anv: Implement VK_EXT_external_memory_host
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/disk_cache.h"
39 #include "util/mesa-sha1.h"
40 #include "util/u_string.h"
41 #include "git_sha1.h"
42 #include "vk_util.h"
43 #include "common/gen_defines.h"
44
45 #include "genxml/gen7_pack.h"
46
47 static void
48 compiler_debug_log(void *data, const char *fmt, ...)
49 { }
50
51 static void
52 compiler_perf_log(void *data, const char *fmt, ...)
53 {
54 va_list args;
55 va_start(args, fmt);
56
57 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
58 intel_logd_v(fmt, args);
59
60 va_end(args);
61 }
62
63 static uint64_t
64 anv_compute_heap_size(int fd, uint64_t gtt_size)
65 {
66 /* Query the total ram from the system */
67 struct sysinfo info;
68 sysinfo(&info);
69
70 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
71
72 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
73 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
74 */
75 uint64_t available_ram;
76 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
77 available_ram = total_ram / 2;
78 else
79 available_ram = total_ram * 3 / 4;
80
81 /* We also want to leave some padding for things we allocate in the driver,
82 * so don't go over 3/4 of the GTT either.
83 */
84 uint64_t available_gtt = gtt_size * 3 / 4;
85
86 return MIN2(available_ram, available_gtt);
87 }
88
89 static VkResult
90 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
91 {
92 uint64_t gtt_size;
93 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
94 &gtt_size) == -1) {
95 /* If, for whatever reason, we can't actually get the GTT size from the
96 * kernel (too old?) fall back to the aperture size.
97 */
98 anv_perf_warn(NULL, NULL,
99 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
100
101 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
102 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
103 "failed to get aperture size: %m");
104 }
105 }
106
107 device->supports_48bit_addresses = (device->info.gen >= 8) &&
108 gtt_size > (4ULL << 30 /* GiB */);
109
110 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
111
112 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
113 /* When running with an overridden PCI ID, we may get a GTT size from
114 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
115 * address support can still fail. Just clamp the address space size to
116 * 2 GiB if we don't have 48-bit support.
117 */
118 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
119 "not support for 48-bit addresses",
120 __FILE__, __LINE__);
121 heap_size = 2ull << 30;
122 }
123
124 if (heap_size <= 3ull * (1ull << 30)) {
125 /* In this case, everything fits nicely into the 32-bit address space,
126 * so there's no need for supporting 48bit addresses on client-allocated
127 * memory objects.
128 */
129 device->memory.heap_count = 1;
130 device->memory.heaps[0] = (struct anv_memory_heap) {
131 .size = heap_size,
132 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
133 .supports_48bit_addresses = false,
134 };
135 } else {
136 /* Not everything will fit nicely into a 32-bit address space. In this
137 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
138 * larger 48-bit heap. If we're in this case, then we have a total heap
139 * size larger than 3GiB which most likely means they have 8 GiB of
140 * video memory and so carving off 1 GiB for the 32-bit heap should be
141 * reasonable.
142 */
143 const uint64_t heap_size_32bit = 1ull << 30;
144 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
145
146 assert(device->supports_48bit_addresses);
147
148 device->memory.heap_count = 2;
149 device->memory.heaps[0] = (struct anv_memory_heap) {
150 .size = heap_size_48bit,
151 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
152 .supports_48bit_addresses = true,
153 };
154 device->memory.heaps[1] = (struct anv_memory_heap) {
155 .size = heap_size_32bit,
156 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
157 .supports_48bit_addresses = false,
158 };
159 }
160
161 uint32_t type_count = 0;
162 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
163 uint32_t valid_buffer_usage = ~0;
164
165 /* There appears to be a hardware issue in the VF cache where it only
166 * considers the bottom 32 bits of memory addresses. If you happen to
167 * have two vertex buffers which get placed exactly 4 GiB apart and use
168 * them in back-to-back draw calls, you can get collisions. In order to
169 * solve this problem, we require vertex and index buffers be bound to
170 * memory allocated out of the 32-bit heap.
171 */
172 if (device->memory.heaps[heap].supports_48bit_addresses) {
173 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
174 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
175 }
176
177 if (device->info.has_llc) {
178 /* Big core GPUs share LLC with the CPU and thus one memory type can be
179 * both cached and coherent at the same time.
180 */
181 device->memory.types[type_count++] = (struct anv_memory_type) {
182 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
183 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
184 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
185 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
186 .heapIndex = heap,
187 .valid_buffer_usage = valid_buffer_usage,
188 };
189 } else {
190 /* The spec requires that we expose a host-visible, coherent memory
191 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
192 * to give the application a choice between cached, but not coherent and
193 * coherent but uncached (WC though).
194 */
195 device->memory.types[type_count++] = (struct anv_memory_type) {
196 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
197 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
198 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
199 .heapIndex = heap,
200 .valid_buffer_usage = valid_buffer_usage,
201 };
202 device->memory.types[type_count++] = (struct anv_memory_type) {
203 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
204 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
205 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
206 .heapIndex = heap,
207 .valid_buffer_usage = valid_buffer_usage,
208 };
209 }
210 }
211 device->memory.type_count = type_count;
212
213 return VK_SUCCESS;
214 }
215
216 static VkResult
217 anv_physical_device_init_uuids(struct anv_physical_device *device)
218 {
219 const struct build_id_note *note =
220 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
221 if (!note) {
222 return vk_errorf(device->instance, device,
223 VK_ERROR_INITIALIZATION_FAILED,
224 "Failed to find build-id");
225 }
226
227 unsigned build_id_len = build_id_length(note);
228 if (build_id_len < 20) {
229 return vk_errorf(device->instance, device,
230 VK_ERROR_INITIALIZATION_FAILED,
231 "build-id too short. It needs to be a SHA");
232 }
233
234 memcpy(device->driver_build_sha1, build_id_data(note), 20);
235
236 struct mesa_sha1 sha1_ctx;
237 uint8_t sha1[20];
238 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
239
240 /* The pipeline cache UUID is used for determining when a pipeline cache is
241 * invalid. It needs both a driver build and the PCI ID of the device.
242 */
243 _mesa_sha1_init(&sha1_ctx);
244 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
245 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
246 sizeof(device->chipset_id));
247 _mesa_sha1_final(&sha1_ctx, sha1);
248 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
249
250 /* The driver UUID is used for determining sharability of images and memory
251 * between two Vulkan instances in separate processes. People who want to
252 * share memory need to also check the device UUID (below) so all this
253 * needs to be is the build-id.
254 */
255 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
256
257 /* The device UUID uniquely identifies the given device within the machine.
258 * Since we never have more than one device, this doesn't need to be a real
259 * UUID. However, on the off-chance that someone tries to use this to
260 * cache pre-tiled images or something of the like, we use the PCI ID and
261 * some bits of ISL info to ensure that this is safe.
262 */
263 _mesa_sha1_init(&sha1_ctx);
264 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
265 sizeof(device->chipset_id));
266 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
267 sizeof(device->isl_dev.has_bit6_swizzling));
268 _mesa_sha1_final(&sha1_ctx, sha1);
269 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
270
271 return VK_SUCCESS;
272 }
273
274 static void
275 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
276 {
277 #ifdef ENABLE_SHADER_CACHE
278 char renderer[10];
279 MAYBE_UNUSED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
280 device->chipset_id);
281 assert(len == sizeof(renderer) - 2);
282
283 char timestamp[41];
284 _mesa_sha1_format(timestamp, device->driver_build_sha1);
285
286 const uint64_t driver_flags =
287 brw_get_compiler_config_value(device->compiler);
288 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
289 #else
290 device->disk_cache = NULL;
291 #endif
292 }
293
294 static void
295 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
296 {
297 #ifdef ENABLE_SHADER_CACHE
298 if (device->disk_cache)
299 disk_cache_destroy(device->disk_cache);
300 #else
301 assert(device->disk_cache == NULL);
302 #endif
303 }
304
305 static VkResult
306 anv_physical_device_init(struct anv_physical_device *device,
307 struct anv_instance *instance,
308 drmDevicePtr drm_device)
309 {
310 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
311 const char *path = drm_device->nodes[DRM_NODE_RENDER];
312 VkResult result;
313 int fd;
314 int master_fd = -1;
315
316 brw_process_intel_debug_variable();
317
318 fd = open(path, O_RDWR | O_CLOEXEC);
319 if (fd < 0)
320 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
321
322 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
323 device->instance = instance;
324
325 assert(strlen(path) < ARRAY_SIZE(device->path));
326 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
327
328 device->no_hw = getenv("INTEL_NO_HW") != NULL;
329
330 const int pci_id_override = gen_get_pci_device_id_override();
331 if (pci_id_override < 0) {
332 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
333 if (!device->chipset_id) {
334 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
335 goto fail;
336 }
337 } else {
338 device->chipset_id = pci_id_override;
339 device->no_hw = true;
340 }
341
342 device->pci_info.domain = drm_device->businfo.pci->domain;
343 device->pci_info.bus = drm_device->businfo.pci->bus;
344 device->pci_info.device = drm_device->businfo.pci->dev;
345 device->pci_info.function = drm_device->businfo.pci->func;
346
347 device->name = gen_get_device_name(device->chipset_id);
348 if (!gen_get_device_info(device->chipset_id, &device->info)) {
349 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
350 goto fail;
351 }
352
353 if (device->info.is_haswell) {
354 intel_logw("Haswell Vulkan support is incomplete");
355 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
356 intel_logw("Ivy Bridge Vulkan support is incomplete");
357 } else if (device->info.gen == 7 && device->info.is_baytrail) {
358 intel_logw("Bay Trail Vulkan support is incomplete");
359 } else if (device->info.gen >= 8 && device->info.gen <= 10) {
360 /* Gen8-10 fully supported */
361 } else if (device->info.gen == 11) {
362 intel_logw("Vulkan is not yet fully supported on gen11.");
363 } else {
364 result = vk_errorf(device->instance, device,
365 VK_ERROR_INCOMPATIBLE_DRIVER,
366 "Vulkan not yet supported on %s", device->name);
367 goto fail;
368 }
369
370 device->cmd_parser_version = -1;
371 if (device->info.gen == 7) {
372 device->cmd_parser_version =
373 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
374 if (device->cmd_parser_version == -1) {
375 result = vk_errorf(device->instance, device,
376 VK_ERROR_INITIALIZATION_FAILED,
377 "failed to get command parser version");
378 goto fail;
379 }
380 }
381
382 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
383 result = vk_errorf(device->instance, device,
384 VK_ERROR_INITIALIZATION_FAILED,
385 "kernel missing gem wait");
386 goto fail;
387 }
388
389 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
390 result = vk_errorf(device->instance, device,
391 VK_ERROR_INITIALIZATION_FAILED,
392 "kernel missing execbuf2");
393 goto fail;
394 }
395
396 if (!device->info.has_llc &&
397 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
398 result = vk_errorf(device->instance, device,
399 VK_ERROR_INITIALIZATION_FAILED,
400 "kernel missing wc mmap");
401 goto fail;
402 }
403
404 result = anv_physical_device_init_heaps(device, fd);
405 if (result != VK_SUCCESS)
406 goto fail;
407
408 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
409 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
410 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
411 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
412 device->has_syncobj_wait = device->has_syncobj &&
413 anv_gem_supports_syncobj_wait(fd);
414 device->has_context_priority = anv_gem_has_context_priority(fd);
415
416 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
417 && device->supports_48bit_addresses;
418
419 device->has_context_isolation =
420 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
421
422 /* Starting with Gen10, the timestamp frequency of the command streamer may
423 * vary from one part to another. We can query the value from the kernel.
424 */
425 if (device->info.gen >= 10) {
426 int timestamp_frequency =
427 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
428
429 if (timestamp_frequency < 0)
430 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
431 else
432 device->info.timestamp_frequency = timestamp_frequency;
433 }
434
435 /* GENs prior to 8 do not support EU/Subslice info */
436 if (device->info.gen >= 8) {
437 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
438 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
439
440 /* Without this information, we cannot get the right Braswell
441 * brandstrings, and we have to use conservative numbers for GPGPU on
442 * many platforms, but otherwise, things will just work.
443 */
444 if (device->subslice_total < 1 || device->eu_total < 1) {
445 intel_logw("Kernel 4.1 required to properly query GPU properties");
446 }
447 } else if (device->info.gen == 7) {
448 device->subslice_total = 1 << (device->info.gt - 1);
449 }
450
451 if (device->info.is_cherryview &&
452 device->subslice_total > 0 && device->eu_total > 0) {
453 /* Logical CS threads = EUs per subslice * num threads per EU */
454 uint32_t max_cs_threads =
455 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
456
457 /* Fuse configurations may give more threads than expected, never less. */
458 if (max_cs_threads > device->info.max_cs_threads)
459 device->info.max_cs_threads = max_cs_threads;
460 }
461
462 device->compiler = brw_compiler_create(NULL, &device->info);
463 if (device->compiler == NULL) {
464 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
465 goto fail;
466 }
467 device->compiler->shader_debug_log = compiler_debug_log;
468 device->compiler->shader_perf_log = compiler_perf_log;
469 device->compiler->supports_pull_constants = false;
470 device->compiler->constant_buffer_0_is_relative =
471 device->info.gen < 8 || !device->has_context_isolation;
472 device->compiler->supports_shader_constants = true;
473
474 /* Broadwell PRM says:
475 *
476 * "Before Gen8, there was a historical configuration control field to
477 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
478 * different places: TILECTL[1:0], ARB_MODE[5:4], and
479 * DISP_ARB_CTL[14:13].
480 *
481 * For Gen8 and subsequent generations, the swizzle fields are all
482 * reserved, and the CPU's memory controller performs all address
483 * swizzling modifications."
484 */
485 bool swizzled =
486 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
487
488 isl_device_init(&device->isl_dev, &device->info, swizzled);
489
490 result = anv_physical_device_init_uuids(device);
491 if (result != VK_SUCCESS)
492 goto fail;
493
494 anv_physical_device_init_disk_cache(device);
495
496 if (instance->enabled_extensions.KHR_display) {
497 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
498 if (master_fd >= 0) {
499 /* prod the device with a GETPARAM call which will fail if
500 * we don't have permission to even render on this device
501 */
502 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
503 close(master_fd);
504 master_fd = -1;
505 }
506 }
507 }
508 device->master_fd = master_fd;
509
510 result = anv_init_wsi(device);
511 if (result != VK_SUCCESS) {
512 ralloc_free(device->compiler);
513 anv_physical_device_free_disk_cache(device);
514 goto fail;
515 }
516
517 anv_physical_device_get_supported_extensions(device,
518 &device->supported_extensions);
519
520
521 device->local_fd = fd;
522
523 return VK_SUCCESS;
524
525 fail:
526 close(fd);
527 if (master_fd != -1)
528 close(master_fd);
529 return result;
530 }
531
532 static void
533 anv_physical_device_finish(struct anv_physical_device *device)
534 {
535 anv_finish_wsi(device);
536 anv_physical_device_free_disk_cache(device);
537 ralloc_free(device->compiler);
538 close(device->local_fd);
539 if (device->master_fd >= 0)
540 close(device->master_fd);
541 }
542
543 static void *
544 default_alloc_func(void *pUserData, size_t size, size_t align,
545 VkSystemAllocationScope allocationScope)
546 {
547 return malloc(size);
548 }
549
550 static void *
551 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
552 size_t align, VkSystemAllocationScope allocationScope)
553 {
554 return realloc(pOriginal, size);
555 }
556
557 static void
558 default_free_func(void *pUserData, void *pMemory)
559 {
560 free(pMemory);
561 }
562
563 static const VkAllocationCallbacks default_alloc = {
564 .pUserData = NULL,
565 .pfnAllocation = default_alloc_func,
566 .pfnReallocation = default_realloc_func,
567 .pfnFree = default_free_func,
568 };
569
570 VkResult anv_EnumerateInstanceExtensionProperties(
571 const char* pLayerName,
572 uint32_t* pPropertyCount,
573 VkExtensionProperties* pProperties)
574 {
575 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
576
577 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
578 if (anv_instance_extensions_supported.extensions[i]) {
579 vk_outarray_append(&out, prop) {
580 *prop = anv_instance_extensions[i];
581 }
582 }
583 }
584
585 return vk_outarray_status(&out);
586 }
587
588 VkResult anv_CreateInstance(
589 const VkInstanceCreateInfo* pCreateInfo,
590 const VkAllocationCallbacks* pAllocator,
591 VkInstance* pInstance)
592 {
593 struct anv_instance *instance;
594 VkResult result;
595
596 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
597
598 struct anv_instance_extension_table enabled_extensions = {};
599 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
600 int idx;
601 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
602 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
603 anv_instance_extensions[idx].extensionName) == 0)
604 break;
605 }
606
607 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
608 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
609
610 if (!anv_instance_extensions_supported.extensions[idx])
611 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
612
613 enabled_extensions.extensions[idx] = true;
614 }
615
616 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
617 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
618 if (!instance)
619 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
620
621 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
622
623 if (pAllocator)
624 instance->alloc = *pAllocator;
625 else
626 instance->alloc = default_alloc;
627
628 instance->app_info = (struct anv_app_info) { .api_version = 0 };
629 if (pCreateInfo->pApplicationInfo) {
630 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
631
632 instance->app_info.app_name =
633 vk_strdup(&instance->alloc, app->pApplicationName,
634 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
635 instance->app_info.app_version = app->applicationVersion;
636
637 instance->app_info.engine_name =
638 vk_strdup(&instance->alloc, app->pEngineName,
639 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
640 instance->app_info.engine_version = app->engineVersion;
641
642 instance->app_info.api_version = app->apiVersion;
643 }
644
645 if (instance->app_info.api_version == 0)
646 instance->app_info.api_version = VK_API_VERSION_1_0;
647
648 instance->enabled_extensions = enabled_extensions;
649
650 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
651 /* Vulkan requires that entrypoints for extensions which have not been
652 * enabled must not be advertised.
653 */
654 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
655 &instance->enabled_extensions)) {
656 instance->dispatch.entrypoints[i] = NULL;
657 } else {
658 instance->dispatch.entrypoints[i] =
659 anv_instance_dispatch_table.entrypoints[i];
660 }
661 }
662
663 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
664 /* Vulkan requires that entrypoints for extensions which have not been
665 * enabled must not be advertised.
666 */
667 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
668 &instance->enabled_extensions, NULL)) {
669 instance->device_dispatch.entrypoints[i] = NULL;
670 } else {
671 instance->device_dispatch.entrypoints[i] =
672 anv_device_dispatch_table.entrypoints[i];
673 }
674 }
675
676 instance->physicalDeviceCount = -1;
677
678 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
679 if (result != VK_SUCCESS) {
680 vk_free2(&default_alloc, pAllocator, instance);
681 return vk_error(result);
682 }
683
684 instance->pipeline_cache_enabled =
685 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
686
687 _mesa_locale_init();
688
689 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
690
691 *pInstance = anv_instance_to_handle(instance);
692
693 return VK_SUCCESS;
694 }
695
696 void anv_DestroyInstance(
697 VkInstance _instance,
698 const VkAllocationCallbacks* pAllocator)
699 {
700 ANV_FROM_HANDLE(anv_instance, instance, _instance);
701
702 if (!instance)
703 return;
704
705 if (instance->physicalDeviceCount > 0) {
706 /* We support at most one physical device. */
707 assert(instance->physicalDeviceCount == 1);
708 anv_physical_device_finish(&instance->physicalDevice);
709 }
710
711 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
712 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
713
714 VG(VALGRIND_DESTROY_MEMPOOL(instance));
715
716 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
717
718 _mesa_locale_fini();
719
720 vk_free(&instance->alloc, instance);
721 }
722
723 static VkResult
724 anv_enumerate_devices(struct anv_instance *instance)
725 {
726 /* TODO: Check for more devices ? */
727 drmDevicePtr devices[8];
728 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
729 int max_devices;
730
731 instance->physicalDeviceCount = 0;
732
733 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
734 if (max_devices < 1)
735 return VK_ERROR_INCOMPATIBLE_DRIVER;
736
737 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
738 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
739 devices[i]->bustype == DRM_BUS_PCI &&
740 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
741
742 result = anv_physical_device_init(&instance->physicalDevice,
743 instance, devices[i]);
744 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
745 break;
746 }
747 }
748 drmFreeDevices(devices, max_devices);
749
750 if (result == VK_SUCCESS)
751 instance->physicalDeviceCount = 1;
752
753 return result;
754 }
755
756 static VkResult
757 anv_instance_ensure_physical_device(struct anv_instance *instance)
758 {
759 if (instance->physicalDeviceCount < 0) {
760 VkResult result = anv_enumerate_devices(instance);
761 if (result != VK_SUCCESS &&
762 result != VK_ERROR_INCOMPATIBLE_DRIVER)
763 return result;
764 }
765
766 return VK_SUCCESS;
767 }
768
769 VkResult anv_EnumeratePhysicalDevices(
770 VkInstance _instance,
771 uint32_t* pPhysicalDeviceCount,
772 VkPhysicalDevice* pPhysicalDevices)
773 {
774 ANV_FROM_HANDLE(anv_instance, instance, _instance);
775 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
776
777 VkResult result = anv_instance_ensure_physical_device(instance);
778 if (result != VK_SUCCESS)
779 return result;
780
781 if (instance->physicalDeviceCount == 0)
782 return VK_SUCCESS;
783
784 assert(instance->physicalDeviceCount == 1);
785 vk_outarray_append(&out, i) {
786 *i = anv_physical_device_to_handle(&instance->physicalDevice);
787 }
788
789 return vk_outarray_status(&out);
790 }
791
792 VkResult anv_EnumeratePhysicalDeviceGroups(
793 VkInstance _instance,
794 uint32_t* pPhysicalDeviceGroupCount,
795 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
796 {
797 ANV_FROM_HANDLE(anv_instance, instance, _instance);
798 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
799 pPhysicalDeviceGroupCount);
800
801 VkResult result = anv_instance_ensure_physical_device(instance);
802 if (result != VK_SUCCESS)
803 return result;
804
805 if (instance->physicalDeviceCount == 0)
806 return VK_SUCCESS;
807
808 assert(instance->physicalDeviceCount == 1);
809
810 vk_outarray_append(&out, p) {
811 p->physicalDeviceCount = 1;
812 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
813 p->physicalDevices[0] =
814 anv_physical_device_to_handle(&instance->physicalDevice);
815 p->subsetAllocation = VK_FALSE;
816
817 vk_foreach_struct(ext, p->pNext)
818 anv_debug_ignored_stype(ext->sType);
819 }
820
821 return vk_outarray_status(&out);
822 }
823
824 void anv_GetPhysicalDeviceFeatures(
825 VkPhysicalDevice physicalDevice,
826 VkPhysicalDeviceFeatures* pFeatures)
827 {
828 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
829
830 *pFeatures = (VkPhysicalDeviceFeatures) {
831 .robustBufferAccess = true,
832 .fullDrawIndexUint32 = true,
833 .imageCubeArray = true,
834 .independentBlend = true,
835 .geometryShader = true,
836 .tessellationShader = true,
837 .sampleRateShading = true,
838 .dualSrcBlend = true,
839 .logicOp = true,
840 .multiDrawIndirect = true,
841 .drawIndirectFirstInstance = true,
842 .depthClamp = true,
843 .depthBiasClamp = true,
844 .fillModeNonSolid = true,
845 .depthBounds = false,
846 .wideLines = true,
847 .largePoints = true,
848 .alphaToOne = true,
849 .multiViewport = true,
850 .samplerAnisotropy = true,
851 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
852 pdevice->info.is_baytrail,
853 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
854 .textureCompressionBC = true,
855 .occlusionQueryPrecise = true,
856 .pipelineStatisticsQuery = true,
857 .fragmentStoresAndAtomics = true,
858 .shaderTessellationAndGeometryPointSize = true,
859 .shaderImageGatherExtended = true,
860 .shaderStorageImageExtendedFormats = true,
861 .shaderStorageImageMultisample = false,
862 .shaderStorageImageReadWithoutFormat = false,
863 .shaderStorageImageWriteWithoutFormat = true,
864 .shaderUniformBufferArrayDynamicIndexing = true,
865 .shaderSampledImageArrayDynamicIndexing = true,
866 .shaderStorageBufferArrayDynamicIndexing = true,
867 .shaderStorageImageArrayDynamicIndexing = true,
868 .shaderClipDistance = true,
869 .shaderCullDistance = true,
870 .shaderFloat64 = pdevice->info.gen >= 8 &&
871 pdevice->info.has_64bit_types,
872 .shaderInt64 = pdevice->info.gen >= 8 &&
873 pdevice->info.has_64bit_types,
874 .shaderInt16 = pdevice->info.gen >= 8,
875 .shaderResourceMinLod = pdevice->info.gen >= 9,
876 .variableMultisampleRate = true,
877 .inheritedQueries = true,
878 };
879
880 /* We can't do image stores in vec4 shaders */
881 pFeatures->vertexPipelineStoresAndAtomics =
882 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
883 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
884
885 struct anv_app_info *app_info = &pdevice->instance->app_info;
886
887 /* The new DOOM and Wolfenstein games require depthBounds without
888 * checking for it. They seem to run fine without it so just claim it's
889 * there and accept the consequences.
890 */
891 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
892 pFeatures->depthBounds = true;
893 }
894
895 void anv_GetPhysicalDeviceFeatures2(
896 VkPhysicalDevice physicalDevice,
897 VkPhysicalDeviceFeatures2* pFeatures)
898 {
899 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
900 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
901
902 vk_foreach_struct(ext, pFeatures->pNext) {
903 switch (ext->sType) {
904 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
905 VkPhysicalDevice8BitStorageFeaturesKHR *features =
906 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
907 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
908
909 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
910 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
911 features->storagePushConstant8 = pdevice->info.gen >= 8;
912 break;
913 }
914
915 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
916 VkPhysicalDevice16BitStorageFeatures *features =
917 (VkPhysicalDevice16BitStorageFeatures *)ext;
918 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
919 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
920 features->storagePushConstant16 = pdevice->info.gen >= 8;
921 features->storageInputOutput16 = false;
922 break;
923 }
924
925 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_ADDRESS_FEATURES_EXT: {
926 VkPhysicalDeviceBufferAddressFeaturesEXT *features = (void *)ext;
927 features->bufferDeviceAddress = pdevice->use_softpin &&
928 pdevice->info.gen >= 8;
929 features->bufferDeviceAddressCaptureReplay = false;
930 features->bufferDeviceAddressMultiDevice = false;
931 break;
932 }
933
934 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
935 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
936 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
937 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
938
939 features->conditionalRendering = pdevice->info.gen >= 8 ||
940 pdevice->info.is_haswell;
941 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
942 pdevice->info.is_haswell;
943 break;
944 }
945
946 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
947 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
948 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
949 features->depthClipEnable = VK_TRUE;
950 break;
951 }
952
953 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
954 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
955 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
956 features->inlineUniformBlock = true;
957 features->descriptorBindingInlineUniformBlockUpdateAfterBind = false;
958 break;
959 }
960
961 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
962 VkPhysicalDeviceMultiviewFeatures *features =
963 (VkPhysicalDeviceMultiviewFeatures *)ext;
964 features->multiview = true;
965 features->multiviewGeometryShader = true;
966 features->multiviewTessellationShader = true;
967 break;
968 }
969
970 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
971 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
972 features->protectedMemory = VK_FALSE;
973 break;
974 }
975
976 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
977 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
978 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
979 features->samplerYcbcrConversion = true;
980 break;
981 }
982
983 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
984 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
985 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
986 features->scalarBlockLayout = true;
987 break;
988 }
989
990 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETER_FEATURES: {
991 VkPhysicalDeviceShaderDrawParameterFeatures *features = (void *)ext;
992 features->shaderDrawParameters = true;
993 break;
994 }
995
996 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES: {
997 VkPhysicalDeviceVariablePointerFeatures *features = (void *)ext;
998 features->variablePointersStorageBuffer = true;
999 features->variablePointers = true;
1000 break;
1001 }
1002
1003 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1004 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1005 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1006 features->transformFeedback = VK_TRUE;
1007 features->geometryStreams = VK_TRUE;
1008 break;
1009 }
1010
1011 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1012 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1013 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1014 features->vertexAttributeInstanceRateDivisor = VK_TRUE;
1015 features->vertexAttributeInstanceRateZeroDivisor = VK_TRUE;
1016 break;
1017 }
1018
1019 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1020 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1021 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1022 features->ycbcrImageArrays = VK_TRUE;
1023 break;
1024 }
1025
1026 default:
1027 anv_debug_ignored_stype(ext->sType);
1028 break;
1029 }
1030 }
1031 }
1032
1033 void anv_GetPhysicalDeviceProperties(
1034 VkPhysicalDevice physicalDevice,
1035 VkPhysicalDeviceProperties* pProperties)
1036 {
1037 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1038 const struct gen_device_info *devinfo = &pdevice->info;
1039
1040 /* See assertions made when programming the buffer surface state. */
1041 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1042 (1ul << 30) : (1ul << 27);
1043
1044 const uint32_t max_samplers = (devinfo->gen >= 8 || devinfo->is_haswell) ?
1045 128 : 16;
1046
1047 const uint32_t max_images = devinfo->gen < 9 ? MAX_GEN8_IMAGES : MAX_IMAGES;
1048
1049 VkSampleCountFlags sample_counts =
1050 isl_device_get_sample_counts(&pdevice->isl_dev);
1051
1052
1053 VkPhysicalDeviceLimits limits = {
1054 .maxImageDimension1D = (1 << 14),
1055 .maxImageDimension2D = (1 << 14),
1056 .maxImageDimension3D = (1 << 11),
1057 .maxImageDimensionCube = (1 << 14),
1058 .maxImageArrayLayers = (1 << 11),
1059 .maxTexelBufferElements = 128 * 1024 * 1024,
1060 .maxUniformBufferRange = (1ul << 27),
1061 .maxStorageBufferRange = max_raw_buffer_sz,
1062 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1063 .maxMemoryAllocationCount = UINT32_MAX,
1064 .maxSamplerAllocationCount = 64 * 1024,
1065 .bufferImageGranularity = 64, /* A cache line */
1066 .sparseAddressSpaceSize = 0,
1067 .maxBoundDescriptorSets = MAX_SETS,
1068 .maxPerStageDescriptorSamplers = max_samplers,
1069 .maxPerStageDescriptorUniformBuffers = 64,
1070 .maxPerStageDescriptorStorageBuffers = 64,
1071 .maxPerStageDescriptorSampledImages = max_samplers,
1072 .maxPerStageDescriptorStorageImages = max_images,
1073 .maxPerStageDescriptorInputAttachments = 64,
1074 .maxPerStageResources = 250,
1075 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1076 .maxDescriptorSetUniformBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorUniformBuffers */
1077 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1078 .maxDescriptorSetStorageBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorStorageBuffers */
1079 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1080 .maxDescriptorSetSampledImages = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSampledImages */
1081 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1082 .maxDescriptorSetInputAttachments = 256,
1083 .maxVertexInputAttributes = MAX_VBS,
1084 .maxVertexInputBindings = MAX_VBS,
1085 .maxVertexInputAttributeOffset = 2047,
1086 .maxVertexInputBindingStride = 2048,
1087 .maxVertexOutputComponents = 128,
1088 .maxTessellationGenerationLevel = 64,
1089 .maxTessellationPatchSize = 32,
1090 .maxTessellationControlPerVertexInputComponents = 128,
1091 .maxTessellationControlPerVertexOutputComponents = 128,
1092 .maxTessellationControlPerPatchOutputComponents = 128,
1093 .maxTessellationControlTotalOutputComponents = 2048,
1094 .maxTessellationEvaluationInputComponents = 128,
1095 .maxTessellationEvaluationOutputComponents = 128,
1096 .maxGeometryShaderInvocations = 32,
1097 .maxGeometryInputComponents = 64,
1098 .maxGeometryOutputComponents = 128,
1099 .maxGeometryOutputVertices = 256,
1100 .maxGeometryTotalOutputComponents = 1024,
1101 .maxFragmentInputComponents = 112, /* 128 components - (POS, PSIZ, CLIP_DIST0, CLIP_DIST1) */
1102 .maxFragmentOutputAttachments = 8,
1103 .maxFragmentDualSrcAttachments = 1,
1104 .maxFragmentCombinedOutputResources = 8,
1105 .maxComputeSharedMemorySize = 32768,
1106 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1107 .maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
1108 .maxComputeWorkGroupSize = {
1109 16 * devinfo->max_cs_threads,
1110 16 * devinfo->max_cs_threads,
1111 16 * devinfo->max_cs_threads,
1112 },
1113 .subPixelPrecisionBits = 8,
1114 .subTexelPrecisionBits = 4 /* FIXME */,
1115 .mipmapPrecisionBits = 4 /* FIXME */,
1116 .maxDrawIndexedIndexValue = UINT32_MAX,
1117 .maxDrawIndirectCount = UINT32_MAX,
1118 .maxSamplerLodBias = 16,
1119 .maxSamplerAnisotropy = 16,
1120 .maxViewports = MAX_VIEWPORTS,
1121 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1122 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1123 .viewportSubPixelBits = 13, /* We take a float? */
1124 .minMemoryMapAlignment = 4096, /* A page */
1125 .minTexelBufferOffsetAlignment = 1,
1126 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1127 .minUniformBufferOffsetAlignment = 32,
1128 .minStorageBufferOffsetAlignment = 4,
1129 .minTexelOffset = -8,
1130 .maxTexelOffset = 7,
1131 .minTexelGatherOffset = -32,
1132 .maxTexelGatherOffset = 31,
1133 .minInterpolationOffset = -0.5,
1134 .maxInterpolationOffset = 0.4375,
1135 .subPixelInterpolationOffsetBits = 4,
1136 .maxFramebufferWidth = (1 << 14),
1137 .maxFramebufferHeight = (1 << 14),
1138 .maxFramebufferLayers = (1 << 11),
1139 .framebufferColorSampleCounts = sample_counts,
1140 .framebufferDepthSampleCounts = sample_counts,
1141 .framebufferStencilSampleCounts = sample_counts,
1142 .framebufferNoAttachmentsSampleCounts = sample_counts,
1143 .maxColorAttachments = MAX_RTS,
1144 .sampledImageColorSampleCounts = sample_counts,
1145 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1146 .sampledImageDepthSampleCounts = sample_counts,
1147 .sampledImageStencilSampleCounts = sample_counts,
1148 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1149 .maxSampleMaskWords = 1,
1150 .timestampComputeAndGraphics = false,
1151 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1152 .maxClipDistances = 8,
1153 .maxCullDistances = 8,
1154 .maxCombinedClipAndCullDistances = 8,
1155 .discreteQueuePriorities = 2,
1156 .pointSizeRange = { 0.125, 255.875 },
1157 .lineWidthRange = { 0.0, 7.9921875 },
1158 .pointSizeGranularity = (1.0 / 8.0),
1159 .lineWidthGranularity = (1.0 / 128.0),
1160 .strictLines = false, /* FINISHME */
1161 .standardSampleLocations = true,
1162 .optimalBufferCopyOffsetAlignment = 128,
1163 .optimalBufferCopyRowPitchAlignment = 128,
1164 .nonCoherentAtomSize = 64,
1165 };
1166
1167 *pProperties = (VkPhysicalDeviceProperties) {
1168 .apiVersion = anv_physical_device_api_version(pdevice),
1169 .driverVersion = vk_get_driver_version(),
1170 .vendorID = 0x8086,
1171 .deviceID = pdevice->chipset_id,
1172 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1173 .limits = limits,
1174 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1175 };
1176
1177 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1178 "%s", pdevice->name);
1179 memcpy(pProperties->pipelineCacheUUID,
1180 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1181 }
1182
1183 void anv_GetPhysicalDeviceProperties2(
1184 VkPhysicalDevice physicalDevice,
1185 VkPhysicalDeviceProperties2* pProperties)
1186 {
1187 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1188
1189 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1190
1191 vk_foreach_struct(ext, pProperties->pNext) {
1192 switch (ext->sType) {
1193 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1194 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1195 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1196
1197 /* We support all of the depth resolve modes */
1198 props->supportedDepthResolveModes =
1199 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1200 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1201 VK_RESOLVE_MODE_MIN_BIT_KHR |
1202 VK_RESOLVE_MODE_MAX_BIT_KHR;
1203
1204 /* Average doesn't make sense for stencil so we don't support that */
1205 props->supportedStencilResolveModes =
1206 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1207 if (pdevice->info.gen >= 8) {
1208 /* The advanced stencil resolve modes currently require stencil
1209 * sampling be supported by the hardware.
1210 */
1211 props->supportedStencilResolveModes |=
1212 VK_RESOLVE_MODE_MIN_BIT_KHR |
1213 VK_RESOLVE_MODE_MAX_BIT_KHR;
1214 }
1215
1216 props->independentResolveNone = VK_TRUE;
1217 props->independentResolve = VK_TRUE;
1218 break;
1219 }
1220
1221 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1222 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1223 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1224
1225 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1226 util_snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1227 "Intel open-source Mesa driver");
1228
1229 util_snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1230 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1231
1232 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1233 .major = 1,
1234 .minor = 1,
1235 .subminor = 2,
1236 .patch = 0,
1237 };
1238 break;
1239 }
1240
1241 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1242 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1243 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1244 /* Userptr needs page aligned memory. */
1245 props->minImportedHostPointerAlignment = 4096;
1246 break;
1247 }
1248
1249 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1250 VkPhysicalDeviceIDProperties *id_props =
1251 (VkPhysicalDeviceIDProperties *)ext;
1252 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1253 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1254 /* The LUID is for Windows. */
1255 id_props->deviceLUIDValid = false;
1256 break;
1257 }
1258
1259 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1260 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1261 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1262 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1263 props->maxPerStageDescriptorInlineUniformBlocks =
1264 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1265 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1266 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1267 props->maxDescriptorSetInlineUniformBlocks =
1268 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1269 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1270 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1271 break;
1272 }
1273
1274 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1275 VkPhysicalDeviceMaintenance3Properties *props =
1276 (VkPhysicalDeviceMaintenance3Properties *)ext;
1277 /* This value doesn't matter for us today as our per-stage
1278 * descriptors are the real limit.
1279 */
1280 props->maxPerSetDescriptors = 1024;
1281 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1282 break;
1283 }
1284
1285 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1286 VkPhysicalDeviceMultiviewProperties *properties =
1287 (VkPhysicalDeviceMultiviewProperties *)ext;
1288 properties->maxMultiviewViewCount = 16;
1289 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1290 break;
1291 }
1292
1293 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1294 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1295 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1296 properties->pciDomain = pdevice->pci_info.domain;
1297 properties->pciBus = pdevice->pci_info.bus;
1298 properties->pciDevice = pdevice->pci_info.device;
1299 properties->pciFunction = pdevice->pci_info.function;
1300 break;
1301 }
1302
1303 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1304 VkPhysicalDevicePointClippingProperties *properties =
1305 (VkPhysicalDevicePointClippingProperties *) ext;
1306 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
1307 anv_finishme("Implement pop-free point clipping");
1308 break;
1309 }
1310
1311 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1312 VkPhysicalDeviceProtectedMemoryProperties *props =
1313 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1314 props->protectedNoFault = false;
1315 break;
1316 }
1317
1318 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1319 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1320 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1321
1322 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1323 break;
1324 }
1325
1326 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1327 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1328 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1329 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1330 properties->filterMinmaxSingleComponentFormats = true;
1331 break;
1332 }
1333
1334 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1335 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1336
1337 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1338
1339 VkShaderStageFlags scalar_stages = 0;
1340 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1341 if (pdevice->compiler->scalar_stage[stage])
1342 scalar_stages |= mesa_to_vk_shader_stage(stage);
1343 }
1344 properties->supportedStages = scalar_stages;
1345
1346 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1347 VK_SUBGROUP_FEATURE_VOTE_BIT |
1348 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1349 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1350 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1351 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1352 VK_SUBGROUP_FEATURE_CLUSTERED_BIT |
1353 VK_SUBGROUP_FEATURE_QUAD_BIT;
1354 properties->quadOperationsInAllStages = VK_TRUE;
1355 break;
1356 }
1357
1358 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1359 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1360 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1361
1362 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1363 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1364 props->maxTransformFeedbackBufferSize = (1ull << 32);
1365 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1366 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1367 props->maxTransformFeedbackBufferDataStride = 2048;
1368 props->transformFeedbackQueries = VK_TRUE;
1369 props->transformFeedbackStreamsLinesTriangles = VK_FALSE;
1370 props->transformFeedbackRasterizationStreamSelect = VK_FALSE;
1371 props->transformFeedbackDraw = VK_TRUE;
1372 break;
1373 }
1374
1375 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1376 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1377 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1378 /* We have to restrict this a bit for multiview */
1379 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1380 break;
1381 }
1382
1383 default:
1384 anv_debug_ignored_stype(ext->sType);
1385 break;
1386 }
1387 }
1388 }
1389
1390 /* We support exactly one queue family. */
1391 static const VkQueueFamilyProperties
1392 anv_queue_family_properties = {
1393 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1394 VK_QUEUE_COMPUTE_BIT |
1395 VK_QUEUE_TRANSFER_BIT,
1396 .queueCount = 1,
1397 .timestampValidBits = 36, /* XXX: Real value here */
1398 .minImageTransferGranularity = { 1, 1, 1 },
1399 };
1400
1401 void anv_GetPhysicalDeviceQueueFamilyProperties(
1402 VkPhysicalDevice physicalDevice,
1403 uint32_t* pCount,
1404 VkQueueFamilyProperties* pQueueFamilyProperties)
1405 {
1406 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1407
1408 vk_outarray_append(&out, p) {
1409 *p = anv_queue_family_properties;
1410 }
1411 }
1412
1413 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1414 VkPhysicalDevice physicalDevice,
1415 uint32_t* pQueueFamilyPropertyCount,
1416 VkQueueFamilyProperties2* pQueueFamilyProperties)
1417 {
1418
1419 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1420
1421 vk_outarray_append(&out, p) {
1422 p->queueFamilyProperties = anv_queue_family_properties;
1423
1424 vk_foreach_struct(s, p->pNext) {
1425 anv_debug_ignored_stype(s->sType);
1426 }
1427 }
1428 }
1429
1430 void anv_GetPhysicalDeviceMemoryProperties(
1431 VkPhysicalDevice physicalDevice,
1432 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1433 {
1434 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1435
1436 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1437 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1438 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1439 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1440 .heapIndex = physical_device->memory.types[i].heapIndex,
1441 };
1442 }
1443
1444 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1445 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1446 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1447 .size = physical_device->memory.heaps[i].size,
1448 .flags = physical_device->memory.heaps[i].flags,
1449 };
1450 }
1451 }
1452
1453 void anv_GetPhysicalDeviceMemoryProperties2(
1454 VkPhysicalDevice physicalDevice,
1455 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1456 {
1457 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1458 &pMemoryProperties->memoryProperties);
1459
1460 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1461 switch (ext->sType) {
1462 default:
1463 anv_debug_ignored_stype(ext->sType);
1464 break;
1465 }
1466 }
1467 }
1468
1469 void
1470 anv_GetDeviceGroupPeerMemoryFeatures(
1471 VkDevice device,
1472 uint32_t heapIndex,
1473 uint32_t localDeviceIndex,
1474 uint32_t remoteDeviceIndex,
1475 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1476 {
1477 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1478 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1479 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1480 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1481 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1482 }
1483
1484 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1485 VkInstance _instance,
1486 const char* pName)
1487 {
1488 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1489
1490 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1491 * when we have to return valid function pointers, NULL, or it's left
1492 * undefined. See the table for exact details.
1493 */
1494 if (pName == NULL)
1495 return NULL;
1496
1497 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1498 if (strcmp(pName, "vk" #entrypoint) == 0) \
1499 return (PFN_vkVoidFunction)anv_##entrypoint
1500
1501 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1502 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1503 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1504 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1505
1506 #undef LOOKUP_ANV_ENTRYPOINT
1507
1508 if (instance == NULL)
1509 return NULL;
1510
1511 int idx = anv_get_instance_entrypoint_index(pName);
1512 if (idx >= 0)
1513 return instance->dispatch.entrypoints[idx];
1514
1515 idx = anv_get_device_entrypoint_index(pName);
1516 if (idx >= 0)
1517 return instance->device_dispatch.entrypoints[idx];
1518
1519 return NULL;
1520 }
1521
1522 /* With version 1+ of the loader interface the ICD should expose
1523 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1524 */
1525 PUBLIC
1526 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1527 VkInstance instance,
1528 const char* pName);
1529
1530 PUBLIC
1531 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1532 VkInstance instance,
1533 const char* pName)
1534 {
1535 return anv_GetInstanceProcAddr(instance, pName);
1536 }
1537
1538 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1539 VkDevice _device,
1540 const char* pName)
1541 {
1542 ANV_FROM_HANDLE(anv_device, device, _device);
1543
1544 if (!device || !pName)
1545 return NULL;
1546
1547 int idx = anv_get_device_entrypoint_index(pName);
1548 if (idx < 0)
1549 return NULL;
1550
1551 return device->dispatch.entrypoints[idx];
1552 }
1553
1554 VkResult
1555 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1556 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1557 const VkAllocationCallbacks* pAllocator,
1558 VkDebugReportCallbackEXT* pCallback)
1559 {
1560 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1561 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1562 pCreateInfo, pAllocator, &instance->alloc,
1563 pCallback);
1564 }
1565
1566 void
1567 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1568 VkDebugReportCallbackEXT _callback,
1569 const VkAllocationCallbacks* pAllocator)
1570 {
1571 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1572 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1573 _callback, pAllocator, &instance->alloc);
1574 }
1575
1576 void
1577 anv_DebugReportMessageEXT(VkInstance _instance,
1578 VkDebugReportFlagsEXT flags,
1579 VkDebugReportObjectTypeEXT objectType,
1580 uint64_t object,
1581 size_t location,
1582 int32_t messageCode,
1583 const char* pLayerPrefix,
1584 const char* pMessage)
1585 {
1586 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1587 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
1588 object, location, messageCode, pLayerPrefix, pMessage);
1589 }
1590
1591 static void
1592 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
1593 {
1594 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1595 queue->device = device;
1596 queue->flags = 0;
1597 }
1598
1599 static void
1600 anv_queue_finish(struct anv_queue *queue)
1601 {
1602 }
1603
1604 static struct anv_state
1605 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
1606 {
1607 struct anv_state state;
1608
1609 state = anv_state_pool_alloc(pool, size, align);
1610 memcpy(state.map, p, size);
1611
1612 return state;
1613 }
1614
1615 struct gen8_border_color {
1616 union {
1617 float float32[4];
1618 uint32_t uint32[4];
1619 };
1620 /* Pad out to 64 bytes */
1621 uint32_t _pad[12];
1622 };
1623
1624 static void
1625 anv_device_init_border_colors(struct anv_device *device)
1626 {
1627 static const struct gen8_border_color border_colors[] = {
1628 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
1629 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
1630 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
1631 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
1632 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
1633 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
1634 };
1635
1636 device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
1637 sizeof(border_colors), 64,
1638 border_colors);
1639 }
1640
1641 static void
1642 anv_device_init_trivial_batch(struct anv_device *device)
1643 {
1644 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
1645
1646 if (device->instance->physicalDevice.has_exec_async)
1647 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
1648
1649 if (device->instance->physicalDevice.use_softpin)
1650 device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
1651
1652 anv_vma_alloc(device, &device->trivial_batch_bo);
1653
1654 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
1655 0, 4096, 0);
1656
1657 struct anv_batch batch = {
1658 .start = map,
1659 .next = map,
1660 .end = map + 4096,
1661 };
1662
1663 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
1664 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
1665
1666 if (!device->info.has_llc)
1667 gen_clflush_range(map, batch.next - map);
1668
1669 anv_gem_munmap(map, device->trivial_batch_bo.size);
1670 }
1671
1672 VkResult anv_EnumerateDeviceExtensionProperties(
1673 VkPhysicalDevice physicalDevice,
1674 const char* pLayerName,
1675 uint32_t* pPropertyCount,
1676 VkExtensionProperties* pProperties)
1677 {
1678 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1679 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
1680
1681 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
1682 if (device->supported_extensions.extensions[i]) {
1683 vk_outarray_append(&out, prop) {
1684 *prop = anv_device_extensions[i];
1685 }
1686 }
1687 }
1688
1689 return vk_outarray_status(&out);
1690 }
1691
1692 static void
1693 anv_device_init_dispatch(struct anv_device *device)
1694 {
1695 const struct anv_device_dispatch_table *genX_table;
1696 switch (device->info.gen) {
1697 case 11:
1698 genX_table = &gen11_device_dispatch_table;
1699 break;
1700 case 10:
1701 genX_table = &gen10_device_dispatch_table;
1702 break;
1703 case 9:
1704 genX_table = &gen9_device_dispatch_table;
1705 break;
1706 case 8:
1707 genX_table = &gen8_device_dispatch_table;
1708 break;
1709 case 7:
1710 if (device->info.is_haswell)
1711 genX_table = &gen75_device_dispatch_table;
1712 else
1713 genX_table = &gen7_device_dispatch_table;
1714 break;
1715 default:
1716 unreachable("unsupported gen\n");
1717 }
1718
1719 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
1720 /* Vulkan requires that entrypoints for extensions which have not been
1721 * enabled must not be advertised.
1722 */
1723 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
1724 &device->instance->enabled_extensions,
1725 &device->enabled_extensions)) {
1726 device->dispatch.entrypoints[i] = NULL;
1727 } else if (genX_table->entrypoints[i]) {
1728 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
1729 } else {
1730 device->dispatch.entrypoints[i] =
1731 anv_device_dispatch_table.entrypoints[i];
1732 }
1733 }
1734 }
1735
1736 static int
1737 vk_priority_to_gen(int priority)
1738 {
1739 switch (priority) {
1740 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
1741 return GEN_CONTEXT_LOW_PRIORITY;
1742 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
1743 return GEN_CONTEXT_MEDIUM_PRIORITY;
1744 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
1745 return GEN_CONTEXT_HIGH_PRIORITY;
1746 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
1747 return GEN_CONTEXT_REALTIME_PRIORITY;
1748 default:
1749 unreachable("Invalid priority");
1750 }
1751 }
1752
1753 static void
1754 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
1755 {
1756 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
1757
1758 if (device->instance->physicalDevice.has_exec_async)
1759 device->hiz_clear_bo.flags |= EXEC_OBJECT_ASYNC;
1760
1761 if (device->instance->physicalDevice.use_softpin)
1762 device->hiz_clear_bo.flags |= EXEC_OBJECT_PINNED;
1763
1764 anv_vma_alloc(device, &device->hiz_clear_bo);
1765
1766 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
1767 0, 4096, 0);
1768
1769 union isl_color_value hiz_clear = { .u32 = { 0, } };
1770 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
1771
1772 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
1773 anv_gem_munmap(map, device->hiz_clear_bo.size);
1774 }
1775
1776 static bool
1777 get_bo_from_pool(struct gen_batch_decode_bo *ret,
1778 struct anv_block_pool *pool,
1779 uint64_t address)
1780 {
1781 for (uint32_t i = 0; i < pool->nbos; i++) {
1782 uint64_t bo_address = pool->bos[i].offset & (~0ull >> 16);
1783 uint32_t bo_size = pool->bos[i].size;
1784 if (address >= bo_address && address < (bo_address + bo_size)) {
1785 *ret = (struct gen_batch_decode_bo) {
1786 .addr = bo_address,
1787 .size = bo_size,
1788 .map = pool->bos[i].map,
1789 };
1790 return true;
1791 }
1792 }
1793 return false;
1794 }
1795
1796 /* Finding a buffer for batch decoding */
1797 static struct gen_batch_decode_bo
1798 decode_get_bo(void *v_batch, uint64_t address)
1799 {
1800 struct anv_device *device = v_batch;
1801 struct gen_batch_decode_bo ret_bo = {};
1802
1803 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
1804 return ret_bo;
1805 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
1806 return ret_bo;
1807 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
1808 return ret_bo;
1809 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
1810 return ret_bo;
1811
1812 if (!device->cmd_buffer_being_decoded)
1813 return (struct gen_batch_decode_bo) { };
1814
1815 struct anv_batch_bo **bo;
1816
1817 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
1818 /* The decoder zeroes out the top 16 bits, so we need to as well */
1819 uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16);
1820
1821 if (address >= bo_address && address < bo_address + (*bo)->bo.size) {
1822 return (struct gen_batch_decode_bo) {
1823 .addr = bo_address,
1824 .size = (*bo)->bo.size,
1825 .map = (*bo)->bo.map,
1826 };
1827 }
1828 }
1829
1830 return (struct gen_batch_decode_bo) { };
1831 }
1832
1833 VkResult anv_CreateDevice(
1834 VkPhysicalDevice physicalDevice,
1835 const VkDeviceCreateInfo* pCreateInfo,
1836 const VkAllocationCallbacks* pAllocator,
1837 VkDevice* pDevice)
1838 {
1839 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1840 VkResult result;
1841 struct anv_device *device;
1842
1843 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
1844
1845 struct anv_device_extension_table enabled_extensions = { };
1846 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
1847 int idx;
1848 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
1849 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
1850 anv_device_extensions[idx].extensionName) == 0)
1851 break;
1852 }
1853
1854 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
1855 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1856
1857 if (!physical_device->supported_extensions.extensions[idx])
1858 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
1859
1860 enabled_extensions.extensions[idx] = true;
1861 }
1862
1863 /* Check enabled features */
1864 if (pCreateInfo->pEnabledFeatures) {
1865 VkPhysicalDeviceFeatures supported_features;
1866 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
1867 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
1868 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
1869 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
1870 for (uint32_t i = 0; i < num_features; i++) {
1871 if (enabled_feature[i] && !supported_feature[i])
1872 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
1873 }
1874 }
1875
1876 /* Check requested queues and fail if we are requested to create any
1877 * queues with flags we don't support.
1878 */
1879 assert(pCreateInfo->queueCreateInfoCount > 0);
1880 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
1881 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
1882 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
1883 }
1884
1885 /* Check if client specified queue priority. */
1886 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
1887 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
1888 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
1889
1890 VkQueueGlobalPriorityEXT priority =
1891 queue_priority ? queue_priority->globalPriority :
1892 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
1893
1894 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
1895 sizeof(*device), 8,
1896 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
1897 if (!device)
1898 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1899
1900 const unsigned decode_flags =
1901 GEN_BATCH_DECODE_FULL |
1902 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
1903 GEN_BATCH_DECODE_OFFSETS |
1904 GEN_BATCH_DECODE_FLOATS;
1905
1906 gen_batch_decode_ctx_init(&device->decoder_ctx,
1907 &physical_device->info,
1908 stderr, decode_flags, NULL,
1909 decode_get_bo, NULL, device);
1910
1911 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
1912 device->instance = physical_device->instance;
1913 device->chipset_id = physical_device->chipset_id;
1914 device->no_hw = physical_device->no_hw;
1915 device->_lost = false;
1916
1917 if (pAllocator)
1918 device->alloc = *pAllocator;
1919 else
1920 device->alloc = physical_device->instance->alloc;
1921
1922 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
1923 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
1924 if (device->fd == -1) {
1925 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1926 goto fail_device;
1927 }
1928
1929 device->context_id = anv_gem_create_context(device);
1930 if (device->context_id == -1) {
1931 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1932 goto fail_fd;
1933 }
1934
1935 if (physical_device->use_softpin) {
1936 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
1937 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1938 goto fail_fd;
1939 }
1940
1941 /* keep the page with address zero out of the allocator */
1942 util_vma_heap_init(&device->vma_lo, LOW_HEAP_MIN_ADDRESS, LOW_HEAP_SIZE);
1943 device->vma_lo_available =
1944 physical_device->memory.heaps[physical_device->memory.heap_count - 1].size;
1945
1946 /* Leave the last 4GiB out of the high vma range, so that no state base
1947 * address + size can overflow 48 bits. For more information see the
1948 * comment about Wa32bitGeneralStateOffset in anv_allocator.c
1949 */
1950 util_vma_heap_init(&device->vma_hi, HIGH_HEAP_MIN_ADDRESS,
1951 HIGH_HEAP_SIZE);
1952 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
1953 physical_device->memory.heaps[0].size;
1954 }
1955
1956 /* As per spec, the driver implementation may deny requests to acquire
1957 * a priority above the default priority (MEDIUM) if the caller does not
1958 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
1959 * is returned.
1960 */
1961 if (physical_device->has_context_priority) {
1962 int err = anv_gem_set_context_param(device->fd, device->context_id,
1963 I915_CONTEXT_PARAM_PRIORITY,
1964 vk_priority_to_gen(priority));
1965 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
1966 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
1967 goto fail_fd;
1968 }
1969 }
1970
1971 device->info = physical_device->info;
1972 device->isl_dev = physical_device->isl_dev;
1973
1974 /* On Broadwell and later, we can use batch chaining to more efficiently
1975 * implement growing command buffers. Prior to Haswell, the kernel
1976 * command parser gets in the way and we have to fall back to growing
1977 * the batch.
1978 */
1979 device->can_chain_batches = device->info.gen >= 8;
1980
1981 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
1982 pCreateInfo->pEnabledFeatures->robustBufferAccess;
1983 device->enabled_extensions = enabled_extensions;
1984
1985 anv_device_init_dispatch(device);
1986
1987 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
1988 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1989 goto fail_context_id;
1990 }
1991
1992 pthread_condattr_t condattr;
1993 if (pthread_condattr_init(&condattr) != 0) {
1994 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
1995 goto fail_mutex;
1996 }
1997 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
1998 pthread_condattr_destroy(&condattr);
1999 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2000 goto fail_mutex;
2001 }
2002 if (pthread_cond_init(&device->queue_submit, NULL) != 0) {
2003 pthread_condattr_destroy(&condattr);
2004 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2005 goto fail_mutex;
2006 }
2007 pthread_condattr_destroy(&condattr);
2008
2009 uint64_t bo_flags =
2010 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2011 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2012 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2013 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2014
2015 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2016
2017 result = anv_bo_cache_init(&device->bo_cache);
2018 if (result != VK_SUCCESS)
2019 goto fail_batch_bo_pool;
2020
2021 if (!physical_device->use_softpin)
2022 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2023
2024 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2025 DYNAMIC_STATE_POOL_MIN_ADDRESS,
2026 16384,
2027 bo_flags);
2028 if (result != VK_SUCCESS)
2029 goto fail_bo_cache;
2030
2031 result = anv_state_pool_init(&device->instruction_state_pool, device,
2032 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
2033 16384,
2034 bo_flags);
2035 if (result != VK_SUCCESS)
2036 goto fail_dynamic_state_pool;
2037
2038 result = anv_state_pool_init(&device->surface_state_pool, device,
2039 SURFACE_STATE_POOL_MIN_ADDRESS,
2040 4096,
2041 bo_flags);
2042 if (result != VK_SUCCESS)
2043 goto fail_instruction_state_pool;
2044
2045 if (physical_device->use_softpin) {
2046 result = anv_state_pool_init(&device->binding_table_pool, device,
2047 BINDING_TABLE_POOL_MIN_ADDRESS,
2048 4096,
2049 bo_flags);
2050 if (result != VK_SUCCESS)
2051 goto fail_surface_state_pool;
2052 }
2053
2054 result = anv_bo_init_new(&device->workaround_bo, device, 1024);
2055 if (result != VK_SUCCESS)
2056 goto fail_binding_table_pool;
2057
2058 if (physical_device->use_softpin)
2059 device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
2060
2061 if (!anv_vma_alloc(device, &device->workaround_bo))
2062 goto fail_workaround_bo;
2063
2064 anv_device_init_trivial_batch(device);
2065
2066 if (device->info.gen >= 10)
2067 anv_device_init_hiz_clear_value_bo(device);
2068
2069 if (physical_device->use_softpin)
2070 device->pinned_buffers = _mesa_pointer_set_create(NULL);
2071
2072 anv_scratch_pool_init(device, &device->scratch_pool);
2073
2074 anv_queue_init(device, &device->queue);
2075
2076 switch (device->info.gen) {
2077 case 7:
2078 if (!device->info.is_haswell)
2079 result = gen7_init_device_state(device);
2080 else
2081 result = gen75_init_device_state(device);
2082 break;
2083 case 8:
2084 result = gen8_init_device_state(device);
2085 break;
2086 case 9:
2087 result = gen9_init_device_state(device);
2088 break;
2089 case 10:
2090 result = gen10_init_device_state(device);
2091 break;
2092 case 11:
2093 result = gen11_init_device_state(device);
2094 break;
2095 default:
2096 /* Shouldn't get here as we don't create physical devices for any other
2097 * gens. */
2098 unreachable("unhandled gen");
2099 }
2100 if (result != VK_SUCCESS)
2101 goto fail_workaround_bo;
2102
2103 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2104
2105 anv_device_init_blorp(device);
2106
2107 anv_device_init_border_colors(device);
2108
2109 *pDevice = anv_device_to_handle(device);
2110
2111 return VK_SUCCESS;
2112
2113 fail_workaround_bo:
2114 anv_queue_finish(&device->queue);
2115 anv_scratch_pool_finish(device, &device->scratch_pool);
2116 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2117 anv_gem_close(device, device->workaround_bo.gem_handle);
2118 fail_binding_table_pool:
2119 if (physical_device->use_softpin)
2120 anv_state_pool_finish(&device->binding_table_pool);
2121 fail_surface_state_pool:
2122 anv_state_pool_finish(&device->surface_state_pool);
2123 fail_instruction_state_pool:
2124 anv_state_pool_finish(&device->instruction_state_pool);
2125 fail_dynamic_state_pool:
2126 anv_state_pool_finish(&device->dynamic_state_pool);
2127 fail_bo_cache:
2128 anv_bo_cache_finish(&device->bo_cache);
2129 fail_batch_bo_pool:
2130 anv_bo_pool_finish(&device->batch_bo_pool);
2131 pthread_cond_destroy(&device->queue_submit);
2132 fail_mutex:
2133 pthread_mutex_destroy(&device->mutex);
2134 fail_context_id:
2135 anv_gem_destroy_context(device, device->context_id);
2136 fail_fd:
2137 close(device->fd);
2138 fail_device:
2139 vk_free(&device->alloc, device);
2140
2141 return result;
2142 }
2143
2144 void anv_DestroyDevice(
2145 VkDevice _device,
2146 const VkAllocationCallbacks* pAllocator)
2147 {
2148 ANV_FROM_HANDLE(anv_device, device, _device);
2149 struct anv_physical_device *physical_device;
2150
2151 if (!device)
2152 return;
2153
2154 physical_device = &device->instance->physicalDevice;
2155
2156 anv_device_finish_blorp(device);
2157
2158 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2159
2160 anv_queue_finish(&device->queue);
2161
2162 if (physical_device->use_softpin)
2163 _mesa_set_destroy(device->pinned_buffers, NULL);
2164
2165 #ifdef HAVE_VALGRIND
2166 /* We only need to free these to prevent valgrind errors. The backing
2167 * BO will go away in a couple of lines so we don't actually leak.
2168 */
2169 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2170 #endif
2171
2172 anv_scratch_pool_finish(device, &device->scratch_pool);
2173
2174 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2175 anv_vma_free(device, &device->workaround_bo);
2176 anv_gem_close(device, device->workaround_bo.gem_handle);
2177
2178 anv_vma_free(device, &device->trivial_batch_bo);
2179 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
2180 if (device->info.gen >= 10)
2181 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
2182
2183 if (physical_device->use_softpin)
2184 anv_state_pool_finish(&device->binding_table_pool);
2185 anv_state_pool_finish(&device->surface_state_pool);
2186 anv_state_pool_finish(&device->instruction_state_pool);
2187 anv_state_pool_finish(&device->dynamic_state_pool);
2188
2189 anv_bo_cache_finish(&device->bo_cache);
2190
2191 anv_bo_pool_finish(&device->batch_bo_pool);
2192
2193 pthread_cond_destroy(&device->queue_submit);
2194 pthread_mutex_destroy(&device->mutex);
2195
2196 anv_gem_destroy_context(device, device->context_id);
2197
2198 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2199
2200 close(device->fd);
2201
2202 vk_free(&device->alloc, device);
2203 }
2204
2205 VkResult anv_EnumerateInstanceLayerProperties(
2206 uint32_t* pPropertyCount,
2207 VkLayerProperties* pProperties)
2208 {
2209 if (pProperties == NULL) {
2210 *pPropertyCount = 0;
2211 return VK_SUCCESS;
2212 }
2213
2214 /* None supported at this time */
2215 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2216 }
2217
2218 VkResult anv_EnumerateDeviceLayerProperties(
2219 VkPhysicalDevice physicalDevice,
2220 uint32_t* pPropertyCount,
2221 VkLayerProperties* pProperties)
2222 {
2223 if (pProperties == NULL) {
2224 *pPropertyCount = 0;
2225 return VK_SUCCESS;
2226 }
2227
2228 /* None supported at this time */
2229 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2230 }
2231
2232 void anv_GetDeviceQueue(
2233 VkDevice _device,
2234 uint32_t queueNodeIndex,
2235 uint32_t queueIndex,
2236 VkQueue* pQueue)
2237 {
2238 ANV_FROM_HANDLE(anv_device, device, _device);
2239
2240 assert(queueIndex == 0);
2241
2242 *pQueue = anv_queue_to_handle(&device->queue);
2243 }
2244
2245 void anv_GetDeviceQueue2(
2246 VkDevice _device,
2247 const VkDeviceQueueInfo2* pQueueInfo,
2248 VkQueue* pQueue)
2249 {
2250 ANV_FROM_HANDLE(anv_device, device, _device);
2251
2252 assert(pQueueInfo->queueIndex == 0);
2253
2254 if (pQueueInfo->flags == device->queue.flags)
2255 *pQueue = anv_queue_to_handle(&device->queue);
2256 else
2257 *pQueue = NULL;
2258 }
2259
2260 VkResult
2261 _anv_device_set_lost(struct anv_device *device,
2262 const char *file, int line,
2263 const char *msg, ...)
2264 {
2265 VkResult err;
2266 va_list ap;
2267
2268 device->_lost = true;
2269
2270 va_start(ap, msg);
2271 err = __vk_errorv(device->instance, device,
2272 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2273 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2274 va_end(ap);
2275
2276 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2277 abort();
2278
2279 return err;
2280 }
2281
2282 VkResult
2283 anv_device_query_status(struct anv_device *device)
2284 {
2285 /* This isn't likely as most of the callers of this function already check
2286 * for it. However, it doesn't hurt to check and it potentially lets us
2287 * avoid an ioctl.
2288 */
2289 if (anv_device_is_lost(device))
2290 return VK_ERROR_DEVICE_LOST;
2291
2292 uint32_t active, pending;
2293 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2294 if (ret == -1) {
2295 /* We don't know the real error. */
2296 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2297 }
2298
2299 if (active) {
2300 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2301 } else if (pending) {
2302 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2303 }
2304
2305 return VK_SUCCESS;
2306 }
2307
2308 VkResult
2309 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2310 {
2311 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2312 * Other usages of the BO (such as on different hardware) will not be
2313 * flagged as "busy" by this ioctl. Use with care.
2314 */
2315 int ret = anv_gem_busy(device, bo->gem_handle);
2316 if (ret == 1) {
2317 return VK_NOT_READY;
2318 } else if (ret == -1) {
2319 /* We don't know the real error. */
2320 return anv_device_set_lost(device, "gem wait failed: %m");
2321 }
2322
2323 /* Query for device status after the busy call. If the BO we're checking
2324 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2325 * client because it clearly doesn't have valid data. Yes, this most
2326 * likely means an ioctl, but we just did an ioctl to query the busy status
2327 * so it's no great loss.
2328 */
2329 return anv_device_query_status(device);
2330 }
2331
2332 VkResult
2333 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2334 int64_t timeout)
2335 {
2336 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2337 if (ret == -1 && errno == ETIME) {
2338 return VK_TIMEOUT;
2339 } else if (ret == -1) {
2340 /* We don't know the real error. */
2341 return anv_device_set_lost(device, "gem wait failed: %m");
2342 }
2343
2344 /* Query for device status after the wait. If the BO we're waiting on got
2345 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2346 * because it clearly doesn't have valid data. Yes, this most likely means
2347 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2348 */
2349 return anv_device_query_status(device);
2350 }
2351
2352 VkResult anv_DeviceWaitIdle(
2353 VkDevice _device)
2354 {
2355 ANV_FROM_HANDLE(anv_device, device, _device);
2356 if (anv_device_is_lost(device))
2357 return VK_ERROR_DEVICE_LOST;
2358
2359 struct anv_batch batch;
2360
2361 uint32_t cmds[8];
2362 batch.start = batch.next = cmds;
2363 batch.end = (void *) cmds + sizeof(cmds);
2364
2365 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2366 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2367
2368 return anv_device_submit_simple_batch(device, &batch);
2369 }
2370
2371 bool
2372 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2373 {
2374 if (!(bo->flags & EXEC_OBJECT_PINNED))
2375 return true;
2376
2377 pthread_mutex_lock(&device->vma_mutex);
2378
2379 bo->offset = 0;
2380
2381 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2382 device->vma_hi_available >= bo->size) {
2383 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
2384 if (addr) {
2385 bo->offset = gen_canonical_address(addr);
2386 assert(addr == gen_48b_address(bo->offset));
2387 device->vma_hi_available -= bo->size;
2388 }
2389 }
2390
2391 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
2392 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
2393 if (addr) {
2394 bo->offset = gen_canonical_address(addr);
2395 assert(addr == gen_48b_address(bo->offset));
2396 device->vma_lo_available -= bo->size;
2397 }
2398 }
2399
2400 pthread_mutex_unlock(&device->vma_mutex);
2401
2402 return bo->offset != 0;
2403 }
2404
2405 void
2406 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
2407 {
2408 if (!(bo->flags & EXEC_OBJECT_PINNED))
2409 return;
2410
2411 const uint64_t addr_48b = gen_48b_address(bo->offset);
2412
2413 pthread_mutex_lock(&device->vma_mutex);
2414
2415 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
2416 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
2417 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
2418 device->vma_lo_available += bo->size;
2419 } else {
2420 assert(addr_48b >= HIGH_HEAP_MIN_ADDRESS &&
2421 addr_48b <= HIGH_HEAP_MAX_ADDRESS);
2422 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
2423 device->vma_hi_available += bo->size;
2424 }
2425
2426 pthread_mutex_unlock(&device->vma_mutex);
2427
2428 bo->offset = 0;
2429 }
2430
2431 VkResult
2432 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
2433 {
2434 uint32_t gem_handle = anv_gem_create(device, size);
2435 if (!gem_handle)
2436 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
2437
2438 anv_bo_init(bo, gem_handle, size);
2439
2440 return VK_SUCCESS;
2441 }
2442
2443 VkResult anv_AllocateMemory(
2444 VkDevice _device,
2445 const VkMemoryAllocateInfo* pAllocateInfo,
2446 const VkAllocationCallbacks* pAllocator,
2447 VkDeviceMemory* pMem)
2448 {
2449 ANV_FROM_HANDLE(anv_device, device, _device);
2450 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2451 struct anv_device_memory *mem;
2452 VkResult result = VK_SUCCESS;
2453
2454 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
2455
2456 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
2457 assert(pAllocateInfo->allocationSize > 0);
2458
2459 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
2460 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2461
2462 /* FINISHME: Fail if allocation request exceeds heap size. */
2463
2464 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
2465 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2466 if (mem == NULL)
2467 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2468
2469 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
2470 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
2471 mem->map = NULL;
2472 mem->map_size = 0;
2473 mem->ahw = NULL;
2474 mem->host_ptr = NULL;
2475
2476 uint64_t bo_flags = 0;
2477
2478 assert(mem->type->heapIndex < pdevice->memory.heap_count);
2479 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
2480 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2481
2482 const struct wsi_memory_allocate_info *wsi_info =
2483 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
2484 if (wsi_info && wsi_info->implicit_sync) {
2485 /* We need to set the WRITE flag on window system buffers so that GEM
2486 * will know we're writing to them and synchronize uses on other rings
2487 * (eg if the display server uses the blitter ring).
2488 */
2489 bo_flags |= EXEC_OBJECT_WRITE;
2490 } else if (pdevice->has_exec_async) {
2491 bo_flags |= EXEC_OBJECT_ASYNC;
2492 }
2493
2494 if (pdevice->use_softpin)
2495 bo_flags |= EXEC_OBJECT_PINNED;
2496
2497 const VkExportMemoryAllocateInfo *export_info =
2498 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
2499
2500 /* Check if we need to support Android HW buffer export. If so,
2501 * create AHardwareBuffer and import memory from it.
2502 */
2503 bool android_export = false;
2504 if (export_info && export_info->handleTypes &
2505 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
2506 android_export = true;
2507
2508 /* Android memory import. */
2509 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
2510 vk_find_struct_const(pAllocateInfo->pNext,
2511 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
2512
2513 if (ahw_import_info) {
2514 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
2515 if (result != VK_SUCCESS)
2516 goto fail;
2517
2518 goto success;
2519 } else if (android_export) {
2520 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
2521 if (result != VK_SUCCESS)
2522 goto fail;
2523
2524 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
2525 .buffer = mem->ahw,
2526 };
2527 result = anv_import_ahw_memory(_device, mem, &import_info);
2528 if (result != VK_SUCCESS)
2529 goto fail;
2530
2531 goto success;
2532 }
2533
2534 const VkImportMemoryFdInfoKHR *fd_info =
2535 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
2536
2537 /* The Vulkan spec permits handleType to be 0, in which case the struct is
2538 * ignored.
2539 */
2540 if (fd_info && fd_info->handleType) {
2541 /* At the moment, we support only the below handle types. */
2542 assert(fd_info->handleType ==
2543 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2544 fd_info->handleType ==
2545 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2546
2547 result = anv_bo_cache_import(device, &device->bo_cache, fd_info->fd,
2548 bo_flags | ANV_BO_EXTERNAL, &mem->bo);
2549 if (result != VK_SUCCESS)
2550 goto fail;
2551
2552 VkDeviceSize aligned_alloc_size =
2553 align_u64(pAllocateInfo->allocationSize, 4096);
2554
2555 /* For security purposes, we reject importing the bo if it's smaller
2556 * than the requested allocation size. This prevents a malicious client
2557 * from passing a buffer to a trusted client, lying about the size, and
2558 * telling the trusted client to try and texture from an image that goes
2559 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
2560 * in the trusted client. The trusted client can protect itself against
2561 * this sort of attack but only if it can trust the buffer size.
2562 */
2563 if (mem->bo->size < aligned_alloc_size) {
2564 result = vk_errorf(device->instance, device,
2565 VK_ERROR_INVALID_EXTERNAL_HANDLE,
2566 "aligned allocationSize too large for "
2567 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
2568 "%"PRIu64"B > %"PRIu64"B",
2569 aligned_alloc_size, mem->bo->size);
2570 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2571 goto fail;
2572 }
2573
2574 /* From the Vulkan spec:
2575 *
2576 * "Importing memory from a file descriptor transfers ownership of
2577 * the file descriptor from the application to the Vulkan
2578 * implementation. The application must not perform any operations on
2579 * the file descriptor after a successful import."
2580 *
2581 * If the import fails, we leave the file descriptor open.
2582 */
2583 close(fd_info->fd);
2584 goto success;
2585 }
2586
2587 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
2588 vk_find_struct_const(pAllocateInfo->pNext,
2589 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
2590 if (host_ptr_info && host_ptr_info->handleType) {
2591 if (host_ptr_info->handleType ==
2592 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
2593 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2594 goto fail;
2595 }
2596
2597 assert(host_ptr_info->handleType ==
2598 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
2599
2600 result = anv_bo_cache_import_host_ptr(
2601 device, &device->bo_cache, host_ptr_info->pHostPointer,
2602 pAllocateInfo->allocationSize, bo_flags, &mem->bo);
2603
2604 if (result != VK_SUCCESS)
2605 goto fail;
2606
2607 mem->host_ptr = host_ptr_info->pHostPointer;
2608 goto success;
2609 }
2610
2611 /* Regular allocate (not importing memory). */
2612
2613 if (export_info && export_info->handleTypes)
2614 bo_flags |= ANV_BO_EXTERNAL;
2615
2616 result = anv_bo_cache_alloc(device, &device->bo_cache,
2617 pAllocateInfo->allocationSize, bo_flags,
2618 &mem->bo);
2619 if (result != VK_SUCCESS)
2620 goto fail;
2621
2622 const VkMemoryDedicatedAllocateInfo *dedicated_info =
2623 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
2624 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
2625 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
2626
2627 /* Some legacy (non-modifiers) consumers need the tiling to be set on
2628 * the BO. In this case, we have a dedicated allocation.
2629 */
2630 if (image->needs_set_tiling) {
2631 const uint32_t i915_tiling =
2632 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
2633 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
2634 image->planes[0].surface.isl.row_pitch_B,
2635 i915_tiling);
2636 if (ret) {
2637 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2638 return vk_errorf(device->instance, NULL,
2639 VK_ERROR_OUT_OF_DEVICE_MEMORY,
2640 "failed to set BO tiling: %m");
2641 }
2642 }
2643 }
2644
2645 success:
2646 *pMem = anv_device_memory_to_handle(mem);
2647
2648 return VK_SUCCESS;
2649
2650 fail:
2651 vk_free2(&device->alloc, pAllocator, mem);
2652
2653 return result;
2654 }
2655
2656 VkResult anv_GetMemoryFdKHR(
2657 VkDevice device_h,
2658 const VkMemoryGetFdInfoKHR* pGetFdInfo,
2659 int* pFd)
2660 {
2661 ANV_FROM_HANDLE(anv_device, dev, device_h);
2662 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
2663
2664 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
2665
2666 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
2667 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
2668
2669 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
2670 }
2671
2672 VkResult anv_GetMemoryFdPropertiesKHR(
2673 VkDevice _device,
2674 VkExternalMemoryHandleTypeFlagBits handleType,
2675 int fd,
2676 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
2677 {
2678 ANV_FROM_HANDLE(anv_device, device, _device);
2679 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2680
2681 switch (handleType) {
2682 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
2683 /* dma-buf can be imported as any memory type */
2684 pMemoryFdProperties->memoryTypeBits =
2685 (1 << pdevice->memory.type_count) - 1;
2686 return VK_SUCCESS;
2687
2688 default:
2689 /* The valid usage section for this function says:
2690 *
2691 * "handleType must not be one of the handle types defined as
2692 * opaque."
2693 *
2694 * So opaque handle types fall into the default "unsupported" case.
2695 */
2696 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
2697 }
2698 }
2699
2700 VkResult anv_GetMemoryHostPointerPropertiesEXT(
2701 VkDevice _device,
2702 VkExternalMemoryHandleTypeFlagBits handleType,
2703 const void* pHostPointer,
2704 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
2705 {
2706 ANV_FROM_HANDLE(anv_device, device, _device);
2707
2708 assert(pMemoryHostPointerProperties->sType ==
2709 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
2710
2711 switch (handleType) {
2712 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
2713 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2714
2715 /* Host memory can be imported as any memory type. */
2716 pMemoryHostPointerProperties->memoryTypeBits =
2717 (1ull << pdevice->memory.type_count) - 1;
2718
2719 return VK_SUCCESS;
2720 }
2721 default:
2722 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
2723 }
2724 }
2725
2726 void anv_FreeMemory(
2727 VkDevice _device,
2728 VkDeviceMemory _mem,
2729 const VkAllocationCallbacks* pAllocator)
2730 {
2731 ANV_FROM_HANDLE(anv_device, device, _device);
2732 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
2733
2734 if (mem == NULL)
2735 return;
2736
2737 if (mem->map)
2738 anv_UnmapMemory(_device, _mem);
2739
2740 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
2741
2742 #ifdef ANDROID
2743 if (mem->ahw)
2744 AHardwareBuffer_release(mem->ahw);
2745 #endif
2746
2747 vk_free2(&device->alloc, pAllocator, mem);
2748 }
2749
2750 VkResult anv_MapMemory(
2751 VkDevice _device,
2752 VkDeviceMemory _memory,
2753 VkDeviceSize offset,
2754 VkDeviceSize size,
2755 VkMemoryMapFlags flags,
2756 void** ppData)
2757 {
2758 ANV_FROM_HANDLE(anv_device, device, _device);
2759 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2760
2761 if (mem == NULL) {
2762 *ppData = NULL;
2763 return VK_SUCCESS;
2764 }
2765
2766 if (mem->host_ptr) {
2767 *ppData = mem->host_ptr + offset;
2768 return VK_SUCCESS;
2769 }
2770
2771 if (size == VK_WHOLE_SIZE)
2772 size = mem->bo->size - offset;
2773
2774 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
2775 *
2776 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
2777 * assert(size != 0);
2778 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
2779 * equal to the size of the memory minus offset
2780 */
2781 assert(size > 0);
2782 assert(offset + size <= mem->bo->size);
2783
2784 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
2785 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
2786 * at a time is valid. We could just mmap up front and return an offset
2787 * pointer here, but that may exhaust virtual memory on 32 bit
2788 * userspace. */
2789
2790 uint32_t gem_flags = 0;
2791
2792 if (!device->info.has_llc &&
2793 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
2794 gem_flags |= I915_MMAP_WC;
2795
2796 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
2797 uint64_t map_offset = offset & ~4095ull;
2798 assert(offset >= map_offset);
2799 uint64_t map_size = (offset + size) - map_offset;
2800
2801 /* Let's map whole pages */
2802 map_size = align_u64(map_size, 4096);
2803
2804 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
2805 map_offset, map_size, gem_flags);
2806 if (map == MAP_FAILED)
2807 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
2808
2809 mem->map = map;
2810 mem->map_size = map_size;
2811
2812 *ppData = mem->map + (offset - map_offset);
2813
2814 return VK_SUCCESS;
2815 }
2816
2817 void anv_UnmapMemory(
2818 VkDevice _device,
2819 VkDeviceMemory _memory)
2820 {
2821 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
2822
2823 if (mem == NULL || mem->host_ptr)
2824 return;
2825
2826 anv_gem_munmap(mem->map, mem->map_size);
2827
2828 mem->map = NULL;
2829 mem->map_size = 0;
2830 }
2831
2832 static void
2833 clflush_mapped_ranges(struct anv_device *device,
2834 uint32_t count,
2835 const VkMappedMemoryRange *ranges)
2836 {
2837 for (uint32_t i = 0; i < count; i++) {
2838 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
2839 if (ranges[i].offset >= mem->map_size)
2840 continue;
2841
2842 gen_clflush_range(mem->map + ranges[i].offset,
2843 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
2844 }
2845 }
2846
2847 VkResult anv_FlushMappedMemoryRanges(
2848 VkDevice _device,
2849 uint32_t memoryRangeCount,
2850 const VkMappedMemoryRange* pMemoryRanges)
2851 {
2852 ANV_FROM_HANDLE(anv_device, device, _device);
2853
2854 if (device->info.has_llc)
2855 return VK_SUCCESS;
2856
2857 /* Make sure the writes we're flushing have landed. */
2858 __builtin_ia32_mfence();
2859
2860 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2861
2862 return VK_SUCCESS;
2863 }
2864
2865 VkResult anv_InvalidateMappedMemoryRanges(
2866 VkDevice _device,
2867 uint32_t memoryRangeCount,
2868 const VkMappedMemoryRange* pMemoryRanges)
2869 {
2870 ANV_FROM_HANDLE(anv_device, device, _device);
2871
2872 if (device->info.has_llc)
2873 return VK_SUCCESS;
2874
2875 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
2876
2877 /* Make sure no reads get moved up above the invalidate. */
2878 __builtin_ia32_mfence();
2879
2880 return VK_SUCCESS;
2881 }
2882
2883 void anv_GetBufferMemoryRequirements(
2884 VkDevice _device,
2885 VkBuffer _buffer,
2886 VkMemoryRequirements* pMemoryRequirements)
2887 {
2888 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2889 ANV_FROM_HANDLE(anv_device, device, _device);
2890 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2891
2892 /* The Vulkan spec (git aaed022) says:
2893 *
2894 * memoryTypeBits is a bitfield and contains one bit set for every
2895 * supported memory type for the resource. The bit `1<<i` is set if and
2896 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
2897 * structure for the physical device is supported.
2898 */
2899 uint32_t memory_types = 0;
2900 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
2901 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
2902 if ((valid_usage & buffer->usage) == buffer->usage)
2903 memory_types |= (1u << i);
2904 }
2905
2906 /* Base alignment requirement of a cache line */
2907 uint32_t alignment = 16;
2908
2909 /* We need an alignment of 32 for pushing UBOs */
2910 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
2911 alignment = MAX2(alignment, 32);
2912
2913 pMemoryRequirements->size = buffer->size;
2914 pMemoryRequirements->alignment = alignment;
2915
2916 /* Storage and Uniform buffers should have their size aligned to
2917 * 32-bits to avoid boundary checks when last DWord is not complete.
2918 * This would ensure that not internal padding would be needed for
2919 * 16-bit types.
2920 */
2921 if (device->robust_buffer_access &&
2922 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
2923 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
2924 pMemoryRequirements->size = align_u64(buffer->size, 4);
2925
2926 pMemoryRequirements->memoryTypeBits = memory_types;
2927 }
2928
2929 void anv_GetBufferMemoryRequirements2(
2930 VkDevice _device,
2931 const VkBufferMemoryRequirementsInfo2* pInfo,
2932 VkMemoryRequirements2* pMemoryRequirements)
2933 {
2934 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
2935 &pMemoryRequirements->memoryRequirements);
2936
2937 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
2938 switch (ext->sType) {
2939 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
2940 VkMemoryDedicatedRequirements *requirements = (void *)ext;
2941 requirements->prefersDedicatedAllocation = VK_FALSE;
2942 requirements->requiresDedicatedAllocation = VK_FALSE;
2943 break;
2944 }
2945
2946 default:
2947 anv_debug_ignored_stype(ext->sType);
2948 break;
2949 }
2950 }
2951 }
2952
2953 void anv_GetImageMemoryRequirements(
2954 VkDevice _device,
2955 VkImage _image,
2956 VkMemoryRequirements* pMemoryRequirements)
2957 {
2958 ANV_FROM_HANDLE(anv_image, image, _image);
2959 ANV_FROM_HANDLE(anv_device, device, _device);
2960 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2961
2962 /* The Vulkan spec (git aaed022) says:
2963 *
2964 * memoryTypeBits is a bitfield and contains one bit set for every
2965 * supported memory type for the resource. The bit `1<<i` is set if and
2966 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
2967 * structure for the physical device is supported.
2968 *
2969 * All types are currently supported for images.
2970 */
2971 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
2972
2973 /* We must have image allocated or imported at this point. According to the
2974 * specification, external images must have been bound to memory before
2975 * calling GetImageMemoryRequirements.
2976 */
2977 assert(image->size > 0);
2978
2979 pMemoryRequirements->size = image->size;
2980 pMemoryRequirements->alignment = image->alignment;
2981 pMemoryRequirements->memoryTypeBits = memory_types;
2982 }
2983
2984 void anv_GetImageMemoryRequirements2(
2985 VkDevice _device,
2986 const VkImageMemoryRequirementsInfo2* pInfo,
2987 VkMemoryRequirements2* pMemoryRequirements)
2988 {
2989 ANV_FROM_HANDLE(anv_device, device, _device);
2990 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
2991
2992 anv_GetImageMemoryRequirements(_device, pInfo->image,
2993 &pMemoryRequirements->memoryRequirements);
2994
2995 vk_foreach_struct_const(ext, pInfo->pNext) {
2996 switch (ext->sType) {
2997 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
2998 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2999 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3000 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3001 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3002 plane_reqs->planeAspect);
3003
3004 assert(image->planes[plane].offset == 0);
3005
3006 /* The Vulkan spec (git aaed022) says:
3007 *
3008 * memoryTypeBits is a bitfield and contains one bit set for every
3009 * supported memory type for the resource. The bit `1<<i` is set
3010 * if and only if the memory type `i` in the
3011 * VkPhysicalDeviceMemoryProperties structure for the physical
3012 * device is supported.
3013 *
3014 * All types are currently supported for images.
3015 */
3016 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3017 (1ull << pdevice->memory.type_count) - 1;
3018
3019 /* We must have image allocated or imported at this point. According to the
3020 * specification, external images must have been bound to memory before
3021 * calling GetImageMemoryRequirements.
3022 */
3023 assert(image->planes[plane].size > 0);
3024
3025 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3026 pMemoryRequirements->memoryRequirements.alignment =
3027 image->planes[plane].alignment;
3028 break;
3029 }
3030
3031 default:
3032 anv_debug_ignored_stype(ext->sType);
3033 break;
3034 }
3035 }
3036
3037 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3038 switch (ext->sType) {
3039 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3040 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3041 if (image->needs_set_tiling || image->external_format) {
3042 /* If we need to set the tiling for external consumers, we need a
3043 * dedicated allocation.
3044 *
3045 * See also anv_AllocateMemory.
3046 */
3047 requirements->prefersDedicatedAllocation = VK_TRUE;
3048 requirements->requiresDedicatedAllocation = VK_TRUE;
3049 } else {
3050 requirements->prefersDedicatedAllocation = VK_FALSE;
3051 requirements->requiresDedicatedAllocation = VK_FALSE;
3052 }
3053 break;
3054 }
3055
3056 default:
3057 anv_debug_ignored_stype(ext->sType);
3058 break;
3059 }
3060 }
3061 }
3062
3063 void anv_GetImageSparseMemoryRequirements(
3064 VkDevice device,
3065 VkImage image,
3066 uint32_t* pSparseMemoryRequirementCount,
3067 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3068 {
3069 *pSparseMemoryRequirementCount = 0;
3070 }
3071
3072 void anv_GetImageSparseMemoryRequirements2(
3073 VkDevice device,
3074 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3075 uint32_t* pSparseMemoryRequirementCount,
3076 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3077 {
3078 *pSparseMemoryRequirementCount = 0;
3079 }
3080
3081 void anv_GetDeviceMemoryCommitment(
3082 VkDevice device,
3083 VkDeviceMemory memory,
3084 VkDeviceSize* pCommittedMemoryInBytes)
3085 {
3086 *pCommittedMemoryInBytes = 0;
3087 }
3088
3089 static void
3090 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3091 {
3092 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3093 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3094
3095 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3096
3097 if (mem) {
3098 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3099 buffer->address = (struct anv_address) {
3100 .bo = mem->bo,
3101 .offset = pBindInfo->memoryOffset,
3102 };
3103 } else {
3104 buffer->address = ANV_NULL_ADDRESS;
3105 }
3106 }
3107
3108 VkResult anv_BindBufferMemory(
3109 VkDevice device,
3110 VkBuffer buffer,
3111 VkDeviceMemory memory,
3112 VkDeviceSize memoryOffset)
3113 {
3114 anv_bind_buffer_memory(
3115 &(VkBindBufferMemoryInfo) {
3116 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3117 .buffer = buffer,
3118 .memory = memory,
3119 .memoryOffset = memoryOffset,
3120 });
3121
3122 return VK_SUCCESS;
3123 }
3124
3125 VkResult anv_BindBufferMemory2(
3126 VkDevice device,
3127 uint32_t bindInfoCount,
3128 const VkBindBufferMemoryInfo* pBindInfos)
3129 {
3130 for (uint32_t i = 0; i < bindInfoCount; i++)
3131 anv_bind_buffer_memory(&pBindInfos[i]);
3132
3133 return VK_SUCCESS;
3134 }
3135
3136 VkResult anv_QueueBindSparse(
3137 VkQueue _queue,
3138 uint32_t bindInfoCount,
3139 const VkBindSparseInfo* pBindInfo,
3140 VkFence fence)
3141 {
3142 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3143 if (anv_device_is_lost(queue->device))
3144 return VK_ERROR_DEVICE_LOST;
3145
3146 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3147 }
3148
3149 // Event functions
3150
3151 VkResult anv_CreateEvent(
3152 VkDevice _device,
3153 const VkEventCreateInfo* pCreateInfo,
3154 const VkAllocationCallbacks* pAllocator,
3155 VkEvent* pEvent)
3156 {
3157 ANV_FROM_HANDLE(anv_device, device, _device);
3158 struct anv_state state;
3159 struct anv_event *event;
3160
3161 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3162
3163 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3164 sizeof(*event), 8);
3165 event = state.map;
3166 event->state = state;
3167 event->semaphore = VK_EVENT_RESET;
3168
3169 if (!device->info.has_llc) {
3170 /* Make sure the writes we're flushing have landed. */
3171 __builtin_ia32_mfence();
3172 __builtin_ia32_clflush(event);
3173 }
3174
3175 *pEvent = anv_event_to_handle(event);
3176
3177 return VK_SUCCESS;
3178 }
3179
3180 void anv_DestroyEvent(
3181 VkDevice _device,
3182 VkEvent _event,
3183 const VkAllocationCallbacks* pAllocator)
3184 {
3185 ANV_FROM_HANDLE(anv_device, device, _device);
3186 ANV_FROM_HANDLE(anv_event, event, _event);
3187
3188 if (!event)
3189 return;
3190
3191 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3192 }
3193
3194 VkResult anv_GetEventStatus(
3195 VkDevice _device,
3196 VkEvent _event)
3197 {
3198 ANV_FROM_HANDLE(anv_device, device, _device);
3199 ANV_FROM_HANDLE(anv_event, event, _event);
3200
3201 if (anv_device_is_lost(device))
3202 return VK_ERROR_DEVICE_LOST;
3203
3204 if (!device->info.has_llc) {
3205 /* Invalidate read cache before reading event written by GPU. */
3206 __builtin_ia32_clflush(event);
3207 __builtin_ia32_mfence();
3208
3209 }
3210
3211 return event->semaphore;
3212 }
3213
3214 VkResult anv_SetEvent(
3215 VkDevice _device,
3216 VkEvent _event)
3217 {
3218 ANV_FROM_HANDLE(anv_device, device, _device);
3219 ANV_FROM_HANDLE(anv_event, event, _event);
3220
3221 event->semaphore = VK_EVENT_SET;
3222
3223 if (!device->info.has_llc) {
3224 /* Make sure the writes we're flushing have landed. */
3225 __builtin_ia32_mfence();
3226 __builtin_ia32_clflush(event);
3227 }
3228
3229 return VK_SUCCESS;
3230 }
3231
3232 VkResult anv_ResetEvent(
3233 VkDevice _device,
3234 VkEvent _event)
3235 {
3236 ANV_FROM_HANDLE(anv_device, device, _device);
3237 ANV_FROM_HANDLE(anv_event, event, _event);
3238
3239 event->semaphore = VK_EVENT_RESET;
3240
3241 if (!device->info.has_llc) {
3242 /* Make sure the writes we're flushing have landed. */
3243 __builtin_ia32_mfence();
3244 __builtin_ia32_clflush(event);
3245 }
3246
3247 return VK_SUCCESS;
3248 }
3249
3250 // Buffer functions
3251
3252 VkResult anv_CreateBuffer(
3253 VkDevice _device,
3254 const VkBufferCreateInfo* pCreateInfo,
3255 const VkAllocationCallbacks* pAllocator,
3256 VkBuffer* pBuffer)
3257 {
3258 ANV_FROM_HANDLE(anv_device, device, _device);
3259 struct anv_buffer *buffer;
3260
3261 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3262
3263 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3264 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3265 if (buffer == NULL)
3266 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3267
3268 buffer->size = pCreateInfo->size;
3269 buffer->usage = pCreateInfo->usage;
3270 buffer->address = ANV_NULL_ADDRESS;
3271
3272 if (buffer->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT) {
3273 pthread_mutex_lock(&device->mutex);
3274 _mesa_set_add(device->pinned_buffers, buffer);
3275 pthread_mutex_unlock(&device->mutex);
3276 }
3277
3278 *pBuffer = anv_buffer_to_handle(buffer);
3279
3280 return VK_SUCCESS;
3281 }
3282
3283 void anv_DestroyBuffer(
3284 VkDevice _device,
3285 VkBuffer _buffer,
3286 const VkAllocationCallbacks* pAllocator)
3287 {
3288 ANV_FROM_HANDLE(anv_device, device, _device);
3289 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3290
3291 if (!buffer)
3292 return;
3293
3294 if (buffer->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT) {
3295 pthread_mutex_lock(&device->mutex);
3296 _mesa_set_remove_key(device->pinned_buffers, buffer);
3297 pthread_mutex_unlock(&device->mutex);
3298 }
3299
3300 vk_free2(&device->alloc, pAllocator, buffer);
3301 }
3302
3303 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3304 VkDevice device,
3305 const VkBufferDeviceAddressInfoEXT* pInfo)
3306 {
3307 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3308
3309 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3310
3311 return anv_address_physical(buffer->address);
3312 }
3313
3314 void
3315 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3316 enum isl_format format,
3317 struct anv_address address,
3318 uint32_t range, uint32_t stride)
3319 {
3320 isl_buffer_fill_state(&device->isl_dev, state.map,
3321 .address = anv_address_physical(address),
3322 .mocs = device->default_mocs,
3323 .size_B = range,
3324 .format = format,
3325 .stride_B = stride);
3326 }
3327
3328 void anv_DestroySampler(
3329 VkDevice _device,
3330 VkSampler _sampler,
3331 const VkAllocationCallbacks* pAllocator)
3332 {
3333 ANV_FROM_HANDLE(anv_device, device, _device);
3334 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3335
3336 if (!sampler)
3337 return;
3338
3339 vk_free2(&device->alloc, pAllocator, sampler);
3340 }
3341
3342 VkResult anv_CreateFramebuffer(
3343 VkDevice _device,
3344 const VkFramebufferCreateInfo* pCreateInfo,
3345 const VkAllocationCallbacks* pAllocator,
3346 VkFramebuffer* pFramebuffer)
3347 {
3348 ANV_FROM_HANDLE(anv_device, device, _device);
3349 struct anv_framebuffer *framebuffer;
3350
3351 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3352
3353 size_t size = sizeof(*framebuffer) +
3354 sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3355 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3356 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3357 if (framebuffer == NULL)
3358 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3359
3360 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3361 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3362 VkImageView _iview = pCreateInfo->pAttachments[i];
3363 framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
3364 }
3365
3366 framebuffer->width = pCreateInfo->width;
3367 framebuffer->height = pCreateInfo->height;
3368 framebuffer->layers = pCreateInfo->layers;
3369
3370 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
3371
3372 return VK_SUCCESS;
3373 }
3374
3375 void anv_DestroyFramebuffer(
3376 VkDevice _device,
3377 VkFramebuffer _fb,
3378 const VkAllocationCallbacks* pAllocator)
3379 {
3380 ANV_FROM_HANDLE(anv_device, device, _device);
3381 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
3382
3383 if (!fb)
3384 return;
3385
3386 vk_free2(&device->alloc, pAllocator, fb);
3387 }
3388
3389 static const VkTimeDomainEXT anv_time_domains[] = {
3390 VK_TIME_DOMAIN_DEVICE_EXT,
3391 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
3392 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
3393 };
3394
3395 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
3396 VkPhysicalDevice physicalDevice,
3397 uint32_t *pTimeDomainCount,
3398 VkTimeDomainEXT *pTimeDomains)
3399 {
3400 int d;
3401 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
3402
3403 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
3404 vk_outarray_append(&out, i) {
3405 *i = anv_time_domains[d];
3406 }
3407 }
3408
3409 return vk_outarray_status(&out);
3410 }
3411
3412 static uint64_t
3413 anv_clock_gettime(clockid_t clock_id)
3414 {
3415 struct timespec current;
3416 int ret;
3417
3418 ret = clock_gettime(clock_id, &current);
3419 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
3420 ret = clock_gettime(CLOCK_MONOTONIC, &current);
3421 if (ret < 0)
3422 return 0;
3423
3424 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
3425 }
3426
3427 #define TIMESTAMP 0x2358
3428
3429 VkResult anv_GetCalibratedTimestampsEXT(
3430 VkDevice _device,
3431 uint32_t timestampCount,
3432 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
3433 uint64_t *pTimestamps,
3434 uint64_t *pMaxDeviation)
3435 {
3436 ANV_FROM_HANDLE(anv_device, device, _device);
3437 uint64_t timestamp_frequency = device->info.timestamp_frequency;
3438 int ret;
3439 int d;
3440 uint64_t begin, end;
3441 uint64_t max_clock_period = 0;
3442
3443 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3444
3445 for (d = 0; d < timestampCount; d++) {
3446 switch (pTimestampInfos[d].timeDomain) {
3447 case VK_TIME_DOMAIN_DEVICE_EXT:
3448 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
3449 &pTimestamps[d]);
3450
3451 if (ret != 0) {
3452 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
3453 "register: %m");
3454 }
3455 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
3456 max_clock_period = MAX2(max_clock_period, device_period);
3457 break;
3458 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
3459 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
3460 max_clock_period = MAX2(max_clock_period, 1);
3461 break;
3462
3463 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
3464 pTimestamps[d] = begin;
3465 break;
3466 default:
3467 pTimestamps[d] = 0;
3468 break;
3469 }
3470 }
3471
3472 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3473
3474 /*
3475 * The maximum deviation is the sum of the interval over which we
3476 * perform the sampling and the maximum period of any sampled
3477 * clock. That's because the maximum skew between any two sampled
3478 * clock edges is when the sampled clock with the largest period is
3479 * sampled at the end of that period but right at the beginning of the
3480 * sampling interval and some other clock is sampled right at the
3481 * begining of its sampling period and right at the end of the
3482 * sampling interval. Let's assume the GPU has the longest clock
3483 * period and that the application is sampling GPU and monotonic:
3484 *
3485 * s e
3486 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
3487 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3488 *
3489 * g
3490 * 0 1 2 3
3491 * GPU -----_____-----_____-----_____-----_____
3492 *
3493 * m
3494 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
3495 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3496 *
3497 * Interval <----------------->
3498 * Deviation <-------------------------->
3499 *
3500 * s = read(raw) 2
3501 * g = read(GPU) 1
3502 * m = read(monotonic) 2
3503 * e = read(raw) b
3504 *
3505 * We round the sample interval up by one tick to cover sampling error
3506 * in the interval clock
3507 */
3508
3509 uint64_t sample_interval = end - begin + 1;
3510
3511 *pMaxDeviation = sample_interval + max_clock_period;
3512
3513 return VK_SUCCESS;
3514 }
3515
3516 /* vk_icd.h does not declare this function, so we declare it here to
3517 * suppress Wmissing-prototypes.
3518 */
3519 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3520 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
3521
3522 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
3523 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
3524 {
3525 /* For the full details on loader interface versioning, see
3526 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
3527 * What follows is a condensed summary, to help you navigate the large and
3528 * confusing official doc.
3529 *
3530 * - Loader interface v0 is incompatible with later versions. We don't
3531 * support it.
3532 *
3533 * - In loader interface v1:
3534 * - The first ICD entrypoint called by the loader is
3535 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
3536 * entrypoint.
3537 * - The ICD must statically expose no other Vulkan symbol unless it is
3538 * linked with -Bsymbolic.
3539 * - Each dispatchable Vulkan handle created by the ICD must be
3540 * a pointer to a struct whose first member is VK_LOADER_DATA. The
3541 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
3542 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
3543 * vkDestroySurfaceKHR(). The ICD must be capable of working with
3544 * such loader-managed surfaces.
3545 *
3546 * - Loader interface v2 differs from v1 in:
3547 * - The first ICD entrypoint called by the loader is
3548 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
3549 * statically expose this entrypoint.
3550 *
3551 * - Loader interface v3 differs from v2 in:
3552 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
3553 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
3554 * because the loader no longer does so.
3555 */
3556 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
3557 return VK_SUCCESS;
3558 }