vulkan: add vk_x11_strict_image_count option
[mesa.git] / src / intel / vulkan / anv_device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/sysinfo.h>
29 #include <unistd.h>
30 #include <fcntl.h>
31 #include <xf86drm.h>
32 #include "drm-uapi/drm_fourcc.h"
33
34 #include "anv_private.h"
35 #include "util/strtod.h"
36 #include "util/debug.h"
37 #include "util/build_id.h"
38 #include "util/disk_cache.h"
39 #include "util/mesa-sha1.h"
40 #include "util/os_file.h"
41 #include "util/u_atomic.h"
42 #include "util/u_string.h"
43 #include "util/xmlpool.h"
44 #include "git_sha1.h"
45 #include "vk_util.h"
46 #include "common/gen_defines.h"
47 #include "compiler/glsl_types.h"
48
49 #include "genxml/gen7_pack.h"
50
51 static const char anv_dri_options_xml[] =
52 DRI_CONF_BEGIN
53 DRI_CONF_SECTION_PERFORMANCE
54 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
55 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT("false")
56 DRI_CONF_SECTION_END
57 DRI_CONF_END;
58
59 /* This is probably far to big but it reflects the max size used for messages
60 * in OpenGLs KHR_debug.
61 */
62 #define MAX_DEBUG_MESSAGE_LENGTH 4096
63
64 static void
65 compiler_debug_log(void *data, const char *fmt, ...)
66 {
67 char str[MAX_DEBUG_MESSAGE_LENGTH];
68 struct anv_device *device = (struct anv_device *)data;
69
70 if (list_empty(&device->instance->debug_report_callbacks.callbacks))
71 return;
72
73 va_list args;
74 va_start(args, fmt);
75 (void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
76 va_end(args);
77
78 vk_debug_report(&device->instance->debug_report_callbacks,
79 VK_DEBUG_REPORT_DEBUG_BIT_EXT,
80 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,
81 0, 0, 0, "anv", str);
82 }
83
84 static void
85 compiler_perf_log(void *data, const char *fmt, ...)
86 {
87 va_list args;
88 va_start(args, fmt);
89
90 if (unlikely(INTEL_DEBUG & DEBUG_PERF))
91 intel_logd_v(fmt, args);
92
93 va_end(args);
94 }
95
96 static uint64_t
97 anv_compute_heap_size(int fd, uint64_t gtt_size)
98 {
99 /* Query the total ram from the system */
100 struct sysinfo info;
101 sysinfo(&info);
102
103 uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
104
105 /* We don't want to burn too much ram with the GPU. If the user has 4GiB
106 * or less, we use at most half. If they have more than 4GiB, we use 3/4.
107 */
108 uint64_t available_ram;
109 if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
110 available_ram = total_ram / 2;
111 else
112 available_ram = total_ram * 3 / 4;
113
114 /* We also want to leave some padding for things we allocate in the driver,
115 * so don't go over 3/4 of the GTT either.
116 */
117 uint64_t available_gtt = gtt_size * 3 / 4;
118
119 return MIN2(available_ram, available_gtt);
120 }
121
122 static VkResult
123 anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
124 {
125 uint64_t gtt_size;
126 if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
127 &gtt_size) == -1) {
128 /* If, for whatever reason, we can't actually get the GTT size from the
129 * kernel (too old?) fall back to the aperture size.
130 */
131 anv_perf_warn(NULL, NULL,
132 "Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
133
134 if (anv_gem_get_aperture(fd, &gtt_size) == -1) {
135 return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
136 "failed to get aperture size: %m");
137 }
138 }
139
140 device->supports_48bit_addresses = (device->info.gen >= 8) &&
141 gtt_size > (4ULL << 30 /* GiB */);
142
143 uint64_t heap_size = anv_compute_heap_size(fd, gtt_size);
144
145 if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
146 /* When running with an overridden PCI ID, we may get a GTT size from
147 * the kernel that is greater than 2 GiB but the execbuf check for 48bit
148 * address support can still fail. Just clamp the address space size to
149 * 2 GiB if we don't have 48-bit support.
150 */
151 intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
152 "not support for 48-bit addresses",
153 __FILE__, __LINE__);
154 heap_size = 2ull << 30;
155 }
156
157 if (heap_size <= 3ull * (1ull << 30)) {
158 /* In this case, everything fits nicely into the 32-bit address space,
159 * so there's no need for supporting 48bit addresses on client-allocated
160 * memory objects.
161 */
162 device->memory.heap_count = 1;
163 device->memory.heaps[0] = (struct anv_memory_heap) {
164 .vma_start = LOW_HEAP_MIN_ADDRESS,
165 .vma_size = LOW_HEAP_SIZE,
166 .size = heap_size,
167 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
168 .supports_48bit_addresses = false,
169 };
170 } else {
171 /* Not everything will fit nicely into a 32-bit address space. In this
172 * case we need a 64-bit heap. Advertise a small 32-bit heap and a
173 * larger 48-bit heap. If we're in this case, then we have a total heap
174 * size larger than 3GiB which most likely means they have 8 GiB of
175 * video memory and so carving off 1 GiB for the 32-bit heap should be
176 * reasonable.
177 */
178 const uint64_t heap_size_32bit = 1ull << 30;
179 const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
180
181 assert(device->supports_48bit_addresses);
182
183 device->memory.heap_count = 2;
184 device->memory.heaps[0] = (struct anv_memory_heap) {
185 .vma_start = HIGH_HEAP_MIN_ADDRESS,
186 /* Leave the last 4GiB out of the high vma range, so that no state
187 * base address + size can overflow 48 bits. For more information see
188 * the comment about Wa32bitGeneralStateOffset in anv_allocator.c
189 */
190 .vma_size = gtt_size - (1ull << 32) - HIGH_HEAP_MIN_ADDRESS,
191 .size = heap_size_48bit,
192 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
193 .supports_48bit_addresses = true,
194 };
195 device->memory.heaps[1] = (struct anv_memory_heap) {
196 .vma_start = LOW_HEAP_MIN_ADDRESS,
197 .vma_size = LOW_HEAP_SIZE,
198 .size = heap_size_32bit,
199 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
200 .supports_48bit_addresses = false,
201 };
202 }
203
204 uint32_t type_count = 0;
205 for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
206 uint32_t valid_buffer_usage = ~0;
207
208 /* There appears to be a hardware issue in the VF cache where it only
209 * considers the bottom 32 bits of memory addresses. If you happen to
210 * have two vertex buffers which get placed exactly 4 GiB apart and use
211 * them in back-to-back draw calls, you can get collisions. In order to
212 * solve this problem, we require vertex and index buffers be bound to
213 * memory allocated out of the 32-bit heap.
214 */
215 if (device->memory.heaps[heap].supports_48bit_addresses) {
216 valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
217 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
218 }
219
220 if (device->info.has_llc) {
221 /* Big core GPUs share LLC with the CPU and thus one memory type can be
222 * both cached and coherent at the same time.
223 */
224 device->memory.types[type_count++] = (struct anv_memory_type) {
225 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
226 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
227 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
228 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
229 .heapIndex = heap,
230 .valid_buffer_usage = valid_buffer_usage,
231 };
232 } else {
233 /* The spec requires that we expose a host-visible, coherent memory
234 * type, but Atom GPUs don't share LLC. Thus we offer two memory types
235 * to give the application a choice between cached, but not coherent and
236 * coherent but uncached (WC though).
237 */
238 device->memory.types[type_count++] = (struct anv_memory_type) {
239 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
240 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
241 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
242 .heapIndex = heap,
243 .valid_buffer_usage = valid_buffer_usage,
244 };
245 device->memory.types[type_count++] = (struct anv_memory_type) {
246 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
247 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
248 VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
249 .heapIndex = heap,
250 .valid_buffer_usage = valid_buffer_usage,
251 };
252 }
253 }
254 device->memory.type_count = type_count;
255
256 return VK_SUCCESS;
257 }
258
259 static VkResult
260 anv_physical_device_init_uuids(struct anv_physical_device *device)
261 {
262 const struct build_id_note *note =
263 build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
264 if (!note) {
265 return vk_errorf(device->instance, device,
266 VK_ERROR_INITIALIZATION_FAILED,
267 "Failed to find build-id");
268 }
269
270 unsigned build_id_len = build_id_length(note);
271 if (build_id_len < 20) {
272 return vk_errorf(device->instance, device,
273 VK_ERROR_INITIALIZATION_FAILED,
274 "build-id too short. It needs to be a SHA");
275 }
276
277 memcpy(device->driver_build_sha1, build_id_data(note), 20);
278
279 struct mesa_sha1 sha1_ctx;
280 uint8_t sha1[20];
281 STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
282
283 /* The pipeline cache UUID is used for determining when a pipeline cache is
284 * invalid. It needs both a driver build and the PCI ID of the device.
285 */
286 _mesa_sha1_init(&sha1_ctx);
287 _mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
288 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
289 sizeof(device->chipset_id));
290 _mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
291 sizeof(device->always_use_bindless));
292 _mesa_sha1_update(&sha1_ctx, &device->has_a64_buffer_access,
293 sizeof(device->has_a64_buffer_access));
294 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_images,
295 sizeof(device->has_bindless_images));
296 _mesa_sha1_update(&sha1_ctx, &device->has_bindless_samplers,
297 sizeof(device->has_bindless_samplers));
298 _mesa_sha1_final(&sha1_ctx, sha1);
299 memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
300
301 /* The driver UUID is used for determining sharability of images and memory
302 * between two Vulkan instances in separate processes. People who want to
303 * share memory need to also check the device UUID (below) so all this
304 * needs to be is the build-id.
305 */
306 memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
307
308 /* The device UUID uniquely identifies the given device within the machine.
309 * Since we never have more than one device, this doesn't need to be a real
310 * UUID. However, on the off-chance that someone tries to use this to
311 * cache pre-tiled images or something of the like, we use the PCI ID and
312 * some bits of ISL info to ensure that this is safe.
313 */
314 _mesa_sha1_init(&sha1_ctx);
315 _mesa_sha1_update(&sha1_ctx, &device->chipset_id,
316 sizeof(device->chipset_id));
317 _mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
318 sizeof(device->isl_dev.has_bit6_swizzling));
319 _mesa_sha1_final(&sha1_ctx, sha1);
320 memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
321
322 return VK_SUCCESS;
323 }
324
325 static void
326 anv_physical_device_init_disk_cache(struct anv_physical_device *device)
327 {
328 #ifdef ENABLE_SHADER_CACHE
329 char renderer[10];
330 ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
331 device->chipset_id);
332 assert(len == sizeof(renderer) - 2);
333
334 char timestamp[41];
335 _mesa_sha1_format(timestamp, device->driver_build_sha1);
336
337 const uint64_t driver_flags =
338 brw_get_compiler_config_value(device->compiler);
339 device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
340 #else
341 device->disk_cache = NULL;
342 #endif
343 }
344
345 static void
346 anv_physical_device_free_disk_cache(struct anv_physical_device *device)
347 {
348 #ifdef ENABLE_SHADER_CACHE
349 if (device->disk_cache)
350 disk_cache_destroy(device->disk_cache);
351 #else
352 assert(device->disk_cache == NULL);
353 #endif
354 }
355
356 static uint64_t
357 get_available_system_memory()
358 {
359 char *meminfo = os_read_file("/proc/meminfo");
360 if (!meminfo)
361 return 0;
362
363 char *str = strstr(meminfo, "MemAvailable:");
364 if (!str) {
365 free(meminfo);
366 return 0;
367 }
368
369 uint64_t kb_mem_available;
370 if (sscanf(str, "MemAvailable: %" PRIx64, &kb_mem_available) == 1) {
371 free(meminfo);
372 return kb_mem_available << 10;
373 }
374
375 free(meminfo);
376 return 0;
377 }
378
379 static VkResult
380 anv_physical_device_init(struct anv_physical_device *device,
381 struct anv_instance *instance,
382 drmDevicePtr drm_device)
383 {
384 const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
385 const char *path = drm_device->nodes[DRM_NODE_RENDER];
386 VkResult result;
387 int fd;
388 int master_fd = -1;
389
390 brw_process_intel_debug_variable();
391
392 fd = open(path, O_RDWR | O_CLOEXEC);
393 if (fd < 0)
394 return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
395
396 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
397 device->instance = instance;
398
399 assert(strlen(path) < ARRAY_SIZE(device->path));
400 snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
401
402 if (!gen_get_device_info_from_fd(fd, &device->info)) {
403 result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
404 goto fail;
405 }
406 device->chipset_id = device->info.chipset_id;
407 device->no_hw = device->info.no_hw;
408
409 if (getenv("INTEL_NO_HW") != NULL)
410 device->no_hw = true;
411
412 device->pci_info.domain = drm_device->businfo.pci->domain;
413 device->pci_info.bus = drm_device->businfo.pci->bus;
414 device->pci_info.device = drm_device->businfo.pci->dev;
415 device->pci_info.function = drm_device->businfo.pci->func;
416
417 device->name = gen_get_device_name(device->chipset_id);
418
419 if (device->info.is_haswell) {
420 intel_logw("Haswell Vulkan support is incomplete");
421 } else if (device->info.gen == 7 && !device->info.is_baytrail) {
422 intel_logw("Ivy Bridge Vulkan support is incomplete");
423 } else if (device->info.gen == 7 && device->info.is_baytrail) {
424 intel_logw("Bay Trail Vulkan support is incomplete");
425 } else if (device->info.gen >= 8 && device->info.gen <= 11) {
426 /* Gen8-11 fully supported */
427 } else if (device->info.gen == 12) {
428 intel_logw("Vulkan is not yet fully supported on gen12");
429 } else {
430 result = vk_errorf(device->instance, device,
431 VK_ERROR_INCOMPATIBLE_DRIVER,
432 "Vulkan not yet supported on %s", device->name);
433 goto fail;
434 }
435
436 device->cmd_parser_version = -1;
437 if (device->info.gen == 7) {
438 device->cmd_parser_version =
439 anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
440 if (device->cmd_parser_version == -1) {
441 result = vk_errorf(device->instance, device,
442 VK_ERROR_INITIALIZATION_FAILED,
443 "failed to get command parser version");
444 goto fail;
445 }
446 }
447
448 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
449 result = vk_errorf(device->instance, device,
450 VK_ERROR_INITIALIZATION_FAILED,
451 "kernel missing gem wait");
452 goto fail;
453 }
454
455 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
456 result = vk_errorf(device->instance, device,
457 VK_ERROR_INITIALIZATION_FAILED,
458 "kernel missing execbuf2");
459 goto fail;
460 }
461
462 if (!device->info.has_llc &&
463 anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
464 result = vk_errorf(device->instance, device,
465 VK_ERROR_INITIALIZATION_FAILED,
466 "kernel missing wc mmap");
467 goto fail;
468 }
469
470 result = anv_physical_device_init_heaps(device, fd);
471 if (result != VK_SUCCESS)
472 goto fail;
473
474 device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
475 device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
476 device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
477 device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
478 device->has_syncobj_wait = device->has_syncobj &&
479 anv_gem_supports_syncobj_wait(fd);
480 device->has_context_priority = anv_gem_has_context_priority(fd);
481
482 device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
483 && device->supports_48bit_addresses;
484
485 device->has_context_isolation =
486 anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
487
488 device->always_use_bindless =
489 env_var_as_boolean("ANV_ALWAYS_BINDLESS", false);
490
491 /* We first got the A64 messages on broadwell and we can only use them if
492 * we can pass addresses directly into the shader which requires softpin.
493 */
494 device->has_a64_buffer_access = device->info.gen >= 8 &&
495 device->use_softpin;
496
497 /* We first get bindless image access on Skylake and we can only really do
498 * it if we don't have any relocations so we need softpin.
499 */
500 device->has_bindless_images = device->info.gen >= 9 &&
501 device->use_softpin;
502
503 /* We've had bindless samplers since Ivy Bridge (forever in Vulkan terms)
504 * because it's just a matter of setting the sampler address in the sample
505 * message header. However, we've not bothered to wire it up for vec4 so
506 * we leave it disabled on gen7.
507 */
508 device->has_bindless_samplers = device->info.gen >= 8;
509
510 device->has_mem_available = get_available_system_memory() != 0;
511
512 /* Starting with Gen10, the timestamp frequency of the command streamer may
513 * vary from one part to another. We can query the value from the kernel.
514 */
515 if (device->info.gen >= 10) {
516 int timestamp_frequency =
517 anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
518
519 if (timestamp_frequency < 0)
520 intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
521 else
522 device->info.timestamp_frequency = timestamp_frequency;
523 }
524
525 /* GENs prior to 8 do not support EU/Subslice info */
526 if (device->info.gen >= 8) {
527 device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
528 device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
529
530 /* Without this information, we cannot get the right Braswell
531 * brandstrings, and we have to use conservative numbers for GPGPU on
532 * many platforms, but otherwise, things will just work.
533 */
534 if (device->subslice_total < 1 || device->eu_total < 1) {
535 intel_logw("Kernel 4.1 required to properly query GPU properties");
536 }
537 } else if (device->info.gen == 7) {
538 device->subslice_total = 1 << (device->info.gt - 1);
539 }
540
541 if (device->info.is_cherryview &&
542 device->subslice_total > 0 && device->eu_total > 0) {
543 /* Logical CS threads = EUs per subslice * num threads per EU */
544 uint32_t max_cs_threads =
545 device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
546
547 /* Fuse configurations may give more threads than expected, never less. */
548 if (max_cs_threads > device->info.max_cs_threads)
549 device->info.max_cs_threads = max_cs_threads;
550 }
551
552 device->compiler = brw_compiler_create(NULL, &device->info);
553 if (device->compiler == NULL) {
554 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
555 goto fail;
556 }
557 device->compiler->shader_debug_log = compiler_debug_log;
558 device->compiler->shader_perf_log = compiler_perf_log;
559 device->compiler->supports_pull_constants = false;
560 device->compiler->constant_buffer_0_is_relative =
561 device->info.gen < 8 || !device->has_context_isolation;
562 device->compiler->supports_shader_constants = true;
563
564 /* Broadwell PRM says:
565 *
566 * "Before Gen8, there was a historical configuration control field to
567 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
568 * different places: TILECTL[1:0], ARB_MODE[5:4], and
569 * DISP_ARB_CTL[14:13].
570 *
571 * For Gen8 and subsequent generations, the swizzle fields are all
572 * reserved, and the CPU's memory controller performs all address
573 * swizzling modifications."
574 */
575 bool swizzled =
576 device->info.gen < 8 && anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
577
578 isl_device_init(&device->isl_dev, &device->info, swizzled);
579
580 result = anv_physical_device_init_uuids(device);
581 if (result != VK_SUCCESS)
582 goto fail;
583
584 anv_physical_device_init_disk_cache(device);
585
586 if (instance->enabled_extensions.KHR_display) {
587 master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
588 if (master_fd >= 0) {
589 /* prod the device with a GETPARAM call which will fail if
590 * we don't have permission to even render on this device
591 */
592 if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
593 close(master_fd);
594 master_fd = -1;
595 }
596 }
597 }
598 device->master_fd = master_fd;
599
600 result = anv_init_wsi(device);
601 if (result != VK_SUCCESS) {
602 ralloc_free(device->compiler);
603 anv_physical_device_free_disk_cache(device);
604 goto fail;
605 }
606
607 anv_physical_device_get_supported_extensions(device,
608 &device->supported_extensions);
609
610
611 device->local_fd = fd;
612
613 return VK_SUCCESS;
614
615 fail:
616 close(fd);
617 if (master_fd != -1)
618 close(master_fd);
619 return result;
620 }
621
622 static void
623 anv_physical_device_finish(struct anv_physical_device *device)
624 {
625 anv_finish_wsi(device);
626 anv_physical_device_free_disk_cache(device);
627 ralloc_free(device->compiler);
628 close(device->local_fd);
629 if (device->master_fd >= 0)
630 close(device->master_fd);
631 }
632
633 static void *
634 default_alloc_func(void *pUserData, size_t size, size_t align,
635 VkSystemAllocationScope allocationScope)
636 {
637 return malloc(size);
638 }
639
640 static void *
641 default_realloc_func(void *pUserData, void *pOriginal, size_t size,
642 size_t align, VkSystemAllocationScope allocationScope)
643 {
644 return realloc(pOriginal, size);
645 }
646
647 static void
648 default_free_func(void *pUserData, void *pMemory)
649 {
650 free(pMemory);
651 }
652
653 static const VkAllocationCallbacks default_alloc = {
654 .pUserData = NULL,
655 .pfnAllocation = default_alloc_func,
656 .pfnReallocation = default_realloc_func,
657 .pfnFree = default_free_func,
658 };
659
660 VkResult anv_EnumerateInstanceExtensionProperties(
661 const char* pLayerName,
662 uint32_t* pPropertyCount,
663 VkExtensionProperties* pProperties)
664 {
665 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
666
667 for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
668 if (anv_instance_extensions_supported.extensions[i]) {
669 vk_outarray_append(&out, prop) {
670 *prop = anv_instance_extensions[i];
671 }
672 }
673 }
674
675 return vk_outarray_status(&out);
676 }
677
678 VkResult anv_CreateInstance(
679 const VkInstanceCreateInfo* pCreateInfo,
680 const VkAllocationCallbacks* pAllocator,
681 VkInstance* pInstance)
682 {
683 struct anv_instance *instance;
684 VkResult result;
685
686 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
687
688 struct anv_instance_extension_table enabled_extensions = {};
689 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
690 int idx;
691 for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
692 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
693 anv_instance_extensions[idx].extensionName) == 0)
694 break;
695 }
696
697 if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
698 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
699
700 if (!anv_instance_extensions_supported.extensions[idx])
701 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
702
703 enabled_extensions.extensions[idx] = true;
704 }
705
706 instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
707 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
708 if (!instance)
709 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
710
711 instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
712
713 if (pAllocator)
714 instance->alloc = *pAllocator;
715 else
716 instance->alloc = default_alloc;
717
718 instance->app_info = (struct anv_app_info) { .api_version = 0 };
719 if (pCreateInfo->pApplicationInfo) {
720 const VkApplicationInfo *app = pCreateInfo->pApplicationInfo;
721
722 instance->app_info.app_name =
723 vk_strdup(&instance->alloc, app->pApplicationName,
724 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
725 instance->app_info.app_version = app->applicationVersion;
726
727 instance->app_info.engine_name =
728 vk_strdup(&instance->alloc, app->pEngineName,
729 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
730 instance->app_info.engine_version = app->engineVersion;
731
732 instance->app_info.api_version = app->apiVersion;
733 }
734
735 if (instance->app_info.api_version == 0)
736 instance->app_info.api_version = VK_API_VERSION_1_0;
737
738 instance->enabled_extensions = enabled_extensions;
739
740 for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
741 /* Vulkan requires that entrypoints for extensions which have not been
742 * enabled must not be advertised.
743 */
744 if (!anv_instance_entrypoint_is_enabled(i, instance->app_info.api_version,
745 &instance->enabled_extensions)) {
746 instance->dispatch.entrypoints[i] = NULL;
747 } else {
748 instance->dispatch.entrypoints[i] =
749 anv_instance_dispatch_table.entrypoints[i];
750 }
751 }
752
753 for (unsigned i = 0; i < ARRAY_SIZE(instance->device_dispatch.entrypoints); i++) {
754 /* Vulkan requires that entrypoints for extensions which have not been
755 * enabled must not be advertised.
756 */
757 if (!anv_device_entrypoint_is_enabled(i, instance->app_info.api_version,
758 &instance->enabled_extensions, NULL)) {
759 instance->device_dispatch.entrypoints[i] = NULL;
760 } else {
761 instance->device_dispatch.entrypoints[i] =
762 anv_device_dispatch_table.entrypoints[i];
763 }
764 }
765
766 instance->physicalDeviceCount = -1;
767
768 result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
769 if (result != VK_SUCCESS) {
770 vk_free2(&default_alloc, pAllocator, instance);
771 return vk_error(result);
772 }
773
774 instance->pipeline_cache_enabled =
775 env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
776
777 _mesa_locale_init();
778 glsl_type_singleton_init_or_ref();
779
780 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
781
782 driParseOptionInfo(&instance->available_dri_options, anv_dri_options_xml);
783 driParseConfigFiles(&instance->dri_options, &instance->available_dri_options,
784 0, "anv", NULL,
785 instance->app_info.engine_name,
786 instance->app_info.engine_version);
787
788 *pInstance = anv_instance_to_handle(instance);
789
790 return VK_SUCCESS;
791 }
792
793 void anv_DestroyInstance(
794 VkInstance _instance,
795 const VkAllocationCallbacks* pAllocator)
796 {
797 ANV_FROM_HANDLE(anv_instance, instance, _instance);
798
799 if (!instance)
800 return;
801
802 if (instance->physicalDeviceCount > 0) {
803 /* We support at most one physical device. */
804 assert(instance->physicalDeviceCount == 1);
805 anv_physical_device_finish(&instance->physicalDevice);
806 }
807
808 vk_free(&instance->alloc, (char *)instance->app_info.app_name);
809 vk_free(&instance->alloc, (char *)instance->app_info.engine_name);
810
811 VG(VALGRIND_DESTROY_MEMPOOL(instance));
812
813 vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
814
815 glsl_type_singleton_decref();
816 _mesa_locale_fini();
817
818 driDestroyOptionCache(&instance->dri_options);
819 driDestroyOptionInfo(&instance->available_dri_options);
820
821 vk_free(&instance->alloc, instance);
822 }
823
824 static VkResult
825 anv_enumerate_devices(struct anv_instance *instance)
826 {
827 /* TODO: Check for more devices ? */
828 drmDevicePtr devices[8];
829 VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
830 int max_devices;
831
832 instance->physicalDeviceCount = 0;
833
834 max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
835 if (max_devices < 1)
836 return VK_ERROR_INCOMPATIBLE_DRIVER;
837
838 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
839 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
840 devices[i]->bustype == DRM_BUS_PCI &&
841 devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
842
843 result = anv_physical_device_init(&instance->physicalDevice,
844 instance, devices[i]);
845 if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
846 break;
847 }
848 }
849 drmFreeDevices(devices, max_devices);
850
851 if (result == VK_SUCCESS)
852 instance->physicalDeviceCount = 1;
853
854 return result;
855 }
856
857 static VkResult
858 anv_instance_ensure_physical_device(struct anv_instance *instance)
859 {
860 if (instance->physicalDeviceCount < 0) {
861 VkResult result = anv_enumerate_devices(instance);
862 if (result != VK_SUCCESS &&
863 result != VK_ERROR_INCOMPATIBLE_DRIVER)
864 return result;
865 }
866
867 return VK_SUCCESS;
868 }
869
870 VkResult anv_EnumeratePhysicalDevices(
871 VkInstance _instance,
872 uint32_t* pPhysicalDeviceCount,
873 VkPhysicalDevice* pPhysicalDevices)
874 {
875 ANV_FROM_HANDLE(anv_instance, instance, _instance);
876 VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
877
878 VkResult result = anv_instance_ensure_physical_device(instance);
879 if (result != VK_SUCCESS)
880 return result;
881
882 if (instance->physicalDeviceCount == 0)
883 return VK_SUCCESS;
884
885 assert(instance->physicalDeviceCount == 1);
886 vk_outarray_append(&out, i) {
887 *i = anv_physical_device_to_handle(&instance->physicalDevice);
888 }
889
890 return vk_outarray_status(&out);
891 }
892
893 VkResult anv_EnumeratePhysicalDeviceGroups(
894 VkInstance _instance,
895 uint32_t* pPhysicalDeviceGroupCount,
896 VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
897 {
898 ANV_FROM_HANDLE(anv_instance, instance, _instance);
899 VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
900 pPhysicalDeviceGroupCount);
901
902 VkResult result = anv_instance_ensure_physical_device(instance);
903 if (result != VK_SUCCESS)
904 return result;
905
906 if (instance->physicalDeviceCount == 0)
907 return VK_SUCCESS;
908
909 assert(instance->physicalDeviceCount == 1);
910
911 vk_outarray_append(&out, p) {
912 p->physicalDeviceCount = 1;
913 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
914 p->physicalDevices[0] =
915 anv_physical_device_to_handle(&instance->physicalDevice);
916 p->subsetAllocation = false;
917
918 vk_foreach_struct(ext, p->pNext)
919 anv_debug_ignored_stype(ext->sType);
920 }
921
922 return vk_outarray_status(&out);
923 }
924
925 void anv_GetPhysicalDeviceFeatures(
926 VkPhysicalDevice physicalDevice,
927 VkPhysicalDeviceFeatures* pFeatures)
928 {
929 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
930
931 *pFeatures = (VkPhysicalDeviceFeatures) {
932 .robustBufferAccess = true,
933 .fullDrawIndexUint32 = true,
934 .imageCubeArray = true,
935 .independentBlend = true,
936 .geometryShader = true,
937 .tessellationShader = true,
938 .sampleRateShading = true,
939 .dualSrcBlend = true,
940 .logicOp = true,
941 .multiDrawIndirect = true,
942 .drawIndirectFirstInstance = true,
943 .depthClamp = true,
944 .depthBiasClamp = true,
945 .fillModeNonSolid = true,
946 .depthBounds = false,
947 .wideLines = true,
948 .largePoints = true,
949 .alphaToOne = true,
950 .multiViewport = true,
951 .samplerAnisotropy = true,
952 .textureCompressionETC2 = pdevice->info.gen >= 8 ||
953 pdevice->info.is_baytrail,
954 .textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
955 .textureCompressionBC = true,
956 .occlusionQueryPrecise = true,
957 .pipelineStatisticsQuery = true,
958 .fragmentStoresAndAtomics = true,
959 .shaderTessellationAndGeometryPointSize = true,
960 .shaderImageGatherExtended = true,
961 .shaderStorageImageExtendedFormats = true,
962 .shaderStorageImageMultisample = false,
963 .shaderStorageImageReadWithoutFormat = false,
964 .shaderStorageImageWriteWithoutFormat = true,
965 .shaderUniformBufferArrayDynamicIndexing = true,
966 .shaderSampledImageArrayDynamicIndexing = true,
967 .shaderStorageBufferArrayDynamicIndexing = true,
968 .shaderStorageImageArrayDynamicIndexing = true,
969 .shaderClipDistance = true,
970 .shaderCullDistance = true,
971 .shaderFloat64 = pdevice->info.gen >= 8 &&
972 pdevice->info.has_64bit_types,
973 .shaderInt64 = pdevice->info.gen >= 8 &&
974 pdevice->info.has_64bit_types,
975 .shaderInt16 = pdevice->info.gen >= 8,
976 .shaderResourceMinLod = pdevice->info.gen >= 9,
977 .variableMultisampleRate = true,
978 .inheritedQueries = true,
979 };
980
981 /* We can't do image stores in vec4 shaders */
982 pFeatures->vertexPipelineStoresAndAtomics =
983 pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
984 pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
985
986 struct anv_app_info *app_info = &pdevice->instance->app_info;
987
988 /* The new DOOM and Wolfenstein games require depthBounds without
989 * checking for it. They seem to run fine without it so just claim it's
990 * there and accept the consequences.
991 */
992 if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
993 pFeatures->depthBounds = true;
994 }
995
996 void anv_GetPhysicalDeviceFeatures2(
997 VkPhysicalDevice physicalDevice,
998 VkPhysicalDeviceFeatures2* pFeatures)
999 {
1000 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1001 anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
1002
1003 vk_foreach_struct(ext, pFeatures->pNext) {
1004 switch (ext->sType) {
1005 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
1006 VkPhysicalDevice8BitStorageFeaturesKHR *features =
1007 (VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
1008 features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
1009 features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
1010 features->storagePushConstant8 = pdevice->info.gen >= 8;
1011 break;
1012 }
1013
1014 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES: {
1015 VkPhysicalDevice16BitStorageFeatures *features =
1016 (VkPhysicalDevice16BitStorageFeatures *)ext;
1017 features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
1018 features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
1019 features->storagePushConstant16 = pdevice->info.gen >= 8;
1020 features->storageInputOutput16 = false;
1021 break;
1022 }
1023
1024 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1025 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features = (void *)ext;
1026 features->bufferDeviceAddress = pdevice->has_a64_buffer_access;
1027 features->bufferDeviceAddressCaptureReplay = false;
1028 features->bufferDeviceAddressMultiDevice = false;
1029 break;
1030 }
1031
1032 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1033 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1034 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1035 features->computeDerivativeGroupQuads = true;
1036 features->computeDerivativeGroupLinear = true;
1037 break;
1038 }
1039
1040 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1041 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1042 (VkPhysicalDeviceConditionalRenderingFeaturesEXT*)ext;
1043 features->conditionalRendering = pdevice->info.gen >= 8 ||
1044 pdevice->info.is_haswell;
1045 features->inheritedConditionalRendering = pdevice->info.gen >= 8 ||
1046 pdevice->info.is_haswell;
1047 break;
1048 }
1049
1050 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1051 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1052 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1053 features->depthClipEnable = true;
1054 break;
1055 }
1056
1057 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR: {
1058 VkPhysicalDeviceFloat16Int8FeaturesKHR *features = (void *)ext;
1059 features->shaderFloat16 = pdevice->info.gen >= 8;
1060 features->shaderInt8 = pdevice->info.gen >= 8;
1061 break;
1062 }
1063
1064 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADER_INTERLOCK_FEATURES_EXT: {
1065 VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *features =
1066 (VkPhysicalDeviceFragmentShaderInterlockFeaturesEXT *)ext;
1067 features->fragmentShaderSampleInterlock = pdevice->info.gen >= 9;
1068 features->fragmentShaderPixelInterlock = pdevice->info.gen >= 9;
1069 features->fragmentShaderShadingRateInterlock = false;
1070 break;
1071 }
1072
1073 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_HOST_QUERY_RESET_FEATURES_EXT: {
1074 VkPhysicalDeviceHostQueryResetFeaturesEXT *features =
1075 (VkPhysicalDeviceHostQueryResetFeaturesEXT *)ext;
1076 features->hostQueryReset = true;
1077 break;
1078 }
1079
1080 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_FEATURES_EXT: {
1081 VkPhysicalDeviceDescriptorIndexingFeaturesEXT *features =
1082 (VkPhysicalDeviceDescriptorIndexingFeaturesEXT *)ext;
1083 features->shaderInputAttachmentArrayDynamicIndexing = false;
1084 features->shaderUniformTexelBufferArrayDynamicIndexing = true;
1085 features->shaderStorageTexelBufferArrayDynamicIndexing = true;
1086 features->shaderUniformBufferArrayNonUniformIndexing = false;
1087 features->shaderSampledImageArrayNonUniformIndexing = true;
1088 features->shaderStorageBufferArrayNonUniformIndexing = true;
1089 features->shaderStorageImageArrayNonUniformIndexing = true;
1090 features->shaderInputAttachmentArrayNonUniformIndexing = false;
1091 features->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1092 features->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1093 features->descriptorBindingUniformBufferUpdateAfterBind = false;
1094 features->descriptorBindingSampledImageUpdateAfterBind = true;
1095 features->descriptorBindingStorageImageUpdateAfterBind = true;
1096 features->descriptorBindingStorageBufferUpdateAfterBind = true;
1097 features->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1098 features->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1099 features->descriptorBindingUpdateUnusedWhilePending = true;
1100 features->descriptorBindingPartiallyBound = true;
1101 features->descriptorBindingVariableDescriptorCount = false;
1102 features->runtimeDescriptorArray = true;
1103 break;
1104 }
1105
1106 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1107 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1108 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1109 features->indexTypeUint8 = true;
1110 break;
1111 }
1112
1113 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1114 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1115 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1116 features->inlineUniformBlock = true;
1117 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1118 break;
1119 }
1120
1121 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1122 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1123 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1124 features->rectangularLines = true;
1125 features->bresenhamLines = true;
1126 features->smoothLines = true;
1127 features->stippledRectangularLines = false;
1128 features->stippledBresenhamLines = true;
1129 features->stippledSmoothLines = false;
1130 break;
1131 }
1132
1133 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
1134 VkPhysicalDeviceMultiviewFeatures *features =
1135 (VkPhysicalDeviceMultiviewFeatures *)ext;
1136 features->multiview = true;
1137 features->multiviewGeometryShader = true;
1138 features->multiviewTessellationShader = true;
1139 break;
1140 }
1141
1142 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGELESS_FRAMEBUFFER_FEATURES_KHR: {
1143 VkPhysicalDeviceImagelessFramebufferFeaturesKHR *features =
1144 (VkPhysicalDeviceImagelessFramebufferFeaturesKHR *)ext;
1145 features->imagelessFramebuffer = true;
1146 break;
1147 }
1148
1149 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1150 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1151 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1152 features->pipelineExecutableInfo = true;
1153 break;
1154 }
1155
1156 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
1157 VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
1158 features->protectedMemory = false;
1159 break;
1160 }
1161
1162 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
1163 VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
1164 (VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
1165 features->samplerYcbcrConversion = true;
1166 break;
1167 }
1168
1169 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES_EXT: {
1170 VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *features =
1171 (VkPhysicalDeviceScalarBlockLayoutFeaturesEXT *)ext;
1172 features->scalarBlockLayout = true;
1173 break;
1174 }
1175
1176 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_INT64_FEATURES_KHR: {
1177 VkPhysicalDeviceShaderAtomicInt64FeaturesKHR *features = (void *)ext;
1178 features->shaderBufferInt64Atomics =
1179 pdevice->info.gen >= 9 && pdevice->use_softpin;
1180 features->shaderSharedInt64Atomics = VK_FALSE;
1181 break;
1182 }
1183
1184 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1185 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features = (void *)ext;
1186 features->shaderDemoteToHelperInvocation = true;
1187 break;
1188 }
1189
1190 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETERS_FEATURES: {
1191 VkPhysicalDeviceShaderDrawParametersFeatures *features = (void *)ext;
1192 features->shaderDrawParameters = true;
1193 break;
1194 }
1195
1196 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1197 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1198 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1199 features->subgroupSizeControl = true;
1200 features->computeFullSubgroups = true;
1201 break;
1202 }
1203
1204 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1205 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1206 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1207 features->texelBufferAlignment = true;
1208 break;
1209 }
1210
1211 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTERS_FEATURES: {
1212 VkPhysicalDeviceVariablePointersFeatures *features = (void *)ext;
1213 features->variablePointersStorageBuffer = true;
1214 features->variablePointers = true;
1215 break;
1216 }
1217
1218 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1219 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1220 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1221 features->transformFeedback = true;
1222 features->geometryStreams = true;
1223 break;
1224 }
1225
1226 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_UNIFORM_BUFFER_STANDARD_LAYOUT_FEATURES_KHR: {
1227 VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *features =
1228 (VkPhysicalDeviceUniformBufferStandardLayoutFeaturesKHR *)ext;
1229 features->uniformBufferStandardLayout = true;
1230 break;
1231 }
1232
1233 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1234 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1235 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1236 features->vertexAttributeInstanceRateDivisor = true;
1237 features->vertexAttributeInstanceRateZeroDivisor = true;
1238 break;
1239 }
1240
1241 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1242 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1243 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1244 features->ycbcrImageArrays = true;
1245 break;
1246 }
1247
1248 default:
1249 anv_debug_ignored_stype(ext->sType);
1250 break;
1251 }
1252 }
1253 }
1254
1255 #define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
1256
1257 #define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
1258 #define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
1259
1260 void anv_GetPhysicalDeviceProperties(
1261 VkPhysicalDevice physicalDevice,
1262 VkPhysicalDeviceProperties* pProperties)
1263 {
1264 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1265 const struct gen_device_info *devinfo = &pdevice->info;
1266
1267 /* See assertions made when programming the buffer surface state. */
1268 const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
1269 (1ul << 30) : (1ul << 27);
1270
1271 const uint32_t max_ssbos = pdevice->has_a64_buffer_access ? UINT16_MAX : 64;
1272 const uint32_t max_textures =
1273 pdevice->has_bindless_images ? UINT16_MAX : 128;
1274 const uint32_t max_samplers =
1275 pdevice->has_bindless_samplers ? UINT16_MAX :
1276 (devinfo->gen >= 8 || devinfo->is_haswell) ? 128 : 16;
1277 const uint32_t max_images =
1278 pdevice->has_bindless_images ? UINT16_MAX : MAX_IMAGES;
1279
1280 /* The moment we have anything bindless, claim a high per-stage limit */
1281 const uint32_t max_per_stage =
1282 pdevice->has_a64_buffer_access ? UINT32_MAX :
1283 MAX_BINDING_TABLE_SIZE - MAX_RTS;
1284
1285 const uint32_t max_workgroup_size = 32 * devinfo->max_cs_threads;
1286
1287 VkSampleCountFlags sample_counts =
1288 isl_device_get_sample_counts(&pdevice->isl_dev);
1289
1290
1291 VkPhysicalDeviceLimits limits = {
1292 .maxImageDimension1D = (1 << 14),
1293 .maxImageDimension2D = (1 << 14),
1294 .maxImageDimension3D = (1 << 11),
1295 .maxImageDimensionCube = (1 << 14),
1296 .maxImageArrayLayers = (1 << 11),
1297 .maxTexelBufferElements = 128 * 1024 * 1024,
1298 .maxUniformBufferRange = (1ul << 27),
1299 .maxStorageBufferRange = max_raw_buffer_sz,
1300 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1301 .maxMemoryAllocationCount = UINT32_MAX,
1302 .maxSamplerAllocationCount = 64 * 1024,
1303 .bufferImageGranularity = 64, /* A cache line */
1304 .sparseAddressSpaceSize = 0,
1305 .maxBoundDescriptorSets = MAX_SETS,
1306 .maxPerStageDescriptorSamplers = max_samplers,
1307 .maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
1308 .maxPerStageDescriptorStorageBuffers = max_ssbos,
1309 .maxPerStageDescriptorSampledImages = max_textures,
1310 .maxPerStageDescriptorStorageImages = max_images,
1311 .maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
1312 .maxPerStageResources = max_per_stage,
1313 .maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
1314 .maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
1315 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1316 .maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
1317 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
1318 .maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
1319 .maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
1320 .maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
1321 .maxVertexInputAttributes = MAX_VBS,
1322 .maxVertexInputBindings = MAX_VBS,
1323 .maxVertexInputAttributeOffset = 2047,
1324 .maxVertexInputBindingStride = 2048,
1325 .maxVertexOutputComponents = 128,
1326 .maxTessellationGenerationLevel = 64,
1327 .maxTessellationPatchSize = 32,
1328 .maxTessellationControlPerVertexInputComponents = 128,
1329 .maxTessellationControlPerVertexOutputComponents = 128,
1330 .maxTessellationControlPerPatchOutputComponents = 128,
1331 .maxTessellationControlTotalOutputComponents = 2048,
1332 .maxTessellationEvaluationInputComponents = 128,
1333 .maxTessellationEvaluationOutputComponents = 128,
1334 .maxGeometryShaderInvocations = 32,
1335 .maxGeometryInputComponents = 64,
1336 .maxGeometryOutputComponents = 128,
1337 .maxGeometryOutputVertices = 256,
1338 .maxGeometryTotalOutputComponents = 1024,
1339 .maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
1340 .maxFragmentOutputAttachments = 8,
1341 .maxFragmentDualSrcAttachments = 1,
1342 .maxFragmentCombinedOutputResources = 8,
1343 .maxComputeSharedMemorySize = 64 * 1024,
1344 .maxComputeWorkGroupCount = { 65535, 65535, 65535 },
1345 .maxComputeWorkGroupInvocations = max_workgroup_size,
1346 .maxComputeWorkGroupSize = {
1347 max_workgroup_size,
1348 max_workgroup_size,
1349 max_workgroup_size,
1350 },
1351 .subPixelPrecisionBits = 8,
1352 .subTexelPrecisionBits = 8,
1353 .mipmapPrecisionBits = 8,
1354 .maxDrawIndexedIndexValue = UINT32_MAX,
1355 .maxDrawIndirectCount = UINT32_MAX,
1356 .maxSamplerLodBias = 16,
1357 .maxSamplerAnisotropy = 16,
1358 .maxViewports = MAX_VIEWPORTS,
1359 .maxViewportDimensions = { (1 << 14), (1 << 14) },
1360 .viewportBoundsRange = { INT16_MIN, INT16_MAX },
1361 .viewportSubPixelBits = 13, /* We take a float? */
1362 .minMemoryMapAlignment = 4096, /* A page */
1363 /* The dataport requires texel alignment so we need to assume a worst
1364 * case of R32G32B32A32 which is 16 bytes.
1365 */
1366 .minTexelBufferOffsetAlignment = 16,
1367 /* We need 16 for UBO block reads to work and 32 for push UBOs */
1368 .minUniformBufferOffsetAlignment = 32,
1369 .minStorageBufferOffsetAlignment = 4,
1370 .minTexelOffset = -8,
1371 .maxTexelOffset = 7,
1372 .minTexelGatherOffset = -32,
1373 .maxTexelGatherOffset = 31,
1374 .minInterpolationOffset = -0.5,
1375 .maxInterpolationOffset = 0.4375,
1376 .subPixelInterpolationOffsetBits = 4,
1377 .maxFramebufferWidth = (1 << 14),
1378 .maxFramebufferHeight = (1 << 14),
1379 .maxFramebufferLayers = (1 << 11),
1380 .framebufferColorSampleCounts = sample_counts,
1381 .framebufferDepthSampleCounts = sample_counts,
1382 .framebufferStencilSampleCounts = sample_counts,
1383 .framebufferNoAttachmentsSampleCounts = sample_counts,
1384 .maxColorAttachments = MAX_RTS,
1385 .sampledImageColorSampleCounts = sample_counts,
1386 .sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1387 .sampledImageDepthSampleCounts = sample_counts,
1388 .sampledImageStencilSampleCounts = sample_counts,
1389 .storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
1390 .maxSampleMaskWords = 1,
1391 .timestampComputeAndGraphics = true,
1392 .timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
1393 .maxClipDistances = 8,
1394 .maxCullDistances = 8,
1395 .maxCombinedClipAndCullDistances = 8,
1396 .discreteQueuePriorities = 2,
1397 .pointSizeRange = { 0.125, 255.875 },
1398 .lineWidthRange = {
1399 0.0,
1400 (devinfo->gen >= 9 || devinfo->is_cherryview) ?
1401 2047.9921875 : 7.9921875,
1402 },
1403 .pointSizeGranularity = (1.0 / 8.0),
1404 .lineWidthGranularity = (1.0 / 128.0),
1405 .strictLines = false,
1406 .standardSampleLocations = true,
1407 .optimalBufferCopyOffsetAlignment = 128,
1408 .optimalBufferCopyRowPitchAlignment = 128,
1409 .nonCoherentAtomSize = 64,
1410 };
1411
1412 *pProperties = (VkPhysicalDeviceProperties) {
1413 .apiVersion = anv_physical_device_api_version(pdevice),
1414 .driverVersion = vk_get_driver_version(),
1415 .vendorID = 0x8086,
1416 .deviceID = pdevice->chipset_id,
1417 .deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
1418 .limits = limits,
1419 .sparseProperties = {0}, /* Broadwell doesn't do sparse. */
1420 };
1421
1422 snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
1423 "%s", pdevice->name);
1424 memcpy(pProperties->pipelineCacheUUID,
1425 pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
1426 }
1427
1428 void anv_GetPhysicalDeviceProperties2(
1429 VkPhysicalDevice physicalDevice,
1430 VkPhysicalDeviceProperties2* pProperties)
1431 {
1432 ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
1433
1434 anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1435
1436 vk_foreach_struct(ext, pProperties->pNext) {
1437 switch (ext->sType) {
1438 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES_KHR: {
1439 VkPhysicalDeviceDepthStencilResolvePropertiesKHR *props =
1440 (VkPhysicalDeviceDepthStencilResolvePropertiesKHR *)ext;
1441
1442 /* We support all of the depth resolve modes */
1443 props->supportedDepthResolveModes =
1444 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1445 VK_RESOLVE_MODE_AVERAGE_BIT_KHR |
1446 VK_RESOLVE_MODE_MIN_BIT_KHR |
1447 VK_RESOLVE_MODE_MAX_BIT_KHR;
1448
1449 /* Average doesn't make sense for stencil so we don't support that */
1450 props->supportedStencilResolveModes =
1451 VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR;
1452 if (pdevice->info.gen >= 8) {
1453 /* The advanced stencil resolve modes currently require stencil
1454 * sampling be supported by the hardware.
1455 */
1456 props->supportedStencilResolveModes |=
1457 VK_RESOLVE_MODE_MIN_BIT_KHR |
1458 VK_RESOLVE_MODE_MAX_BIT_KHR;
1459 }
1460
1461 props->independentResolveNone = true;
1462 props->independentResolve = true;
1463 break;
1464 }
1465
1466 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_INDEXING_PROPERTIES_EXT: {
1467 VkPhysicalDeviceDescriptorIndexingPropertiesEXT *props =
1468 (VkPhysicalDeviceDescriptorIndexingPropertiesEXT *)ext;
1469
1470 /* It's a bit hard to exactly map our implementation to the limits
1471 * described here. The bindless surface handle in the extended
1472 * message descriptors is 20 bits and it's an index into the table of
1473 * RENDER_SURFACE_STATE structs that starts at bindless surface base
1474 * address. Given that most things consume two surface states per
1475 * view (general/sampled for textures and write-only/read-write for
1476 * images), we claim 2^19 things.
1477 *
1478 * For SSBOs, we just use A64 messages so there is no real limit
1479 * there beyond the limit on the total size of a descriptor set.
1480 */
1481 const unsigned max_bindless_views = 1 << 19;
1482
1483 props->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
1484 props->shaderUniformBufferArrayNonUniformIndexingNative = false;
1485 props->shaderSampledImageArrayNonUniformIndexingNative = false;
1486 props->shaderStorageBufferArrayNonUniformIndexingNative = true;
1487 props->shaderStorageImageArrayNonUniformIndexingNative = false;
1488 props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1489 props->robustBufferAccessUpdateAfterBind = true;
1490 props->quadDivergentImplicitLod = false;
1491 props->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
1492 props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1493 props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
1494 props->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
1495 props->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
1496 props->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
1497 props->maxPerStageUpdateAfterBindResources = UINT32_MAX;
1498 props->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
1499 props->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
1500 props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1501 props->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
1502 props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
1503 props->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
1504 props->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
1505 props->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
1506 break;
1507 }
1508
1509 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES_KHR: {
1510 VkPhysicalDeviceDriverPropertiesKHR *driver_props =
1511 (VkPhysicalDeviceDriverPropertiesKHR *) ext;
1512
1513 driver_props->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA_KHR;
1514 snprintf(driver_props->driverName, VK_MAX_DRIVER_NAME_SIZE_KHR,
1515 "Intel open-source Mesa driver");
1516
1517 snprintf(driver_props->driverInfo, VK_MAX_DRIVER_INFO_SIZE_KHR,
1518 "Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
1519
1520 driver_props->conformanceVersion = (VkConformanceVersionKHR) {
1521 .major = 1,
1522 .minor = 1,
1523 .subminor = 2,
1524 .patch = 0,
1525 };
1526 break;
1527 }
1528
1529 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
1530 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
1531 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
1532 /* Userptr needs page aligned memory. */
1533 props->minImportedHostPointerAlignment = 4096;
1534 break;
1535 }
1536
1537 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
1538 VkPhysicalDeviceIDProperties *id_props =
1539 (VkPhysicalDeviceIDProperties *)ext;
1540 memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1541 memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1542 /* The LUID is for Windows. */
1543 id_props->deviceLUIDValid = false;
1544 break;
1545 }
1546
1547 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
1548 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
1549 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
1550 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
1551 props->maxPerStageDescriptorInlineUniformBlocks =
1552 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1553 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
1554 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1555 props->maxDescriptorSetInlineUniformBlocks =
1556 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1557 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
1558 MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
1559 break;
1560 }
1561
1562 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
1563 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
1564 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
1565 /* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
1566 * Sampling Rules - Legacy Mode", it says the following:
1567 *
1568 * "Note that the device divides a pixel into a 16x16 array of
1569 * subpixels, referenced by their upper left corners."
1570 *
1571 * This is the only known reference in the PRMs to the subpixel
1572 * precision of line rasterization and a "16x16 array of subpixels"
1573 * implies 4 subpixel precision bits. Empirical testing has shown
1574 * that 4 subpixel precision bits applies to all line rasterization
1575 * types.
1576 */
1577 props->lineSubPixelPrecisionBits = 4;
1578 break;
1579 }
1580
1581 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
1582 VkPhysicalDeviceMaintenance3Properties *props =
1583 (VkPhysicalDeviceMaintenance3Properties *)ext;
1584 /* This value doesn't matter for us today as our per-stage
1585 * descriptors are the real limit.
1586 */
1587 props->maxPerSetDescriptors = 1024;
1588 props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
1589 break;
1590 }
1591
1592 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
1593 VkPhysicalDeviceMultiviewProperties *properties =
1594 (VkPhysicalDeviceMultiviewProperties *)ext;
1595 properties->maxMultiviewViewCount = 16;
1596 properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
1597 break;
1598 }
1599
1600 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
1601 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
1602 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
1603 properties->pciDomain = pdevice->pci_info.domain;
1604 properties->pciBus = pdevice->pci_info.bus;
1605 properties->pciDevice = pdevice->pci_info.device;
1606 properties->pciFunction = pdevice->pci_info.function;
1607 break;
1608 }
1609
1610 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
1611 VkPhysicalDevicePointClippingProperties *properties =
1612 (VkPhysicalDevicePointClippingProperties *) ext;
1613 properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
1614 break;
1615 }
1616
1617 #pragma GCC diagnostic push
1618 #pragma GCC diagnostic ignored "-Wswitch"
1619 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
1620 VkPhysicalDevicePresentationPropertiesANDROID *props =
1621 (VkPhysicalDevicePresentationPropertiesANDROID *)ext;
1622 props->sharedImage = VK_FALSE;
1623 break;
1624 }
1625 #pragma GCC diagnostic pop
1626
1627 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_PROPERTIES: {
1628 VkPhysicalDeviceProtectedMemoryProperties *props =
1629 (VkPhysicalDeviceProtectedMemoryProperties *)ext;
1630 props->protectedNoFault = false;
1631 break;
1632 }
1633
1634 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1635 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1636 (VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
1637
1638 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1639 break;
1640 }
1641
1642 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
1643 VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
1644 (VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
1645 properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
1646 properties->filterMinmaxSingleComponentFormats = true;
1647 break;
1648 }
1649
1650 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
1651 VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
1652
1653 properties->subgroupSize = BRW_SUBGROUP_SIZE;
1654
1655 VkShaderStageFlags scalar_stages = 0;
1656 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
1657 if (pdevice->compiler->scalar_stage[stage])
1658 scalar_stages |= mesa_to_vk_shader_stage(stage);
1659 }
1660 properties->supportedStages = scalar_stages;
1661
1662 properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
1663 VK_SUBGROUP_FEATURE_VOTE_BIT |
1664 VK_SUBGROUP_FEATURE_BALLOT_BIT |
1665 VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
1666 VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
1667 VK_SUBGROUP_FEATURE_QUAD_BIT;
1668 if (pdevice->info.gen >= 8) {
1669 /* TODO: There's no technical reason why these can't be made to
1670 * work on gen7 but they don't at the moment so it's best to leave
1671 * the feature disabled than enabled and broken.
1672 */
1673 properties->supportedOperations |=
1674 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
1675 VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
1676 }
1677 properties->quadOperationsInAllStages = pdevice->info.gen >= 8;
1678 break;
1679 }
1680
1681 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
1682 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
1683 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
1684 STATIC_ASSERT(8 <= BRW_SUBGROUP_SIZE && BRW_SUBGROUP_SIZE <= 32);
1685 props->minSubgroupSize = 8;
1686 props->maxSubgroupSize = 32;
1687 props->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_threads;
1688 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
1689 break;
1690 }
1691
1692 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
1693 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *props =
1694 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
1695
1696 /* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
1697 * Base Address:
1698 *
1699 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
1700 * specifies the base address of the first element of the surface,
1701 * computed in software by adding the surface base address to the
1702 * byte offset of the element in the buffer. The base address must
1703 * be aligned to element size."
1704 *
1705 * The typed dataport messages require that things be texel aligned.
1706 * Otherwise, we may just load/store the wrong data or, in the worst
1707 * case, there may be hangs.
1708 */
1709 props->storageTexelBufferOffsetAlignmentBytes = 16;
1710 props->storageTexelBufferOffsetSingleTexelAlignment = true;
1711
1712 /* The sampler, however, is much more forgiving and it can handle
1713 * arbitrary byte alignment for linear and buffer surfaces. It's
1714 * hard to find a good PRM citation for this but years of empirical
1715 * experience demonstrate that this is true.
1716 */
1717 props->uniformTexelBufferOffsetAlignmentBytes = 1;
1718 props->uniformTexelBufferOffsetSingleTexelAlignment = false;
1719 break;
1720 }
1721
1722 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
1723 VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
1724 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
1725
1726 props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
1727 props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
1728 props->maxTransformFeedbackBufferSize = (1ull << 32);
1729 props->maxTransformFeedbackStreamDataSize = 128 * 4;
1730 props->maxTransformFeedbackBufferDataSize = 128 * 4;
1731 props->maxTransformFeedbackBufferDataStride = 2048;
1732 props->transformFeedbackQueries = true;
1733 props->transformFeedbackStreamsLinesTriangles = false;
1734 props->transformFeedbackRasterizationStreamSelect = false;
1735 props->transformFeedbackDraw = true;
1736 break;
1737 }
1738
1739 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
1740 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
1741 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
1742 /* We have to restrict this a bit for multiview */
1743 props->maxVertexAttribDivisor = UINT32_MAX / 16;
1744 break;
1745 }
1746
1747 default:
1748 anv_debug_ignored_stype(ext->sType);
1749 break;
1750 }
1751 }
1752 }
1753
1754 /* We support exactly one queue family. */
1755 static const VkQueueFamilyProperties
1756 anv_queue_family_properties = {
1757 .queueFlags = VK_QUEUE_GRAPHICS_BIT |
1758 VK_QUEUE_COMPUTE_BIT |
1759 VK_QUEUE_TRANSFER_BIT,
1760 .queueCount = 1,
1761 .timestampValidBits = 36, /* XXX: Real value here */
1762 .minImageTransferGranularity = { 1, 1, 1 },
1763 };
1764
1765 void anv_GetPhysicalDeviceQueueFamilyProperties(
1766 VkPhysicalDevice physicalDevice,
1767 uint32_t* pCount,
1768 VkQueueFamilyProperties* pQueueFamilyProperties)
1769 {
1770 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
1771
1772 vk_outarray_append(&out, p) {
1773 *p = anv_queue_family_properties;
1774 }
1775 }
1776
1777 void anv_GetPhysicalDeviceQueueFamilyProperties2(
1778 VkPhysicalDevice physicalDevice,
1779 uint32_t* pQueueFamilyPropertyCount,
1780 VkQueueFamilyProperties2* pQueueFamilyProperties)
1781 {
1782
1783 VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
1784
1785 vk_outarray_append(&out, p) {
1786 p->queueFamilyProperties = anv_queue_family_properties;
1787
1788 vk_foreach_struct(s, p->pNext) {
1789 anv_debug_ignored_stype(s->sType);
1790 }
1791 }
1792 }
1793
1794 void anv_GetPhysicalDeviceMemoryProperties(
1795 VkPhysicalDevice physicalDevice,
1796 VkPhysicalDeviceMemoryProperties* pMemoryProperties)
1797 {
1798 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
1799
1800 pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
1801 for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
1802 pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
1803 .propertyFlags = physical_device->memory.types[i].propertyFlags,
1804 .heapIndex = physical_device->memory.types[i].heapIndex,
1805 };
1806 }
1807
1808 pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
1809 for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
1810 pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
1811 .size = physical_device->memory.heaps[i].size,
1812 .flags = physical_device->memory.heaps[i].flags,
1813 };
1814 }
1815 }
1816
1817 static void
1818 anv_get_memory_budget(VkPhysicalDevice physicalDevice,
1819 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
1820 {
1821 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
1822 uint64_t sys_available = get_available_system_memory();
1823 assert(sys_available > 0);
1824
1825 VkDeviceSize total_heaps_size = 0;
1826 for (size_t i = 0; i < device->memory.heap_count; i++)
1827 total_heaps_size += device->memory.heaps[i].size;
1828
1829 for (size_t i = 0; i < device->memory.heap_count; i++) {
1830 VkDeviceSize heap_size = device->memory.heaps[i].size;
1831 VkDeviceSize heap_used = device->memory.heaps[i].used;
1832 VkDeviceSize heap_budget;
1833
1834 double heap_proportion = (double) heap_size / total_heaps_size;
1835 VkDeviceSize sys_available_prop = sys_available * heap_proportion;
1836
1837 /*
1838 * Let's not incite the app to starve the system: report at most 90% of
1839 * available system memory.
1840 */
1841 uint64_t heap_available = sys_available_prop * 9 / 10;
1842 heap_budget = MIN2(heap_size, heap_used + heap_available);
1843
1844 /*
1845 * Round down to the nearest MB
1846 */
1847 heap_budget &= ~((1ull << 20) - 1);
1848
1849 /*
1850 * The heapBudget value must be non-zero for array elements less than
1851 * VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
1852 * value must be less than or equal to VkMemoryHeap::size for each heap.
1853 */
1854 assert(0 < heap_budget && heap_budget <= heap_size);
1855
1856 memoryBudget->heapUsage[i] = heap_used;
1857 memoryBudget->heapBudget[i] = heap_budget;
1858 }
1859
1860 /* The heapBudget and heapUsage values must be zero for array elements
1861 * greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
1862 */
1863 for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
1864 memoryBudget->heapBudget[i] = 0;
1865 memoryBudget->heapUsage[i] = 0;
1866 }
1867 }
1868
1869 void anv_GetPhysicalDeviceMemoryProperties2(
1870 VkPhysicalDevice physicalDevice,
1871 VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
1872 {
1873 anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
1874 &pMemoryProperties->memoryProperties);
1875
1876 vk_foreach_struct(ext, pMemoryProperties->pNext) {
1877 switch (ext->sType) {
1878 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
1879 anv_get_memory_budget(physicalDevice, (void*)ext);
1880 break;
1881 default:
1882 anv_debug_ignored_stype(ext->sType);
1883 break;
1884 }
1885 }
1886 }
1887
1888 void
1889 anv_GetDeviceGroupPeerMemoryFeatures(
1890 VkDevice device,
1891 uint32_t heapIndex,
1892 uint32_t localDeviceIndex,
1893 uint32_t remoteDeviceIndex,
1894 VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
1895 {
1896 assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
1897 *pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
1898 VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
1899 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
1900 VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
1901 }
1902
1903 PFN_vkVoidFunction anv_GetInstanceProcAddr(
1904 VkInstance _instance,
1905 const char* pName)
1906 {
1907 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1908
1909 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
1910 * when we have to return valid function pointers, NULL, or it's left
1911 * undefined. See the table for exact details.
1912 */
1913 if (pName == NULL)
1914 return NULL;
1915
1916 #define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
1917 if (strcmp(pName, "vk" #entrypoint) == 0) \
1918 return (PFN_vkVoidFunction)anv_##entrypoint
1919
1920 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
1921 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
1922 LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
1923 LOOKUP_ANV_ENTRYPOINT(CreateInstance);
1924
1925 #undef LOOKUP_ANV_ENTRYPOINT
1926
1927 if (instance == NULL)
1928 return NULL;
1929
1930 int idx = anv_get_instance_entrypoint_index(pName);
1931 if (idx >= 0)
1932 return instance->dispatch.entrypoints[idx];
1933
1934 idx = anv_get_device_entrypoint_index(pName);
1935 if (idx >= 0)
1936 return instance->device_dispatch.entrypoints[idx];
1937
1938 return NULL;
1939 }
1940
1941 /* With version 1+ of the loader interface the ICD should expose
1942 * vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
1943 */
1944 PUBLIC
1945 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1946 VkInstance instance,
1947 const char* pName);
1948
1949 PUBLIC
1950 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
1951 VkInstance instance,
1952 const char* pName)
1953 {
1954 return anv_GetInstanceProcAddr(instance, pName);
1955 }
1956
1957 PFN_vkVoidFunction anv_GetDeviceProcAddr(
1958 VkDevice _device,
1959 const char* pName)
1960 {
1961 ANV_FROM_HANDLE(anv_device, device, _device);
1962
1963 if (!device || !pName)
1964 return NULL;
1965
1966 int idx = anv_get_device_entrypoint_index(pName);
1967 if (idx < 0)
1968 return NULL;
1969
1970 return device->dispatch.entrypoints[idx];
1971 }
1972
1973 VkResult
1974 anv_CreateDebugReportCallbackEXT(VkInstance _instance,
1975 const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
1976 const VkAllocationCallbacks* pAllocator,
1977 VkDebugReportCallbackEXT* pCallback)
1978 {
1979 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1980 return vk_create_debug_report_callback(&instance->debug_report_callbacks,
1981 pCreateInfo, pAllocator, &instance->alloc,
1982 pCallback);
1983 }
1984
1985 void
1986 anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
1987 VkDebugReportCallbackEXT _callback,
1988 const VkAllocationCallbacks* pAllocator)
1989 {
1990 ANV_FROM_HANDLE(anv_instance, instance, _instance);
1991 vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
1992 _callback, pAllocator, &instance->alloc);
1993 }
1994
1995 void
1996 anv_DebugReportMessageEXT(VkInstance _instance,
1997 VkDebugReportFlagsEXT flags,
1998 VkDebugReportObjectTypeEXT objectType,
1999 uint64_t object,
2000 size_t location,
2001 int32_t messageCode,
2002 const char* pLayerPrefix,
2003 const char* pMessage)
2004 {
2005 ANV_FROM_HANDLE(anv_instance, instance, _instance);
2006 vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
2007 object, location, messageCode, pLayerPrefix, pMessage);
2008 }
2009
2010 static void
2011 anv_queue_init(struct anv_device *device, struct anv_queue *queue)
2012 {
2013 queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2014 queue->device = device;
2015 queue->flags = 0;
2016 }
2017
2018 static void
2019 anv_queue_finish(struct anv_queue *queue)
2020 {
2021 }
2022
2023 static struct anv_state
2024 anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
2025 {
2026 struct anv_state state;
2027
2028 state = anv_state_pool_alloc(pool, size, align);
2029 memcpy(state.map, p, size);
2030
2031 return state;
2032 }
2033
2034 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
2035 * straightforward 32-bit float color in the first 64 bytes. Instead of using
2036 * a nice float/integer union like Gen8+, Haswell specifies the integer border
2037 * color as a separate entry /after/ the float color. The layout of this entry
2038 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
2039 *
2040 * Since we don't know the format/bpp, we can't make any of the border colors
2041 * containing '1' work for all formats, as it would be in the wrong place for
2042 * some of them. We opt to make 32-bit integers work as this seems like the
2043 * most common option. Fortunately, transparent black works regardless, as
2044 * all zeroes is the same in every bit-size.
2045 */
2046 struct hsw_border_color {
2047 float float32[4];
2048 uint32_t _pad0[12];
2049 uint32_t uint32[4];
2050 uint32_t _pad1[108];
2051 };
2052
2053 struct gen8_border_color {
2054 union {
2055 float float32[4];
2056 uint32_t uint32[4];
2057 };
2058 /* Pad out to 64 bytes */
2059 uint32_t _pad[12];
2060 };
2061
2062 static void
2063 anv_device_init_border_colors(struct anv_device *device)
2064 {
2065 if (device->info.is_haswell) {
2066 static const struct hsw_border_color border_colors[] = {
2067 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2068 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2069 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2070 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2071 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2072 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2073 };
2074
2075 device->border_colors =
2076 anv_state_pool_emit_data(&device->dynamic_state_pool,
2077 sizeof(border_colors), 512, border_colors);
2078 } else {
2079 static const struct gen8_border_color border_colors[] = {
2080 [VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
2081 [VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
2082 [VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
2083 [VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
2084 [VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
2085 [VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
2086 };
2087
2088 device->border_colors =
2089 anv_state_pool_emit_data(&device->dynamic_state_pool,
2090 sizeof(border_colors), 64, border_colors);
2091 }
2092 }
2093
2094 static void
2095 anv_device_init_trivial_batch(struct anv_device *device)
2096 {
2097 anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
2098
2099 if (device->instance->physicalDevice.has_exec_async)
2100 device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
2101
2102 if (device->instance->physicalDevice.use_softpin)
2103 device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
2104
2105 anv_vma_alloc(device, &device->trivial_batch_bo);
2106
2107 void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
2108 0, 4096, 0);
2109
2110 struct anv_batch batch = {
2111 .start = map,
2112 .next = map,
2113 .end = map + 4096,
2114 };
2115
2116 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2117 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2118
2119 if (!device->info.has_llc)
2120 gen_clflush_range(map, batch.next - map);
2121
2122 anv_gem_munmap(map, device->trivial_batch_bo.size);
2123 }
2124
2125 VkResult anv_EnumerateDeviceExtensionProperties(
2126 VkPhysicalDevice physicalDevice,
2127 const char* pLayerName,
2128 uint32_t* pPropertyCount,
2129 VkExtensionProperties* pProperties)
2130 {
2131 ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
2132 VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
2133
2134 for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
2135 if (device->supported_extensions.extensions[i]) {
2136 vk_outarray_append(&out, prop) {
2137 *prop = anv_device_extensions[i];
2138 }
2139 }
2140 }
2141
2142 return vk_outarray_status(&out);
2143 }
2144
2145 static void
2146 anv_device_init_dispatch(struct anv_device *device)
2147 {
2148 const struct anv_device_dispatch_table *genX_table;
2149 switch (device->info.gen) {
2150 case 12:
2151 genX_table = &gen12_device_dispatch_table;
2152 break;
2153 case 11:
2154 genX_table = &gen11_device_dispatch_table;
2155 break;
2156 case 10:
2157 genX_table = &gen10_device_dispatch_table;
2158 break;
2159 case 9:
2160 genX_table = &gen9_device_dispatch_table;
2161 break;
2162 case 8:
2163 genX_table = &gen8_device_dispatch_table;
2164 break;
2165 case 7:
2166 if (device->info.is_haswell)
2167 genX_table = &gen75_device_dispatch_table;
2168 else
2169 genX_table = &gen7_device_dispatch_table;
2170 break;
2171 default:
2172 unreachable("unsupported gen\n");
2173 }
2174
2175 for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
2176 /* Vulkan requires that entrypoints for extensions which have not been
2177 * enabled must not be advertised.
2178 */
2179 if (!anv_device_entrypoint_is_enabled(i, device->instance->app_info.api_version,
2180 &device->instance->enabled_extensions,
2181 &device->enabled_extensions)) {
2182 device->dispatch.entrypoints[i] = NULL;
2183 } else if (genX_table->entrypoints[i]) {
2184 device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
2185 } else {
2186 device->dispatch.entrypoints[i] =
2187 anv_device_dispatch_table.entrypoints[i];
2188 }
2189 }
2190 }
2191
2192 static int
2193 vk_priority_to_gen(int priority)
2194 {
2195 switch (priority) {
2196 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2197 return GEN_CONTEXT_LOW_PRIORITY;
2198 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2199 return GEN_CONTEXT_MEDIUM_PRIORITY;
2200 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2201 return GEN_CONTEXT_HIGH_PRIORITY;
2202 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2203 return GEN_CONTEXT_REALTIME_PRIORITY;
2204 default:
2205 unreachable("Invalid priority");
2206 }
2207 }
2208
2209 static void
2210 anv_device_init_hiz_clear_value_bo(struct anv_device *device)
2211 {
2212 anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
2213
2214 if (device->instance->physicalDevice.has_exec_async)
2215 device->hiz_clear_bo.flags |= EXEC_OBJECT_ASYNC;
2216
2217 if (device->instance->physicalDevice.use_softpin)
2218 device->hiz_clear_bo.flags |= EXEC_OBJECT_PINNED;
2219
2220 anv_vma_alloc(device, &device->hiz_clear_bo);
2221
2222 uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
2223 0, 4096, 0);
2224
2225 union isl_color_value hiz_clear = { .u32 = { 0, } };
2226 hiz_clear.f32[0] = ANV_HZ_FC_VAL;
2227
2228 memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
2229 anv_gem_munmap(map, device->hiz_clear_bo.size);
2230 }
2231
2232 static bool
2233 get_bo_from_pool(struct gen_batch_decode_bo *ret,
2234 struct anv_block_pool *pool,
2235 uint64_t address)
2236 {
2237 for (uint32_t i = 0; i < pool->nbos; i++) {
2238 uint64_t bo_address = pool->bos[i].offset & (~0ull >> 16);
2239 uint32_t bo_size = pool->bos[i].size;
2240 if (address >= bo_address && address < (bo_address + bo_size)) {
2241 *ret = (struct gen_batch_decode_bo) {
2242 .addr = bo_address,
2243 .size = bo_size,
2244 .map = pool->bos[i].map,
2245 };
2246 return true;
2247 }
2248 }
2249 return false;
2250 }
2251
2252 /* Finding a buffer for batch decoding */
2253 static struct gen_batch_decode_bo
2254 decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
2255 {
2256 struct anv_device *device = v_batch;
2257 struct gen_batch_decode_bo ret_bo = {};
2258
2259 assert(ppgtt);
2260
2261 if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
2262 return ret_bo;
2263 if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
2264 return ret_bo;
2265 if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
2266 return ret_bo;
2267 if (get_bo_from_pool(&ret_bo, &device->surface_state_pool.block_pool, address))
2268 return ret_bo;
2269
2270 if (!device->cmd_buffer_being_decoded)
2271 return (struct gen_batch_decode_bo) { };
2272
2273 struct anv_batch_bo **bo;
2274
2275 u_vector_foreach(bo, &device->cmd_buffer_being_decoded->seen_bbos) {
2276 /* The decoder zeroes out the top 16 bits, so we need to as well */
2277 uint64_t bo_address = (*bo)->bo.offset & (~0ull >> 16);
2278
2279 if (address >= bo_address && address < bo_address + (*bo)->bo.size) {
2280 return (struct gen_batch_decode_bo) {
2281 .addr = bo_address,
2282 .size = (*bo)->bo.size,
2283 .map = (*bo)->bo.map,
2284 };
2285 }
2286 }
2287
2288 return (struct gen_batch_decode_bo) { };
2289 }
2290
2291 VkResult anv_CreateDevice(
2292 VkPhysicalDevice physicalDevice,
2293 const VkDeviceCreateInfo* pCreateInfo,
2294 const VkAllocationCallbacks* pAllocator,
2295 VkDevice* pDevice)
2296 {
2297 ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
2298 VkResult result;
2299 struct anv_device *device;
2300
2301 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
2302
2303 struct anv_device_extension_table enabled_extensions = { };
2304 for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
2305 int idx;
2306 for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
2307 if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
2308 anv_device_extensions[idx].extensionName) == 0)
2309 break;
2310 }
2311
2312 if (idx >= ANV_DEVICE_EXTENSION_COUNT)
2313 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2314
2315 if (!physical_device->supported_extensions.extensions[idx])
2316 return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
2317
2318 enabled_extensions.extensions[idx] = true;
2319 }
2320
2321 /* Check enabled features */
2322 if (pCreateInfo->pEnabledFeatures) {
2323 VkPhysicalDeviceFeatures supported_features;
2324 anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
2325 VkBool32 *supported_feature = (VkBool32 *)&supported_features;
2326 VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
2327 unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
2328 for (uint32_t i = 0; i < num_features; i++) {
2329 if (enabled_feature[i] && !supported_feature[i])
2330 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
2331 }
2332 }
2333
2334 /* Check requested queues and fail if we are requested to create any
2335 * queues with flags we don't support.
2336 */
2337 assert(pCreateInfo->queueCreateInfoCount > 0);
2338 for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
2339 if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
2340 return vk_error(VK_ERROR_INITIALIZATION_FAILED);
2341 }
2342
2343 /* Check if client specified queue priority. */
2344 const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
2345 vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
2346 DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
2347
2348 VkQueueGlobalPriorityEXT priority =
2349 queue_priority ? queue_priority->globalPriority :
2350 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
2351
2352 device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
2353 sizeof(*device), 8,
2354 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2355 if (!device)
2356 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2357
2358 if (INTEL_DEBUG & DEBUG_BATCH) {
2359 const unsigned decode_flags =
2360 GEN_BATCH_DECODE_FULL |
2361 ((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
2362 GEN_BATCH_DECODE_OFFSETS |
2363 GEN_BATCH_DECODE_FLOATS;
2364
2365 gen_batch_decode_ctx_init(&device->decoder_ctx,
2366 &physical_device->info,
2367 stderr, decode_flags, NULL,
2368 decode_get_bo, NULL, device);
2369 }
2370
2371 device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
2372 device->instance = physical_device->instance;
2373 device->chipset_id = physical_device->chipset_id;
2374 device->no_hw = physical_device->no_hw;
2375 device->_lost = false;
2376
2377 if (pAllocator)
2378 device->alloc = *pAllocator;
2379 else
2380 device->alloc = physical_device->instance->alloc;
2381
2382 /* XXX(chadv): Can we dup() physicalDevice->fd here? */
2383 device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
2384 if (device->fd == -1) {
2385 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2386 goto fail_device;
2387 }
2388
2389 device->context_id = anv_gem_create_context(device);
2390 if (device->context_id == -1) {
2391 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2392 goto fail_fd;
2393 }
2394
2395 if (physical_device->use_softpin) {
2396 if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
2397 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2398 goto fail_fd;
2399 }
2400
2401 /* keep the page with address zero out of the allocator */
2402 struct anv_memory_heap *low_heap =
2403 &physical_device->memory.heaps[physical_device->memory.heap_count - 1];
2404 util_vma_heap_init(&device->vma_lo, low_heap->vma_start, low_heap->vma_size);
2405 device->vma_lo_available = low_heap->size;
2406
2407 struct anv_memory_heap *high_heap =
2408 &physical_device->memory.heaps[0];
2409 util_vma_heap_init(&device->vma_hi, high_heap->vma_start, high_heap->vma_size);
2410 device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
2411 high_heap->size;
2412 }
2413
2414 list_inithead(&device->memory_objects);
2415
2416 /* As per spec, the driver implementation may deny requests to acquire
2417 * a priority above the default priority (MEDIUM) if the caller does not
2418 * have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
2419 * is returned.
2420 */
2421 if (physical_device->has_context_priority) {
2422 int err = anv_gem_set_context_param(device->fd, device->context_id,
2423 I915_CONTEXT_PARAM_PRIORITY,
2424 vk_priority_to_gen(priority));
2425 if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
2426 result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
2427 goto fail_fd;
2428 }
2429 }
2430
2431 device->info = physical_device->info;
2432 device->isl_dev = physical_device->isl_dev;
2433
2434 /* On Broadwell and later, we can use batch chaining to more efficiently
2435 * implement growing command buffers. Prior to Haswell, the kernel
2436 * command parser gets in the way and we have to fall back to growing
2437 * the batch.
2438 */
2439 device->can_chain_batches = device->info.gen >= 8;
2440
2441 device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
2442 pCreateInfo->pEnabledFeatures->robustBufferAccess;
2443 device->enabled_extensions = enabled_extensions;
2444
2445 anv_device_init_dispatch(device);
2446
2447 if (pthread_mutex_init(&device->mutex, NULL) != 0) {
2448 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2449 goto fail_context_id;
2450 }
2451
2452 pthread_condattr_t condattr;
2453 if (pthread_condattr_init(&condattr) != 0) {
2454 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2455 goto fail_mutex;
2456 }
2457 if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
2458 pthread_condattr_destroy(&condattr);
2459 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2460 goto fail_mutex;
2461 }
2462 if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
2463 pthread_condattr_destroy(&condattr);
2464 result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
2465 goto fail_mutex;
2466 }
2467 pthread_condattr_destroy(&condattr);
2468
2469 uint64_t bo_flags =
2470 (physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
2471 (physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
2472 (physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
2473 (physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
2474
2475 anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
2476
2477 result = anv_bo_cache_init(&device->bo_cache);
2478 if (result != VK_SUCCESS)
2479 goto fail_batch_bo_pool;
2480
2481 if (!physical_device->use_softpin)
2482 bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2483
2484 result = anv_state_pool_init(&device->dynamic_state_pool, device,
2485 DYNAMIC_STATE_POOL_MIN_ADDRESS,
2486 16384,
2487 bo_flags);
2488 if (result != VK_SUCCESS)
2489 goto fail_bo_cache;
2490
2491 result = anv_state_pool_init(&device->instruction_state_pool, device,
2492 INSTRUCTION_STATE_POOL_MIN_ADDRESS,
2493 16384,
2494 bo_flags);
2495 if (result != VK_SUCCESS)
2496 goto fail_dynamic_state_pool;
2497
2498 result = anv_state_pool_init(&device->surface_state_pool, device,
2499 SURFACE_STATE_POOL_MIN_ADDRESS,
2500 4096,
2501 bo_flags);
2502 if (result != VK_SUCCESS)
2503 goto fail_instruction_state_pool;
2504
2505 if (physical_device->use_softpin) {
2506 result = anv_state_pool_init(&device->binding_table_pool, device,
2507 BINDING_TABLE_POOL_MIN_ADDRESS,
2508 4096,
2509 bo_flags);
2510 if (result != VK_SUCCESS)
2511 goto fail_surface_state_pool;
2512 }
2513
2514 result = anv_bo_init_new(&device->workaround_bo, device, 4096);
2515 if (result != VK_SUCCESS)
2516 goto fail_binding_table_pool;
2517
2518 if (physical_device->use_softpin)
2519 device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
2520
2521 if (!anv_vma_alloc(device, &device->workaround_bo))
2522 goto fail_workaround_bo;
2523
2524 anv_device_init_trivial_batch(device);
2525
2526 if (device->info.gen >= 10)
2527 anv_device_init_hiz_clear_value_bo(device);
2528
2529 anv_scratch_pool_init(device, &device->scratch_pool);
2530
2531 anv_queue_init(device, &device->queue);
2532
2533 switch (device->info.gen) {
2534 case 7:
2535 if (!device->info.is_haswell)
2536 result = gen7_init_device_state(device);
2537 else
2538 result = gen75_init_device_state(device);
2539 break;
2540 case 8:
2541 result = gen8_init_device_state(device);
2542 break;
2543 case 9:
2544 result = gen9_init_device_state(device);
2545 break;
2546 case 10:
2547 result = gen10_init_device_state(device);
2548 break;
2549 case 11:
2550 result = gen11_init_device_state(device);
2551 break;
2552 case 12:
2553 result = gen12_init_device_state(device);
2554 break;
2555 default:
2556 /* Shouldn't get here as we don't create physical devices for any other
2557 * gens. */
2558 unreachable("unhandled gen");
2559 }
2560 if (result != VK_SUCCESS)
2561 goto fail_workaround_bo;
2562
2563 anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
2564
2565 anv_device_init_blorp(device);
2566
2567 anv_device_init_border_colors(device);
2568
2569 *pDevice = anv_device_to_handle(device);
2570
2571 return VK_SUCCESS;
2572
2573 fail_workaround_bo:
2574 anv_queue_finish(&device->queue);
2575 anv_scratch_pool_finish(device, &device->scratch_pool);
2576 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2577 anv_gem_close(device, device->workaround_bo.gem_handle);
2578 fail_binding_table_pool:
2579 if (physical_device->use_softpin)
2580 anv_state_pool_finish(&device->binding_table_pool);
2581 fail_surface_state_pool:
2582 anv_state_pool_finish(&device->surface_state_pool);
2583 fail_instruction_state_pool:
2584 anv_state_pool_finish(&device->instruction_state_pool);
2585 fail_dynamic_state_pool:
2586 anv_state_pool_finish(&device->dynamic_state_pool);
2587 fail_bo_cache:
2588 anv_bo_cache_finish(&device->bo_cache);
2589 fail_batch_bo_pool:
2590 anv_bo_pool_finish(&device->batch_bo_pool);
2591 pthread_cond_destroy(&device->queue_submit);
2592 fail_mutex:
2593 pthread_mutex_destroy(&device->mutex);
2594 fail_context_id:
2595 anv_gem_destroy_context(device, device->context_id);
2596 fail_fd:
2597 close(device->fd);
2598 fail_device:
2599 vk_free(&device->alloc, device);
2600
2601 return result;
2602 }
2603
2604 void anv_DestroyDevice(
2605 VkDevice _device,
2606 const VkAllocationCallbacks* pAllocator)
2607 {
2608 ANV_FROM_HANDLE(anv_device, device, _device);
2609 struct anv_physical_device *physical_device;
2610
2611 if (!device)
2612 return;
2613
2614 physical_device = &device->instance->physicalDevice;
2615
2616 anv_device_finish_blorp(device);
2617
2618 anv_pipeline_cache_finish(&device->default_pipeline_cache);
2619
2620 anv_queue_finish(&device->queue);
2621
2622 #ifdef HAVE_VALGRIND
2623 /* We only need to free these to prevent valgrind errors. The backing
2624 * BO will go away in a couple of lines so we don't actually leak.
2625 */
2626 anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
2627 anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
2628 #endif
2629
2630 anv_scratch_pool_finish(device, &device->scratch_pool);
2631
2632 anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
2633 anv_vma_free(device, &device->workaround_bo);
2634 anv_gem_close(device, device->workaround_bo.gem_handle);
2635
2636 anv_vma_free(device, &device->trivial_batch_bo);
2637 anv_gem_close(device, device->trivial_batch_bo.gem_handle);
2638 if (device->info.gen >= 10)
2639 anv_gem_close(device, device->hiz_clear_bo.gem_handle);
2640
2641 if (physical_device->use_softpin)
2642 anv_state_pool_finish(&device->binding_table_pool);
2643 anv_state_pool_finish(&device->surface_state_pool);
2644 anv_state_pool_finish(&device->instruction_state_pool);
2645 anv_state_pool_finish(&device->dynamic_state_pool);
2646
2647 anv_bo_cache_finish(&device->bo_cache);
2648
2649 anv_bo_pool_finish(&device->batch_bo_pool);
2650
2651 pthread_cond_destroy(&device->queue_submit);
2652 pthread_mutex_destroy(&device->mutex);
2653
2654 anv_gem_destroy_context(device, device->context_id);
2655
2656 if (INTEL_DEBUG & DEBUG_BATCH)
2657 gen_batch_decode_ctx_finish(&device->decoder_ctx);
2658
2659 close(device->fd);
2660
2661 vk_free(&device->alloc, device);
2662 }
2663
2664 VkResult anv_EnumerateInstanceLayerProperties(
2665 uint32_t* pPropertyCount,
2666 VkLayerProperties* pProperties)
2667 {
2668 if (pProperties == NULL) {
2669 *pPropertyCount = 0;
2670 return VK_SUCCESS;
2671 }
2672
2673 /* None supported at this time */
2674 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2675 }
2676
2677 VkResult anv_EnumerateDeviceLayerProperties(
2678 VkPhysicalDevice physicalDevice,
2679 uint32_t* pPropertyCount,
2680 VkLayerProperties* pProperties)
2681 {
2682 if (pProperties == NULL) {
2683 *pPropertyCount = 0;
2684 return VK_SUCCESS;
2685 }
2686
2687 /* None supported at this time */
2688 return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
2689 }
2690
2691 void anv_GetDeviceQueue(
2692 VkDevice _device,
2693 uint32_t queueNodeIndex,
2694 uint32_t queueIndex,
2695 VkQueue* pQueue)
2696 {
2697 ANV_FROM_HANDLE(anv_device, device, _device);
2698
2699 assert(queueIndex == 0);
2700
2701 *pQueue = anv_queue_to_handle(&device->queue);
2702 }
2703
2704 void anv_GetDeviceQueue2(
2705 VkDevice _device,
2706 const VkDeviceQueueInfo2* pQueueInfo,
2707 VkQueue* pQueue)
2708 {
2709 ANV_FROM_HANDLE(anv_device, device, _device);
2710
2711 assert(pQueueInfo->queueIndex == 0);
2712
2713 if (pQueueInfo->flags == device->queue.flags)
2714 *pQueue = anv_queue_to_handle(&device->queue);
2715 else
2716 *pQueue = NULL;
2717 }
2718
2719 VkResult
2720 _anv_device_set_lost(struct anv_device *device,
2721 const char *file, int line,
2722 const char *msg, ...)
2723 {
2724 VkResult err;
2725 va_list ap;
2726
2727 device->_lost = true;
2728
2729 va_start(ap, msg);
2730 err = __vk_errorv(device->instance, device,
2731 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
2732 VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2733 va_end(ap);
2734
2735 if (env_var_as_boolean("ANV_ABORT_ON_DEVICE_LOSS", false))
2736 abort();
2737
2738 return err;
2739 }
2740
2741 VkResult
2742 anv_device_query_status(struct anv_device *device)
2743 {
2744 /* This isn't likely as most of the callers of this function already check
2745 * for it. However, it doesn't hurt to check and it potentially lets us
2746 * avoid an ioctl.
2747 */
2748 if (anv_device_is_lost(device))
2749 return VK_ERROR_DEVICE_LOST;
2750
2751 uint32_t active, pending;
2752 int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
2753 if (ret == -1) {
2754 /* We don't know the real error. */
2755 return anv_device_set_lost(device, "get_reset_stats failed: %m");
2756 }
2757
2758 if (active) {
2759 return anv_device_set_lost(device, "GPU hung on one of our command buffers");
2760 } else if (pending) {
2761 return anv_device_set_lost(device, "GPU hung with commands in-flight");
2762 }
2763
2764 return VK_SUCCESS;
2765 }
2766
2767 VkResult
2768 anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
2769 {
2770 /* Note: This only returns whether or not the BO is in use by an i915 GPU.
2771 * Other usages of the BO (such as on different hardware) will not be
2772 * flagged as "busy" by this ioctl. Use with care.
2773 */
2774 int ret = anv_gem_busy(device, bo->gem_handle);
2775 if (ret == 1) {
2776 return VK_NOT_READY;
2777 } else if (ret == -1) {
2778 /* We don't know the real error. */
2779 return anv_device_set_lost(device, "gem wait failed: %m");
2780 }
2781
2782 /* Query for device status after the busy call. If the BO we're checking
2783 * got caught in a GPU hang we don't want to return VK_SUCCESS to the
2784 * client because it clearly doesn't have valid data. Yes, this most
2785 * likely means an ioctl, but we just did an ioctl to query the busy status
2786 * so it's no great loss.
2787 */
2788 return anv_device_query_status(device);
2789 }
2790
2791 VkResult
2792 anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2793 int64_t timeout)
2794 {
2795 int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
2796 if (ret == -1 && errno == ETIME) {
2797 return VK_TIMEOUT;
2798 } else if (ret == -1) {
2799 /* We don't know the real error. */
2800 return anv_device_set_lost(device, "gem wait failed: %m");
2801 }
2802
2803 /* Query for device status after the wait. If the BO we're waiting on got
2804 * caught in a GPU hang we don't want to return VK_SUCCESS to the client
2805 * because it clearly doesn't have valid data. Yes, this most likely means
2806 * an ioctl, but we just did an ioctl to wait so it's no great loss.
2807 */
2808 return anv_device_query_status(device);
2809 }
2810
2811 VkResult anv_DeviceWaitIdle(
2812 VkDevice _device)
2813 {
2814 ANV_FROM_HANDLE(anv_device, device, _device);
2815 if (anv_device_is_lost(device))
2816 return VK_ERROR_DEVICE_LOST;
2817
2818 struct anv_batch batch;
2819
2820 uint32_t cmds[8];
2821 batch.start = batch.next = cmds;
2822 batch.end = (void *) cmds + sizeof(cmds);
2823
2824 anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
2825 anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
2826
2827 return anv_device_submit_simple_batch(device, &batch);
2828 }
2829
2830 bool
2831 anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
2832 {
2833 if (!(bo->flags & EXEC_OBJECT_PINNED))
2834 return true;
2835
2836 pthread_mutex_lock(&device->vma_mutex);
2837
2838 bo->offset = 0;
2839
2840 if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
2841 device->vma_hi_available >= bo->size) {
2842 uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
2843 if (addr) {
2844 bo->offset = gen_canonical_address(addr);
2845 assert(addr == gen_48b_address(bo->offset));
2846 device->vma_hi_available -= bo->size;
2847 }
2848 }
2849
2850 if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
2851 uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
2852 if (addr) {
2853 bo->offset = gen_canonical_address(addr);
2854 assert(addr == gen_48b_address(bo->offset));
2855 device->vma_lo_available -= bo->size;
2856 }
2857 }
2858
2859 pthread_mutex_unlock(&device->vma_mutex);
2860
2861 return bo->offset != 0;
2862 }
2863
2864 void
2865 anv_vma_free(struct anv_device *device, struct anv_bo *bo)
2866 {
2867 if (!(bo->flags & EXEC_OBJECT_PINNED))
2868 return;
2869
2870 const uint64_t addr_48b = gen_48b_address(bo->offset);
2871
2872 pthread_mutex_lock(&device->vma_mutex);
2873
2874 if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
2875 addr_48b <= LOW_HEAP_MAX_ADDRESS) {
2876 util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
2877 device->vma_lo_available += bo->size;
2878 } else {
2879 ASSERTED const struct anv_physical_device *physical_device =
2880 &device->instance->physicalDevice;
2881 assert(addr_48b >= physical_device->memory.heaps[0].vma_start &&
2882 addr_48b < (physical_device->memory.heaps[0].vma_start +
2883 physical_device->memory.heaps[0].vma_size));
2884 util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
2885 device->vma_hi_available += bo->size;
2886 }
2887
2888 pthread_mutex_unlock(&device->vma_mutex);
2889
2890 bo->offset = 0;
2891 }
2892
2893 VkResult
2894 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
2895 {
2896 uint32_t gem_handle = anv_gem_create(device, size);
2897 if (!gem_handle)
2898 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
2899
2900 anv_bo_init(bo, gem_handle, size);
2901
2902 return VK_SUCCESS;
2903 }
2904
2905 VkResult anv_AllocateMemory(
2906 VkDevice _device,
2907 const VkMemoryAllocateInfo* pAllocateInfo,
2908 const VkAllocationCallbacks* pAllocator,
2909 VkDeviceMemory* pMem)
2910 {
2911 ANV_FROM_HANDLE(anv_device, device, _device);
2912 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
2913 struct anv_device_memory *mem;
2914 VkResult result = VK_SUCCESS;
2915
2916 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
2917
2918 /* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
2919 assert(pAllocateInfo->allocationSize > 0);
2920
2921 if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
2922 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2923
2924 /* FINISHME: Fail if allocation request exceeds heap size. */
2925
2926 mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
2927 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2928 if (mem == NULL)
2929 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2930
2931 assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
2932 mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
2933 mem->map = NULL;
2934 mem->map_size = 0;
2935 mem->ahw = NULL;
2936 mem->host_ptr = NULL;
2937
2938 uint64_t bo_flags = 0;
2939
2940 assert(mem->type->heapIndex < pdevice->memory.heap_count);
2941 if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
2942 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2943
2944 const struct wsi_memory_allocate_info *wsi_info =
2945 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
2946 if (wsi_info && wsi_info->implicit_sync) {
2947 /* We need to set the WRITE flag on window system buffers so that GEM
2948 * will know we're writing to them and synchronize uses on other rings
2949 * (eg if the display server uses the blitter ring).
2950 */
2951 bo_flags |= EXEC_OBJECT_WRITE;
2952 } else if (pdevice->has_exec_async) {
2953 bo_flags |= EXEC_OBJECT_ASYNC;
2954 }
2955
2956 if (pdevice->use_softpin)
2957 bo_flags |= EXEC_OBJECT_PINNED;
2958
2959 const VkExportMemoryAllocateInfo *export_info =
2960 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
2961
2962 /* Check if we need to support Android HW buffer export. If so,
2963 * create AHardwareBuffer and import memory from it.
2964 */
2965 bool android_export = false;
2966 if (export_info && export_info->handleTypes &
2967 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)
2968 android_export = true;
2969
2970 /* Android memory import. */
2971 const struct VkImportAndroidHardwareBufferInfoANDROID *ahw_import_info =
2972 vk_find_struct_const(pAllocateInfo->pNext,
2973 IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
2974
2975 if (ahw_import_info) {
2976 result = anv_import_ahw_memory(_device, mem, ahw_import_info);
2977 if (result != VK_SUCCESS)
2978 goto fail;
2979
2980 goto success;
2981 } else if (android_export) {
2982 result = anv_create_ahw_memory(_device, mem, pAllocateInfo);
2983 if (result != VK_SUCCESS)
2984 goto fail;
2985
2986 const struct VkImportAndroidHardwareBufferInfoANDROID import_info = {
2987 .buffer = mem->ahw,
2988 };
2989 result = anv_import_ahw_memory(_device, mem, &import_info);
2990 if (result != VK_SUCCESS)
2991 goto fail;
2992
2993 goto success;
2994 }
2995
2996 const VkImportMemoryFdInfoKHR *fd_info =
2997 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
2998
2999 /* The Vulkan spec permits handleType to be 0, in which case the struct is
3000 * ignored.
3001 */
3002 if (fd_info && fd_info->handleType) {
3003 /* At the moment, we support only the below handle types. */
3004 assert(fd_info->handleType ==
3005 VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3006 fd_info->handleType ==
3007 VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3008
3009 result = anv_bo_cache_import(device, &device->bo_cache, fd_info->fd,
3010 bo_flags | ANV_BO_EXTERNAL, &mem->bo);
3011 if (result != VK_SUCCESS)
3012 goto fail;
3013
3014 VkDeviceSize aligned_alloc_size =
3015 align_u64(pAllocateInfo->allocationSize, 4096);
3016
3017 /* For security purposes, we reject importing the bo if it's smaller
3018 * than the requested allocation size. This prevents a malicious client
3019 * from passing a buffer to a trusted client, lying about the size, and
3020 * telling the trusted client to try and texture from an image that goes
3021 * out-of-bounds. This sort of thing could lead to GPU hangs or worse
3022 * in the trusted client. The trusted client can protect itself against
3023 * this sort of attack but only if it can trust the buffer size.
3024 */
3025 if (mem->bo->size < aligned_alloc_size) {
3026 result = vk_errorf(device->instance, device,
3027 VK_ERROR_INVALID_EXTERNAL_HANDLE,
3028 "aligned allocationSize too large for "
3029 "VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
3030 "%"PRIu64"B > %"PRIu64"B",
3031 aligned_alloc_size, mem->bo->size);
3032 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3033 goto fail;
3034 }
3035
3036 /* From the Vulkan spec:
3037 *
3038 * "Importing memory from a file descriptor transfers ownership of
3039 * the file descriptor from the application to the Vulkan
3040 * implementation. The application must not perform any operations on
3041 * the file descriptor after a successful import."
3042 *
3043 * If the import fails, we leave the file descriptor open.
3044 */
3045 close(fd_info->fd);
3046 goto success;
3047 }
3048
3049 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
3050 vk_find_struct_const(pAllocateInfo->pNext,
3051 IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
3052 if (host_ptr_info && host_ptr_info->handleType) {
3053 if (host_ptr_info->handleType ==
3054 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
3055 result = vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3056 goto fail;
3057 }
3058
3059 assert(host_ptr_info->handleType ==
3060 VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
3061
3062 result = anv_bo_cache_import_host_ptr(
3063 device, &device->bo_cache, host_ptr_info->pHostPointer,
3064 pAllocateInfo->allocationSize, bo_flags, &mem->bo);
3065
3066 if (result != VK_SUCCESS)
3067 goto fail;
3068
3069 mem->host_ptr = host_ptr_info->pHostPointer;
3070 goto success;
3071 }
3072
3073 /* Regular allocate (not importing memory). */
3074
3075 if (export_info && export_info->handleTypes)
3076 bo_flags |= ANV_BO_EXTERNAL;
3077
3078 result = anv_bo_cache_alloc(device, &device->bo_cache,
3079 pAllocateInfo->allocationSize, bo_flags,
3080 &mem->bo);
3081 if (result != VK_SUCCESS)
3082 goto fail;
3083
3084 const VkMemoryDedicatedAllocateInfo *dedicated_info =
3085 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
3086 if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
3087 ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
3088
3089 /* Some legacy (non-modifiers) consumers need the tiling to be set on
3090 * the BO. In this case, we have a dedicated allocation.
3091 */
3092 if (image->needs_set_tiling) {
3093 const uint32_t i915_tiling =
3094 isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
3095 int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
3096 image->planes[0].surface.isl.row_pitch_B,
3097 i915_tiling);
3098 if (ret) {
3099 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3100 return vk_errorf(device->instance, NULL,
3101 VK_ERROR_OUT_OF_DEVICE_MEMORY,
3102 "failed to set BO tiling: %m");
3103 }
3104 }
3105 }
3106
3107 success:
3108 pthread_mutex_lock(&device->mutex);
3109 list_addtail(&mem->link, &device->memory_objects);
3110 pthread_mutex_unlock(&device->mutex);
3111
3112 *pMem = anv_device_memory_to_handle(mem);
3113
3114 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3115 mem->bo->size);
3116
3117 return VK_SUCCESS;
3118
3119 fail:
3120 vk_free2(&device->alloc, pAllocator, mem);
3121
3122 return result;
3123 }
3124
3125 VkResult anv_GetMemoryFdKHR(
3126 VkDevice device_h,
3127 const VkMemoryGetFdInfoKHR* pGetFdInfo,
3128 int* pFd)
3129 {
3130 ANV_FROM_HANDLE(anv_device, dev, device_h);
3131 ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
3132
3133 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
3134
3135 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
3136 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
3137
3138 return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
3139 }
3140
3141 VkResult anv_GetMemoryFdPropertiesKHR(
3142 VkDevice _device,
3143 VkExternalMemoryHandleTypeFlagBits handleType,
3144 int fd,
3145 VkMemoryFdPropertiesKHR* pMemoryFdProperties)
3146 {
3147 ANV_FROM_HANDLE(anv_device, device, _device);
3148 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3149
3150 switch (handleType) {
3151 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
3152 /* dma-buf can be imported as any memory type */
3153 pMemoryFdProperties->memoryTypeBits =
3154 (1 << pdevice->memory.type_count) - 1;
3155 return VK_SUCCESS;
3156
3157 default:
3158 /* The valid usage section for this function says:
3159 *
3160 * "handleType must not be one of the handle types defined as
3161 * opaque."
3162 *
3163 * So opaque handle types fall into the default "unsupported" case.
3164 */
3165 return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
3166 }
3167 }
3168
3169 VkResult anv_GetMemoryHostPointerPropertiesEXT(
3170 VkDevice _device,
3171 VkExternalMemoryHandleTypeFlagBits handleType,
3172 const void* pHostPointer,
3173 VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
3174 {
3175 ANV_FROM_HANDLE(anv_device, device, _device);
3176
3177 assert(pMemoryHostPointerProperties->sType ==
3178 VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
3179
3180 switch (handleType) {
3181 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
3182 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3183
3184 /* Host memory can be imported as any memory type. */
3185 pMemoryHostPointerProperties->memoryTypeBits =
3186 (1ull << pdevice->memory.type_count) - 1;
3187
3188 return VK_SUCCESS;
3189 }
3190 default:
3191 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
3192 }
3193 }
3194
3195 void anv_FreeMemory(
3196 VkDevice _device,
3197 VkDeviceMemory _mem,
3198 const VkAllocationCallbacks* pAllocator)
3199 {
3200 ANV_FROM_HANDLE(anv_device, device, _device);
3201 ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
3202 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3203
3204 if (mem == NULL)
3205 return;
3206
3207 pthread_mutex_lock(&device->mutex);
3208 list_del(&mem->link);
3209 pthread_mutex_unlock(&device->mutex);
3210
3211 if (mem->map)
3212 anv_UnmapMemory(_device, _mem);
3213
3214 p_atomic_add(&pdevice->memory.heaps[mem->type->heapIndex].used,
3215 -mem->bo->size);
3216
3217 anv_bo_cache_release(device, &device->bo_cache, mem->bo);
3218
3219 #if defined(ANDROID) && ANDROID_API_LEVEL >= 26
3220 if (mem->ahw)
3221 AHardwareBuffer_release(mem->ahw);
3222 #endif
3223
3224 vk_free2(&device->alloc, pAllocator, mem);
3225 }
3226
3227 VkResult anv_MapMemory(
3228 VkDevice _device,
3229 VkDeviceMemory _memory,
3230 VkDeviceSize offset,
3231 VkDeviceSize size,
3232 VkMemoryMapFlags flags,
3233 void** ppData)
3234 {
3235 ANV_FROM_HANDLE(anv_device, device, _device);
3236 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3237
3238 if (mem == NULL) {
3239 *ppData = NULL;
3240 return VK_SUCCESS;
3241 }
3242
3243 if (mem->host_ptr) {
3244 *ppData = mem->host_ptr + offset;
3245 return VK_SUCCESS;
3246 }
3247
3248 if (size == VK_WHOLE_SIZE)
3249 size = mem->bo->size - offset;
3250
3251 /* From the Vulkan spec version 1.0.32 docs for MapMemory:
3252 *
3253 * * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
3254 * assert(size != 0);
3255 * * If size is not equal to VK_WHOLE_SIZE, size must be less than or
3256 * equal to the size of the memory minus offset
3257 */
3258 assert(size > 0);
3259 assert(offset + size <= mem->bo->size);
3260
3261 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
3262 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
3263 * at a time is valid. We could just mmap up front and return an offset
3264 * pointer here, but that may exhaust virtual memory on 32 bit
3265 * userspace. */
3266
3267 uint32_t gem_flags = 0;
3268
3269 if (!device->info.has_llc &&
3270 (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
3271 gem_flags |= I915_MMAP_WC;
3272
3273 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
3274 uint64_t map_offset = offset & ~4095ull;
3275 assert(offset >= map_offset);
3276 uint64_t map_size = (offset + size) - map_offset;
3277
3278 /* Let's map whole pages */
3279 map_size = align_u64(map_size, 4096);
3280
3281 void *map = anv_gem_mmap(device, mem->bo->gem_handle,
3282 map_offset, map_size, gem_flags);
3283 if (map == MAP_FAILED)
3284 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
3285
3286 mem->map = map;
3287 mem->map_size = map_size;
3288
3289 *ppData = mem->map + (offset - map_offset);
3290
3291 return VK_SUCCESS;
3292 }
3293
3294 void anv_UnmapMemory(
3295 VkDevice _device,
3296 VkDeviceMemory _memory)
3297 {
3298 ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
3299
3300 if (mem == NULL || mem->host_ptr)
3301 return;
3302
3303 anv_gem_munmap(mem->map, mem->map_size);
3304
3305 mem->map = NULL;
3306 mem->map_size = 0;
3307 }
3308
3309 static void
3310 clflush_mapped_ranges(struct anv_device *device,
3311 uint32_t count,
3312 const VkMappedMemoryRange *ranges)
3313 {
3314 for (uint32_t i = 0; i < count; i++) {
3315 ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
3316 if (ranges[i].offset >= mem->map_size)
3317 continue;
3318
3319 gen_clflush_range(mem->map + ranges[i].offset,
3320 MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
3321 }
3322 }
3323
3324 VkResult anv_FlushMappedMemoryRanges(
3325 VkDevice _device,
3326 uint32_t memoryRangeCount,
3327 const VkMappedMemoryRange* pMemoryRanges)
3328 {
3329 ANV_FROM_HANDLE(anv_device, device, _device);
3330
3331 if (device->info.has_llc)
3332 return VK_SUCCESS;
3333
3334 /* Make sure the writes we're flushing have landed. */
3335 __builtin_ia32_mfence();
3336
3337 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3338
3339 return VK_SUCCESS;
3340 }
3341
3342 VkResult anv_InvalidateMappedMemoryRanges(
3343 VkDevice _device,
3344 uint32_t memoryRangeCount,
3345 const VkMappedMemoryRange* pMemoryRanges)
3346 {
3347 ANV_FROM_HANDLE(anv_device, device, _device);
3348
3349 if (device->info.has_llc)
3350 return VK_SUCCESS;
3351
3352 clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
3353
3354 /* Make sure no reads get moved up above the invalidate. */
3355 __builtin_ia32_mfence();
3356
3357 return VK_SUCCESS;
3358 }
3359
3360 void anv_GetBufferMemoryRequirements(
3361 VkDevice _device,
3362 VkBuffer _buffer,
3363 VkMemoryRequirements* pMemoryRequirements)
3364 {
3365 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3366 ANV_FROM_HANDLE(anv_device, device, _device);
3367 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3368
3369 /* The Vulkan spec (git aaed022) says:
3370 *
3371 * memoryTypeBits is a bitfield and contains one bit set for every
3372 * supported memory type for the resource. The bit `1<<i` is set if and
3373 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3374 * structure for the physical device is supported.
3375 */
3376 uint32_t memory_types = 0;
3377 for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
3378 uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
3379 if ((valid_usage & buffer->usage) == buffer->usage)
3380 memory_types |= (1u << i);
3381 }
3382
3383 /* Base alignment requirement of a cache line */
3384 uint32_t alignment = 16;
3385
3386 /* We need an alignment of 32 for pushing UBOs */
3387 if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
3388 alignment = MAX2(alignment, 32);
3389
3390 pMemoryRequirements->size = buffer->size;
3391 pMemoryRequirements->alignment = alignment;
3392
3393 /* Storage and Uniform buffers should have their size aligned to
3394 * 32-bits to avoid boundary checks when last DWord is not complete.
3395 * This would ensure that not internal padding would be needed for
3396 * 16-bit types.
3397 */
3398 if (device->robust_buffer_access &&
3399 (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
3400 buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
3401 pMemoryRequirements->size = align_u64(buffer->size, 4);
3402
3403 pMemoryRequirements->memoryTypeBits = memory_types;
3404 }
3405
3406 void anv_GetBufferMemoryRequirements2(
3407 VkDevice _device,
3408 const VkBufferMemoryRequirementsInfo2* pInfo,
3409 VkMemoryRequirements2* pMemoryRequirements)
3410 {
3411 anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
3412 &pMemoryRequirements->memoryRequirements);
3413
3414 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3415 switch (ext->sType) {
3416 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3417 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3418 requirements->prefersDedicatedAllocation = false;
3419 requirements->requiresDedicatedAllocation = false;
3420 break;
3421 }
3422
3423 default:
3424 anv_debug_ignored_stype(ext->sType);
3425 break;
3426 }
3427 }
3428 }
3429
3430 void anv_GetImageMemoryRequirements(
3431 VkDevice _device,
3432 VkImage _image,
3433 VkMemoryRequirements* pMemoryRequirements)
3434 {
3435 ANV_FROM_HANDLE(anv_image, image, _image);
3436 ANV_FROM_HANDLE(anv_device, device, _device);
3437 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3438
3439 /* The Vulkan spec (git aaed022) says:
3440 *
3441 * memoryTypeBits is a bitfield and contains one bit set for every
3442 * supported memory type for the resource. The bit `1<<i` is set if and
3443 * only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
3444 * structure for the physical device is supported.
3445 *
3446 * All types are currently supported for images.
3447 */
3448 uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
3449
3450 /* We must have image allocated or imported at this point. According to the
3451 * specification, external images must have been bound to memory before
3452 * calling GetImageMemoryRequirements.
3453 */
3454 assert(image->size > 0);
3455
3456 pMemoryRequirements->size = image->size;
3457 pMemoryRequirements->alignment = image->alignment;
3458 pMemoryRequirements->memoryTypeBits = memory_types;
3459 }
3460
3461 void anv_GetImageMemoryRequirements2(
3462 VkDevice _device,
3463 const VkImageMemoryRequirementsInfo2* pInfo,
3464 VkMemoryRequirements2* pMemoryRequirements)
3465 {
3466 ANV_FROM_HANDLE(anv_device, device, _device);
3467 ANV_FROM_HANDLE(anv_image, image, pInfo->image);
3468
3469 anv_GetImageMemoryRequirements(_device, pInfo->image,
3470 &pMemoryRequirements->memoryRequirements);
3471
3472 vk_foreach_struct_const(ext, pInfo->pNext) {
3473 switch (ext->sType) {
3474 case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
3475 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
3476 const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
3477 (const VkImagePlaneMemoryRequirementsInfo *) ext;
3478 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
3479 plane_reqs->planeAspect);
3480
3481 assert(image->planes[plane].offset == 0);
3482
3483 /* The Vulkan spec (git aaed022) says:
3484 *
3485 * memoryTypeBits is a bitfield and contains one bit set for every
3486 * supported memory type for the resource. The bit `1<<i` is set
3487 * if and only if the memory type `i` in the
3488 * VkPhysicalDeviceMemoryProperties structure for the physical
3489 * device is supported.
3490 *
3491 * All types are currently supported for images.
3492 */
3493 pMemoryRequirements->memoryRequirements.memoryTypeBits =
3494 (1ull << pdevice->memory.type_count) - 1;
3495
3496 /* We must have image allocated or imported at this point. According to the
3497 * specification, external images must have been bound to memory before
3498 * calling GetImageMemoryRequirements.
3499 */
3500 assert(image->planes[plane].size > 0);
3501
3502 pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
3503 pMemoryRequirements->memoryRequirements.alignment =
3504 image->planes[plane].alignment;
3505 break;
3506 }
3507
3508 default:
3509 anv_debug_ignored_stype(ext->sType);
3510 break;
3511 }
3512 }
3513
3514 vk_foreach_struct(ext, pMemoryRequirements->pNext) {
3515 switch (ext->sType) {
3516 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
3517 VkMemoryDedicatedRequirements *requirements = (void *)ext;
3518 if (image->needs_set_tiling || image->external_format) {
3519 /* If we need to set the tiling for external consumers, we need a
3520 * dedicated allocation.
3521 *
3522 * See also anv_AllocateMemory.
3523 */
3524 requirements->prefersDedicatedAllocation = true;
3525 requirements->requiresDedicatedAllocation = true;
3526 } else {
3527 requirements->prefersDedicatedAllocation = false;
3528 requirements->requiresDedicatedAllocation = false;
3529 }
3530 break;
3531 }
3532
3533 default:
3534 anv_debug_ignored_stype(ext->sType);
3535 break;
3536 }
3537 }
3538 }
3539
3540 void anv_GetImageSparseMemoryRequirements(
3541 VkDevice device,
3542 VkImage image,
3543 uint32_t* pSparseMemoryRequirementCount,
3544 VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
3545 {
3546 *pSparseMemoryRequirementCount = 0;
3547 }
3548
3549 void anv_GetImageSparseMemoryRequirements2(
3550 VkDevice device,
3551 const VkImageSparseMemoryRequirementsInfo2* pInfo,
3552 uint32_t* pSparseMemoryRequirementCount,
3553 VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
3554 {
3555 *pSparseMemoryRequirementCount = 0;
3556 }
3557
3558 void anv_GetDeviceMemoryCommitment(
3559 VkDevice device,
3560 VkDeviceMemory memory,
3561 VkDeviceSize* pCommittedMemoryInBytes)
3562 {
3563 *pCommittedMemoryInBytes = 0;
3564 }
3565
3566 static void
3567 anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
3568 {
3569 ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
3570 ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
3571
3572 assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
3573
3574 if (mem) {
3575 assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
3576 buffer->address = (struct anv_address) {
3577 .bo = mem->bo,
3578 .offset = pBindInfo->memoryOffset,
3579 };
3580 } else {
3581 buffer->address = ANV_NULL_ADDRESS;
3582 }
3583 }
3584
3585 VkResult anv_BindBufferMemory(
3586 VkDevice device,
3587 VkBuffer buffer,
3588 VkDeviceMemory memory,
3589 VkDeviceSize memoryOffset)
3590 {
3591 anv_bind_buffer_memory(
3592 &(VkBindBufferMemoryInfo) {
3593 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
3594 .buffer = buffer,
3595 .memory = memory,
3596 .memoryOffset = memoryOffset,
3597 });
3598
3599 return VK_SUCCESS;
3600 }
3601
3602 VkResult anv_BindBufferMemory2(
3603 VkDevice device,
3604 uint32_t bindInfoCount,
3605 const VkBindBufferMemoryInfo* pBindInfos)
3606 {
3607 for (uint32_t i = 0; i < bindInfoCount; i++)
3608 anv_bind_buffer_memory(&pBindInfos[i]);
3609
3610 return VK_SUCCESS;
3611 }
3612
3613 VkResult anv_QueueBindSparse(
3614 VkQueue _queue,
3615 uint32_t bindInfoCount,
3616 const VkBindSparseInfo* pBindInfo,
3617 VkFence fence)
3618 {
3619 ANV_FROM_HANDLE(anv_queue, queue, _queue);
3620 if (anv_device_is_lost(queue->device))
3621 return VK_ERROR_DEVICE_LOST;
3622
3623 return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
3624 }
3625
3626 // Event functions
3627
3628 VkResult anv_CreateEvent(
3629 VkDevice _device,
3630 const VkEventCreateInfo* pCreateInfo,
3631 const VkAllocationCallbacks* pAllocator,
3632 VkEvent* pEvent)
3633 {
3634 ANV_FROM_HANDLE(anv_device, device, _device);
3635 struct anv_state state;
3636 struct anv_event *event;
3637
3638 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
3639
3640 state = anv_state_pool_alloc(&device->dynamic_state_pool,
3641 sizeof(*event), 8);
3642 event = state.map;
3643 event->state = state;
3644 event->semaphore = VK_EVENT_RESET;
3645
3646 if (!device->info.has_llc) {
3647 /* Make sure the writes we're flushing have landed. */
3648 __builtin_ia32_mfence();
3649 __builtin_ia32_clflush(event);
3650 }
3651
3652 *pEvent = anv_event_to_handle(event);
3653
3654 return VK_SUCCESS;
3655 }
3656
3657 void anv_DestroyEvent(
3658 VkDevice _device,
3659 VkEvent _event,
3660 const VkAllocationCallbacks* pAllocator)
3661 {
3662 ANV_FROM_HANDLE(anv_device, device, _device);
3663 ANV_FROM_HANDLE(anv_event, event, _event);
3664
3665 if (!event)
3666 return;
3667
3668 anv_state_pool_free(&device->dynamic_state_pool, event->state);
3669 }
3670
3671 VkResult anv_GetEventStatus(
3672 VkDevice _device,
3673 VkEvent _event)
3674 {
3675 ANV_FROM_HANDLE(anv_device, device, _device);
3676 ANV_FROM_HANDLE(anv_event, event, _event);
3677
3678 if (anv_device_is_lost(device))
3679 return VK_ERROR_DEVICE_LOST;
3680
3681 if (!device->info.has_llc) {
3682 /* Invalidate read cache before reading event written by GPU. */
3683 __builtin_ia32_clflush(event);
3684 __builtin_ia32_mfence();
3685
3686 }
3687
3688 return event->semaphore;
3689 }
3690
3691 VkResult anv_SetEvent(
3692 VkDevice _device,
3693 VkEvent _event)
3694 {
3695 ANV_FROM_HANDLE(anv_device, device, _device);
3696 ANV_FROM_HANDLE(anv_event, event, _event);
3697
3698 event->semaphore = VK_EVENT_SET;
3699
3700 if (!device->info.has_llc) {
3701 /* Make sure the writes we're flushing have landed. */
3702 __builtin_ia32_mfence();
3703 __builtin_ia32_clflush(event);
3704 }
3705
3706 return VK_SUCCESS;
3707 }
3708
3709 VkResult anv_ResetEvent(
3710 VkDevice _device,
3711 VkEvent _event)
3712 {
3713 ANV_FROM_HANDLE(anv_device, device, _device);
3714 ANV_FROM_HANDLE(anv_event, event, _event);
3715
3716 event->semaphore = VK_EVENT_RESET;
3717
3718 if (!device->info.has_llc) {
3719 /* Make sure the writes we're flushing have landed. */
3720 __builtin_ia32_mfence();
3721 __builtin_ia32_clflush(event);
3722 }
3723
3724 return VK_SUCCESS;
3725 }
3726
3727 // Buffer functions
3728
3729 VkResult anv_CreateBuffer(
3730 VkDevice _device,
3731 const VkBufferCreateInfo* pCreateInfo,
3732 const VkAllocationCallbacks* pAllocator,
3733 VkBuffer* pBuffer)
3734 {
3735 ANV_FROM_HANDLE(anv_device, device, _device);
3736 struct anv_buffer *buffer;
3737
3738 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
3739
3740 buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
3741 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3742 if (buffer == NULL)
3743 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3744
3745 buffer->size = pCreateInfo->size;
3746 buffer->usage = pCreateInfo->usage;
3747 buffer->address = ANV_NULL_ADDRESS;
3748
3749 *pBuffer = anv_buffer_to_handle(buffer);
3750
3751 return VK_SUCCESS;
3752 }
3753
3754 void anv_DestroyBuffer(
3755 VkDevice _device,
3756 VkBuffer _buffer,
3757 const VkAllocationCallbacks* pAllocator)
3758 {
3759 ANV_FROM_HANDLE(anv_device, device, _device);
3760 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3761
3762 if (!buffer)
3763 return;
3764
3765 vk_free2(&device->alloc, pAllocator, buffer);
3766 }
3767
3768 VkDeviceAddress anv_GetBufferDeviceAddressEXT(
3769 VkDevice device,
3770 const VkBufferDeviceAddressInfoEXT* pInfo)
3771 {
3772 ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
3773
3774 assert(buffer->address.bo->flags & EXEC_OBJECT_PINNED);
3775
3776 return anv_address_physical(buffer->address);
3777 }
3778
3779 void
3780 anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
3781 enum isl_format format,
3782 struct anv_address address,
3783 uint32_t range, uint32_t stride)
3784 {
3785 isl_buffer_fill_state(&device->isl_dev, state.map,
3786 .address = anv_address_physical(address),
3787 .mocs = device->default_mocs,
3788 .size_B = range,
3789 .format = format,
3790 .swizzle = ISL_SWIZZLE_IDENTITY,
3791 .stride_B = stride);
3792 }
3793
3794 void anv_DestroySampler(
3795 VkDevice _device,
3796 VkSampler _sampler,
3797 const VkAllocationCallbacks* pAllocator)
3798 {
3799 ANV_FROM_HANDLE(anv_device, device, _device);
3800 ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
3801
3802 if (!sampler)
3803 return;
3804
3805 if (sampler->bindless_state.map) {
3806 anv_state_pool_free(&device->dynamic_state_pool,
3807 sampler->bindless_state);
3808 }
3809
3810 vk_free2(&device->alloc, pAllocator, sampler);
3811 }
3812
3813 VkResult anv_CreateFramebuffer(
3814 VkDevice _device,
3815 const VkFramebufferCreateInfo* pCreateInfo,
3816 const VkAllocationCallbacks* pAllocator,
3817 VkFramebuffer* pFramebuffer)
3818 {
3819 ANV_FROM_HANDLE(anv_device, device, _device);
3820 struct anv_framebuffer *framebuffer;
3821
3822 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3823
3824 size_t size = sizeof(*framebuffer);
3825
3826 /* VK_KHR_imageless_framebuffer extension says:
3827 *
3828 * If flags includes VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR,
3829 * parameter pAttachments is ignored.
3830 */
3831 if (!(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT_KHR)) {
3832 size += sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
3833 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3834 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3835 if (framebuffer == NULL)
3836 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3837
3838 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
3839 ANV_FROM_HANDLE(anv_image_view, iview, pCreateInfo->pAttachments[i]);
3840 framebuffer->attachments[i] = iview;
3841 }
3842 framebuffer->attachment_count = pCreateInfo->attachmentCount;
3843 } else {
3844 assert(device->enabled_extensions.KHR_imageless_framebuffer);
3845 framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
3846 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3847 if (framebuffer == NULL)
3848 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3849
3850 framebuffer->attachment_count = 0;
3851 }
3852
3853 framebuffer->width = pCreateInfo->width;
3854 framebuffer->height = pCreateInfo->height;
3855 framebuffer->layers = pCreateInfo->layers;
3856
3857 *pFramebuffer = anv_framebuffer_to_handle(framebuffer);
3858
3859 return VK_SUCCESS;
3860 }
3861
3862 void anv_DestroyFramebuffer(
3863 VkDevice _device,
3864 VkFramebuffer _fb,
3865 const VkAllocationCallbacks* pAllocator)
3866 {
3867 ANV_FROM_HANDLE(anv_device, device, _device);
3868 ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
3869
3870 if (!fb)
3871 return;
3872
3873 vk_free2(&device->alloc, pAllocator, fb);
3874 }
3875
3876 static const VkTimeDomainEXT anv_time_domains[] = {
3877 VK_TIME_DOMAIN_DEVICE_EXT,
3878 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
3879 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
3880 };
3881
3882 VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
3883 VkPhysicalDevice physicalDevice,
3884 uint32_t *pTimeDomainCount,
3885 VkTimeDomainEXT *pTimeDomains)
3886 {
3887 int d;
3888 VK_OUTARRAY_MAKE(out, pTimeDomains, pTimeDomainCount);
3889
3890 for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
3891 vk_outarray_append(&out, i) {
3892 *i = anv_time_domains[d];
3893 }
3894 }
3895
3896 return vk_outarray_status(&out);
3897 }
3898
3899 static uint64_t
3900 anv_clock_gettime(clockid_t clock_id)
3901 {
3902 struct timespec current;
3903 int ret;
3904
3905 ret = clock_gettime(clock_id, &current);
3906 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
3907 ret = clock_gettime(CLOCK_MONOTONIC, &current);
3908 if (ret < 0)
3909 return 0;
3910
3911 return (uint64_t) current.tv_sec * 1000000000ULL + current.tv_nsec;
3912 }
3913
3914 #define TIMESTAMP 0x2358
3915
3916 VkResult anv_GetCalibratedTimestampsEXT(
3917 VkDevice _device,
3918 uint32_t timestampCount,
3919 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
3920 uint64_t *pTimestamps,
3921 uint64_t *pMaxDeviation)
3922 {
3923 ANV_FROM_HANDLE(anv_device, device, _device);
3924 uint64_t timestamp_frequency = device->info.timestamp_frequency;
3925 int ret;
3926 int d;
3927 uint64_t begin, end;
3928 uint64_t max_clock_period = 0;
3929
3930 begin = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3931
3932 for (d = 0; d < timestampCount; d++) {
3933 switch (pTimestampInfos[d].timeDomain) {
3934 case VK_TIME_DOMAIN_DEVICE_EXT:
3935 ret = anv_gem_reg_read(device, TIMESTAMP | 1,
3936 &pTimestamps[d]);
3937
3938 if (ret != 0) {
3939 return anv_device_set_lost(device, "Failed to read the TIMESTAMP "
3940 "register: %m");
3941 }
3942 uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
3943 max_clock_period = MAX2(max_clock_period, device_period);
3944 break;
3945 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
3946 pTimestamps[d] = anv_clock_gettime(CLOCK_MONOTONIC);
3947 max_clock_period = MAX2(max_clock_period, 1);
3948 break;
3949
3950 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
3951 pTimestamps[d] = begin;
3952 break;
3953 default:
3954 pTimestamps[d] = 0;
3955 break;
3956 }
3957 }
3958
3959 end = anv_clock_gettime(CLOCK_MONOTONIC_RAW);
3960
3961 /*
3962 * The maximum deviation is the sum of the interval over which we
3963 * perform the sampling and the maximum period of any sampled
3964 * clock. That's because the maximum skew between any two sampled
3965 * clock edges is when the sampled clock with the largest period is
3966 * sampled at the end of that period but right at the beginning of the
3967 * sampling interval and some other clock is sampled right at the
3968 * begining of its sampling period and right at the end of the
3969 * sampling interval. Let's assume the GPU has the longest clock
3970 * period and that the application is sampling GPU and monotonic:
3971 *
3972 * s e
3973 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
3974 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3975 *
3976 * g
3977 * 0 1 2 3
3978 * GPU -----_____-----_____-----_____-----_____
3979 *
3980 * m
3981 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
3982 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
3983 *
3984 * Interval <----------------->
3985 * Deviation <-------------------------->
3986 *
3987 * s = read(raw) 2
3988 * g = read(GPU) 1
3989 * m = read(monotonic) 2
3990 * e = read(raw) b
3991 *
3992 * We round the sample interval up by one tick to cover sampling error
3993 * in the interval clock
3994 */
3995
3996 uint64_t sample_interval = end - begin + 1;
3997
3998 *pMaxDeviation = sample_interval + max_clock_period;
3999
4000 return VK_SUCCESS;
4001 }
4002
4003 /* vk_icd.h does not declare this function, so we declare it here to
4004 * suppress Wmissing-prototypes.
4005 */
4006 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4007 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
4008
4009 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
4010 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
4011 {
4012 /* For the full details on loader interface versioning, see
4013 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
4014 * What follows is a condensed summary, to help you navigate the large and
4015 * confusing official doc.
4016 *
4017 * - Loader interface v0 is incompatible with later versions. We don't
4018 * support it.
4019 *
4020 * - In loader interface v1:
4021 * - The first ICD entrypoint called by the loader is
4022 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
4023 * entrypoint.
4024 * - The ICD must statically expose no other Vulkan symbol unless it is
4025 * linked with -Bsymbolic.
4026 * - Each dispatchable Vulkan handle created by the ICD must be
4027 * a pointer to a struct whose first member is VK_LOADER_DATA. The
4028 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
4029 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
4030 * vkDestroySurfaceKHR(). The ICD must be capable of working with
4031 * such loader-managed surfaces.
4032 *
4033 * - Loader interface v2 differs from v1 in:
4034 * - The first ICD entrypoint called by the loader is
4035 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
4036 * statically expose this entrypoint.
4037 *
4038 * - Loader interface v3 differs from v2 in:
4039 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
4040 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
4041 * because the loader no longer does so.
4042 */
4043 *pSupportedVersion = MIN2(*pSupportedVersion, 3u);
4044 return VK_SUCCESS;
4045 }