviceMemory objects to a maximum
1654 * of 2GB each. The Vulkan spec allows us to do this:
1655 *
1656 * "Some platforms may have a limit on the maximum size of a single
1657 * allocation. For example, certain systems may fail to create
1658 * allocations with a size greater than or equal to 4GB. Such a limit is
1659 * implementation-dependent, and if such a failure occurs then the error
1660 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
1661 *
1662 * We don't use vk_error here because it's not an error so much as an
1663 * indication to the application that the allocation is too large.
1664 */
1665 if (pAllocateInfo->allocationSize > (1ull << 31))
1666 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1667
1668 /* FINISHME: Fail if allocation request exceeds heap size. */
1669
1670 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
1671 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1672 if (mem == NULL)
1673 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1674
1675 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
1676 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
1677 mem->map = NULL;
1678 mem->map_size = 0;
1679
1680 const VkImportMemoryFdInfoKHR *fd_info =
1681 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
1682
1683 /* The Vulkan spec permits handleType to be 0, in which case the struct is
1684 * ignored.
1685 */
1686 if (fd_info && fd_info->handleType) {
1687 /* At the moment, we support only the below handle types. */
1688 assert(fd_info->handleType ==
1689 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR ||
1690 fd_info->handleType ==
1691 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
1692
1693 result = anv_bo_cache_import(device, &device->bo_cache,
1694 fd_info->fd, &mem->bo);
1695 if (result != VK_SUCCESS)
1696 goto fail;
1697
1698 VkDeviceSize aligned_alloc_size =
1699 align_u64(pAllocateInfo->allocationSize, 4096);
1700
1701 /* For security purposes, we reject importing the bo if it's smaller
1702 * than the requested allocation size. This prevents a malicious client
1703 * from passing a buffer to a trusted client, lying about the size, and
1704 * telling the trusted client to try and texture from an image that goes
1705 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
1706 * in the trusted client. The trusted client can protect itself against
1707 * this sort of attack but only if it can trust the buffer size.
1708 */
1709 if (mem->bo->size < aligned_alloc_size) {
1710 result = vk_errorf(device->instance, device,
1711 VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR,
1712 "aligned allocationSize too large for "
1713 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR: "
1714 "%"PRIu64"B > %"PRIu64"B",
1715 aligned_alloc_size, mem->bo->size);
1716 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
1717 goto fail;
1718 }
1719
1720 /* From the Vulkan spec:
1721 *
1722 * "Importing memory from a file descriptor transfers ownership of
1723 * the file descriptor from the application to the Vulkan
1724 * implementation. The application must not perform any operations on
1725 * the file descriptor after a successful import."
1726 *
1727 * If the import fails, we leave the file descriptor open.
1728 */
1729 close(fd_info->fd);
1730 } else {
1731 result = anv_bo_cache_alloc(device, &device->bo_cache,
1732 pAllocateInfo->allocationSize,
1733 &mem->bo);
1734 if (result != VK_SUCCESS)
1735 goto fail;
1736
1737 const VkMemoryDedicatedAllocateInfoKHR *dedicated_info =
1738 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO_KHR);
1739 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
1740 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
1741
1742 /* For images using modifiers, we require a dedicated allocation
1743 * and we set the BO tiling to match the tiling of the underlying
1744 * modifier. This is a bit unfortunate as this is completely
1745 * pointless for Vulkan. However, GL needs to be able to map things
1746 * so it needs the tiling to be set. The only way to do this in a
1747 * non-racy way is to set the tiling in the creator of the BO so that
1748 * makes it our job.
1749 *
1750 * One of these days, once the GL driver learns to not map things
1751 * through the GTT in random places, we can drop this and start
1752 * allowing multiple modified images in the same BO.
1753 */
1754 if (image->drm_format_mod != DRM_FORMAT_MOD_INVALID) {
1755 assert(isl_drm_modifier_get_info(image->drm_format_mod)->tiling ==
1756 image->planes[0].surface.isl.tiling);
1757 const uint32_t i915_tiling =
1758 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
1759 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
1760 image->planes[0].surface.isl.row_pitch,
1761 i915_tiling);
1762 if (ret) {
1763 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
1764 return vk_errorf(device->instance, NULL,
1765 VK_ERROR_OUT_OF_DEVICE_MEMORY,
1766 "failed to set BO tiling: %m");
1767 }
1768 }
1769 }
1770 }
1771
1772 assert(mem->type->heapIndex < pdevice->memory.heap_count);
1773 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
1774 mem->bo->flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1775
1776 const struct wsi_memory_allocate_info *wsi_info =
1777 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
1778 if (wsi_info && wsi_info->implicit_sync) {
1779 /* We need to set the WRITE flag on window system buffers so that GEM
1780 * will know we're writing to them and synchronize uses on other rings
1781 * (eg if the display server uses the blitter ring).
1782 */
1783 mem->bo->flags |= EXEC_OBJECT_WRITE;
1784 } else if (pdevice->has_exec_async) {
1785 mem->bo->flags |= EXEC_OBJECT_ASYNC;
1786 }
1787
1788 *pMem = anv_device_memory_to_handle(mem);
1789
1790 return VK_SUCCESS;
1791
1792 fail:
1793 vk_free2(&device->alloc, pAllocator, mem);
1794
1795 return result;
1796 }
1797
1798 VkResult anv_GetMemoryFdKHR(
1799 VkDevice device_h,
1800 const VkMemoryGetFdInfoKHR* pGetFdInfo,
1801 int* pFd)
1802 {
1803 ANV_FROM_HANDLE(anv_device, dev, device_h);
1804 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
1805
1806 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
1807
1808 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR ||
1809 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
1810
1811 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
1812 }
1813
1814 VkResult anv_GetMemoryFdPropertiesKHR(
1815 VkDevice _device,
1816 VkExternalMemoryHandleTypeFlagBitsKHR handleType,
1817 int fd,
1818 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
1819 {
1820 ANV_FROM_HANDLE(anv_device, device, _device);
1821 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
1822
1823 switch (handleType) {
1824 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
1825 /* dma-buf can be imported as any memory type */
1826 pMemoryFdProperties->memoryTypeBits =
1827 (1 << pdevice->memory.type_count) - 1;
1828 return VK_SUCCESS;
1829
1830 default:
1831 /* The valid usage section for this function says:
1832 *
1833 * "handleType must not be one of the handle types defined as
1834 * opaque."
1835 *
1836 * So opaque handle types fall into the default "unsupported" case.
1837 */
1838 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
1839 }
1840 }
1841
1842 void anv_FreeMemory(
1843 VkDevice _device,
1844 VkDeviceMemory _mem,
1845 const VkAllocationCallbacks* pAllocator)
1846 {
1847 ANV_FROM_HANDLE(anv_device, device, _device);
1848 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
1849
1850 if (mem == NULL)
1851 return;
1852
1853 if (mem->map)
1854 anv_UnmapMemory(_device, _mem);
1855
1856 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
1857
1858 vk_free2(&device->alloc, pAllocator, mem);
1859 }
1860
1861 VkResult anv_MapMemory(
1862 VkDevice _device,
1863 VkDeviceMemory _memory,
1864 VkDeviceSize offset,
1865 VkDeviceSize size,
1866 VkMemoryMapFlags flags,
1867 void** ppData)
1868 {
1869 ANV_FROM_HANDLE(anv_device, device, _device);
1870 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1871
1872 if (mem == NULL) {
1873 *ppData = NULL;
1874 return VK_SUCCESS;
1875 }
1876
1877 if (size == VK_WHOLE_SIZE)
1878 size = mem->bo->size - offset;
1879
1880 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
1881 *
1882 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
1883 * assert(size != 0);
1884 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
1885 * equal to the size of the memory minus offset
1886 */
1887 assert(size > 0);
1888 assert(offset + size <= mem->bo->size);
1889
1890 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
1891 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
1892 * at a time is valid. We could just mmap up front and return an offset
1893 * pointer here, but that may exhaust virtual memory on 32 bit
1894 * userspace. */
1895
1896 uint32_t gem_flags = 0;
1897
1898 if (!device->info.has_llc &&
1899 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
1900 gem_flags |= I915_MMAP_WC;
1901
1902 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
1903 uint64_t map_offset = offset & ~4095ull;
1904 assert(offset >= map_offset);
1905 uint64_t map_size = (offset + size) - map_offset;
1906
1907 /* Let's map whole pages */
1908 map_size = align_u64(map_size, 4096);
1909
1910 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
1911 map_offset, map_size, gem_flags);
1912 if (map == MAP_FAILED)
1913 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
1914
1915 mem->map = map;
1916 mem->map_size = map_size;
1917
1918 *ppData = mem->map + (offset - map_offset);
1919
1920 return VK_SUCCESS;
1921 }
1922
1923 void anv_UnmapMemory(
1924 VkDevice _device,
1925 VkDeviceMemory _memory)
1926 {
1927 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
1928
1929 if (mem == NULL)
1930 return;
1931
1932 anv_gem_munmap(mem->map, mem->map_size);
1933
1934 mem->map = NULL;
1935 mem->map_size = 0;
1936 }
1937
1938 static void
1939 clflush_mapped_ranges(struct anv_device *device,
1940 uint32_t count,
1941 const VkMappedMemoryRange *ranges)
1942 {
1943 for (uint32_t i = 0; i < count; i++) {
1944 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
1945 if (ranges[i].offset >= mem->map_size)
1946 continue;
1947
1948 gen_clflush_range(mem->map + ranges[i].offset,
1949 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
1950 }
1951 }
1952
1953 VkResult anv_FlushMappedMemoryRanges(
1954 VkDevice _device,
1955 uint32_t memoryRangeCount,
1956 const VkMappedMemoryRange* pMemoryRanges)
1957 {
1958 ANV_FROM_HANDLE(anv_device, device, _device);
1959
1960 if (device->info.has_llc)
1961 return VK_SUCCESS;
1962
1963 /* Make sure the writes we're flushing have landed. */
1964 __builtin_ia32_mfence();
1965
1966 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1967
1968 return VK_SUCCESS;
1969 }
1970
1971 VkResult anv_InvalidateMappedMemoryRanges(
1972 VkDevice _device,
1973 uint32_t memoryRangeCount,
1974 const VkMappedMemoryRange* pMemoryRanges)
1975 {
1976 ANV_FROM_HANDLE(anv_device, device, _device);
1977
1978 if (device->info.has_llc)
1979 return VK_SUCCESS;
1980
1981 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
1982
1983 /* Make sure no reads get moved up above the invalidate. */
1984 __builtin_ia32_mfence();
1985
1986 return VK_SUCCESS;
1987 }
1988
1989 void anv_GetBufferMemoryRequirements(
1990 VkDevice _device,
1991 VkBuffer _buffer,
1992 VkMemoryRequirements* pMemoryRequirements)
1993 {
1994 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
1995 ANV_FROM_HANDLE(anv_device, device, _device);
1996 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
1997
1998 /* The Vulkan spec (git aaed022) says:
1999 *
2000 * memoryTypeBits is a bitfield and contains one bit set for every
2001 * supported memory type for the resource. The bit `1<<i` is set if and
2002 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
2003 * structure for the physical device is supported.
2004 */
2005 uint32_t memory_types = 0;
2006 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
2007 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
2008 if ((valid_usage & buffer->usage) == buffer->usage)
2009 memory_types |= (1u << i);
2010 }
2011
2012 /* Base alignment requirement of a cache line */
2013 uint32_t alignment = 16;
2014
2015 /* We need an alignment of 32 for pushing UBOs */
2016 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
2017 alignment = MAX2(alignment, 32);
2018
2019 pMemoryRequirements->size = buffer->size;
2020 pMemoryRequirements->alignment = alignment;
2021 pMemoryRequirements->memoryTypeBits = memory_types;
2022 }
2023
2024 void anv_GetBufferMemoryRequirements2KHR(
2025 VkDevice _device,
2026 const VkBufferMemoryRequirementsInfo2KHR* pInfo,
2027 VkMemoryRequirements2KHR* pMemoryRequirements)
2028 {
2029 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
2030 &pMemoryRequirements->memoryRequirements);
2031
2032 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
2033 switch (ext->sType) {
2034 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR: {
2035 VkMemoryDedicatedRequirementsKHR *requirements = (void *)ext;
2036 requirements->prefersDedicatedAllocation = VK_FALSE;
2037 requirements->requiresDedicatedAllocation = VK_FALSE;
2038 break;
2039 }
2040
2041 default:
2042 anv_debug_ignored_stype(ext->sType);
2043 break;
2044 }
2045 }
2046 }
2047
2048 void anv_GetImageMemoryRequirements(
2049 VkDevice _device,
2050 VkImage _image,
2051 VkMemoryRequirements* pMemoryRequirements)
2052 {
2053 ANV_FROM_HANDLE(anv_image, image, _image);
2054 ANV_FROM_HANDLE(anv_device, device, _device);
2055 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2056
2057 /* The Vulkan spec (git aaed022) says:
2058 *
2059 * memoryTypeBits is a bitfield and contains one bit set for every
2060 * supported memory type for the resource. The bit `1<<i` is set if and
2061 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
2062 * structure for the physical device is supported.
2063 *
2064 * All types are currently supported for images.
2065 */
2066 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
2067
2068 pMemoryRequirements->size = image->size;
2069 pMemoryRequirements->alignment = image->alignment;
2070 pMemoryRequirements->memoryTypeBits = memory_types;
2071 }
2072
2073 void anv_GetImageMemoryRequirements2KHR(
2074 VkDevice _device,
2075 const VkImageMemoryRequirementsInfo2KHR* pInfo,
2076 VkMemoryRequirements2KHR* pMemoryRequirements)
2077 {
2078 ANV_FROM_HANDLE(anv_device, device, _device);
2079 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
2080
2081 anv_GetImageMemoryRequirements(_device, pInfo->image,
2082 &pMemoryRequirements->memoryRequirements);
2083
2084 vk_foreach_struct_const(ext, pInfo->pNext) {
2085 switch (ext->sType) {
2086 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO_KHR: {
2087 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2088 const VkImagePlaneMemoryRequirementsInfoKHR *plane_reqs =
2089 (const VkImagePlaneMemoryRequirementsInfoKHR *) ext;
2090 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
2091 plane_reqs->planeAspect);
2092
2093 assert(image->planes[plane].offset == 0);
2094
2095 /* The Vulkan spec (git aaed022) says:
2096 *
2097 * memoryTypeBits is a bitfield and contains one bit set for every
2098 * supported memory type for the resource. The bit `1<<i` is set
2099 * if and only if the memory type `i` in the
2100 * VkPhysicalDeviceMemoryProperties structure for the physical
2101 * device is supported.
2102 *
2103 * All types are currently supported for images.
2104 */
2105 pMemoryRequirements->memoryRequirements.memoryTypeBits =
2106 (1ull << pdevice->memory.type_count) - 1;
2107
2108 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
2109 pMemoryRequirements->memoryRequirements.alignment =
2110 image->planes[plane].alignment;
2111 break;
2112 }
2113
2114 default:
2115 anv_debug_ignored_stype(ext->sType);
2116 break;
2117 }
2118 }
2119
2120 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
2121 switch (ext->sType) {
2122 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR: {
2123 VkMemoryDedicatedRequirementsKHR *requirements = (void *)ext;
2124 if (image->drm_format_mod != DRM_FORMAT_MOD_INVALID) {
2125 /* Require a dedicated allocation for images with modifiers.
2126 *
2127 * See also anv_AllocateMemory.
2128 */
2129 requirements->prefersDedicatedAllocation = VK_TRUE;
2130 requirements->requiresDedicatedAllocation = VK_TRUE;
2131 } else {
2132 requirements->prefersDedicatedAllocation = VK_FALSE;
2133 requirements->requiresDedicatedAllocation = VK_FALSE;
2134 }
2135 break;
2136 }
2137
2138 default:
2139 anv_debug_ignored_stype(ext->sType);
2140 break;
2141 }
2142 }
2143 }
2144
2145 void anv_GetImageSparseMemoryRequirements(
2146 VkDevice device,
2147 VkImage image,
2148 uint32_t* pSparseMemoryRequirementCount,
2149 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
2150 {
2151 *pSparseMemoryRequirementCount = 0;
2152 }
2153
2154 void anv_GetImageSparseMemoryRequirements2KHR(
2155 VkDevice device,
2156 const VkImageSparseMemoryRequirementsInfo2KHR* pInfo,
2157 uint32_t* pSparseMemoryRequirementCount,
2158 VkSparseImageMemoryRequirements2KHR* pSparseMemoryRequirements)
2159 {
2160 *pSparseMemoryRequirementCount = 0;
2161 }
2162
2163 void anv_GetDeviceMemoryCommitment(
2164 VkDevice device,
2165 VkDeviceMemory memory,
2166 VkDeviceSize* pCommittedMemoryInBytes)
2167 {
2168 *pCommittedMemoryInBytes = 0;
2169 }
2170
2171 static void
2172 anv_bind_buffer_memory(const VkBindBufferMemoryInfoKHR *pBindInfo)
2173 {
2174 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
2175 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
2176
2177 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR);
2178
2179 if (mem) {
2180 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
2181 buffer->bo = mem->bo;
2182 buffer->offset = pBindInfo->memoryOffset;
2183 } else {
2184 buffer->bo = NULL;
2185 buffer->offset = 0;
2186 }
2187 }
2188
2189 VkResult anv_BindBufferMemory(
2190 VkDevice device,
2191 VkBuffer buffer,
2192 VkDeviceMemory memory,
2193 VkDeviceSize memoryOffset)
2194 {
2195 anv_bind_buffer_memory(
2196 &(VkBindBufferMemoryInfoKHR) {
2197 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR,
2198 .buffer = buffer,
2199 .memory = memory,
2200 .memoryOffset = memoryOffset,
2201 });
2202
2203 return VK_SUCCESS;
2204 }
2205
2206 VkResult anv_BindBufferMemory2KHR(
2207 VkDevice device,
2208 uint32_t bindInfoCount,
2209 const VkBindBufferMemoryInfoKHR* pBindInfos)
2210 {
2211 for (uint32_t i = 0; i < bindInfoCount; i++)
2212 anv_bind_buffer_memory(&pBindInfos[i]);
2213
2214 return VK_SUCCESS;
2215 }
2216
2217 VkResult anv_QueueBindSparse(
2218 VkQueue _queue,
2219 uint32_t bindInfoCount,
2220 const VkBindSparseInfo* pBindInfo,
2221 VkFence fence)
2222 {
2223 ANV_FROM_HANDLE(anv_queue, queue, _queue);
2224 if (unlikely(queue->device->lost))
2225 return VK_ERROR_DEVICE_LOST;
2226
2227 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2228 }
2229
2230 // Event functions
2231
2232 VkResult anv_CreateEvent(
2233 VkDevice _device,
2234 const VkEventCreateInfo* pCreateInfo,
2235 const VkAllocationCallbacks* pAllocator,
2236 VkEvent* pEvent)
2237 {
2238 ANV_FROM_HANDLE(anv_device, device, _device);
2239 struct anv_state state;
2240 struct anv_event *event;
2241
2242 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
2243
2244 state = anv_state_pool_alloc(&device->dynamic_state_pool,
2245 sizeof(*event), 8);
2246 event = state.map;
2247 event->state = state;
2248 event->semaphore = VK_EVENT_RESET;
2249
2250 if (!device->info.has_llc) {
2251 /* Make sure the writes we're flushing have landed. */
2252 __builtin_ia32_mfence();
2253 __builtin_ia32_clflush(event);
2254 }
2255
2256 *pEvent = anv_event_to_handle(event);
2257
2258 return VK_SUCCESS;
2259 }
2260
2261 void anv_DestroyEvent(
2262 VkDevice _device,
2263 VkEvent _event,
2264 const VkAllocationCallbacks* pAllocator)
2265 {
2266 ANV_FROM_HANDLE(anv_device, device, _device);
2267 ANV_FROM_HANDLE(anv_event, event, _event);
2268
2269 if (!event)
2270 return;
2271
2272 anv_state_pool_free(&device->dynamic_state_pool, event->state);
2273 }
2274
2275 VkResult anv_GetEventStatus(
2276 VkDevice _device,
2277 VkEvent _event)
2278 {
2279 ANV_FROM_HANDLE(anv_device, device, _device);
2280 ANV_FROM_HANDLE(anv_event, event, _event);
2281
2282 if (unlikely(device->lost))
2283 return VK_ERROR_DEVICE_LOST;
2284
2285 if (!device->info.has_llc) {
2286 /* Invalidate read cache before reading event written by GPU. */
2287 __builtin_ia32_clflush(event);
2288 __builtin_ia32_mfence();
2289
2290 }
2291
2292 return event->semaphore;
2293 }
2294
2295 VkResult anv_SetEvent(
2296 VkDevice _device,
2297 VkEvent _event)
2298 {
2299 ANV_FROM_HANDLE(anv_device, device, _device);
2300 ANV_FROM_HANDLE(anv_event, event, _event);
2301
2302 event->semaphore = VK_EVENT_SET;
2303
2304 if (!device->info.has_llc) {
2305 /* Make sure the writes we're flushing have landed. */
2306 __builtin_ia32_mfence();
2307 __builtin_ia32_clflush(event);
2308 }
2309
2310 return VK_SUCCESS;
2311 }
2312
2313 VkResult anv_ResetEvent(
2314 VkDevice _device,
2315 VkEvent _event)
2316 {
2317 ANV_FROM_HANDLE(anv_device, device, _device);
2318 ANV_FROM_HANDLE(anv_event, event, _event);
2319
2320 event->semaphore = VK_EVENT_RESET;
2321
2322 if (!device->info.has_llc) {
2323 /* Make sure the writes we're flushing have landed. */
2324 __builtin_ia32_mfence();
2325 __builtin_ia32_clflush(event);
2326 }
2327
2328 return VK_SUCCESS;
2329 }
2330
2331 // Buffer functions
2332
2333 VkResult anv_CreateBuffer(
2334 VkDevice _device,
2335 const VkBufferCreateInfo* pCreateInfo,
2336 const VkAllocationCallbacks* pAllocator,
2337 VkBuffer* pBuffer)
2338 {
2339 ANV_FROM_HANDLE(anv_device, device, _device);
2340 struct anv_buffer *buffer;
2341
2342 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
2343
2344 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
2345 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2346 if (buffer == NULL)
2347 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2348
2349 buffer->size = pCreateInfo->size;
2350 buffer->usage = pCreateInfo->usage;
2351 buffer->bo = NULL;
2352 buffer->offset = 0;
2353
2354 *pBuffer = anv_buffer_to_handle(buffer);
2355
2356 return VK_SUCCESS;
2357 }
2358
2359 void anv_DestroyBuffer(
2360 VkDevice _device,
2361 VkBuffer _buffer,
2362 const VkAllocationCallbacks* pAllocator)
2363 {
2364 ANV_FROM_HANDLE(anv_device, device, _device);
2365 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2366
2367 if (!buffer)
2368 return;
2369
2370 vk_free2(&device->alloc, pAllocator, buffer);
2371 }
2372
2373 void
2374 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
2375 enum isl_format format,
2376 uint32_t offset, uint32_t range, uint32_t stride)
2377 {
2378 isl_buffer_fill_state(&device->isl_dev, state.map,
2379 .address = offset,
2380 .mocs = device->default_mocs,
2381 .size = range,
2382 .format = format,
2383 .stride = stride);
2384
2385 anv_state_flush(device, state);
2386 }
2387
2388 void anv_DestroySampler(
2389 VkDevice _device,
2390 VkSampler _sampler,
2391 const VkAllocationCallbacks* pAllocator)
2392 {
2393 ANV_FROM_HANDLE(anv_device, device, _device);
2394 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
2395
2396 if (!sampler)
2397 return;
2398
2399 vk_free2(&device->alloc, pAllocator, sampler);
2400 }
2401
2402 VkResult anv_CreateFramebuffer(
2403 VkDevice _device,
2404 const VkFramebufferCreateInfo* pCreateInfo,
2405 const VkAllocationCallbacks* pAllocator,
2406 VkFramebuffer* pFramebuffer)
2407 {
2408 ANV_FROM_HANDLE(anv_device, device, _device);
2409 struct anv_framebuffer *framebuffer;
2410
2411 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
2412
2413 size_t size = sizeof(*framebuffer) +
2414 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
2415 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
2416 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2417 if (framebuffer == NULL)
2418 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2419
2420 framebuffer->attachment_count = pCreateInfo->attachmentCount;
2421 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
2422 VkImageView _iview = pCreateInfo->pAttachments[i];
2423 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
2424 }
2425
2426 framebuffer->width = pCreateInfo->width;
2427 framebuffer->height = pCreateInfo->height;
2428 framebuffer->layers = pCreateInfo->layers;
2429
2430 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
2431
2432 return VK_SUCCESS;
2433 }
2434
2435 void anv_DestroyFramebuffer(
2436 VkDevice _device,
2437 VkFramebuffer _fb,
2438 const VkAllocationCallbacks* pAllocator)
2439 {
2440 ANV_FROM_HANDLE(anv_device, device, _device);
2441 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
2442
2443 if (!fb)
2444 return;
2445
2446 vk_free2(&device->alloc, pAllocator, fb);
2447 }
2448
2449 /* vk_icd.h does not declare this function, so we declare it here to
2450 * suppress Wmissing-prototypes.
2451 */
2452 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2453 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
2454
2455 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
2456 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
2457 {
2458 /* For the full details on loader interface versioning, see
2459 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
2460 * What follows is a condensed summary, to help you navigate the large and
2461 * confusing official doc.
2462 *
2463 * - Loader interface v0 is incompatible with later versions. We don't
2464 * support it.
2465 *
2466 * - In loader interface v1:
2467 * - The first ICD entrypoint called by the loader is
2468 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
2469 * entrypoint.
2470 * - The ICD must statically expose no other Vulkan symbol unless it is
2471 * linked with -Bsymbolic.
2472 * - Each dispatchable Vulkan handle created by the ICD must be
2473 * a pointer to a struct whose first member is VK_LOADER_DATA. The
2474 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
2475 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
2476 * vkDestroySurfaceKHR(). The ICD must be capable of working with
2477 * such loader-managed surfaces.
2478 *
2479 * - Loader interface v2 differs from v1 in:
2480 * - The first ICD entrypoint called by the loader is
2481 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
2482 * statically expose this entrypoint.
2483 *
2484 * - Loader interface v3 differs from v2 in:
2485 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
2486 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
2487 * because the loader no longer does so.
2488 */
2489 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
2490 return VK_SUCCESS;
2491 }